2017中考数学真题汇编-----用相似三角形解决问题(填空、选择题)

合集下载

2017年中考数学真题汇编--利用相似三角形的性质解答综合题

2017年中考数学真题汇编--利用相似三角形的性质解答综合题

2017中考数学真题汇编---利用相似三角形的性质解答综合题1.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.2.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.3.如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.4.已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD?MN.5.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;6.已知:四边形OABC是菱形,以O为圆心作⊙O,与BC相切于点D,交OA 于E,交OC于F,连接OD,DF.(1)求证:AB是⊙O的切线;(2)连接EF交OD于点G,若∠C=45°,求证:GF2=DG?OE.7.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.8.如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求的值.9.如图,已知AB、CD为⊙O的两条直径,DF为切线,过AO上一点N作NM ⊥DF于M,连结DN并延长交⊙O于点E,连结CE.(1)求证:△DMN∽△CED.(2)设G为点E关于AB对称点,连结GD、GN,如果∠DNO=45°,⊙O的半径为3,求DN2+GN2的值.10.已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.11.将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt△ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点E,分别连接EB,EC.(1)求证:EC平分∠AEB;(2)求的值.12.如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).13.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC 于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.14.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.15.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE?CP的值.16.如图,已知BC是⊙O的直径,点D为BC延长线上的一点,点A为圆上一点,且AB=AD,AC=CD.(1)求证:△ACD∽△BAD;(2)求证:AD是⊙O的切线.17.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF?DA.18.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA?PB;(2)若PT=TB=,求图中阴影部分的面积.19.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)20.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.21.如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB 于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.22.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.23.如图,以△ABC的边AC为直径的⊙O交AB边于点M,交BC边于点N,连接AN,过点C的切线交AB的延长线于点P,∠BCP=∠BAN.(1)求证:△ABC为等腰三角形.(2)求证:AM?CP=AN?CB.24.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.25.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF?AC.26.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF ⊥DE,垂足为F,BF分别交AC于H,交CD于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.27.如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF?GF=28时,请直接写出CE的长.28.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图1,当∠ABC=45°时,求证:AD=DE;(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.29.如图,在△ABC中,AB=AC,D是边BC上一点,DE⊥AB,DF⊥AC,垂足分别是E、F,△AEF∽△ABC.(1)求证:△AED≌△AFD;(2)若BC=2AD,求证:四边形AEDF是正方形.30.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD 于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.31.将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.32.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F 在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.33.△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?34.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F 为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.35.如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?36.如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.37.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC 交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?38.如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF交AD于M,PE交BC于N,EF交MN于K.求证:K是线段MN的中点.39.如图,过圆O直径的两端点M、N各引一条切线,在圆O上取一点P,过O、P两点的直线交两切线于R、Q.(1)求证:△NPQ∽△PMR;(2)如果圆O的半径为,且S△PMR=4S△PNQ,求NP的长.40.已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F.证明:△PME∽△PNF,PN=PM.(2)当PC=PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请分别写出线段PN、PM之间的数量关系(不用证明).参考答案与解析1.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°-∠B-∠DEB,∠CEF=180°-∠DEF-∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴BE:CF=DE:EF,∵点E是BC的中点,∴BE=CE,∴CE:CF=DE:EF,∵∠DEF=∠B=∠C,∴△DEF∽△CEF,∴∠DFE=∠CFE,∴FE平分∠DFC.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.2.(2017?泰安)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.【分析】(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;(2)首先过点C作CM⊥PD于点M,进而得出△CPM∽△APD,求出EC的长即可得出答案.【解答】(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∵PD⊥AD,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC;(2)解:过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,∴=,设CM=CE=x,∵CE:CP=2:3,∴PC=x,∵AB=AD=AC=1,∴=,解得:x=,故AE=1﹣=.【点评】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出△CPM∽△APD是解题关键.3.(2017?攀枝花)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.【分析】(1)若要证明直线CA是⊙O的切线,则只要证明∠ACB=90°即可;(2)易证△ADF∽△ACE,由相似三角形的性质以及结合已知条件即可求出的值.【解答】解:(1)证明:∵BC为直径,∴∠BDC=∠ADC=90°,∴∠1+∠3=90°∵AE平分∠BAC,CE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°,∵∠3=∠4,∴∠2+∠5=90°,∴∠ACB=90°,即AC⊥BC,∴直线CA是⊙O的切线;(2)由(1)可知,∠1=∠2,∠3=∠5,∴△ADF∽△ACE,∴,∵BD=DC,∴tan∠ABC=,∵∠ABC+∠BAC=90°,∠ACD+∠BAC=90°,∴∠ABC=∠ACD,∴tan∠ACD=,∴sin∠ACD=,∴.【点评】本题考查了切线的判断和性质、相似三角形的判断和性质、圆周角定理以及三角函数的性质,熟记切线的判断和性质是解题的关键.4.(2017?黄冈)已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD?MN.【分析】(1)求出OE∥DM,求出OE⊥DE,根据切线的判定得出即可;(2)连接EN,求出∠MDE=∠MEN,求出△MDE∽△MEN,根据相似三角形的判定得出即可.【解答】证明:(1)∵ME平分∠DMN,∴∠OME=∠DME,∵OM=OE,∴∠OME=∠OEM,∴∠DME=∠OEM,∴OE∥DM,∵DM⊥DE,∴OE⊥DE,∵OE过O,∴DE是⊙O的切线;(2)连接EN,∵DM⊥DE,MN为⊙O的直径,∴∠MDE=∠MEN=90°,∵∠NME=∠DME,∴△MDE∽△MEN,∴=,∴ME2=MD?MN【点评】本题考查了切线的判定,圆周角定理,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.5.(2017?阿坝州)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【分析】(1)依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据SAS可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到BD=CE;(2)分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∴△ADB≌△AEC.∴BD=CE.(2)解:①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=.∴=.∴PB=.②当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴=.∴=.∴PB=.综上所述,PB的长为或.【点评】本题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.6.(2017?锦州)已知:四边形OABC是菱形,以O为圆心作⊙O,与BC相切于点D,交OA于E,交OC于F,连接OD,DF.(1)求证:AB是⊙O的切线;(2)连接EF交OD于点G,若∠C=45°,求证:GF2=DG?OE.【分析】(1)过O作OH⊥AB,由菱形的性质可求得OH=OD,由切线的性质可知OD为圆O的半径,可得OH为圆O的半径,可证得结论;(2)由条件可证明△DGF∽△DFO,再利用相似三角形的性质可证得结论.【解答】证明:(1)如图,过O作OH⊥AB,∵四边形OABC为菱形,∴AB=BC,∵BC为⊙O的切线,∴OD⊥BC,且OD为⊙O的半径,∴AB?OH=BC?OD,∴OH=OD,∴AB为⊙O的切线;(2)由(1)可知OD⊥CB,∴AO⊥DO,∴∠AOD=90°,∴∠DFE=∠AOD=45°,∵∠C=45°,且∠ODC=90°,∴∠DOF=45°,在△OGF中,∠DGF为△OGF的外角,∴∠DGF=∠DOF+∠GFO=45°+∠GFO,∵∠DFO=∠DFG+∠GFO=45°+∠GFO,∴∠DGF=∠DFO,且∠GDF=∠FDO,∴△DGF∽△DFO,∴=,即DF?GF=DG?OF,∵OF=OD=OE,∴DF=GF,∴GF2=DG?OE.【点评】本题主要考查切线的判定和性质及相似三角形的判定,掌握切线的判定方法和相似三角形的判定方法是解题的关键,注意等积法的应用.7.(2017?杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG ⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.8.(2017?巴中)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求的值.【分析】(1)连接OE,证明FG是⊙O的切线,只要证明∠OEF=90°即可;(2)先根据角平分线的性质得出EF=BE=6,再证明△ADF∽△FCE,根据相似三角形对应边成比例得出==.【解答】(1)证明:如图,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE,∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线;(2)解:∵四边形ABCD是矩形,∴EB⊥AB,∵EF⊥AF,AE平分∠FAH,∴EF=BE=6,又∵四边形ABCD是矩形,∴∠D=∠C=90°,∴∠DAF+∠AFD=90°,又∵AF⊥FG,∴∠AFG=90°,∴∠AFD+∠CFE=90°,∴∠DAF=∠CFE,又∵∠D=∠C,∴△ADF∽△FCE,∴=,又∵AF=12,EF=6,∴==.【点评】本题考查的是切线的判定,解决本题的关键是要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质,矩形的性质.9.(2017?德阳)如图,已知AB、CD为⊙O的两条直径,DF为切线,过AO上一点N作NM⊥DF于M,连结DN并延长交⊙O于点E,连结CE.(1)求证:△DMN∽△CED.(2)设G为点E关于AB对称点,连结GD、GN,如果∠DNO=45°,⊙O的半径为3,求DN2+GN2的值.【分析】(1)先利用直径所对的圆周角是直角和切线的性质得:∠DEC=∠NMD=90°,再证明CD∥NM,可得∠MND=∠EDC,根据两角对应相等可得两三角形相似;(2)先证明△GND是直角三角形,再根据△EGN是等腰直角三角形得∠GEN=45°,证明△GOD是直角三角形,利用勾股定理可得结论.【解答】证明:(1)∵DF为⊙O的切线,∴DF⊥CD,∵NM⊥DF,∴NM∥CD,∴∠MND=∠EDC,∵CD为⊙O的直径,NM⊥DF,∴∠DEC=∠NMD=90°,∴△DMN∽△CED;(2)连接GE,CG,OC,∵G为点E关于AB对称点,∴AO垂直平分EG,∴GN=EN,∠GNA=∠ENA,∵∠DNO=45°,∴∠ENA=45°,∴∠GNE=90°,∴∠GND=180°﹣90°=90°,∴△GND是直角三角形,∴DN2+GN2=DG2,∵△EGN是等腰直角三角形,∴∠GEN=45°,∴∠C=∠GEN=45°,∵OG=OC,∴∠CGO=∠C=45°,∴∠GOD=90°,∴△GOD是直角三角形,∴DG2=OG2+OD2=32+32=18,∴DN2+GN2=DG2=18.【点评】本题考查了切线的性质、等腰三角形的性质、相似三角形的判定与性质、等腰直角三角形的判定及性质、勾股定理等知识,第2问有难度,证明∠C=45°是解决第(2)小题的关键.10.(2017?十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边成比例的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键.11.(2017?宁夏)将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt△ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点E,分别连接EB,EC.(1)求证:EC平分∠AEB;(2)求的值.【分析】(1)由Rt△ACB中∠ABC=45°,得出∠BAC=∠ABC=45°,根据圆周角定理得出∠AEC=∠ABC,∠BEC=∠BAC,等量代换得出∠AEC=∠BEC,即EC平分∠AEB;(2)方法1、设AB与CE交于点M.根据角平分线的性质得出=.易求∠BAD=30°,由直径所对的圆周角是直角得出∠AEB=90°,解直角△ABE得到AE=BE,那么==.作AF⊥CE于F,BG⊥CE于G.证明△AFM∽△BGM,根据相似三角形对应边成比例得出==,进而求出===.方法2、易求∠BAD=30°,由直径所对的圆周角是直角得出∠AEB=90°,解直角△ABE得到AE=BE,那么==,再用角平分线定理判断出CP=CQ,即可得出结论.【解答】(1)证明:∵Rt△ACB中,∠ACB=90°,∠ABC=45°,∴∠BAC=∠ABC=45°,∵∠AEC=∠ABC,∠BEC=∠BAC,∴∠AEC=∠BEC,即EC平分∠AEB;(2)解:如图,设AB与CE交于点M.∵EC平分∠AEB,∴=.在Rt△ABD中,∠ABD=90°,∠D=60°,∴∠BAD=30°,∵以AB为直径的圆经过点E,∴∠AEB=90°,∴tan∠BAE==,∴AE=BE,∴==.作AF⊥CE于F,BG⊥CE于G.在△AFM与△BGM中,∵∠AFM=∠BGM=90°,∠AMF=∠BMG,∴△AFM∽△BGM,∴==,【分析】①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=∠AEB,由圆周角定理得出∠AEC=∠BEC,证出∠AEC=∠F,即可得出结论;②证明△ADE∽△CBE,得出,证明△CBE∽△CDB,得出,求出CB=2,得出AD=6,AB=8,由垂径定理得出OC⊥AB,AG=BG=AB=4,由勾股定理求出CG==2,即可得出△BCD的面积.【解答】①证明:连接AC,BE,作直线OC交AB于G,如图所示:∵BE=EF,∴∠F=∠EBF;∵∠AEB=∠EBF+∠F,∴∠F=∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC=∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG=AB=4,∴CG==2,∴△BCD的面积=BD?CG=×2×2=2.【点评】本题考查了相似三角形的判定与性质、垂径定理、圆周角定理、三角形的外角性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理,证明三角形相似是解决问题的关键.13.(2017?桂林)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【分析】(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE:S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD=,AB=10,∴BD=3,∵EM⊥AB,AB是⊙O的直径,∴=,∴∠BEP=∠EDB,∴△BPE∽△BED,∴=,∴BP=,∴DP=BD﹣BP=,∴S△DPE:S△BPE=DP:BP=13:32,∵S△BCD=××3=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=.【点评】考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.14.(2017?衢州)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.【分析】(1)由切线的性质和垂直的定义得出∠E=90°=∠CDO,再由∠C=∠C,得出△COD∽△CBE.(2)由勾股定理求出BC==15,由相似三角形的性质得出比例式,即可得出答案.【解答】(1)证明:∵CD切半圆O于点D,∴CD⊥OD,∴∠CDO=90°,∵BE⊥CD,∴∠E=90°=∠CDO,又∵∠C=∠C,∴△COD∽△CBE.(2)解:在Rt△BEC中,CE=12,BE=9,∴BC==15,∵△COD∽△CBE.∴,即,解得:r=.【点评】本题考查了切线的性质、相似三角形的判定及其性质、勾股定理;熟练掌握相似三角形的判定与性质是解决问题的关键.15.(2017?乐山)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE?CP的值.【分析】(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE?CP的值.【解答】解:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=C A2=(2)2=8.【点评】此题主要考查了切线的判定和相似三角形的性质和判定,关键是掌握切线的判定定理和相似三角形的判定与性质定理.16.(2017?怀化)如图,已知BC是⊙O的直径,点D为BC延长线上的一点,点A为圆上一点,且AB=AD,AC=CD.(1)求证:△ACD∽△BAD;(2)求证:AD是⊙O的切线.【分析】(1)根据等腰三角形的性质得到∠CAD=∠B,由于∠D=∠D,于是得到△ACD∽△BAD;(2)连接OA,根据等腰三角形的性质得到∠B=∠OAB,得到∠OAB=∠CAD,由BC是⊙O的直径,得到∠BAC=90°即可得到结论.【解答】证明:(1)∵AB=AD,∴∠B=∠D,∵AC=CD,∴∠CAD=∠D,∴∠CAD=∠B,∵∠D=∠D,∴△ACD∽△BAD;(2)连接OA,∵OA=OB,∴∠B=∠OAB,∴∠OAB=∠CAD,∵BC是⊙O的直径,∴∠BAC=90°,∴OA⊥AD,∴AD是⊙O的切线.【点评】本题考查了相似三角形的判定和性质,切线的判定,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.17.(2017?滨州)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF?DA.【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF?DA,据此可得DE2=DF?DA.【解答】解:(1)如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,∴直线DM是⊙O的切线;(2)如图所示,连接BE,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,即DB2=DF?DA,∴DE2=DF?DA.【点评】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.18.(2017?黔东南州)如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA?PB;(2)若PT=TB=,求图中阴影部分的面积.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA?PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣?12=﹣.【点评】本题考查相似三角形的判定和性质、切线的性质、扇形的面积等计算等知识,解题的关键是正确寻找相似三角形解决问题,第二个问题的关键是证明△AOT的等边三角形.19.(2017?广东)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM?PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【点评】本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.20.(2017?天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.【点评】此题考查了相似三角形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质以及勾股定理.此题难度较大,注意数形结合思想的应用.21.(2017?德州)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴=,∴BC2=BE?BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x?3x,解得:x=,即AE=.【点评】本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解此题的关键.22.(2017?河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.。

