2009年上海高考文科数学试卷及答案
2009年全国高考文科数学试题及答案-全国1卷
2009年全国高考文科数学试题及答案-全国1卷2009年普通高等学校招生全国统一1卷考试文科数学(必修+选修Ⅰ)本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作......答无效.... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径 ()(1)(01,2)k k n k n n P k C P P k n -=-=,,,一、选择题(1)o585sin 的值为 (A) 22- (B)22 (C)32- (D) 32(2)设集合A={4,5,7,9},B={3,4,7,8,9},全集U AB =,则集合()U A B 中的元素共有 (A) 3个 (B ) 4个 (C )5个 (D )6个(3)不等式111<-+x x的解集为 (A ){}}{011x x x x 〈〈〉 (B ){}01x x 〈〈 (C ) }{10x x -〈〈 (D )}{0x x 〈(4)已知tan a =4,cot β=13,则tan(a+β)= (A)711 (B)711- (C) 713 (D) 713-(5)设双曲线()222200x y a b a b -=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于(A )3 (B )2 (C )5 (D )6(6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f(A )0 (B )1 (C )2 (D )4(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D )345种(8)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,(A )150° (B )120° (C )60°(D )30°(9)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A)34 (B) 54 (C) 74 (D) 34 (10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 (A)6π (B) 4π (C) 3π (D) 2π (11)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到β3Q 到α的距离为3则P 、Q 两点之间距离的最小值为(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。
2009年全国高考数学试题——全国卷2(文科)含答案
w.w.w.k.s.5.u.c.o.m
第Ⅱ卷(非选择题)
本卷共10小题,共90分。
二.填空题:本大题共4小题,每小题5分,共20分。把答案填写在答题卡上相应位置的横线上.
(13)设等比数列{}的前n项和为。若,则= ×
(11)已知直线与抛物线C:相交A、B两点,F为C的焦点。若,则k=
(A) (B) (C) (D)
(12)纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标"△"的面的方位是
2009年普通高等学校招生全国统一考试试卷题
文科数学
第Ⅰ卷(选择题)
本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式: w.w.w.k.s.5.u.c.o.m
如果事件互斥,那么 球的表面积公式
如果事件相互独立,那么 其中表示球的半径
(III)表示事件:从甲组抽取的2名工人中恰有名男工人,
表示事件:从乙组抽取的2名工人中恰有名男工人,
表示事件:抽取的4名工人中恰有2名男工人。
与独立, ,且
故
w.w.w.k.s.5.u.c.o.m
(21)(本小题满分12分)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围。
w.w.w.k.s.5.u.c.o.m
(22)(本小题满分12分)
(21)解:
(I)
由知,当时,,故在区间是增函数;
当时,,故在区间是减函数;
2009年全国统一高考真题数学试卷(文科)(全国卷ⅰ)(含答案解析版)
2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为()A.B.C.D.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知tana=4,cotβ=,则tan(a+β)=()A.B.﹣C.D.﹣5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=()A.0B.1C.2D.47.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种8.(5分)设非零向量、、满足,则=()A.150°B.120°C.60°D.30°9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.412.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9=.15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于.16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是(写出所有正确答案的序号)三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}的前n项和为S n,公比是正数的等比数列{b n}的前n项和为T n,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{a n},{b n}的通项公式.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为()A.B.C.D.【考点】GE:诱导公式.【分析】由sin(α+2kπ)=sinα、sin(α+π)=﹣sinα及特殊角三角函数值解之.【解答】解:sin585°=sin(585°﹣360°)=sin225°=sin(45°+180°)=﹣sin45°=﹣,故选:A.【点评】本题考查诱导公式及特殊角三角函数值.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选:A.【点评】本题考查集合的基本运算,较简单.3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知tana=4,cotβ=,则tan(a+β)=()A.B.﹣C.D.﹣【考点】GP:两角和与差的三角函数.【专题】11:计算题.【分析】由已知中cotβ=,由同角三角函数的基本关系公式,我们求出β角的正切值,然后代入两角和的正切公式,即可得到答案.【解答】解:∵tana=4,cotβ=,∴tanβ=3∴tan(a+β)===﹣故选:B.【点评】本题考查的知识点是两角和与差的正切函数,其中根据已知中β角的余切值,根据同角三角函数的基本关系公式,求出β角的正切值是解答本题的关键.5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=()A.0B.1C.2D.4【考点】4R:反函数.【专题】11:计算题.【分析】将x=1代入即可求得g(1),欲求f(1),只须求当g(x)=1时x的值即可.从而解决问题.【解答】解:由题令1+2lgx=1得x=1,即f(1)=1,又g(1)=1,所以f(1)+g(1)=2,故选:C.【点评】本小题考查反函数,题目虽然简单,却考查了对基础知识的灵活掌握情况,也考查了运用知识的能力.7.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!8.(5分)设非零向量、、满足,则=()A.150°B.120°C.60°D.30°【考点】9S:数量积表示两个向量的夹角.【分析】根据向量加法的平行四边形法则,两个向量的模长相等可构成菱形的两条相邻边,三个向量起点处的对角线长等于菱形的边长,这样得到一个含有特殊角的菱形.【解答】解:由向量加法的平行四边形法则,∵两个向量的模长相等∴、可构成菱形的两条相邻边,∵∴、为起点处的对角线长等于菱形的边长,∴两个向量的夹角是120°,故选:B.【点评】本小题考查向量的几何运算、考查数形结合的思想,基础题.向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体.9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r=C n r a n﹣r b r.然后根据题目已知求解即可.+1【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C n0a n b0+C n1a n ﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,属于重点考点,同学们需要理解记忆.14.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9=24.【考点】83:等差数列的性质.【分析】先由S9=72用性质求得a5,而3(a1+4d)=3a5,从而求得答案.【解答】解:∵∴a5=8又∵a2+a4+a9=3(a1+4d)=3a5=24故答案是24【点评】本题主要考查等差数列的性质及项与项间的内在联系.15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于16π.【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积.【解答】解:∵圆M的面积为3π,∴圆M的半径r=,设球的半径为R,由图可知,R2=R2+3,∴R2=3,∴R2=4.∴S=4πR2=16π.球故答案为:16π【点评】本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是①或⑤(写出所有正确答案的序号)【考点】I2:直线的倾斜角;N1:平行截割定理.【专题】11:计算题;15:综合题;16:压轴题.【分析】先求两平行线间的距离,结合题意直线m被两平行线l1与l2所截得的线段的长为,求出直线m与l1的夹角为30°,推出结果.