2017中考数学真题汇编----相似三角形的性质(选择、填空题)

2017中考数学真题汇编----相似三角形的性质(选择、填空题)

在 AB 边上移动时, DE始终与 AB 垂直, 若△ CEF与△ DEF相似,则 AD=

39.在平行四边形 ABCD的边 AB 和 AD 上分别取点 E 和 F,使


连接 EF交对角线 AC于 G,则 的值是

40.如图,点 A1,A2, A3,A4,…,An 在射线 OA 上,点 B1,B2, B3,…,Bn﹣1
A.2 B.3 C.4 D.5 19.如图,在等边△ ABC中, D 为 AC边上的一点,连接 BD,M 为 BD 上一点, 且∠ AMD=6°0 ,AM 交 BC于 E.当 M 为 BD 中点时, 的值为( )
A. B.
C. D.
20.将一张边长分别为 a, b( a> b)的矩形纸片 ABCD折叠,使点 C 与点 A 重
13.如图,在△ ABC中, D、 E 分别为 AB、 AC边上的点, DE∥ BC,点 F 为 BC边
上一点,连接 AF 交 DE于点 G,则下列结论中一定正确的是(

A. = B. = C. = D. =
14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,
问井深几何? ”这是我国古代数学《九章算术》中的 “井深几何 ”问题,它的题意
DE⊥BC于点 E,连结 AE,则△ ABE的面积等于

8
29.如图,⊙ O 为等腰△ ABC的外接圆,直径 AB=12,P 为弧 上任意一点(不
与 B,C 重合),直线 CP交 AB 延长线于点 Q,⊙ O 在点 P 处切线 PD交 BQ 于点
D,下列结论正确的是
.(写出所有正确结论的序号)
①若∠ PAB=30°,则弧 的长为 π;②若 PD∥BC,则 AP平分∠ CAB;

备考2023年中考数学一轮复习-图形的变换_图形的相似_相似三角形的应用-填空题专训及答案

备考2023年中考数学一轮复习-图形的变换_图形的相似_相似三角形的应用-填空题专训及答案

备考2023年中考数学一轮复习-图形的变换_图形的相似_相似三角形的应用-填空题专训及答案相似三角形的应用填空题专训1、(2017吉林.中考真卷) 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.2、(2017顺义.中考模拟) 小刚身高180cm,他站立在阳光下的影子长为90cm,他把手臂竖直举起,此时影子长为115cm,那么小刚的手臂超出头顶________cm.3、(2017天津.中考模拟) 如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为________cm.4、(2020南宁.中考模拟) 如图,某水平地面上建筑物的高度为AB,在点D和点F 处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是________ 米.5、(2019白山.中考模拟) 如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为________米.6、(2019宁江.中考模拟) 如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB的影长不全落在水平地面上,有一部分落在楼房的墙上,测得落在地面上的影长BD=9.6米,留在墙上的影长CD=2米,则旗杆的高度AB 为________米.7、(2017.中考模拟) 如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=________米.8、(2017丽水.中考真卷) 如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.9、(2017历下.中考模拟) 如图,边长为4的正方形ABCD中,P是BC边上一动点(不含B、C点).将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有________(写出所有正确结论的序号).①∠NAP=45°;②当P为BC中点时,AE为线段NP的中垂线;③四边形AMCB的面积最大值为10;④线段AM的最小值为2 ;⑤当△ABP≌△ADN时,BP=4 ﹣4.10、(2017黄石.中考模拟) 如图,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为________米(结果保留根号)11、(2016福田.中考模拟) 如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为________m.12、(2017贵州.中考模拟) 赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.13、(2014遵义.中考真卷) “今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=________里.14、(2019金昌.中考模拟) 如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.15、(2020郑州.中考模拟) 兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为________.16、(2020瑞安.中考模拟) 图1是小红在“淘宝·双11”活动中所购买的一张多档位可调节靠椅,档位调节示意图如图2所示。

天津市河北区2017年中考《相似三角形》复习练习题及答案

天津市河北区2017年中考《相似三角形》复习练习题及答案

中考数学复习专题练习相似三角形一、选择题:1、下列说法中,错误的是()A.等边三角形都相似 B.等腰直角三角形都相似 C.矩形都相似 D.正方形都相似2、下列说法中正确的是()①在两个边数相同的多边形中,如果对应边成比例,那么这两个多边形相似;②如果两个矩形有一组邻边对应成比例,那么这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④3、若,且,则的值是()A.14B.42C.7D.4、已知()A. B. C. D.5、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.6、如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下作△ABC 的位似图形△A/B/C,并把△ABC的边长放大到原来的2倍.设点A/的对应点A的纵坐标是1.5,则点A的纵坐标是()A.3B.3C.﹣4D.47、如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD=()A. 2B. 2.4C. 2.5D. 38、如图,在平行四边形ABCD 中,点E在CD上,若DE︰CE =1︰2,则△CEF与△ABF周长比为().A.1︰2 B.1︰3 C.2︰3 D.4︰99、如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S:S△EBF:S△ABF=()△DEFA.2:5:25 B.4:9:25 C.2:3:5 D.4:10:2510、如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为( )A. B. C. D.11、如图1是一张等腰直角三角形彩色纸,将斜边上的高线四等分,然后裁出三张宽度相等的长方形纸条,若恰好可以用这些纸条为一幅正方形美术作品镶边(纸条不重叠),则这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比为()A.2:3 B.3:4 C.1:1 D.4:312、如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论:①∠AED=∠ADC;②BE=DE;③AC﹣BE=12;④3BF=4AC;⑤=.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个二、填空题:13、若△ABC∽△ACD,AB=1,AD=4,则AC= .14、如图,△ABC中,DE∥BC,交边AB、AC于D、E,若AE:EC=1:2,AD=3,则BD= .15、在同一时刻木杆AB、建筑物PQ在太阳光下的影子分别为BC、PM,如图所示.已知AB=2m,BC=1.2m,PM=4.8m,则建筑物PQ的高度为 m.16、如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为 m.17、如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC 缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为.18、正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为.19、如图,在平行四边形ABCD中,AC与BD相交于O,E为OD的中点,连接AE并延长交CD于点F,则DF:FC等于.20、如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则= .21、如图,点M是△ABC内﹣点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC的面积是.22、如图,□ABCD中,E是边BC上一点,AE交BD于F,若BE=2,EC=3,则的值为.23、如图,△ABC中,AB=7,BC=6,AC=8,延长∠ABC、∠ACB的角平分线BD、CE分别交过点A且平行于 BC的直线于 N、M,BD与CE相交于点G,则△BCG与△MNG的面积比为_________24、如图,AD是△ABC的中线,E是AD上一点,且AE=AD,CE的延长线交AB于点F,若AF=1.2,则AB= .三、简答题:25、图①、图②是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形顶点叫做格点,△ABC的顶点在格点上,点D、E在格点上,连结DE.(1)在图①、图②中分别找到不同的格点F,使以D、E、F为顶点的三角形与△ABC相似,并画出△DEF(每个网格中只画一个即可).(2)使△DEF与△ABC相似的格点F一共有个.26、如图,矩形ABCD中,E为对角线BD上一点,连接AE交CD于G,交BC延长线于F,∠DAE=∠DCE,∠AEB=∠CEB.(1)求证:矩形ABCD是正方形;(2)若AE=2EG,求EG与GF之间的数量关系.27、探究:如图①,在正方形ABCD中,点E在边BC上(点E不与点B、C重合),连结AE,过点E作AE⊥EF,EF交边CD于点F,求证:△ABE≌△ECF.拓展:如图②,△ABC是等边三角形,点D在边BC上(点D不与点B、C重合),连结AD,以AD为边作∠ADE=∠ABC,DE交边AC于点E,若AB=3,BD=x,CE=y,求y与x的函数关系式(不要求写出自变量x的取值范围).28、正方形ABCD中,B=4,点E为射线CB上一点,F为AE的中点,过点F作GH⊥AE分别交边AB和CD于G,H.(1)若E为边BC的中点,GH= ;= ;(2)若=,求的值;(3)若=k,= .29、如图,四边形ABCD表示一张矩形纸片,AB=10,AD=8.E是BC上一点,将△ABE沿折痕AE向上翻折,点B 恰好落在CD边上的点F处,⊙O内切于四边形ABEF.求:(1)折痕AE的长;(2)⊙O的半径.30、在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;(3)当x为何值时,△EDQ为直角三角形?参考答案1、C.2、D.3、D.4、B.5、B.6、B.7、A.8、C.9、D.10、C.11、C.12、D. 13、答案为:2.14、答案为:6.15、答案为:8.16、答案为:12m.17、答案为:(2,)18、答案为:(﹣1,0)或(5,﹣2). 19、答案为:1:2.20、答案为:.21、答案为:36.22、答案为:.23、答案为:4:2524、答案为:6.25、【解答】解:(1)如图所示:(2)如图①所示:使△DEF与△ABC相似的格点F一共有6个.故答案为:6.26、【解答】证明:(1)∵∠AEB=∠CEB,∠ADE=∠CDE,∴∠DAE=∠DCE,在△ADE和△CDE中,,∴△ADE≌△CDE(AAS),∴AD=CD,∴矩形ABCD是正方形;(2)GF=3EG;∵△ADE≌△CDE,∴AE=CE,∵四边形ABCD是矩形,∴AD∥BF,∴∠DAE=∠F,∵∠DAE=∠DCE,∴∠DCE=∠F,又∵∠GEC=∠CEF,∴△ECG∽△EFC,∴,∵AE=2EG,∴CE=2EG,∴,∴EF=4EG,∴GF=3EG.27、【解答】(1)证明:∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAE+∠BEA=90°,∵EF⊥AE,∴∠AEF=90°,∴∠BEA+∠FEC=90°,∴∠BAE=∠FEC,∴△ABE∽△ECF;(2)解:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=120°,∵∠ADE=∠ABC,∴∠ADE=60°,∴∠ADB+∠CDE=120°,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∵AB=3,BD=x,CE=y,∴,∴y=﹣x2+x.28、【解答】解:(1)如答图1所示,过点H作HN⊥AB于点N,则四边形ADHN为矩形,∴HN=AD,∴HN=AB.∵∠AGH+∠GHN=∠AGH+∠EAB=90°,∴∠GHN=∠EAB.在△AEB与△HGN中,∴△AEB≌△HGN(ASA).∴GH=AE.若E为边BC的中点,则BE=BC=2.由勾股定理得:AE==2∴GH=2;∵∠EAB=∠EAB,∠AFG=∠B=90°,∴△AFG∽△ABE,∴,∴GF=•BE=×2=AE=GH.∴FH=GH﹣GF=GH,∴=.(2)若=,①若点E在线段BC上,如答图2﹣1所示,则BE=,与(1)同理,易证△AFG∽△ABE,∴,∴GF=•BE=×=AE=GH,∴FH=GH﹣GF=GH,∴=;②若点E在线段CB的延长线上,如答图2﹣2所示,则BE=1.与(1)同理,可得AE=GH.与(1)同理,易证△AFG∽△ABE,∴,∴GF=•BE=×=AE=GH,∴FH=GH+GF=GH,∴=.综上所述,若=,则的值为或.(3)若=k,①若点E在线段BC上,如答图所示.∵BE+CE=BC,∴BE=BC=AB.与(1)同理,易证△AFG∽△ABE,∴,∴GF=•BE=×AB=AE=GH,∴FH=GH﹣GF=GH,∴=;②若点E在线段CB的延长线上,如答图2﹣2所示.∵BE+BC=EC,∴BE=BC=AB.与(1)同理,可得AE=GH.与(1)同理,易证△AFG∽△ABE,∴,∴GF=•BE=×AB=AE=GH,∴FH=GH+GF=GH,∴=.综上所述,若=k,则的值为或.29、【解答】解:(1)由题意知,AF=10,AD=8,根据勾股定理得:DF=6.∴CF=4.设BE=x,那么EF=x,CE=8﹣x.在Rt△CEF中,根据勾股定理得:(8﹣x)2+42=x2,解得 x=5.即BE=5.由勾股定理得:∴AE==5.(2)如图,连接OH、OG;则∠OHB=∠B=∠OGB=90°,而BH=BG,∴四边形OHBG为正方形,∴OH=BH;设⊙O的半径为r,则OH=BH=r;∵△AOH∽△AEB,∴=,即=;解得:r=.∴⊙O的半径为.30、【解答】解:(1)在Rt△ADC中,AC=4,CD=3,∴AD=5,∵EP∥DC,∴△AEP∽△ADC∴=,即=,∴EA=x,DE=5﹣x;(2)∵BC=5,CD=3,∴BD=2,当点Q在BD上运动x秒后,DQ=2﹣1.25x,则y=×DQ×CP=(4﹣x)(2﹣1.25x)=x2﹣x+4,即y与x的函数解析式为:y=x2﹣x+4,其中自变量的取值范围是:0<x<1.6;(3)分两种情况讨论:①当∠EQD=90°时,显然有EQ=PC=4﹣x,又∵EQ∥AC,∴△EDQ∽△ADC∴=,即=,解得x=2.5②当∠QED=90°时,∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,∴=,即=,解得x=3.1.综上所述,当x为2.5秒或3.1秒时,△EDQ为直角三角形.。