【解答】解:两平行线间的距离为,由图知直线m与l1的夹角为30°,l1的倾斜角为45°,所以直线m的倾斜角等于30°+45°=75°或45°﹣30°=15°.故填写①或⑤故答案为:①或⑤【点评】本题考查直线的斜率、直线的倾斜角,两条平行线间的距离,考查数形结合的思想.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}的前n项和为S n,公比是正数的等比数列{b n}的前n项和为T n,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{a n},{b n}的通项公式.【考点】8M:等差数列与等比数列的综合.【专题】11:计算题.【分析】设{a n}的公差为d,数列{b n}的公比为q>0,由题得,由此能得到{a n},{b n}的通项公式.【解答】解:设{a n}的公差为d,数列{b n}的公比为q>0,由题得,解得q=2,d=2∴a n=1+2(n﹣1)=2n﹣1,bn=3•2n﹣1.【点评】本小题考查等差数列与等比数列的通项公式、前n项和,基础题.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】12:应用题.【分析】根据题意,记“第i局甲获胜”为事件A i(i=3,4,5),“第j局甲获胜”为事件B i(j=3,4,5),(1)“再赛2局结束这次比赛”包含“甲连胜3、4局”与“乙连胜3、4局”两个互斥的事件,而每局比赛之间是相互独立的,进而计算可得答案,(2)若“甲获得这次比赛胜利”,即甲在后3局中,甲胜2局,包括3种情况,根据概率的计算方法,计算可得答案.【解答】解:记“第i局甲获胜”为事件A i(i=3,4,5),“第j局甲获胜”为事件B i(j=3,4,5).(Ⅰ)设“再赛2局结束这次比赛”为事件A,则A=A3•A4+B3•B4,由于各局比赛结果相互独立,故P(A)=P(A3•A4+B3•B4)=P(A3•A4)+P(B3•B4)=P(A3)P(A4)+P(B3)P (B4)=0.6×0.6+0.4×0.4=0.52.(Ⅱ)记“甲获得这次比赛胜利”为事件H,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3•A4+B3•A4•A5+A3•B4•A5,由于各局比赛结果相互独立,故P(H)=P(A3•A4+B3•A4•A5+A3•B4•A5)=P(A3•A4)+P(B3•A4•A5)+P(A3•B4•A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648【点评】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,一般先按互斥事件分情况,再由相互独立事件的概率公式,进行计算.21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题.【分析】(1)利用导数求解函数的单调性的方法步骤进行求解.(2)根据已知,只需求出f(x)在点P处的导数,即斜率,就可以求出切线方程.【解答】解:(Ⅰ)令f′(x)>0得或;令f′(x)<0得或因此,f(x)在区间和为增函数;在区间和为减函数.(Ⅱ)设点P(x0,f(x0)),由l过原点知,l的方程为y=f′(x0)x,因此f(x0)=f′(x0)x0,即x04﹣3x02+6﹣x0(4x03﹣6x0)=0,整理得(x02+1)(x02﹣2)=0,解得或.所以的方程为y=2x或y=﹣2x【点评】本题比较简单,是一道综合题,主要考查函数的单调性、利用导数的几何意义求切线方程等函数基础知识,应熟练掌握.22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.。
2009年高考试题与答案(全国卷1数学文)
2009年高考试题与答案(全国卷1数学文)2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效......3.第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,,一、选择题(1)sin 585°的值为 (A) 22-(B)22(C)32- (D) 32 (2)设集合A={4,5,7,9},B={3,4,7,8,9},全集=A B ,则集合C u (A B )中的元素共有(A) 3个(B ) 4个(C )5个(D )6个(3)不等式111x x +?-的解集为(A ){}}{011x x x x (B ){}01x x ??(C ) }{10x x -?? (D )}{0x x ? (4)已知tan a =4,cot β=13,则tan(a+β)= (A)711 (B)711- (C) 713 (D) 713-(5)设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于(A )3 (B )2 (C )5(D )6(6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则(1)(1)f +g =(A )0 (B )1 (C )2 (D )4(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种(B )180种(C )300种(D )345种(8)设非零向量a b c 、、满足a b c ==,a +b =c ,则a b ,=(A )150° (B )120° (C )60° (D )30° (9)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A)34 (B) 54 (C) 74(D)34(10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为(A)6π (B) 4π (C) 3π(D)2π (11)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到β的距离为3,Q 到α的距离为23,则P 、Q 两点之间距离的最小值为(A )2 (B )2 (C )23 (D )4(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。
2009年全国高考文科数学试题及答案-全国1卷
2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,, 一、选择题(1)o585sin 的值为(A) (C)- (D) (2)设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B =,则集合()U AB ð中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个(3)不等式111<-+x x 的解集为 (A ){}}{011x x x x 〈〈〉 (B ){}01x x 〈〈(C ) }{10x x -〈〈 (D )}{0x x 〈 (4)已知tan a =4,cot β=13,则tan(a+β)= (A)711 (B)711- (C) 713 (D) 713-(5)设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于(A (B )2 (C (D (6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f(A )0 (B )1 (C )2 (D )4(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D )345种 (8)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,(A )150° (B )120° (C )60° (D )30°(9)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A)4 (B) 4 (C) 4(D) 34(10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 (A)6π (B) 4π (C) 3π (D) 2π(11)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到βQ到α的距离为P 、Q 两点之间距离的最小值为(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。
2009年全国统一高考数学试卷(文科)(全国卷Ⅱ)解析版
2009年全国统一高考数学试卷(文科)(全国卷Ⅱ)解析版参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知全集{1U =,2,3,4,5,6,7,8},{1M =,3,5,7},{5N =,6,7},则()(U MN =ð )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}【考点】1H :交、并、补集的混合运算 【专题】11:计算题 【分析】先求集合MN ,后求它的补集即可,注意全集的范围.【解答】解:{1M =,3,5,7},{5N =,6,7}, {1MN ∴=,3,5,6,7},{1U =,2,3,4,5,6,7,8}, (){2U MN ∴=ð,4,8}故选:C .【点评】本题考查集合运算能力,本题是比较常规的集合题,属于基础题.2.(5分)函数0)y x =…的反函数是( )A .2(0)y x x =…B .2(0)y x x =-…C .2(0)y x x =…D .2(0)y x x =-…【考点】4R :反函数 【专题】11:计算题【分析】直接利用反函数的定义,求出函数的反函数,注意函数的定义域和函数的值域. 【解答】解:由原函数定义域0x …可知A 、C 错, 原函数的值域0y …可知D 错, 故选:B .【点评】本题考查反函数的求法,反函数概念,考查逻辑推理能力,是基础题. 3.(5分)函数22log 2xy x-=+的图象( )A .关于直线y x =-对称B .关于原点对称C .关于y 轴对称D .关于直线y x =对称【考点】3K :函数奇偶性的性质与判断;3M :奇偶函数图象的对称性 【专题】31:数形结合【分析】先看函数的定义域,再看()f x -与()f x 的关系,判断出此函数是个奇函数,所以,图象关于原点对称.【解答】解:由于定义域为(2,2)-关于原点对称, 又222222()loglog()x x x x f x f x +--+-==-=-,故函数为奇函数,图象关于原点对称, 故选:B .【点评】本题考查函数奇偶性的判断以及利用函数的奇偶性判断函数图象的对称性. 4.(5分)已知ABC ∆中,12cot 5A =-,则cos (A = ) A .1213B .513C .513-D .1213-【考点】GG :同角三角函数间的基本关系 【专题】11:计算题【分析】利用同角三角函数的基本关系cos A 转化成正弦和余弦,求得sin A 和cos A 的关系式,进而与22sin cos 1A A +=联立方程求得cos A 的值. 【解答】解:12cot 5A =-A ∴为钝角,cos 0A <排除A 和B ,再由cos 12cot sin 5A A A ==-,和22sin cos 1A A +=求得12cos 13A =-, 故选:D .【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.5.(5分)已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所形成角的余弦值为( )A B .15C D .35【考点】LM :异面直线及其所成的角【专题】11:计算题;31:数形结合;44:数形结合法;5G :空间角【分析】由11//BA CD ,知1AB E ∠是异面直线BE 与1CD 所形成角,由此能求出异面直线BE 与1CD 所形成角的余弦值.【解答】解:正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 中点, 11//BA CD ∴,1A BE ∴∠是异面直线BE 与1CD 所形成角,设122AA AB ==,则11A E =,BE =,1A B ==2221111cos 2A B BE A E A BE A B BE +-∴∠===.∴异面直线BE 与1CD . 故选:C .【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)已知向量(2,1)a =,10a b =,||52a b +=,则||(b = )AB C .5D .25【考点】91:向量的概念与向量的模;9O :平面向量数量积的性质及其运算 【专题】5A :平面向量及应用【分析】根据所给的向量的数量积和模长,对||a b +=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可. 【解答】解:||52a b +=,||5a =222()250a b a b a b ∴+=++=, 得||5b = 故选:C .【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.7.(5分)设a lge =,2()b lge =,c =,则( ) A .a b c >>B .c a b >>C .a c b >>D .c b a >>【考点】4M :对数值大小的比较;4O :对数函数的单调性与特殊点【分析】因为101>,所以y lgx =单调递增,又因为110e <<,所以01lge <<,即可得到答案.【解答】解:13e <<< 01lge ∴<<,21()2lge lge lge ∴>>.a cb ∴>>.故选:C .【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.8.(5分)双曲线22163x y -=的渐近线与圆222(3)(0)x y r r -+=>相切,则(r = )A B .2C .3D .6【考点】IT :点到直线的距离公式;KC :双曲线的性质 【专题】11:计算题【分析】求出渐近线方程,再求出圆心到渐近线的距离,根据此距离和圆的半径相等,求出r .【解答】解:双曲线的渐近线方程为y =,即0x ±=,圆心(3,0)到直线的距离d ==r ∴=故选:A .【点评】本题考查双曲线的性质、点到直线的距离公式. 9.(5分)若将函数tan()(0)4y x πωω=+>的图象向右平移6π个单位长度后,与函数tan()6y x πω=+的图象重合,则ω的最小值为( )A .16B .14 C .13D .12【考点】HJ :函数sin()y A x ωϕ=+的图象变换 【专题】11:计算题【分析】根据图象的平移求出平移后的函数解析式,与函数tan()6y x πω=+的图象重合,比较系数,求出16()2k k Z ω=+∈,然后求出ω的最小值.【解答】解:tan()4y x πω=+,向右平移6π个单位可得:tan[()]tan()646y x x πππωω=-+=+∴466k πππωπ-+=1()2k k Z ω∴=+∈,又0ω> 12min ω∴=. 故选:D .【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( ) A .6种B .12种C .24种D .30种【考点】5D :组合及组合数公式 【专题】11:计算题【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案. 【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数224436C C =, ②两人所选两门都相同的有为246C =种,都不同的种数为246C =, 故选:C .【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法. 11.(5分)已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若||2||FA FB =,则(k = )A .13B C .23D 【考点】8K :抛物线的性质 【专题】11:计算题;16:压轴题【分析】根据直线方程可知直线恒过定点,如图过A 、B 分别作AM l ⊥于M ,BN l ⊥于N ,根据||2||FA FB =,推断出||2||AM BN =,点B 为AP 的中点、连接OB ,进而可知1||||2OB AF =,进而推断出||||OB BF =,进而求得点B 的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率. 【解答】解:设抛物线2:8C y x =的准线为:2l x =- 直线(2)(0)y k x k =+>恒过定点(2,0)P -如图过A 、B 分别作AM l ⊥于M ,BN l ⊥于N , 由||2||FA FB =,则||2||AM BN =, 点B 为AP 的中点、连接OB , 则1||||2OB AF =, ||||OB BF ∴=,点B 的横坐标为1,故点B 的坐标为k ∴==故选:D .【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用. 12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位( )A .南B .北C .西D .下【考点】LC :空间几何体的直观图 【专题】16:压轴题【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定. 【解答】解:如图所示.故选:B .【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查. 二、填空题(共4小题,每小题5分,满分20分)13.(5分)设等比数列{}n a 的前n 项和为n S .若11a =,634S S =,则4a = 3 .【考点】87:等比数列的性质;89:等比数列的前n 项和 【专题】11:计算题【分析】根据634S S =可求得3q ,进而根据等比数列的通项公式,得到答案. 【解答】解:设等比数列的公比为q ,则由634S S =知1q ≠, 63614(1)11q q S q q--∴==--. 33q ∴=.313a q ∴=. 故答案为:3【点评】本题主要考查了等比数列的求和问题.属基础题.14.(5分)4(-的展开式中33x y 的系数为 6 . 【考点】DA :二项式定理【分析】先化简代数式,再利用二项展开式的通项公式求出第1r +项,令x ,y 的指数都为1求出33x y 的系数【解答】解:4224(x y =,只需求4展开式中的含xy 项的系数.4的展开式的通项为414(rr r r T C -+= 令422r r -=⎧⎨=⎩得2r =∴展开式中33x y 的系数为246C = 故答案为6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具. 15.(5分)已知圆22:5O x y +=和点(1,2)A ,则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积=254. 【考点】7J :圆的切线方程 【专题】11:计算题;16:压轴题【分析】判断点A 在圆上,用点斜式写出切线方程,求出切线在坐标轴上的截距,从而求出直线与两坐标轴围成的三角形的面积.【解答】解:由题意知,点A 在圆上,切线斜率为111221OA K --==-, 用点斜式可直接求出切线方程为:12(1)2y x -=--,即250x y +-=,从而求出在两坐标轴上的截距分别是5和52, 所以,所求面积为15255224⨯⨯=.【点评】本题考查求圆的切线方程的方法,以及求直线与坐标轴围成的三角形的面积. 16.(5分)设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45︒角的平面截球O 的表面得到圆C .若圆C 的面积等于74π,则球O 的表面积等于 8π . 【考点】LG :球的体积和表面积 【专题】11:计算题;16:压轴题【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案. 【解答】解:设球半径为R ,圆C 的半径为r , 2277,44r r ππ==由得.因为22R OC R ==. 由222217)84R r R =+=+得22R = 故球O 的表面积等于8π 故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题. 三、解答题(共6小题,满分70分)17.(10分)已知等差数列{}n a 中,3716a a =-,460a a +=,求{}n a 前n 项和n s . 【考点】84:等差数列的通项公式;85:等差数列的前n 项和 【专题】34:方程思想【分析】利用等差数列的通项公式,结合已知条件列出关于1a ,d 的方程组,求出1a 、d ,进而代入等差数列的前n 项和公式求解即可.