2017中考数学真题汇编-----用相似三角形解决问题(解)

2017中考数学真题汇编-----用相似三角形解决问题(解)

点 C 的对应点为 C′,连接 BB′;
( 2)在( 1)所画图形中,∠ AB′B=

【问题解决】
如图②,在等边三角形 ABC中,AC=7,点 P 在△ ABC内,且∠ APC=9°0,∠ BPC=12°0,
求△ APC的面积.
小明同学通过观察、分析、思考,对上述问题形成了如下想法:
想法一:将△ APC 绕点 A 按顺时针方向旋转 60°,得到△ AP′,B连接 PP′,寻找
请你参考上面的思路,证明 DF=EF(只用一种方法证明即可) . ( 2)类比探究:在( 1)的条件下(如图 1),过点 D 作 DM⊥AC 于点 M ,试探 究线段 AM, MF,FC之间满足的数量关系,并证明你的结论. ( 3)延伸拓展:如图 2,在△ ABC中,若 AB=AC,∠ABC=2∠BAC, =m,请你
AB 于点 D,E,F,若 = , = ,求 的值.
6.已知,在△ ABC中,点 D 在 AB 上,点 E 是 BC延长线上一点,且 AD=CE,连 接 DE 交 AC于点 F. ( 1)猜想证明:如图 1,在△ ABC中,若 AB=BC,学生们发现: DF=EF.下面是 两位学生的证明思路: 思路 1:过点 D 作 DG∥BC,交 AC于点 G,可证△ DFG≌△ EFC得出结论; 思路 2:过点 E 作 EH∥ AB,交 AC 的延长线于点 H,可证△ ADF≌△ HEF得出结 论; …
△ ABC平移的时间为 t (s).
( 1)等边△ ABC的边长为

( 2)在运动过程中,当 t=
时, MN 垂直平分 AB;
( 3)若在△ ABC开始平移的同时.点 P 从△ ABC的顶点 B 出发.以每秒 2 个单
位长度的速度沿折线 BA﹣AC运动.当点 P 运动到 C 时即停止运动.△ ABC也随

中考数学 第一部分 考点研究复习 第四章 三角形 第22课时 相似三角形真题精选(含解析)(202

中考数学 第一部分 考点研究复习 第四章 三角形 第22课时 相似三角形真题精选(含解析)(202

江苏省2017年中考数学第一部分考点研究复习第四章三角形第22课时相似三角形真题精选(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2017年中考数学第一部分考点研究复习第四章三角形第22课时相似三角形真题精选(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2017年中考数学第一部分考点研究复习第四章三角形第22课时相似三角形真题精选(含解析)的全部内容。

第四章三角形第22课时相似三角形江苏近4年中考真题精选(2013~命题点1 平行线分线段成比例(2015年3次)1。

(2015淮安8题3分)如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F。

若\f(AB,BC)=错误!,DE=4,则EF的长是( )A。

错误!B。

错误! C. 6 D. 10第1题图第2题图2. (2015连云港16题3分)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2。

且l1,l2,l3分别经过点A,B,C,则边AC的长为________.命题点2 相似三角形的性质与判定(2016年8次,2015年9次,2014年3次,2013年5次)3。

(2016盐城7题3分)如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有( )A. 0个B。

1个 C. 2个D.3个第3题图第4题图4. (2014宿迁8题3分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P 个数是( )A。

09-17年陕西中考数学正题副题三角函数与三角形相似汇编

09-17年陕西中考数学正题副题三角函数与三角形相似汇编

09-17年陕西中考数学正题副题三角函数与三角形相似汇编09年:20.(本题满分8分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼在墙上的影子高度 1.2CD =m ,0.8CE =m ,30CA =m (点A E C 、、在同一直线上). 已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).10年20 再一次测量活动中,同学们要测量某公园的码头A 与他正东方向的亭子B 之间的距离,如图他们选择了与码头A 、亭子B 在同一水平面上的点P 在点P 处测得码头A 位于点P 北偏西方向30°方向,亭子B 位于点P 北偏东43°方向;又测得P 与码头A 之间的距离为200米,请你运用以上数据求出A 与B 的距离。

11年:20.(本题满分8分)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①、先测出沙坑坑沿的圆周长34.54米;②、甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米,(π取3.14,结果精确到0.1米)S12年20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65︒方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45︒方向(点A B C、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:,,,sin250.4226cos250.9063tan250.4663sin650.9063︒≈︒≈︒≈︒≈,,)cos650.4226tan65 2.1445︒≈︒≈13年:20.(本题满分8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立向高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m.已知李明直立时的身高为1.75m ,求路灯的高度CD 的长.(精确到0.1m )14年:20、(本题满分8分) 某一天,小明和小亮来到一河边,想用遮阳帽和皮尺来测量这一条河流的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B 与河对岸岸边上的一棵树的底部点D 所确定的直线垂直于河岸)①小明在B 点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D 处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB 延长线上的点E 处,此时小亮测得BE=9.6米,小明的眼睛距离地面的距离CB=1.2米。

上海市各市县2017届中考数学试题分类汇编-初三一模相似三角形的性质

上海市各市县2017届中考数学试题分类汇编-初三一模相似三角形的性质

【答案】 1 2
【 2017 年杨浦一模 13】如果两个相似三角形的面积之比是
9 : 25 ,其中小三角形一边上的中线长是
12cm ,
那么大三角形中与之相对应的中线长是
cm
【答案】 20
【 2017 年虹口一模 6】如图,在 ABCD 中,点 E 是边 AD 的中点, EC 交对角线 BD 于点 F 若
上海市各市县 2017 届中考数学试题分类汇编 初三一模相似三角形的判定
【 2017 年宝山一模 8】如果两个相似三角形的相似比是 1:4,那么它们的面积比是

【答案】 1:16
【 2017 年奉贤一模 13】如果两个相似三角形对应角平分线的比是


【答案】 4: 9
4: 9,那么这两个三角形的周长比
过点 M ,且 ADE C ,那么 ADE 和 ABC 的面积比是
.
【答案】 1 4
【 2017 年普陀一模 13】利用复印机的缩放功能,将原图中边长为
5 厘米的一个等边三角形放大成边长为
20 厘米的等边三角形,那么放大前后的两个三角形的周长比是

【答案】 1:4
【 2017 年松江一模 3】小明身高 1.5 米,在某一时刻的影长为 2 米,同时测得教学大楼的影长为 60 米,则
【答案】 73 4
【 2017 年徐汇一模 16】在梯形 ABCD 中, AD∥ BC,AC、 BD 相交于 O,如果 △BOC 、△ACD 的面积分别 是 9 和 4,那么梯形 ABCD 的面积是 ___________ 【答案】 16
【 2017 年徐汇一模 17】在 Rt△ABC 中,∠ ABC= 90°, AC= 5, BC= 3, CD 是∠ ACB 的平分线,将△ ABC 沿直线 CD 翻折,点 A 落在点 E 处,那么 AE 的长是 ______________

2017全国中考数学真题 全等三角形(填空题+解答题)解析版

2017全国中考数学真题 全等三角形(填空题+解答题)解析版

2017全国中考数学真题分类知识点28全等三角形(填空题+解答题)解析版一、填空题1. (2017年贵州省黔东南州,12,4分)如图,点B ,F ,C ,E 在一条直线上,已知FB =CE ,AC //DF ,请你添加一个适当的条件 使得△ABC ≌△DEF .答案:答案不唯一,例如AC =FD ,∠B =∠E ,解析:证明三角形全等的方法有多种,选择合适的即可.所添条件,可以直接证全等也可间接得出结论证明全等.2. (2017陕西,14,3分)四边形ABCD 中,AD =AD ,∠BAD =∠BCD =90°,连接AC .若AC =6,则四边形ABCD的面积为 .DAC答案:18,解析:过点A 作AE ⊥AC 交CD 的延长线于点E ,有题意易证△AED ≌△ACB ,故四边形ABCD 的面积等于△ACE 的面积,即四边形ABCD 的面积=12AC ×AE =12×6×6=18. 3. 15.(2017湖南怀化,4分)如图,AC =DC ,BC =EC ,请你添加一个适当的条件: ,使得△ABC ≌△DEC .答案:AB =DE .本题答案不唯一.解析:本题要判定△ABC ≌△DEC ,已知AC =DC ,BC =EC ,具备了两组边答案第14题图BDA (第15题图)对应相等,利用SSS 即可判定两三角形全等了.二、解答题1. (2017四川泸州,18,6分)如图,点A ,F ,C ,D 在同一条直线上,已知AF =DC ,∠A =∠D ,BC ∥EF . 求证:AB =DE .思路分析:根据AF =DC 推导AC =DF ,根据BC ∥EF 推导∠ACB =∠DFE ,根据ASA 判断△ABC ≌△DEF 说明结论.证明:∵BC ∥EF , ∴∠ACB =∠DFE , 又∵AF =DC , ∴AF +FC =DC +FC , 即:AC =DF .在△ABC 与△DEF 中,⎩⎪⎨⎪⎧∠A=∠D ,AC=DE ,∠ACB=∠DFE ,∴△ABC ≌△DEF (ASA ), ∴AB =DE .2. (2017重庆,24,10分)(本小题满分10分)在∆ABM 中,∠ABM =45゜,AM ⊥BM ,垂足为M .点C 是BM 延长线上一点,连接A C .(1)如图1,若AB =23,BC =5,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD =MC ,点E 是∆ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF .思路分析:(1)由AM ⊥BM ,易知∠AMB =∠AMC =90゜,利用三角形内角和定理可求得∠ABM =∠BAM ,由“等角对等边”可得AM =BM ,利用特殊角三角函数计算出AM =BM =3,又因BC =5,可得MC 的长度,最后在Rt ∆AMC 中利用勾股定理即可求解出AC 的长度;(2)见中点易联想到做辅助线:延长EF 到点G ,使得FG =EF ,连接BG ,分别利用SAS 判定出∆BMD ≌∆AMC ,∆BFG ≌∆CFE ,从而将∠E 、线段CE 转化到∆BDG 中,由等腰三角形性质可证得∠BDG =∠G ,问题便可获得解决.解:(1)∵AM ⊥BM ,∴∠AMB =∠AMC =90゜,∵∠ABM =45゜,∴∠ABM =∠BAM =45゜,∴AM =BM ,∵AB =23,∴AM =BM =3,∵BC =5,∴MC =2,∴AC =133222=+;(2)延长EF 到点G ,使得FG =EF ,连接BG .由DM =MC ,∠BMD =∠AMC =90゜,BM =AM ,∴∆BMD ≌∆AMC ,故AC =BD ; 又CE =AC ,因此BD =CE ,∵点F 是线段BC 的中点,∴BF =FC ,由BF =FC ,∠BFG =∠EFC ,FG =FE ,∴∆BFG ≌∆CFE ,故BG =CE ,∠G =∠E ,所以BD =CE =BG ,∴∠BDG =∠G ,∴∠BDG =∠E .3. (2017年四川南充,19,8分)如图7,DE ⊥AB ,CF ⊥AB ,垂足分别是E ,F ,DE =CF ,AE =BF .求证:AC ∥BD .思路分析:欲证AC ∥BD ,需证∠A =∠B ,即需证△AFC ≌△BED .这可利用“边角边”证得. 证明:∵AE =BF ,∴AE +EF =BF +EF , 即AF =BE .∵DE ⊥AB ,CF ⊥AB ,∴∠AFC =∠BED =90°. 在△AFC 和△BED 中,EDABCF图7,,,AF BE AFC BED CF DE =⎧⎪∠=∠⎨⎪=⎩∴△AFC ≌△BED (SAS). ∴∠A =∠B .∴AC ∥BD . 4. 18.(2017浙江温州,18, 8分)如图,在五边形ABCDE 中, ∠BCD =∠EDC =90°,BC =ED ,AC =A D .(1)求证:△ABC ≌△AE D.(2)当∠B =140°时,求∠BAE 的度数.第18题EDB思路分析:(1)根据边角边判定△ABC 与△AED 三角形全等;(2)由三角形全等的性质得∠B =∠E =140°,五边形内角和为(5-2)×180°=540°,再求∠BAE 的度数.解:(1)∵AC =AD∴∠ACD =∠ADC又∵∠BCD =∠EDC =90°∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠ADE 在△ABC 和△AED 中 BC =ED∠BCA =∠ADE AC =AD∴△ABC ≌△AED (SAS ).(2) 由△ABC ≌△AED 得∠B =∠E =140°,五边形内角和为(5-2)×180°=540° ∴∠BAE =540°-2×140°-2×90°=80°.5. (2017江苏苏州,24,8分)如图,∠A=∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O . (1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.思路分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出EC =ED ,∠C=∠BDE ,再利用等腰三角形性质:等边对等角,即可求出底角∠BDE =69°.解:(1)证明:∵AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.6. (2017湖北黄冈,16,6分)(本小题满分6分)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM .求证:∠B =∠ANM .思路分析:要证明∠B =∠ANM ,根据条件只需证明△ABD ≌△ANM ,而证明△ABD ≌△ANM 的三个条件中∠BAD =∠NAM 没有直接给出,所以要先交代.证明:∵∠BAC =∠DAM ,∴∠BAC -∠DAC =∠DAM -∠DAC .即∠BAD =∠NAM . 在△ABD 和△ANM 中, ,,,AB AN BAD NAM AD AM =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ANM (SAS ) ∴∠B =∠ANM .7. (2017湖南郴州,19,6分).已知△ABC 中,∠ABC =∠ACB ,点D ,E 分别为边AB ,AC 的中点,求证:BE =CD .思路分析:利用同一三角形中等角对等边说明AB =AC ,再利用中点的性质说明BD =CE ,进而判断△BDC 和△CEB 全等,然后利用全等三角形的性质说明BE =CD . 证明:∵∠ABC =∠ACB ,∴AB=AC ,∵点D ,E 分别为边AB ,AC 的中点,∴BD =CE , 在△BDC 和△CEB 中,BD =CE ,∠ABC =∠ACB ,BC=CB , ∴△BDC ≌△CEB ,∴BE =CD .8. (2017江苏常州,23,8分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD;(2)若AC =AE ,求∠DEC 的度数.【解析】(1)证明:∵∠BCE =∠ACD =90°,∴∠BCA =∠ECD . 在△BCA 和△ECD 中,BCA ECD BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCA ≌△ECD ,∴AC =CD;(2)∵AC =AE ,∴∠AEC =∠ACE .又∵∠ACD =90°,AC =CD ,∴△ACD 是等腰直角三角形,∴∠DAC =45°, ∴∠AEC =12(180°-∠DAC)=12(180°-45°), ∴∠DEC =180°-∠AEC =180°-12(180°-45°)=112.5°.9. 18.(2017广东广州)(本小题满分9分)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF . 求证:△ADF ≌△BCE .AEDCB思路分析:根据SAS 证明两个三角形全等.证明:∵AE =BF , ∴AE +EF =BF +EF , 即AF =BE .在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△BCE (SAS ).10. 18.(2017湖北恩施中考·分)如图7,△ABC,△CDE 均为等边三角形,连接BD ,AE 交于点O ,BC 与AE 交于点P .求证:∠AOB=600.思路分析:先由等边三角形的性质得到相等的线段和相等的角,进而证得△ACE ≌△BCE,得出∠CAE=∠CBD,再由180=∠AOB °-BAO ABD ∠-∠不难得出60=∠AOB ˚. 18.证明:在中中和BCD ACE ∆∆,⎪⎩⎪⎨⎧=∠=∠=.,,CD CE BCD ACE BC AC∴△ACE ≌△BCE,∴∠CAE=∠CBD,∴∠AOB=1800-∠BAO-∠ABO=1800-∠BAO-∠ABC-∠CBD=1800-∠ABC-∠BAO-∠CAE=1800-600-600=600.11. 18.(2017年武汉,18,8分)(本题8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.第18题图EBD F AC思路分析:判断两条线段的关系,一般包括数量关系与位置关系,这里根据已知条件,证明两个三角形全等即可,需要注意的是CE =BF 不是对应边相等,需转化. 解:CD 与AB 之间的关系为:CD =AB ,且CD ∥AB . 证明:∵CE =BF ,∴CF =BE .在△CDF 和△BAE 中 CF BE CFD BEA DF AE =⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BAE . ∴CD =BA , ∠C =∠B . ∴CD ∥BA。

(完整word)2017年中考数学真题分类汇编图形的相似与位似,推荐文档

(完整word)2017年中考数学真题分类汇编图形的相似与位似,推荐文档

图形的相似与位似一、选择题1.(2017·重庆A卷)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【答案】A.【解析】试题解析:∵△ABC~△DEF,相似比为3:2,∴对应高的比为:3:2.故选A.考点:相似三角形的性质.2.(2017·重庆B卷)已知△ABC∽△DEF,且相似比为1:2,则△ABC 与△DEF的面积比为()A.1:4B.4:1C.1:2D.2:1【答案】A.考点:相似三角形的性质;图形的相似.3.(2017·广西贵港)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5【答案】D【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON 是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO 的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S△OMN 的最小值是1﹣=,故⑤正确;综上所述,正确结论的个数是5个,故选:D.【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.4.(2017·四川成都)如图,四边形ABCD和A B C D''''是以点O为位似中心的位似图形,若:2:3''''的OA OA'=,则四边形ABCD与四边形A B C D面积比为()A.4:9 B.2:5 C. 2:3 D【答案】A【解析】考点:位似变换的性质二、填空题1.(2017·北京)如图,在中,分别为的中点.若,则 .【答案】3.【解析】试题分析:由相似三角形的面积比等于相似比的平方可求解.由M,N,分别为AC,BC的中点,∴ , ∴ ,∵ , . 考点:相似三角形的性质.2.(2017·湖南湘潭)如图,在ABC ∆中,DE 、分别是边AB AC 、的中点,则ADE ∆与ABC ∆的面积比:ADE ABC S S ∆∆= .ABC ∆M N 、,AC BC 1CMN S ∆=ABNM S =四边形12CM CN AC AB ==2211()()24CMN ABC S CM S AC ∆∆===1,44CMN ABC CMN S S S ∆∆∆===413ABNM ABC CMN S S S ∆∆=-=-=Y【答案】41【解析】试题分析:∵D E 、分别是边AB AC 、的中点,∴DE 是三角形的中位线,∴ADE ∆∽ABC ∆∴:ADE ABC S S ∆∆=412122=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛AB AD 考点:相似三角形及中位线性质定理。

2017年中考数学试题 三角形分项版解析汇编(原卷+解析卷)

2017年中考数学试题 三角形分项版解析汇编(原卷+解析卷)