【解答】解:设{}n a 的公差为d ,则1111(2)(6)16350a d a d a d a d ++=-⎧⎨+++=⎩,即22111812164a da d a d ⎧++=-⎪⎨=-⎪⎩,解得118822a a d d =-=⎧⎧⎨⎨==-⎩⎩或, 因此8(1)(9)n S n n n n n =-+-=-,或8(1)(9)n S n n n n n =--=--.【点评】本题考查等差数列的通项公式及求和公式运用能力,利用方程的思想可求解. 18.(12分)设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c ,3cos()cos 2A CB -+=,2b ac =,求B .【考点】GG :同角三角函数间的基本关系;HP :正弦定理 【专题】11:计算题【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sin B (负值舍掉),从而求出答案. 【解答】解:由3cos()cos 2A CB -+=及()B AC π=-+得 3cos()cos()2A C A C --+=, 3cos cos sin sin (cos cos sin sin )2A C A C A C A C ∴+--=, 3sin sin 4A C ∴=. 又由2b ac =及正弦定理得2sin sin sin B A C =, 故23sin 4B =,∴sin B =sin B =, 于是3B π=或23B π=.又由2b ac = 知b a …或b c … 所以3B π=.【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.19.(12分)如图,直三棱柱111ABC A B C -中,AB AC ⊥,D 、E 分别为1AA 、1B C 的中点,DE ⊥平面1BCC .(Ⅰ)证明:AB AC =;(Ⅱ)设二面角A BD C --为60︒,求1B C 与平面BCD 所成的角的大小.【考点】LQ :平面与平面之间的位置关系 【专题】11:计算题;14:证明题【分析】(1)连接BE ,可根据射影相等的两条斜线段相等证得BD DC =,再根据相等的斜线段的射影相等得到AB AC =;(2)求1B C 与平面BCD 所成的线面角,只需求点1B 到面BDC 的距离即可,作AG BD ⊥于G ,连GC ,AGC ∠为二面角A BD C --的平面角,在三角形AGC 中求出GC 即可.【解答】解:如图 ()I 连接BE ,111ABC A B C -为直三棱柱,190B BC ∴∠=︒,E 为1B C 的中点,BE EC ∴=.又DE ⊥平面1BCC ,BD DC ∴=(射影相等的两条斜线段相等)而DA ⊥平面ABC ,AB AC ∴=(相等的斜线段的射影相等). ()II 求1B C 与平面BCD 所成的线面角,只需求点1B 到面BDC 的距离即可.作AG BD ⊥于G ,连GC , AB AC ⊥,GC BD ∴⊥,AGC ∠为二面角A BD C --的平面角,60AGC ∠=︒不妨设AC =2AG =,4GC =在RT ABD ∆中,由AD AB BD AG =,易得AD =设点1B 到面BDC 的距离为h ,1B C 与平面BCD 所成的角为α. 利用11133B BCBCD SDE Sh ∆=,可求得h =1112h B C B C α===,30α∴=︒. 即1B C 与平面BCD 所成的角为30︒.【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率; (3)求抽取的4名工人中恰有2名男工人的概率.【考点】3B :分层抽样方法;6C :等可能事件和等可能事件的概率 【专题】11:计算题【分析】(1)根据分层抽样原理,要从甲、乙两组各10人中共抽取4名工人,则从每组各抽取2名工人.(2)从甲组抽取2人的结果有210C 种,恰有1名女工人的结果有1146C C 种,代入等可能事件的概率公式即可(3)从甲乙各10人虫各抽2人的结果有221010C C 种,而4名工人中恰有2名男工人的情况分①两名男工都来自甲,有2266C C ②甲乙各抽1名男工11116446C C C C ③两名男工都来自乙有2244C C 种结果【解答】解:(1)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考核,则从每组各抽取2名工人.(2)记A 表示事件:从甲组抽取的工人中恰有1名女工人,则11462108()15C C P A C ==(3)i A 表示事件:从甲组抽取的2名工人中恰有i 名男工人,0i =,1,2 Bj 表示事件:从乙组抽取的2名工人中恰有j 名男工人,0j =,1,2B 表示事件:抽取的4名工人中恰有2名男工人.i A 与j B 独立,i ,0j =,1,2,且021120B A B A B A B =++故P (B )021*********()()()()()()()P A B A B A B P A P B P A P B P A P B =++=++22111122666464442210103175C C C C C C C C c C ++== 【点评】本题考查概率统计知识,要求有正确理解分层抽样的方法及利用分类原理处理事件概率的能力,第一问直接利用分层统计原理即可得人数,第二问注意要用组合公式得出概率,第三问关键是理解清楚题意以及恰有2名男工人的具体含义,从而正确分类求概率.21.(12分)设函数321()(1)4243f x x a x ax a =-+++,其中常数1a >,(Ⅰ)讨论()f x 的单调性;(Ⅱ)若当0x …时,()0f x >恒成立,求a 的取值范围. 【考点】3R :函数恒成立问题;6B :利用导数研究函数的单调性 【专题】15:综合题;16:压轴题【分析】(1)先对函数进行求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减可确定函数的单调性.(2)先将问题转化为求函数在0x …时的最小值问题,再结合(1)中的单调性可确定()f x 在2x a =或0x =处取得最小值,求出最小值,即可得到a 的范围.【解答】解:(1)2()2(1)4(2)(2)f x x a x a x x a '=-++=-- 由1a >知,当2x <时,()0f x '>, 故()f x 在区间(,2)-∞是增函数; 当22x a <<时,()0f x '<, 故()f x 在区间(2,2)a 是减函数; 当2x a >时,()0f x '>,故()f x 在区间(2,)a +∞是增函数.综上,当1a >时,()f x 在区间(,2)-∞和(2,)a +∞是增函数, 在区间(2,2)a 是减函数.(2)由(1)知,当0x …时,()f x 在2x a =或0x =处取得最小值. 323214(2)(2)(1)(2)422442433f a a a a a a a a a a =-+++=-++,(0)24f a =由假设知1(2)0(0)0a f a f >⎧⎪>⎨⎪>⎩即14(3)(6)03240.a a a a a >⎧⎪⎪-+->⎨⎪>⎪⎩解得16a << 故a 的取值范围是(1,6)【点评】本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性.22.(12分)已知椭圆2222:1(0)x y C a b a b+=>>,过右焦点F 的直线l 与C 相交于A 、B 两点,当l 的斜率为1时,坐标原点O 到l, (Ⅰ)求a ,b 的值;(Ⅱ)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP OA OB =+成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由. 【考点】4K :椭圆的性质 【专题】15:综合题;16:压轴题【分析】()I 设(,0)F c ,则直线l 的方程为0x y c --=,由坐标原点O 到l 的距离求得c ,进而根据离心率求得a 和b .()II 由()I 可得椭圆的方程,设1(A x ,1)y 、2(B x ,2)y ,:1l x my =+代入椭圆的方程中整理得方程△0>.由韦达定理可求得12y y +和12y y 的表达式,假设存在点P ,使OP OA OB =+成立,则其充要条件为:点P 的坐标为12(x x +,12)y y +,代入椭圆方程;把A ,B 两点代入椭圆方程,最后联立方程求得c ,进而求得P 点坐标,求出m 的值得出直线l 的方程.【解答】解:()I 设(,0)F c ,直线:0l x y c --=,由坐标原点O 到l=1c =又c e a ==∴a b = ()II 由()I 知椭圆的方程为22:132x y C += 设1(A x ,1)y 、2(B x ,2)y由题意知l 的斜率为一定不为0,故不妨设:1l x my =+代入椭圆的方程中整理得22(23)440m y my ++-=,显然△0>. 由韦达定理有:122423m y y m +=-+,122423y y m =-+,① 假设存在点P ,使OP OA OB =+成立,则其充要条件为: 点P 的坐标为12(x x +,12)y y +,点P 在椭圆上,即221212()()132x x y y +++=.整理得2222112212122323466x y x y x x y y +++++=. 又A 、B 在椭圆上,即2211236x y +=,2222236x y +=、 故12122330x x y y ++=②将212121212(1)(1)()1x x my my m y y m y y =++=+++及①代入②解得212m =∴12y y +=,2122432232m x x m +=-+=+,即3(,2P当3,,,:12m P l x y ⎛==+ ⎝⎭;当3,,:12m P l x y ⎛==+ ⎝⎭【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.。
(217)2009年上海高考数学真题(文科)试卷(word解析版)
12.【答案】3
【解析】依题意,有 ,可得4c2+36=4a2,即a2-c2=9,故有b=3。
13.已知函数 。项数为27的等差数列 满足 且公差 ,若 ,则当k =时, 。
13.【 答案】14
【解析】函数 在 是增函数,显然又为奇函数,函数图象关于原点对称,因为 ,
已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量 ,
, .