专题09 三角形一、选择题1.(2017重庆A卷第8题)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【答案】A.【解析】试题解析:∵△ABC~△DEF,相似比为3:2,∴对应高的比为:3:2.故选A.考点:相似三角形的性质.2. (2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【答案】A.【解析】试题解析:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i=140.753 CQBQ==,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP=11tan tan40DPA=∠︒≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选A.考点:解直角三角形的应用.3.(2017甘肃庆阳第6题)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°【答案】C.【解析】试题解析:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C .考点:平行线的性质;余角和补角.4. (2017甘肃庆阳第8题) 已知a ,b ,c 是△ABC 的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A .2a+2b-2cB .2a+2bC .2cD .0【答案】D【解析】试题解析:∵a 、b 、c 为△ABC 的三条边长,∴a+b-c >0,c-a-b <0,∴原式=a+b-c+(c-a-b )=0.故选D .考点:三角形三边关系.5.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠= ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠= ,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .1【答案】B【解析】试题解析:如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2, ∵CM=BM=1,又∵PM ≤PC+CM ,即PM ≤3,∴PM 的最大值为3(此时P 、C 、M 共线).故选B .考点:旋转的性质.6.(2017湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .7【答案】C【解析】试题解析:①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E ,△ACE 就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F ,△BCF 就是等腰三角形;④作AC 的垂直平分线交AB 于点H ,△ACH 就是等腰三角形;⑤作AB 的垂直平分线交AC 于G ,则△AGB 是等腰三角形;⑥作BC 的垂直平分线交AB 于I ,则△BCI 是等腰三角形.故选C.考点:画等腰三角形.7.(2017江苏无锡第10题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75 【答案】D .【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴BC=2234 =5,∵CD=DB ,∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC, ∴AH=125, ∵AE=AB ,DE=DB=DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形, ∵12•AD•BO=12•BD•AH, ∴OB=125, ∴BE=2OB=245, 在Rt △BCE 中,EC=22222475()55BC BE -=-= . 故选D . 考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.8.(2017甘肃兰州第3题)如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡与水平地面夹角的正切值等于( )A.513B.1213C.512D.1312【答案】C .【解析】试题解析:如图,在Rt △ABC 中,∵∠ACB=90°,AB=130m ,BC=50m ,∴AC=222213050AB BC -=-=120m ,∴tan∠BAC=50512012 BCAC==.故选C.考点:解直角三角形的应用﹣坡度坡角问题.9. (2017甘肃兰州第13题)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(0.5DE BC==米,,,A B C三点共线),把一面镜子水平放置在平台上的点G处,测得15CG=米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得3CG=米,小明身高 1.6EF=米,则凉亭的高度AB约为( )A.8.5米B.9米C.9.5米D.10米【答案】A.【解析】试题解析:由题意∠AGC=∠FGE,∵∠ACG=∠FEG=90°,∴△ACG∽△FEG,∴AC CG EF GD=∴15 1.53 AC=∴AC=8,∴AB=AC+BC=8+0.5=8.5米.故选A.点:相似三角形的应用.10.(2017贵州黔东南州第2题)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A .120°B .90°C .100°D .30°【答案】C .【解析】 试题解析:∠A=∠ACD ﹣∠B=120°﹣20°=100°,故选:C .考点:三角形的外角性质.11.(2017山东烟台第12题)如图,数学实践活动小组要测量学校附近楼房CD 的高度,在水平底面A 处安置侧倾器得楼房CD 顶部点D 的仰角为045,向前走20米到达'A 处,测得点D 的仰角为05.67.已知侧倾器AB 的高度为1.6米,则楼房CD 的高度约为( )(结果精确到0.1米,414.12 )A .14.34米B .1.34米 C.7.35米 D .74.35米【答案】C .【解析】试题解析:过B 作BF ⊥CD 于F ,∴AB=A′B′=CF=1.6米,在Rt △DFB′中,B′F=tan 67.5DF︒,在Rt △DFB 中,BF=DF , ∵BB′=AA′=20,∴BF ﹣B′F=DF﹣tan 67.5DF︒=20,∴DF ≈34.1米,∴CD=DF+CF=35.7米,答:楼房CD 的高度约为35.7米,故选C .考点:解直角三角形的应用﹣仰角俯角问题.12.(2017四川泸州第10题)已知三角形的三边长分别为a 、b 、c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S=()()()p p a p b p c ---,其中p=2a b c++;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S=2222221()22a b c a b +--,若一个三角形的三边长分别为2,3,4,则其面积是( ) A.3158 B. 3154 C. 3152 D. 152【答案】B.考点:二次根式的应用.13.(2017浙江嘉兴第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( )A.4B.5C.6D.9【答案】C.【解析】试题解析:由三角形三边关系定理得7-2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.考点:三角形的三边关系.二、填空题1.(2017浙江宁波第16题)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知500AB=米,则这名滑雪运动员的高度下降了米.(参考数据:sin340.56°≈,cos340.83°≈,tan340.67°≈)【答案】280.【解析】试题分析:在RtΔABC中,sin34°=AC AB∴AC=AB×sin34°=500×0.56=280米.考点:解直角三角形的应用.2.(2017甘肃庆阳第16题)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.【答案】154cm . 【解析】试题解析:如图,折痕为GH ,由勾股定理得:AB=226+8=10cm ,由折叠得:AG=BG=12AB=12×10=5cm ,GH ⊥AB , ∴∠AGH=90°,∵∠A=∠A ,∠AGH=∠C=90°,∴△ACB ∽△AGH , ∴AC BC AG GH=, ∴865GH=, ∴GH=154cm . 考点:翻折变换3.(2017广西贵港第16题)如图,点P 在等边ABC ∆的内部,且6,8,10PC PA PB ===,将线段PC 绕点C 顺时针旋转60得到'P C ,连接'AP ,则sin 'PAP ∠的值为 .【答案】35【解析】试题解析:连接PP′,如图,∵线段PC 绕点C 顺时针旋转60°得到P'C ,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC 为等边三角形,∴CB=CA ,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB 和△P′CA 中PC P C PCB P CA CB CA '⎧=⎪'∠=∠⎨⎪=⎩∴△PCB ≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP 2=P′A 2,∴△APP′为直角三角形,∠APP′=90°,∴sin ∠PAP′=63105PP P A '=='. 考点:旋转的性质;等边三角形的性质;解直角三角形.4.(2017贵州安顺第13题)三角形三边长分别为3,4,5,那么最长边上的中线长等于 .【答案】2.5【解析】试题解析:∵32+42=25=52,∴该三角形是直角三角形, ∴12×5=2.5. 考点:勾股定理的逆定理;直角三角形斜边上的中线.5.(2017湖北武汉第15题)如图△ABC 中,AB=AC ,∠BAC=120°,∠D AE=60°,BD=5,CE=8,则DE 的长为 .【答案】7.【解析】试题解析:∵AB=AC,∴可把△AEC 绕点A 顺时针旋转120°得到△AE′B,如图,∴BE′=EC=8,AE′=AE,∠E′AB=∠EAC,∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠EAC=60°,∴∠E′AD=∠E′AB+∠BAD=60°,在△E′AD 和△EAD 中AE =AE E AD =EAD AD =AD ⎧'∠'∠⎪⎨⎪⎩∴△E′AD≌△EAD(SAS ),∴E′D=ED,过E′作EF⊥BD 于点F ,∵AB=AC,∠BAC=120°,∴∠ABC=∠C=∠E′BA=30°,∴∠E′BF=60°,∴∠BE′F=30°,∴BF=12BE′=4,E′F=43,∵BD=5,∴FD=BD-BF=1,在Rt△E′FD中,由勾股定理可得E′D=22(43)+1=7,∴DE=7.考点:1.含30度角的直角三角形;2.等腰三角形的性质.6.(2017湖南怀化第15题)如图,AC DC=,BC EC=,请你添加一个适当的条件:,使得ABC DEC△≌△.【答案】CE=BC.本题答案不唯一.【解析】试题解析:添加条件是:CE=BC,在△ABC与△DEC中,AC DC BC EC CE BC⎧=⎪=⎨⎪=⎩,∴△ABC≌△DEC.故答案为:CE=BC.本题答案不唯一.点:全等三角形的判定.7.(2017江苏无锡第18题)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D 都在格点处,AB与CD相交于O,则tan∠BOD的值等于.【答案】3.【解析】试题解析:平移CD 到C′D′交AB 于O′,如图所示,则∠BO′D′=∠BOD ,∴tan ∠BOD=tan ∠BO′D′,设每个小正方形的边长为a ,则O′B=22(2)5a a a +=,O′D′=22(2a)(2)22a a +=,BD′=3a,作BE ⊥O′D′于点E ,则BE=3a 232222BD O F a a O D a''=='' , ∴O′E=2222322(5)()22a a O B BE a '-=-=, ∴tanBO′E=32a2322BE O E a==', ∴tan ∠BOD=3.考点:解直角三角形.8.(2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.【答案】120°.【解析】试题解析:由三角形的外角的性质可知,∠1=90°+30°=120°. 考点:三角形的外角性质;三角形内角和定理.9.(2017甘肃兰州第17题)如图,四边形ABCD与四边形EFGH相似,位似中心点是O,3 5OE OA =,则FGBC=.【答案】3 5【解析】试题解析:如图所示:∵四边形ABCD与四边形EFGH位似,∴△OEF∽△OAB,△OFG∽△OBC,∴35 OE OFOA OB==,∴35 FG OFBC OB==.考点:位似变换.10.(2017贵州黔东南州第12题)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.【答案】∠A=∠D .【解析】试题解析:添加∠A=∠D .理由如下:∵FB=CE ,∴BC=EF .又∵AC ∥DF ,∴∠ACB=∠DFE .∴在△ABC 与△DEF 中,A D ACB DFEBC EF ⎧∠=∠⎪∠=∠⎨⎪=⎩ ,∴△ABC ≌△DEF (AAS ).考点:全等三角形的判定.11.(2017山东烟台第14题)在ABC Rt ∆中,090=∠C ,2=AB ,3=BC ,则=2sin A . 【答案】12. 【解析】试题解析:∵sinA=32BC AB =, ∴∠A=60°,∴sin 2A =sin30°=12. 考点:特殊角的三角函数值.12. (2017山东烟台第16题)如图,在平面直角坐标系中,每个小方格的边长均为1.AOB ∆与''OB A ∆是以原点O 为位似中心的位似图形,且相似比为2:3,点B A ,都在格点上,则点'B 的坐标是.【答案】(﹣2,43) 【解析】试题解析:由题意得:△A′OB′与△AOB 的相似比为2:3,又∵B (3,﹣2)∴B′的坐标是[3×2()3-,﹣2×2()3-],即B′的坐标是(﹣2,43) 考点:位似变换;坐标与图形性质.13.(2017四川泸州第16题)在△ABC 中,已知BD 和CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,垂足为O .若OD=2cm ,OE=4cm ,则线段AO 的长度为 cm .【答案】45.【解析】试题解析:连接AO 并延长,交BC 于H ,由勾股定理得,DE=22=25OE OD +,∵BD 和CE 分别是边AC 、AB 上的中线,∴BC=2DE=45,O 是△ABC 的重心,∴AH是中线,又BD⊥CE,∴OH=12BC=25,∵O是△ABC的重心,∴AO=2OH=45.考点:1.三角形的重心;2.勾股定理.14.(2017四川自贡第14题)在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN 的长为.【答案】1.【解析】试题解析:∵MN∥BC,∴△AMN∽△ABC,∴AM MNAB BC=,即1123WN=+,∴MN=1.考点:相似三角形的判定与性质.15.(2017新疆建设兵团第15题)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12 AC•BD.正确的是(填写所有正确结论的序号)【答案】①④【解析】试题解析:①在△ABC和△ADC中,∵AB AD BC CD AC AC⎧=⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=12BD•AO+12BD•CO=12BD•(AO+CO)=12AC•BD.故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.16.(2017江苏徐州第13题)ABC ∆中,点,D E 分别是,AB AC 的中点,7DE =,则BC = .【答案】14.【解析】试题解析:∵D ,E 分别是△ABC 的边AC 和AC 的中点,∴DE 是△ABC 的中位线,∵DE=7,∴BC=2DE=14.考点:三角形中位线定理.17. (2017江苏徐州第18题)如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A AO ,如此下去,则线段n OA 的长度为 .【答案】2n .【解析】试题解析:∵△OBA 1为等腰直角三角形,OB=1,∴AA 1=OA=1,OA 1=2OB=2;∵△OA 1A 2为等腰直角三角形,∴A 1A 2=OA 1=2,OA 2=2OA 1=2;∵△OA 2A 3为等腰直角三角形,∴A 2A 3=OA 2=2,OA 3=2OA 2=22;∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 3=22,OA 4=2OA 3=4.∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 5=2OA 4=42,∵△OA 5A 6为等腰直角三角形,∴A 5A 6=OA 5=42,OA 6=2OA 5=8.∴OA n 的长度为2n .考点:等腰直角三角形.18.(2017浙江嘉兴第15题)如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BAC ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠= ,……按此规律,写出tan n BA C ∠= (用含n 的代数式表示).【答案】113,211n n -+. 【解析】试题解析:作CH⊥BA 4于H ,由勾股定理得,BA 4=22471=1+,A 4C=10,△BA 4C 的面积=4-2-32=12, ∴12×17×CH=12, 解得,CH=1717,则A 4H=223A C CH -=131717, ∴tan∠BA 4C=4CH A H =113, 1=12-1+1,3=22-2+1,7=32-3+1,∴tan∠BA n C=211n n -+.考点:1.解直角三角形;2.勾股定理;3.正方形的性质.三、解答题1.(2017浙江衢州第23题)问题背景如图1,在正方形A BCD 的内部,作∠DAE=∠ABF=∠BCG=∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形。

浙江省2017—2019年中考数学真题汇编专题9:相似形(解析卷)

浙江省2017—2019年中考数学真题汇编专题9:相似形(解析卷)

浙江省2017—2019年中考数学真题汇编专题9:相似形姓名:__________班级:__________考号:__________一、选择题(本大题共7小题,每小题4分,共28分)1.(2018年浙江省杭州市临安市)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【考点】相似三角形的判定【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A.C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.【点评】本题考查的是相似三角形的判定,掌握两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键.2.(2018年浙江省绍兴市)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m【考点】相似三角形的应用【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,解得:CD=0.4,故选:C.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.3.(2019年浙江省杭州市)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.=B.=C.=D.=【考点】相似三角形的判定与性质【分析】先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从而可对各选项进行判断.解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.【点评】本题考查了相似三角形的判定与性质:三在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.4.(2018年浙江省杭州市临安市)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.【考点】相似三角形的判定与性质【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.解:∵DE∥BC,∴△ADE∽△ABC,故选:A.【点评】本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错.5.(2019年浙江省绍兴市)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【考点】勾股定理的应用,相似三角形的判定与性质【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.【点评】本题考查了勾股定理的应用、长方体的体积、梯形的面积的计算方法,熟练掌握勾股定理,由长方体容器内水的体积得出方程是解决问题的关键.6.(2018年浙江省衢州市)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B. cm C.2.5cm D. cm【考点】垂径定理.相似三角形的判定与性质【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8,在Rt△EBC中,BC=,∵OF⊥BC,∴∠OFC=∠CEB=90°,∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=,故选:D.【点评】此题考查垂径定理,关键是根据垂径定理得出OE的长.7.(2018年浙江省杭州市)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2【考点】相似三角形的判定与性质【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.解:∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴若2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A不符合题意,选项B不符合题意.若2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,故选项C不符合题意,选项D符合题意.故选:D.【点评】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.二、填空题(本大题共5小题,每小题4分,共20分)8.(2018年浙江省嘉兴市、舟山市)如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知=,则= .【考点】平行线分线段成比例【分析】根据题意求出,根据平行线分线段成比例定理解答.解:∵=,∴=2,∵l1∥l2∥l3,∴==2,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9.(2019年浙江省宁波市)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为.【考点】勾股定理,切线的判定与性质,相似三角形的判定和性质【分析】根据勾股定理得到AB==6,AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,当⊙P于AB相切时,点P到AB的距离=6,根据相似三角形的性质即可得到结论.解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB==6,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴,∴=,∴PD=6.5,∴AP=6.5,当⊙P于AB相切时,点P到AB的距离=6,过P作PG⊥AB于G,则PG=6,∵AD=BD=13,∴∠PAG=∠B,∵∠AGP=∠C=90°,∴△AGP∽△BCA,∴,∴=,∴AP=3,∵CD=5<6,∴半径为6的⊙P不与△ABC的AC边相切,综上所述,AP的长为6.5或3,故答案为:6.5或3.【点评】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,熟练正确切线的性质是解题的关键.10.(2019年浙江省杭州市)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.【考点】矩形的性质,翻折变换(折叠问题),勾股定理,相似三角形的判定和性质【分析】设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利用三角形的面积公式求出a即可解决问题.解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)【点评】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.11.(2019年浙江省台州市)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.【考点】平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线是解题的关键.【分析】过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,得到DM=y﹣4,DN=4﹣x,根据相似三角形的性质得到xy=mn,y=﹣x+10,由=,得到n=m,于是得到(m+n)最大=m,然后根据二次函数的性质即可得到结论.解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即=,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴=,即=,∴y=﹣x+10,∵=,∴n=m,∴(m+n)最大=m,∴当m最大时,(m+n)最大=m,∵mn=xy=x(﹣x+10)=﹣x2+10x=m2,∴当x=﹣=时,mn最大==m2,∴m最大=,∴m+n的最大值为×=.故答案为:.【点评】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线是解题的关键.12.(2019年浙江省衢州市)如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第n个“7”字图形得顶点F n﹣1,…,则顶点F2019的坐标为.【考点】规律型:点的坐标,相似三角形的判定与性质【分析】(1)先证明△AOB∽△BCD,所以=,因为DC=1,BC=2,所有=;(2)利用三角形相似与三角形全等依次求出F1,F2,F3,F4的坐标,观察求出F2019的坐标.解:(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴=,∵DC=1,BC=2,∴=,故答案为;(2解:过C作CM⊥y轴于M,过M1作M1N⊥x轴,过F作FN1⊥x轴.根据勾股定理易证得BD==,CM=OA=,DM=OB=AN=,∴C(,),∵AF=3,M1F=BC=2,∴AM1=AF﹣M1F=3﹣2=1,∴△BOA≌ANM1(AAS),∴NM1=OA=,∵NM1∥FN1,∴,,∴FN1=,∴AN1=,∴ON1=OA+AN1=+=∴F(,),同理,F1(,),即()F2(,),即(,)F3(,),即(,)F4(,),即(,)…F2019(,),即(,405),故答案为即(,405).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.三、解答题(本大题共12小题,共72分)13.(2017年浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程,操作步骤是:第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