(3)若 // ,求证:ΔABC为等腰三角形;
(4)若 ⊥ ,边长c = 2,角C = ,求ΔABC的面积.
20题。证明:(1)
即 ,其中R是三角形ABC外接圆半径,
4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x3+1的反函数f-1(x)=_____________.
2.已知集体A={x|x≤1},B={x|≥a},且A∪B=R,
2.本试卷共有23道试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x3+1的反函数f-1(x)=_____________.
1.【答案】
【解析】由y=x3+1,得x= ,将y改成x,x改成y可得答案。
10.函数 的最小值是 。
11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是(结果用最简分数表示)。
2009上海高考数学文科试题及答案详解
上海 数学试卷(文史类)考生注意:1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
2. 本试卷共有23道试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x 3+1的反函数f -1(x)=_____________. 1.【解析】由y =x 3+1,得x =31-y ,将y 改成x ,x 改成y 可得答案。
2.已知集体A={x|x ≤1},B={x |≥a},且A ∪B=R ,则实数a 的取值范围是__________________. 2.【答案】a ≤1【解析】因为A ∪B=R ,画数轴可知,实数a 必须在点1上或在1的左边,所以,有a ≤1。
3. 若行列式417 5 xx 3 8 9中,元素4的代数余子式大于0,则x 满足的条件是__________________.3.【答案】83x >【解析】依题意,得: (-1)2×(9x-24)>0,解得:83x >4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是________________.4.【答案】2,12,1x x y x x ⎧<=⎨->⎩【解析】当x >1时,有y =x -2,当x <1时有y =x2,所以,有分段函数。
5.如图,若正四棱柱ABC D —A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AD 所成角的大小是___________________(结果用反三角函数值表示). 5.【答案】【解析】因为AD ∥A 1D 1,异面直线BD 1与AD 所成角就是BD 1与A 1D 1所在角,即∠A 1D 1B ,由勾股定理,得A 1B =25,tan ∠A 1D 1B =5,所以,∠A 1D 1B=。
2009年高考上海数学试题答案(文数)
幕墙工程铝塑复合板:剥离强度。
寒冷地区用石材:耐冻融性。
石材:弯曲强度。
室内用花岗岩:放射性。
(l)抹灰工程水泥:凝结时间、安全性。
(2)门窗工程人造木板及其制品:甲醛含量。
金属窗、塑料窗:抗风压性能、空气渗透性能和雨水渗透性能。
(3)轻质隔墙人造木板:甲醛含量。
(4)饰面板(砖)工程粘贴用水泥:凝结时间、安全性和抗压强度。
室内用花岗岩:放射性。
外墙用陶瓷面砖:吸水率。
寒冷地区用陶瓷面砖:抗冻性。
(5)幕墙工程铝塑复合板:剥离强度。
寒冷地区用石材:耐冻融性。
石材:弯曲强度。
室内用花岗岩:放射性。
玻璃幕墙专用结构胶:邵氏硬度以及标准条件下拉伸粘结强度、相容性。
石材幕墙用结构胶:粘结强度。
石材密封用结构胶:污染性。
(6)吊顶工程人造木板:甲醛含量。
(7)裱糊与软包工程人造木板:甲醛含量。
(8)细部工程人造木板:甲醛含量。
装饰材料有那些材料要复验?在项目上,施工单位经常与监理方有不同的意见。
在《建设工程施工质量验收统一标准》中规定:“凡涉及安全、功能的有关产品,应按各专业工程质量验收规范规定进行复验,并应经监理工程师(建设单位技术负责人)检查认可”。
了解各专业验收规范对材料复验的规定,承担施工方的责任和义务,对额外的要求据理力争,最大限度地控制工程成本。
复验时应注意选择有资质的检测机构。
装饰各专业验收规范对材料的复验要求汇总,如下。
新规范材料复验要求一、抹灰工程:水泥凝结时间和安定性二、门窗工程:1.人造板甲醛含量2.外墙金属墙、塑料窗a.抗风压b.空气渗透c.雨水渗透三、吊顶工程:人造板甲醛含量四、轻质隔墙工程:人造板甲醛含量五、饰面板(砖):1.室内花岗岩放射性2.水泥:凝结时间、安定性、抗压强度3.外墙陶瓷面砖a.吸水率b.抗冻性(寒冷区)六、幕墙工程1.铝塑复合板幕墙:剥离强度2.石材幕墙a.石材弯曲度b.耐冻性c.放射性(室内幕墙)3.玻璃幕墙(略)七、细部工程:人造板甲醛含量八、其他分项工程无要求,但涉及人造板、水泥、花岗岩(参照以上执行)九、室内环境污染控制规范规定1.必须有检测报告a.砂、石、砖、水泥、陶瓷、石膏板:放射性限量b.人造板:甲醛含量和释放量c.水性涂料、防火涂料、胶:TVOC、甲醛释放量d.溶剂型涂料和胶:TVOC、苯2.应对不同产品分别进行复验a.天然花岗岩石材(室内)当面积大于200㎡(放射性)b.人造板(室内)当面积大于500㎡(游离甲醛或甲醛释放量)十、电气工程:1.开关、插座、接线盒及面板等塑料绝缘材料阻燃性能:有异议时,按批外委检测。
2009年全国高考文科数学试题及答案-全国1
2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,, 一、选择题(1)o585sin 的值为(A) (C) (D) 【解析】本小题考查诱导公式、特殊角的三角函数值,基础题。
解:2245sin )45180sin()225360sin(585sin -=-=+=+=oo o o o o ,故选择A 。
(2)设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B =,则集合()U AB ð中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个 【解析】本小题考查集合的运算,基础题。
(同理1) 解:{3,4,5,7,8,9}AB =,{4,7,9}(){3,5,8}U A B AB =∴=ð故选A 。
2009年高考全国卷1文科数学试题及答案
2009年高考全国卷1文科数学试题及答案2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答.......无效... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=L ,,,一、选择题 (1)sin585的值为 (A)22- (B)22 (C)32- (D) 32(2)设集合A={4,5,6,7,9},B={3,4,7,8,9},全集U =A U B ,则集合[u (A I B )中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个(3)不等式111x x +〈-的解集为 (A ){}}{011x x x x 〈〈〉U (B ){}01x x 〈〈 (C ) }{10x x -〈〈 (D )}{0x x 〈(4)已知tan a =4,cot β=13,则tan(a+β)= (A)711 (B)711- (C)713(D)713-(5)设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于(A )3 (B )2 (C )5 (D )6(6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则(1)(1)f +g =(A )0 (B )1 (C )2 (D )4(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D )345种(8)设非零向量a b c 、、满足a b c ==,a +b =c ,则a b ,=(A )150°B )120° (C )60° (D )30°(9)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A)3 (B)5 (C)7 (D)34(10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为(A)6π (B) 4π (C) 3π (D) 2π(11)已知二面角αιβ--为600 ,动点P 、Q 分别在面,αβ内,P 到β3Q 到α的距离为3则P 、Q 两点之间距离的最小值为 (A)2(B) 2 (C)3(D) 3(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。
2009年全国高考文科数学试题及答案-全国1
2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题(1)o585sin 的值为(A) 2- (B)2(C)2- (D) 2【解析】本小题考查诱导公式、特殊角的三角函数值,基础题。
解:2245sin )45180sin()225360sin(585sin -=-=+=+=oo oo oo,故选择A 。
(2)设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B = ,则集合()U A B ð中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个 【解析】本小题考查集合的运算,基础题。
(同理1)解:{3,4,5,7,8,9}A B = ,{4,7,9}(){3,5,8}U A B A B =∴= ð故选A 。
2009年高考新课标全国卷-文科数学(含标准答案)
2009年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的. 1. 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =A.{3,5} B .{3,6} C.{3,7} D.{3,9}2.复数3223i i+=- A.1 B.1- C .i (D)i -3.对变量,x y 有观测数据(i x ,i y )(1,2,,10i =⋅⋅⋅),得散点图1;对变量,u v 有观测数据(i u ,i v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断A.变量x与y 正相关,u 与v 正相关 B .变量x 与y正相关,u 与v 负相关C.变量x 与y 负相关,u 与v正相关 D.变量x 与y负相关,u 与v 负相关4.有四个关于三角函数的命题:1p :∃x∈R , 2sin 2x +2cos 2x =12 2p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -= 4p : sin cos 2x y x y π=⇒+= 其中假命题的是 A.1p ,4p B.2p ,4p C .1p ,3p D.2p ,3p5.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为 A.2(2)x ++2(2)y -=1 B.2(2)x -+2(2)y +=1C .2(2)x ++2(2)y +=1D .2(2)x -+2(2)y -=1 6.设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+A .有最小值2,最大值3B .有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值7.已知()()3,2,1,0=-=-a b ,向量λ+a b 与2-a b 垂直,则实数λ的值为A.17-B.17 C .16- D .168.等比数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =A .38B .20 C.10 D.99.如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F,且12EF =,则下列结论中错误的是 A .AC BE ⊥ B.E F∥平面ABC DC.三棱锥A BEF -的体积为定值 D .△AEF 的面积与△BE F的面积相等10.执行如图所示的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于A.3B. 3.5C. 4 D.4.511.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为 A .48122+ B.48242+ C .36122+ D .36242+12.用min{a,b ,c}表示a ,b ,c 三个数中的最小值.设()min{2,2,10}xf x x x =+-(x≥0),则()f x 的最大值为A .4 B.5 C.6 D .7 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.曲线21x y xe x =++在点(0,1)处的切线方程为________________.14.已知抛物线C的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A,B 两点,若(2,2)P 为AB 的中点,则抛物线C的方程为________________.15.等比数列{}n a 的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =________________.。
2009年高考新课标全国卷_文科数学(含答案)
1 2009年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的. 1. 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =A .{3,5}B .{3,6}C .{3,7}D .{3,9}2. 复数3223ii+=- A .1 B .1- C .i (D)i -3.对变量,x y 有观测数据(i x ,i y )(1,2,10i =⋅⋅⋅),得散点图1;对变量,u v 有观测数据(i u ,i v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 4.有四个关于三角函数的命题:1p :∃x ∈R , 2sin 2x +2cos 2x =122p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π,1cos 2sin 2xx -= 4p : sin cos 2x y x y π=⇒+=其中假命题的是A .1p ,4pB .2p ,4pC .1p ,3pD .2p ,3p5.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为A .2(2)x ++2(2)y -=1 B .2(2)x -+2(2)y +=1 C .2(2)x ++2(2)y +=1 D .2(2)x -+2(2)y -=16.设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最小值D .既无最小值,也无最大值2 7.已知()()3,2,1,0=-=-a b ,向量λ+a b 与2-a b 垂直,则实数λ的值为A .17-B .17C .16- D .168.等比数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =A .38B .20C .10D .99.如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中错误的是A .AC BE ⊥B .EF ∥平面ABCDC .三棱锥A BEF -的体积为定值D .△AEF 的面积与△BEF 的面积相等 10.执行如图所示的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于 A .3 B . 3.5 C . 4 D .4.511.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为A .48122+B .48242+C .36122+D .36242+12.用min{a ,b ,c}表示a ,b ,c 三个数中的最小值.设()min{2,2,10}xf x x x =+-(x ≥0),则()f x 的最大值为A .4B .5C .6D .7第Ⅱ卷二、填空题:本大题共4小题,每小题5分.3 13.曲线21x y xe x =++在点(0,1)处的切线方程为________________.14.已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A ,B 两点,若(2,2)P 为AB 的中点,则抛物线C 的方程为________________.15.等比数列{}n a 的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =________________. 16.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭________________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求∠DEF 的余弦值.418.