【名师点睛】2017年中考数学一轮复习专题 相似三角形及答案

【名师点睛】2017年中考数学一轮复习专题 相似三角形及答案

2017年中考数学一轮复习专题相似三角形综合复习一选择题:1.下列说法正确的是()(A)两个矩形一定相似.(B) 两个菱形一定相似.(C)两个等腰三角形一定相似.(D) 两个等边三角形一定相似.2.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF 的值是()A.4 B.4.5 C.5 D.5.53.若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。

如图,如果扇形AOB与扇形是相似扇形,且半径(为不等于0的常数)。

那么下面四个结论:①∠AOB=∠;②△AOB∽△;③;④扇形AOB与扇形的面积之比为.成立的个数为()A.1个B.2个C.3个D.4个4.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2 B.4cm2 C.8cm2 D.16cm25.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.6.如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD=()A. 2B. 2.4C. 2.5D. 37.如图是测量小玻璃管口径的量具ABC,AB的长为12 cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是( )A.8 c m B.10 cm C.20 cm D.60 cm8.如图,在平行四边形ABCD 中,点E在CD上,若DE:CE =1:2,则△CEF与△ABF的周长比为()A.1:2 B.1:3 C.2:3 D.4︰99.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD10.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是( )A.AC:BC=AD:BDB.AC:BC=AB:ADC.AB2=CD·BCD.AB2=BD·BC11.如图所示,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP的有( )A.4个 B.3个 C.2个 D.1个12.如图,在▱ABCD中,AB=4,AD=3,过点A作AE⊥BC于E,且AE=3,连结DE,若F为线段DE上一点,满足∠AFE=∠B,则AF=()A.2 B. C.6 D.213.已知( )A. B. C. D.14.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米 B.6米 C.7.2米 D.8米15.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.416.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D 到直线PA的距离为y,则y关于x的函数图象大致是( )A. B. C. D.17.如图,AB=AC=4,P是BC上异于B,C的一点,则AP2+BP·PC的值是( )A.16 B.20 C.25 D.3018.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=α,DE交AC于点E.下列结论:①AD2=AE•AB;②3.6≤AE<10;③当AD=2时,△ABD≌△DCE;④△DCE为直角三角形时,BD为8或12.5.其中正确的结论个数是().A.1个B. 2个C. 3个D. 4个19.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()20.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()A. B. C. D.二填空题:21.若,则= .22.若a:b:c=1:3:2,且a+b+c=24,则a+b﹣c= .23.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为.24.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米,甲身高1.8米,乙身高1.5米,则甲的影长是_ 米.25.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=_________时,△AED 与以M,N,C为顶点的三角形相似.26.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC=______m.27.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为米.28.如图,在四边形中,,如果边AB上的点P,使得以为顶点的三角形与为顶点的三角形相似,这样的点P有个.29.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是_________.30.如图,△ABC是一张直角三角形彩色纸,AC=15cm,BC=20cm.若将斜边上的高CD 分成n等分,然后裁出(n ﹣1)张宽度相等的长方形纸条.则这(n﹣1)张纸条的面积和是cm2.三简答题:31.如图,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF,BE相交于点P.(1)求证:AF=BE,并求∠APB的度数;(2)若AE=2,试求AP·AF的值.32.已知:如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.33.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.34.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与底面保持平行并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D 到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.35.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图23-12,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).36.如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?37.如图,AD是△ABC的高,点E,F在边BC上,点H在边AB上,点G在边AC上,AD=80cm,BC=120cm.(1)若四边形EFGH是正方形,求正方形的面积.(2)若四边形EFGH是长方形,长方形的面积为y,设EF=x,则y=______.(含x的代数式),当x=______时,y最大,最大面积是______.38.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动.(1)AC= cm,BC= cm;(2)当t=5 (s)时,试在直线PQ上确定一点M,使△BCM的周长最小,并求出该最小值.(3)设点P的运动时间为t (s),△PBQ的面积为y (cm2),当△PBQ存在时,求y与t的函数关系式,并写出自变量t的取值范围;(4)探求(3)中得到的函数y有没有最大值?若有,求出最大值;若没有,说明理由.39.在等腰△ABC中,AB=AC=10,BC=12,D为底边BC的中点,以D为顶点的角∠PDQ=∠B.(1)如图1,若射线DQ经过点A,DP交AC边于点E,直接写出与△CDE相似的三角形;(2)如图2,若射线DQ交AB于点F,DP交AC边于点E,设AF=x,AE为y,试写出y与x的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,连接EF,则△DEF与△CDE相似吗?试说明理由.40.在平面直角坐标系中,二次函数的图象与轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;参考答案1、D2、B.3、D4、C5、B6、A7、A8、C9、C 10、D 11、C 12、D.13、B14、B 15、C 16、B 17、A 18、D;19、D 20、A.21、.22、8.23、.24、6 25、或 26、4 m. 27、14+2 28、329、(2﹣3)a≤DE≤a..30、cm2.31、解:(1)∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°,∴∠APB=180°-∠APE=120°(2)∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴=,即=,∴AP·AF=1232、【解答】(1)证明:∵AB=2,BC=4,BD=1,∴,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.33、【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.34、根据题意,得∠DEF=∠DCA=90°,∠EDF=∠ADC,∴△DEF∽△DCA.∴=.已知DE=0.5米,EF=0.25米,DC=20米.∴=.解得AC=10米.∵四边形BCDG是矩形,∴BC=DG,而DG=1.5米,则BC=1.5米.因此AB=AC+BC=10+1.5=11.5(米).答:旗杆的高度是11.5米.35、答案:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴MA∥CD∥BN ∴EC=CD=x∴△ABN∽△ACD,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米36、【解答】解:(1)设x秒后,可使△CPQ的面积为8cm2.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,则(6﹣x)•2x=8,整理,得x2﹣6x+8=0,解得x1=2,x2=4.则P、Q同时出发,2秒或4秒后可使△CPQ的面积为8cm2(2)设运动y秒时,△CPQ与△ABC相似.若△CPQ∽△CAB,则=,即=,解得y=2.4秒;若△CPQ∽△CBA,则=,即=,解得y=秒.综上所述,运动2.4秒或秒时,△CPQ与△ABC相似.37、【解答】解:(1)∵四边形EFGH是正方形,∴HG∥EF,GH=HE=ID,∴△AHG∽△ABC,∴AI:AD=HG:BC,∵BC=120cm,AD=80cm,∴,解得:HG=48cm,∴正方形EFGH的面积=HG2=482=2304(cm2);(2)∵四边形EFGH是长方形,∴HG∥EF,∴△AEF∽△ABC,∴AI:AD=HG:BC,即,解得:HE=﹣x+80,∴长方形EFGH的面积y=x(﹣x+80)=﹣2+80x=﹣(x﹣60)2+240,∵﹣<0,∴当x=60,即EF=60cm时,长方形EFGH有最大面积,最大面积是240cm2;故答案为:﹣x2+80x,60cm,240cm2.38、解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC 2 +BC 2 =AB 2,即:(4x)2 +(3x)2 =10 2,解得:x=2,∴AC=8cm,BC=6cm;(2)存在,理由:∵AQ=14-2x=14-10=4,AP=x=5,∵AC=8,AB=10,∴PQ是△ABC的中位线,∴PQ∥AB,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16,∴△BCM的周长最小值为16.(3)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=x,∴BP=10-x,BQ=2x,∵△QHB∽△ACB,②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10-x,AQ=14-2x,∵△AQH′∽△ABC,39、【解答】解:(1)与△CDE相似的三角形为△ABD,△ACD,△ADE;理由如下:∵AB=AC,D为底边BC的中点,∴∠B=∠C,AD⊥BC,∴∠ADB=∠ADC=90°,∴△ABD∽△ACD,∵∠PDQ=∠B,∴∠PDQ=∠C,又∵∠DAE=∠CAD,∴△ADE∽△ACD;∵∠CDE+∠PDQ=90°,∴∠C+∠PDQ=90°,∴∠CED=90°=∠ADC,又∵∠C=∠C,∴△CDE∽△CAD,∴△△ABD∽△ACD∽△ADE∽△CDE;(2)∵∠FDC=∠B+∠BDF,∠FDC=∠FDE+∠EDC,∴∠EDC=∠BDF,∴△BDF∽△CDE,∴,∵D为BC的中点,∴BD=CD=6,∴∴y=;(3)△DEF与△CDE相似.理由如下:如图所示:由(2)可知:△BDF∽△CDE,则,∵BD=CD,∴,又∵∠EDF=∠C,∴△DEF∽△CED.40.解:(1)由抛物线过点A(-3,0),B(1,0),则解得∴二次函数的关系解析式.(2)连接PO,作PM⊥x轴于M,PN⊥y轴于N.设点P坐标为(m,n),则.PM =,,AO=3.当时,=2.∴OC=2.===.8分∵=-1<0,∴当时,函数有最大值.此时=.∴存在点,使△ACP的面积最大.(3)存在点Q,坐标为:,.分△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC三种情况讨论可得出.。

2017年浙江中考数学真题分类汇编--三角形(解析版)

2017年浙江中考数学真题分类汇编--三角形(解析版)

2017年浙江中考数学真题分类汇编--三角形(解析版)DBE,CF两两相交于D,E,F三点(D,E,F三点不重合)。

(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)进一步探究发现,△ABD的三边存在一定的等量关系,设,,,请探索,,满足的等量关系。

10、(2017•绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=________°,β=________°.②求α,β之间的关系式.________(2)是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由.11、(2017·台州)如图,已知等腰直角△ABC,点P 是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求的值12、(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.13、(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.答案解析部分一、单选题1、【答案】C【考点】三角形三边关系【解析】【解答】解:A.2+3>4,故能组成三角形;B.5+7>7,故能组成三角形;C.5+6<12,故不能组成三角形;D.6+8>10,故能组成三角形;故答案为C。

2017年全国中考数学真题分类 相似、位似及其应用2017(选择题)

2017年全国中考数学真题分类 相似、位似及其应用2017(选择题)