(本小题满分12分)如图,在三棱锥P ABC -中,△P AB 是等边三角形,∠P AC =∠PBC =90 º. (Ⅰ)证明:AB ⊥PC ;(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积.19.(本小题满分12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(Ⅰ)A 类工人中和B 类工人各抽查多少工人?(Ⅱ)从A 类工人中抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 表1:生产能力分组[)100,110[)110,120[)120,130[)130,140[)140,150人数 48x53表2:生产能力分组[)110,120[)120,130[)130,140[)140,150人数6y3618(i )先确定,x y ,再在答题纸上完成下列频率分布直方图.就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(ii )分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表).20.(本小题满分12分)已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个项点到两个焦点的距离分别是7和1.(Ⅰ)求椭圆C的方程;(Ⅱ)若P为椭圆C的动点,M为过P且垂直于x轴的直线上的点,OPeOM,(e为椭圆C的离心率),求点M的轨迹方程,并说明轨迹是什么曲线.56 21.(本小题满分12分)已知函数3223()39f x x ax a x a =--+. (Ⅰ)设1a =,求函数()f x 的极值; (2)若14a >,且当[]1,4x a ∈时,)('x f ≤12a 恒成立,试确定a 的取值范围.请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 23.(本小题满分10分)选修2—4:坐标系与参数方程 已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩(t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数).(Ⅰ)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (Ⅱ)若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线332,:2x t C y t=+⎧⎨=-+⎩ (t 为参数)距离的最小值.24.(本小题满分10分)选修4—5:不等式选讲如图,O 为数轴的原点,A ,B ,M 为数轴上三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和.(Ⅰ)将y 表示为x 的函数;(Ⅱ)要使y 的值不超过70,x 应该在什么范围内取值?72009年普通高等学校招生全国统一考试(新课标全国卷)1.D 2.C 3.C 4.A 5.B 6.B 7.A 8.C 9.D 10.B 11.A 12.C 13.31y x =+ 14.24y x = 15.15216.0 1.【答案】D 【解析】集合A 与集合B 都有元素3和9,故AB =}{3,9,选.D 。
2009年全国高考上海数学试题(文数)
永磁机构及其发展动态摘要:本文从真空断路器的动作特性出发,讨论了真空断路器各种机构的特点以及与真空断路器动作特性的匹配情况,提出了一种真空断路器用新型的永磁机构,并从原理上论述了该机构具有可靠性高、零部件少、免维护等优点,同时,介绍了几种典型的永磁机构。
关键词:永磁机构;真空断路器;动作特性从国际、国内断路器的故障统计数字来看,机械故障占大多数,高达总故障的70%,为进一步提高断路器的可靠性,满足当今社会对高质量、高可靠性产品的需求,有必要突破传统意义上的机构动作原理,研制新的断路器操动机构。
1 真空断路器的动作特性及对机构的要求真空断路器与其它型式的断路器如空气断路器、油断路器和SF6断路器的动作特性有很大差别,真空断路器的行程很小,而合闸保持力大且总的操作功小,因此,机构必须保证在开关合闸到位时,提供足够大的力来克服触头压力,而不允许发生断路器合不上或出现严重的触头弹跳。
2 真空断路器机构的比较早期设计的适合真空断路器的机构为电磁机构,开关合闸时,螺管式电磁铁逐渐接近端面,产生的吸力会增加,这样就与真空断路器的机械特性相匹配,但它仍需要保持合闸位置的机械锁扣,且需提供近百安培的直流电源。
弹簧操动机构以交流小功率储能,小功率电能供给脱扣线圈进行分、合闸操作,已广泛应用于少油、SF6断路器。
通过凸轮曲线及连杆传动变换,缓冲结构的改进,以满足真空灭弧室的特殊要求,并且可做到少维护甚至免维护的要求,它的操作功可以从数十焦耳到数千焦耳,机械寿命可达数千次到数万次。
但是弹簧机构零件数较多,特别是锁扣部分的复位和闭锁,仍存在不可靠因素。
随着真空断路器在中压领域的发展,永磁材料性能的提高,先进的二次技术在开关设备中的应用,永磁机构在柱上开关、中压断路器领域对传统的弹簧机构提出了挑战,引起了开关行业的关注。
图1同时示出了真空断路器合闸过程的负载特性、弹簧机构及永磁机构的出力特性,不难看出,弹簧机构是弹簧在断路器触头的合闸过程中释放能量,弹簧力的特性与真空断路器的特性相反。
2009年高考上海数学试题答案(文数)
1.管状器官:其内有特有的腔体,以一端或两端与外界相通,其管壁一般由四层构成,
由内向外为黏膜、黏膜下组织、肌膜、外膜。
2.实质性器官:其内无特有的腔体,是一团柔软组织,由实质和间质
两部分构成。通常有血管、神经进出的门。
(4)指关节 包括系关节、冠关节、蹄关节。
后肢的连接:(1) 荐髂关节 由荐骨的耳壮关节面和髂骨的耳壮关节面构成,几乎不活动。
(2)髋关节:由髋臼和股骨头构成。
(3)膝关节:由股骨的远端、两块半月板、胫骨的近端构成,包括股胫关节、股膑关节
(4) 跗关节:由小腿骨的远端、跗骨、跖骨的近端构成,包括小腿跗关节、跗间关节、跗 跖关节。
8.喉的构造:位于下颌间隙后部。以软骨为支架,有肌肉和韧带将软骨连接起来,组成喉腔。喉腔内表面衬以喉粘膜。
第四章.泌尿系统
1.泌尿系统包括肾、输尿管、膀胱和尿道。
2.肾脏类型:牛肾 :有沟多乳头肾;猪肾:平滑多乳头肾;马肾:平滑单乳头肾;羊肾和犬肾:平滑单乳头肾
3.雄性生殖器由生殖腺(睾丸)、生殖管(附睾、输精管、雄性尿道)、副性腺、交配器官(阴茎、包皮)和阴囊组成。1.睾丸位于阴囊内,是产生雄性激素的场所,2.附睾位于睾丸的附睾缘,由睾丸输出小管卷曲而成,分为附睾头、附睾体和附睾尾三部分。是精子成熟和贮存的场所。
7.真肋:肋软骨直接与胸骨相连的肋。
假肋:肋软骨不直接与胸骨相连,而是借助结缔组织形成肋弓间接的与胸骨相连。
牛:真肋8对、假肋5对。马:真肋8对、假肋10对。
8.胸骨:骨体、胸骨柄、剑状软骨。
9.前肢骨包括:肩带部、臂部、前臂部、前脚部;
后肢骨包括:后肢带、股部、小腿部、后脚部
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海 数学试卷(文史类) 考生注意:答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
本试卷共有23道试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x3+1的反函数f-1(x)=_____________. 2.已知集合A={x|x ≤1},B={x|≥a},且A ∪B=R , 则实数a 的取值范围是__________________.3. 若行列式417 5 x x 3 8 9中,元素4的代数余子式大于0,则x 满足的条件是__________________.4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是________________.5.如图,若正四棱柱ABCD —A1B1C1D1的底面边长为2, 高为4,则异面直线BD1与AD 所成角的大小是___________________(结果用反三角函数值表示).6.若球O1、O2表示面积之比421=S S ,则它们的半径之比21R R =_____________.7.已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩则目标函数z=x-2y 的最小值是___________.8.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 。
9.过点A (1,0)作倾斜角为4π的直线,与抛物线22y x =交于M N 、两点,则MN= 。
10.函数2()2cos sin 2f x x x =+的最小值是 。