2017年全国中考数学真题分类相似、位似及其应用选择题一、选择题1.(2017山东枣庄6,3分)如图,在△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原来三角形不相似的是A.B. C.D.答案:C,解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;C、两三角形的对应边不成比例,故两三角形不相似;D、两三角形对应边成比例且夹角相等,故两三角形相似,故选C.3.(2017四川成都,3分)如图四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2∶3,则四边形ABCD和A′B′C′D′的面积比为A.4∶9 B.2∶5 C.2∶3 D23答案:A,解析:由位似的性质得,ABCD和A′B′C′D′的位似比为2∶3,所以四边形ABCD 和A′B′C′D′的面积比为4∶9 .5.(2017重庆,8,4分)若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9答案:A解析:因为△ABC∽△DEF,根据相似三角形的性质“相似三角形对应高之比等于相似比,故选择A .6. (2017重庆B ,8,4分)已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比是 A .1:4B .4:1C .1:2D .2:1答案:A ,解析:根据相似三角形的面积比等于相似比的平方可得:S △ABC :S △DEF =1:4,故答案为A .8. 4.(2017江苏连云港,4,3分)如图,已知ABC DEF △∽△,:1:2AB DE ,则下列等式一定成立的是A .12BCDFB .12A D ∠的度数∠的度数 C .12ABC DEF △的面积△的面积 D .12ABC DEF △的周长△的周长答案:D ,解析:已知ABC DEF △∽△且相似比为1∶2,A 选项中BC 与DF 不是对应边; B 选项中的∠A 和∠D 是一对对应角,根据“相似三角形的对应角相等”可得∠A =∠D ;根据“相似三角形的面积比等于相似比的平方”可得两个三角形的面积比是1∶4,根据“相似三角形的周长比等于相似比”可得两个三角形的周长比是1∶2;因此A 、 B 、 C 选项错误D 选项正确.9. 1.(2017甘肃兰州,1,4分)已知2x =3y (y ≠0),则下面结论成立的是 A.32x y = B. 23x y=C.23x y = D. 23x y =【答案】A【解析】根据等式的性质2,等式的两边同时乘以或者除以一个不为0的数或字母,等式依然成立。

2017中考相似三角形经典练习题及答案

2017中考相似三角形经典练习题及答案

相似三角形分类练习题(1)一、填空题1、如图,是△的中位线,那么△面积与△面积之比是。

2、如图,△中,∥,,且,那么=。

3、如图,△中,∠=90°,⊥,D为垂足,=8,=2,则=。

4、如图,△中,D、E分别在、上,且==1:2,=5,则=。

5、如图,、相交于点O,∥,=2,=4,△面积为4.52,则△面积为2。

6、如图,△中,=7,=4,∠B=∠,则=。

7、如果两个相似三角形对应高之比为4:5,那么它们的面积比为。

8、如果两个相似三角形面积之比为1:9,那么它们对应高之比为。

9、两个相似三角形周长之比为2:3,面积之差为102,则它们的面积之和为2。

10、如图,△中,∥,=2:3,则=。

二、选择题1、两个相似三角形对应边之比是1:5,那么它们的周长比是()。

(A);(B)1:25;(C)1:5;(D)。

2、如果两个相似三角形的相似比为1:4,那么它们的面积比为()。

(A)1:16;(B)1:8;(C)1:4;(D)1:2。

3、如图,锐角三角形的高和高相交于O,则与△相似的三角形个数是()。

(A)1;(B)2;(C)3;(D)4。

共同4、如图,梯形,∥,和相交于O点,=1:9,则=()。

(A)1:9;(B)1:81;(C)3:1;(D)l:3。

三、如图,△中,∥,=6,梯形面积是△面积的2倍,求长。

四、如图,△中,=5:2,=4:3,求的值。

五、如图,直角梯形中,⊥,∥,<,=,=,⊥,求(用的式子表示)六、如图,△中,点D在上,∠=∠B,=4,=5,∥交于点E,求长。

七、如图,是矩形,=2,=4,=2,=1,F是上任一点(F与点B、点C 不重合),过F作的平行线交于G,设为,四边形面积为,写出与的函数关系式,并指出自变量的取值范围。

相似三角形分类练习题(2)一、填空题1、已知:,且,则=。

2、在一张比例尺为1:5000的地图上,某校到果园的图距为8,那么学校到果园的实际距离为。

3、如图,△中,∠=90°,是斜边上的高,=4,=16,则=。

天津市西青区2017年九年级下《相似三角形》单元试题及答案

 天津市西青区2017年九年级下《相似三角形》单元试题及答案

天津市西青区2017年九年级下《相似三角形》单元试题及答案一选择题:1.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.52.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是()A.②B.①②C.③④D.②③④3.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5B.8C.10.5D.144.若△ABC∽△DEF,且AB∶DE=2∶3,则AB与DE边上的高h与h2之比为( )1A.2:3 B.3:2 C.4:9 D.9:45.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8B.3:8C.3:5D.2:56.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.D.7.在中华经典美文阅读中,刘明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm,则它的宽约为( )A.12.36 cm B.13.6 cm C.32.36 cm D.7.64 cm8.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()A.6B.5C.9D.9.如图,在△ABC 中,∠C=90°,D 是 AC 上一点,DE⊥AB 于点 E,若 AC=8,BC=6,DE=3,则AD 的长为()A.3 B.4 C.5 D.610.如图所示,已知E(-4,2)和F(-1,1),以原点O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E/的坐标为()A.(2,1)B.(,)C.(2,-1)D.(2,-)11.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是( )A. B. C. D.12.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网( )A.7.5米处 B.8米处 C.10米处 D.15米处二填空题:13.已知2a-3b=0,b≠0,则a:b=______.14.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为.15.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)16.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.17.将正方形与直角三角形纸片按如图所示方式叠放在一起,已知正方形的边长为20cm,点O为正方形的中心,AB=5cm,则CD的长为 cm.18.如图,小东设计两个直角,来测量河宽DE,他量得AD=2m,BD=3m,CE=9m,则河宽DE为19.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是米.20.如图,AD=DF=FB,DE∥FG∥BC,则S:SⅡ:SⅢ= .Ⅰ三解答题:21.如图所示是两个相似四边形,求边x、y的长和∠α的大小.22.如图,已知在△ABC中,点D、E、F分别在AC、AB、BC边上,且四边形CDEF是正方形,AC=3,BC=2,求△ADE、△EFB、△ACB的周长之比和面积之比.23.如图,D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.24.如图,在梯形ABCD中,AD∥BC,∠BAD=90o对角线BD⊥DC.试问:(1)△ABD与△DCB相似吗?请说明理由。

成都市近十年中考数学相似三角形、折叠、几何压轴题

成都市近十年中考数学相似三角形、折叠、几何压轴题

中线、角平分线、垂直平分线、中位线、相似、等量代换、三角函数、旋转、平移【2017成都中考】问题背景:如图1,等腰△ABC 中,AB=AC ,∠BAC=120°,作AD ⊥BC 于点D ,则D 为BC 的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC=∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD .①求证:△ADB ≌△AEC ;E ,连接AE 并延长交①证明△②若AE=5【2016,连结BD .(1)求(2)将①如图②②如图③点G ,连接GH 【2015 (1(i (ii )若(2)如图②,当四边形ABCD 和EFCG 均为矩形,且==k 时,若BE=1,AE=2,CE=3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB=∠GEF=45°时,设BE=m ,AE=n ,CE=p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【2014成都中考】如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1=(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG . (1)试判断四边形BFEG 的形状,并说明理由;BD(2)当a AB =(a 为常数),3=n 时,求FG 的长; (3)记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S ,当301721=S S 时,求n 的值.(直接写出结果,不必写出解答过程) 【2013AD BC =.(1(2)若; i )当点ii )当点【2012形,∠的中点重合.将△相交于点P ,线段(1)△BPE ≌△CQE ;(2的延长线上时,求证:△BPE ∽△CEQ ;并求当BP=a ,CQ=P 、Q 两点间的距离【2011相交于点K ,E 是线段AD 上一动点。

2017中考数学真题汇编-----用相似三角形解决问题(填空、选择题)

2017中考数学真题汇编-----用相似三角形解决问题(填空、选择题)

【解答】 解:∵



解得旗杆的高度 =
=18m.
故选 C. 【点评】本题考查相似三角形在测量高度时的应用, 解题时关键是找出相似的三 角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.
5.如图,身高为 1.5 米的某学生想测量一棵大树的高度,她沿着树影
A 走去当走到 C 点时,她的影子顶端正好与树的影子顶端重合,测得
像的原理. 她拿出随身携带的镜子和卷尺, 先将镜子放在脚下的地面上, 然后后
退,直到她站直身子刚好能从镜子里看到旗杆的顶端 E,标记好脚掌中心位置为
B,测得脚掌中心位置 B 到镜面中心 C 的距离是 50cm,镜面中心 C 距离旗杆底 部 D 的距离为 4m,如图所示.已知小丽同学的身高是 1.54m,眼睛位置 A 距离
中考数学真题汇编 -----用相似三角形解决问题
一.选择题
1.志远要在报纸上刊登广告,一块 10cm× 5cm 的长方形版面要付广告费 180
元,他要把该版面的边长都扩大为原来的 3 倍,在每平方厘米版面广告费相同的
情况下,他该付广告费(

A.540 元 B.1080 元 C.1620 元 D.1800 元
8.为了加强视力保护意识, 小明要在书房里挂一张视力表. 由于书房空间狭小,
他想根据测试距离为 5m 的大视力表制作一个测试距离为 3m 的小视力表.如图,
如果大视力表中 “E的”高度是 3.5cm,那么小视力表中相应 “E的”高度是( )
A.3cm B.2.5cm C. 2.3cm D. 2.1cm
2.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她
拿出随身携带的镜子和卷尺, 先将镜子放在脚下的地面上, 然后后退, 直到她站
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学真题汇编-----用相似三角形解决问题一.选择题1.志远要在报纸上刊登广告,一块10cm×5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费()A.540元B.1080元C.1620元D.1800元2.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m3.如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.5米,A、B、C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=15米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得EG=3米,小明身高1.6米,则凉亭的高度AB约为()A.8.5米B.9米 C.9.5米D.10米4.在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为2.5m,那么影长为30m的旗杆的高度是()A.20m B.16m C.18m D.15m5.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A.3米 B.4米 C.4.5米D.6米6.如图是小莹设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是()A.6米 B.8米 C.10米D.12米7.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为()A.40m B.60m C.120m D.180m8.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A.3cm B.2.5cm C.2.3cm D.2.1cm二.填空题9.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.10.如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.11.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是米.12.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=m.13.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是.14.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,已知亮区DE到窗口下的墙角距离CE=5米,窗口高AB=2米,那么窗口底边离地面的高BC=米.15.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度不计算),若桌面的面积是1.2m2,则地面上的阴影面积是m2.16.如图是测量玻璃管内径的示意图,点D正对“10mm”刻度线,点A正对“30mm”刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为mm.三.解答题17.我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC 的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF 是△ABC的“內似线”,求EF的长.18.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.19.已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使==,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当=时,请猜想的值(请直接写出结论).20.如图,∠MBN=90°,点C是∠MBN平分线上的一点,过点C分别作AC⊥BC,CE⊥BN,垂足分别为点C,E,AC=4,点P为线段BE上的一点(点P不与点B、E重合),连接CP,以CP为直角边,点P为直角顶点,作等腰直角三角形CPD,点D落在BC左侧.(1)求证:=;(2)连接BD,请你判断AC与BD的位置关系,并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.参考答案与解析一.选择题1.(2017•通辽)志远要在报纸上刊登广告,一块10cm×5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费()A.540元B.1080元C.1620元D.1800元【分析】根据题意可知版面的边长都扩大为原来的3倍后的面积,然后根据每平方厘米的广告费即可求出答案.【解答】解:∵一块10cm×5cm的长方形版面要付广告费180元,∴每平方厘米的广告费为:180÷50=元,∴把该版面的边长都扩大为原来的3倍后的广告费为:30×15×=1620元故选(C)【点评】本题考查相似形的应用,解题的关键是求出每平方厘米的广告费,本题属于基础题型.2.(2017•绵阳)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m【分析】根据题意得出△ABC∽△EDC,进而利用相似三角形的性质得出答案.【解答】解:由题意可得:AB=1.5m,BC=0.5m,DC=4m,△ABC∽△EDC,则=,即=,解得:DE=12,故选:B.【点评】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.3.(2017•兰州)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.5米,A、B、C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=15米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得EG=3米,小明身高1.6米,则凉亭的高度AB约为()A.8.5米B.9米 C.9.5米D.10米【分析】只要证明△ACG∽△FEG,可得=,代入已知条件即可解决问题.【解答】解:由题意∠AGC=∠FGE,∵∠ACG=∠FEG=90°,∴△ACG∽△FEG,∴=,∴=,∴AC=8,∴AB=AC+BC=8+0.5=8.5米.故选A.【点评】本题考查相似三角形的判定和性质,解题的关键是理解光的反射定理,属于基础题,中考常考题型.4.在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为2.5m,那么影长为30m的旗杆的高度是()A.20m B.16m C.18m D.15m【分析】根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.【解答】解:∵,∴,解得旗杆的高度==18m.故选C.【点评】本题考查相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.5.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A.3米 B.4米 C.4.5米D.6米【分析】标注字母,判断出△ACD和△ABE相似,再利用相似三角形对应边成比例列式计算即可得解.【解答】解:如图,由题意得,△ACD∽△ABE,∴=,即=,解得BE=6,即树的高度为6米.故选D.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质.6.如图是小莹设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是()A.6米 B.8米 C.10米D.12米【分析】由光学知识反射角等于入射角不难分析得出∠APB=∠CPD,再由∠ABP=∠CDP=90°得到△ABP∽△CDP,得到=代入数值求的CD=8.【解答】解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=即=解得:CD=8米.故选B.【点评】本题考查了直角三角形的有关知识,同时渗透光学中反射原理,注意到相似三角形,解决本题关键.7.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为()A.40m B.60m C.120m D.180m【分析】先证明△PQR∽△PSR,利用相似比得到=,然后根据比例的性质求PQ.【解答】解:∵RQ⊥PS,TS⊥PS,∴RQ∥TS,∴△PQR∽△PSR,∴=,即=,∴PQ=120(m).故选C.【点评】本题考查了相似三角形的应用:利用影长测量物体的高度;利用相似测量河的宽度(测量距离);借助标杆或直尺测量物体的高度.8.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A.3cm B.2.5cm C.2.3cm D.2.1cm【分析】直接利用平行线分线段成比例定理列比例式,代入可得结论.【解答】解:由题意得:CD∥AB,∴=,∵AB=3.5cm,BE=5m,DE=3m,∴,∴CD=2.1cm,故选D.【点评】本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行相似或平行线分线段成比例定理列比例式,可以计算出结果.二.填空题9.(2017•天水)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.10.(2017•吉林)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为9m.【分析】由条件可证明△OCD∽△OAB,利用相似三角形的性质可求得答案.【解答】解:∵OD=4m,BD=14m,∴OB=OD+BD=18m,由题意可知∠ODC=∠OBA,且∠O为公共角,∴△OCD∽△OAB,∴=,即=,解得AB=9,即旗杆AB的高为9m.故答案为:9.【点评】本题主要考查相似三角形的应用,证得三角形相似得到关于AB的方程是解题的关键.11.(2017•铜仁市)如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是18米.【分析】根据相似三角形的判定推出△ABE∽△ACD,得出比例式,代入求出即可.【解答】解:如图:∵BE⊥AC,CD⊥AC,∴BE∥CD,∴△ABE∽△ACD,∴=,∴=,解得:CD=18.故答案为:18.【点评】本题考查了相似三角形的判定和性质的应用,能根据相似三角形的判定定理推出两三角形相似是解此题的关键.12.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=40m.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴=解得:AB=40,故答案为:40.【点评】此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是4m.【分析】设路灯的高度为xm,根据相似三角形对应边成比例可得,=,即=,可得DF的表达式,再根据相似三角形对应边成比例,同样可得DN的表达式,由于DF+DN=4.7,可得关于x的方程,然后解方程求出x即可.【解答】解:设路灯的高度为xm,∵EF∥AD,∴△BEF∽△BAD,∴=,即=,解得DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴=,即=,解得DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得x=4,故答案为:4m.【点评】本题主要考查了相似三角形的应用以及中心投影,解决问题的关键是掌握:相似三角形的对应边成比例,根据等量关系列出关于x的方程进行求解.解题时注意方程思想的运用.14.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,已知亮区DE到窗口下的墙角距离CE=5米,窗口高AB=2米,那么窗口底边离地面的高BC= 2.5米.【分析】根据光沿直线传播的道理可知AD∥BE,则△BCE∽△ACD,根据相似三角形的对应边的比相等即可解答.【解答】解:∵AD∥BE,∴△BCE∽△ACD,∴=,CD=CE+ED=4+5=9,AC=BC+AB=BC+2,∴=,解得,BC=2.5.故答案为:2.5.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.15.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度不计算),若桌面的面积是1.2m2,则地面上的阴影面积是 2.7m2.【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴=,而OD=2.4,CD=0.8,∴OC=OD﹣CD=1.6,=2.7m2,∴S阴影这样地面上阴影部分的面积为2.7m2;故答案为;2.7.【点评】本题考查了相似三角形的应用,根据相似三角形对应高的比等于对应边的比列式求出阴影部分的圆的直径是解题的关键,也是本题的难点.16.如图是测量玻璃管内径的示意图,点D正对“10mm”刻度线,点A正对“30mm”刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为2mm.【分析】直接利用相似三角形的判定与性质得出△CDE∽△CAB进而得出比例式求出答案.【解答】解:由题意可得:∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:DE=2,故答案为:2.【点评】此题主要考查了相似三角形的应用,根据题意得出正确比例关系是解题关键.三.解答题17.(2017•南通)我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为3;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC 的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF 是△ABC的“內似线”,求EF的长.【分析】(1)过等边三角形的内心分别作三边的平行线,即可得出答案;(2)由等腰三角形的性质得出∠ABC=∠C=∠BDC,∠A=∠ABD,证出△BCD∽△ABC,再由三角形的外角性质证出BD平分∠ABC即可;(3)分两种情况:①当==时,EF∥AB,由勾股定理求出AB==5,作DN⊥BC于N,则DN∥AC,DN是Rt△ABC的内切圆半径,求出DN=(AC+BC ﹣AB)=1,由几何平分线定理得出=,求出CE=,证明△CEF∽△CAB,得出对应边成比例求出EF=;②当==时,同理得:EF=即可.【解答】(1)解:等边三角形“內似线”的条数为3条;理由如下:过等边三角形的内心分别作三边的平行线,如图1所示:则△AMN∽△ABC,△CEF∽△CBA,△BGH∽△BAC,∴MN、EF、GH是等边三角形ABC的內似线”;故答案为:3;(2)证明:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD,∴△BCD∽△ABC,又∵∠BDC=∠A+∠ABD,∴∠ABD=∠CBD,∴BD平分∠ABC,即BD过△ABC的内心,∴BD是△ABC的“內似线”;(3)解:设D是△ABC的内心,连接CD,则CD平分∠ACB,∵EF是△ABC的“內似线”,∴△CEF与△ABC相似;分两种情况:①当==时,EF∥AB,∵∠ACB=90°,AC=4,BC=3,∴AB==5,作DN⊥BC于N,如图2所示:则DN∥AC,DN是Rt△ABC的内切圆半径,∴DN=(AC+BC﹣AB)=1,∵CD平分∠ACB,∴=,∵DN∥AC,∴=,即,∴CE=,∵EF∥AB,∴△CEF∽△CAB,∴,即,解得:EF=;②当==时,同理得:EF=;综上所述,EF的长为.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、三角形的内心、勾股定理、直角三角形的内切圆半径等知识;本题综合性强,有一定难度.18.(2017•随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.【分析】(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM;证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到==1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,则FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC=a,接着证明△ANF为等腰直角三角形得到NF=a+b,则NE=NF+EF=2a+b,然后计算的值;(4)利用==k得到=,则==•+1=.【解答】解:(1)如图1,证法一:∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∵四边形ABEF为平行四边形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CDM=∠FEM,在△CDM和△FEM中,∴△CDM≌△FEM,∴DM=EM,即点M是DE的中点;证法二:∵四边形ABCD为菱形,∴DH=BH,∵四边形ABEF为平行四边形,∴AF∥BE,∵HM∥BE,∴==1,∴DM=EM,即点M是DE的中点;(2)∵△CDM≌△FEM,∴CM=FM,设AD=a,CM=b,∵∠ABE=135°,∴∠BAF=45°,∵四边形ABCD为菱形,∴∠NAF=45°,∴四边形ABCD为正方形,∴AC=AD=a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF为等腰直角三角形,∴NF=AF=(a+b+b)=a+b,∴NE=NF+EF=a+b+a=2a+b,∴===;(4)∵==+2•=k,∴=(k﹣),∴=,∴==•+1=•+1=.【点评】本题考查了相似形的综合题:熟练掌握平行线分线段成比例定理、平行四边形和菱形的性质;灵活利用全等三角形的知识解决线段相等的问题;会利用代数法表示线段之间的关系.19.(2017•永州)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使==,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当=时,请猜想的值(请直接写出结论).【分析】(1)①由正方形的性质得出∠ABD=45°,∠BAD=∠ABC=∠BCD=∠ADC=90°,AE=CE,由HL证明Rt△AME≌Rt△ENC,得出∠AEM=∠ECN,再由角的互余关系即可得出结论;②由三角形内角和定理得出∠EAF=∠EFA,证出AE=FE,由等腰三角形的性质得出AM=FM,AF=2AM,求出=,由平行线分线段成比例定理得出=,得出=,即可得出结论;(2)过点E作ME∥AD,交AB于点M,交CD于点N.同(1)得:AE=CE,Rt △AME≌Rt△ENC,得出∠AEM=∠ECN,∵=,O是DB的中点,证出=,得出AF=2AM,即M是AF的中点,由线段垂直平分线的性质得出AE=FE,证出∠AEM=∠FEM,FE=CE,由角的互余关系证出∠CEF=90°,即可得出结论;(3)同(1)即可得出答案.【解答】(1)证明:①∵四边形ABCD是正方形,∴∠ABD=45°,∠BAD=∠ABC=∠BCD=∠ADC=90°,AE=CE,∵ME∥AD,∴ME⊥AB,∠AME=∠BME=∠BAD=90°,∠ENC=∠ADC=90°,∴△BME是等腰直角三角形,四边形BCNM是矩形,∴BM=EM,BM=CN,∴EM=CN,在Rt△AME和Rt△ENC中,,∴Rt△AME≌Rt△ENC(HL),∴∠AEM=∠ECN,∵∠CEF=90°,∴∠FEM+∠CEN=90°,∵∠ECN+∠CEN=90°,∴∠FEM=∠ECN,∴∠AEM=∠FEM;②在△AME和△FME中,∠AME=∠FME=90°,∠AEM=∠FEM,∴∠EAF=∠EFA,∴AE=FE,∵ME⊥AF,∴AM=FM,∴AF=2AM,∵点E是OD的中点,O是BD的中点,∴=,∵ME∥AD,∴=,∴=,∴点F是AB的中点;(2)解:△EFC是等腰直角三角形;理由如下:过点E作ME∥AD,交AB于点M,交CD于点N.如图所示:同(1)得:AE=CE,Rt△AME≌Rt△ENC,∴∠AEM=∠ECN,∵=,O是DB的中点,∴=,∵ME∥AD,∴=,∵=,∴AF=2AM,即M是AF的中点,∵ME⊥AB,∴AE=FE,∴∠AEM=∠FEM,FE=CE,∵∠ECN+∠CEN=90°,∴∠FEM+∠CEN=90°,∴∠CEF=90°,∴△EFC是等腰直角三角形;(3)解:当=时,=;理由同(1).【点评】本题是综合题目,考查了正方形的性质、全等三角形的判定与性质、平行线分线段成比例定理、等腰直角三角形的判定、线段垂直平分线的性质、等腰三角形的判定与性质等知识;本题综合性强,有一定难度.20.(2017•鞍山)如图,∠MBN=90°,点C是∠MBN平分线上的一点,过点C 分别作AC⊥BC,CE⊥BN,垂足分别为点C,E,AC=4,点P为线段BE上的一点(点P不与点B、E重合),连接CP,以CP为直角边,点P为直角顶点,作等腰直角三角形CPD,点D落在BC左侧.(1)求证:=;(2)连接BD,请你判断AC与BD的位置关系,并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.【分析】(1)由△CPD∽△CEB证得结论;(2)AC∥BD.欲推知AC∥BD,直线推知∠ACB+∠DBC=180°;(3)如图所示,过点P作PF⊥BD.交DB的延长线于点F.通过解直角三角形、(2)中相似三角形的对应边成比例和三角形的面积公式写出函数关系式即可.【解答】(1)证明:∵∠MBN=90°,点C是∠MBN平分线上的一点,∴∠CBE=45°,又CE⊥BN,∴∠BCE=45°,∴BE=CE,∴△BCE是等腰直角三角形.又∵△CPD是等腰直角三角形,∴△CPD∽△CEB,∴=,∴=;(2)解:AC∥BD,理由如下:∵∠PCE+∠BCP=∠DCB+∠BCP=45°,∴∠PEC=∠DCB.由(1)知,=,∴△EPC∽△BDC,∴∠PEC=∠DBC.∵AC⊥BC,∴∠ACB=90°,∴∠ACB+∠DBC=180°,∴AC∥BD;(3)解:如图所示,过点P作PF⊥BD.交DB的延长线于点F.∵AC=4,△ABC与△BEC都是等腰直角三角形,∴BC=4,BE=CE=4.由(2)知,△EPC∽△BDC,∴=.即=,∴DB=x.∵∠PBF=∠CBF﹣∠CBP=90°﹣45°=45°,即BP=BE﹣PE=4﹣x,∴PF=BP•sin∠PBF=(4﹣x)×=2﹣x,∴S=DB•PF=×x×(2﹣x)=﹣x2+2x,即:S=﹣x2+2x.【点评】本题考查了相似综合题.需要灵活掌握并运用等腰三角形的判定与性质,相似三角形的判定与性质,三角形的面积公式以及解直角三角形等知识点,难度不大,但是综合性比较强,需要多加训练,以达灵活运用的目的.。

相关文档
最新文档