11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
12.已知12F 、F 是椭圆2222:1(0)x y C a b a b +=>>的两个焦点,p 为椭圆C上的一点,且12PF PF ⊥。
若12PF F ∆的面积为9,则b = .13.已知函数()sin tan f x x x =+。
项数为27的等差数列{}n a 满足,,22n a ππ⎛⎫∈- ⎪⎝⎭且公差0d ≠,若1227()()...()0f a f a f a +++=,则当k= 时,()0.k f a = 。
14.某地街道呈现东——西、南——北向的网络状,相邻街距都为1,两街道相交的点称为格点。
若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售店,请确定一个格点 为发行站,使5个零售点沿街道发行站之间路程的和最短。
二.选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分。
15.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则K 得值是[答]( )(A ) 1或3 (B )1或5 (C )3或5 (D )1或216,如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 [答]( )17.点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是 [答]( ) (A )22(2)(1)1x y -++= (B )22(2)(1)4x y -++= (C )22(4)(2)4x y ++-= (D )22(2)(1)1x y ++-= 18.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”. 根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 [答]( )(A )甲地:总体均为3,中位数为4 . (B )乙地:总体均值为1,总体方差大于0 . (C )丙地:中位数为2,众数为3 . (D )丁地:总体均值为2,总体方差为3 . 三.解答题(本大题满分78分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 . 19.(本题满分14分)已知复数z a bi =+(a 、b R +∈)(I 是虚数单位)是方程2450x x -+=的根 . 复数3w u i =+(u R ∈)满足w z -< u 的取值范围2009年高考试题下载/gaokao/2009年高考试题下载/gaokao/20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 . 已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =,(s i n ,s i n B A =,(2,2)p b a =-- 若m //n ,求证:ΔABC 为等腰三角形;若m ⊥p ,边长c = 2,角C = 3π,求ΔABC 的面积21.(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分 .有时可用函数0.115l n ,6,() 4.4,64a x a xf x x x ⎧+≤⎪⎪-=⎨-⎪>⎪-⎩ 描述学习某学科知识的掌握程度.其中x 表示某学科知识的学习次数(*x N ∈),()f x 表示对该学科知识的掌握程度,正实数a 与学科知识有关(1)证明:当x ≥7时,掌握程度的增长量f (x+1)- f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a 的取值区间分别为(115,121],(121,127], (127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知双曲线C 的中心是原点,右焦点为F),一条渐近线m:0=,设过点A (-的直线l 的方向向量(1,)e k =v。
求双曲线C 的方程;若过原点的直线//a l ,且a 与lK 的值;证明:当2k >时,在双曲线C 的右支上不存在点Q ,使之到直线l23.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分. 已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列(1)若 31n a n =+,是否存在*,m n N ∈,有1mm k a a a ++=?请说明理由; (2)若nn b aq =(a 、q 为常数,且aq ≠0)对任意m 存在k ,有1m m k b b b +⋅=,试求a 、q 满足的充要条件;(3)若21,3nn n a n b =+=试确定所有的p,使数列{}n b 中存在某个连续p 项的和式数列中{}n a 的一项,请证明.上海 (数学文)参考答案 填空题2.ɑ≤13.83x > 4.2,12,1x x y x x ⎧<=⎨->⎩5 6.2 7.-9 8.83π9.10. 1 11. 57 12.313.14 14(3,3) 二、选择题题号15 16 1718 代号C B A D2009年高考试题下载/gaokao/2009年高考试题下载/gaokao/解答题19.解:原方程的根为1,22x i=±,2a b R z i +∈∴=±Q 、(3)(2)26w z u i i u -=+-+=<∴-<<Q20题。
证明:(1)//,sin sin ,m n a A b B ∴=u v vQ即22a ba b R R ⋅=⋅,其中R 是三角形ABC 外接圆半径,a b =ABC ∴∆为等腰三角形解(2)由题意可知//0,(2)(2)0m p a b b a =-+-=u v u v即a b ab ∴+=由余弦定理可知, 2224()3a b ab a b ab =+-=+-2()340ab ab --=即 4(1)ab ab ∴==-舍去11sin 4sin 223S ab C π∴==⋅⋅=21题。
证明(1)当7x ≥时,0.4(1)()(3)(4)f x f x x x +-=--而当7x ≥时,函数(3)(4)y x x =--单调递增,且(3)(4)0x x --> 故函数(1)()f x f x +-单调递减当7x ≥时,掌握程度的增长量(1)()f x f x +-总是下降(2)有题意可知0.115ln0.856aa +=-整理得0.056ae a =-解得0.050.05620.506123.0,123.0(121,127]1e a e =⋅=⨯=∈-…….13分由此可知,该学科是乙学科……………..14分22.【解】(1)设双曲线C 的方程为222(0)x y λλ-=> 32λλ∴+=,解额2λ=双曲线C 的方程为2212x y -=(2)直线:0l kx y -+=,直线:0a kx y -==,解得2k =±(3)【证法一】设过原点且平行于l 的直线:0b kx y -=则直线l 与b的距离d =当2k >时,d >又双曲线C 的渐近线为x 0=∴ 双曲线C 的右支在直线b 的右下方,∴ 双曲线C 右支上的任意点到直线l故在双曲线C 的右支上不存在点Q ,使之到直线l【证法二】假设双曲线C 右支上存在点00(,)Q x y 到直线l,则2200(1)22(2)x y ⎧=-=⎩由(1)得00y kx =+±设t =当k >时,0t =>;20t =+=>将00y kx t =+代入(2)得22200(12)42(1)0k x ktx t ---+=2009年高考试题下载/gaokao/2009年高考试题下载/gaokao/2,0k t >>,22120,40,2(1)0k kt t ∴-<-<-+<∴ 方程(*)不存在正根,即假设不成立,故在双曲线C的右支上不存在点Q ,使之到直线l 23.【解】(1)由1,m m k a a a ++=得6631m k +++,整理后,可得42,3k m -=m 、k N ∈,2k m ∴-为整数 ∴不存在n 、k N *∈,使等式成立。
(2)当1m =时,则2312,kk b b b a q aq ⋅=∴⋅=3,k a q -∴=即c a q =,其中c 是大于等于2-的整数反之当ca q =时,其中c 是大于等于2-的整数,则n c nb q +=, 显然12121m c m c m cm m k b b q q q b ++++++⋅=⋅==,其中21k m c =++ ∴a 、q 满足的充要条件是ca q =,其中c 是大于等于2-的整数(3)设12m m m p kb b b a ++++++=当p 为偶数时,(*)式左边为偶数,右边为奇数, 当p 为偶数时,(*)式不成立。