七年级数学上册-有理数的乘法第2课时有理数乘法的运算律教案新版北师大版

合集下载

2.3.2 有理数乘法的运算律(课件)北师大版(2024)数学七年级上册

2.3.2 有理数乘法的运算律(课件)北师大版(2024)数学七年级上册

10 =
3
问题3
下面是计算(
1 3
+
1 4
-
1 6
)×24的两种解法。
比较两种解法,说说它们有什么区别?
练一练 1.计算:
(1)
3 4
5
8;
【课本P52 随堂练习 第2题】
(2)30
1 2
1 3

(3)
0.25
2 3
36;
(4)8
4 5
1 16

解:(1)
3 4
5
8
=
3 4
5
8
1.下面的式子乘积的符号为正的是 ( A ) A.(-2)×3×4×(-1) B.(-5)×(-6)×5×(-2) C.(-2)×(-2)×(-2) D.(-4)×(-5)×(-7)×0
2.计算 34×(-2)×12 的结果是 ( C )
A.
3 4
B.-
4 3
C.
-
3 4
D.
4 3
3.在计算(12
比如(-3)×5×(-2),它的积的符号是什么呢?
探索新知
探究点1 多个有理数相乘
例1 计算:
(1) (4 )×5×(- 0.25) 解:(-4)×5×(- 0.25)
= [-(4×5)]×(- 0.25) = (-20) ×(- 0.25) = +(20×0.25)
=5
(2) (-35) ×(-56) × (-2) 解:( 3) ( 5) (2)
(-37
)×10×(
5 2
-
6 5
+
1 10
)
( 乘法交换律 )
=
(-37

2.3有理数乘法的运算律 (第2课时) 课件 (19张PPT)北师大版(2024)数学七年级上册

2.3有理数乘法的运算律 (第2课时) 课件 (19张PPT)北师大版(2024)数学七年级上册
(-2)×(-3)×(-4)×(-5)
-120
1
120
2
-120
3
120
4
思考:(1)几个不为 0 的数相乘,积的符号与负因数的个数之间有什么关系?(2)有一个因数为 0 时,积是多少?

几个不是 0 的数相乘,负因数的个数是_____时,积为正;负因数的个数是_____时,积为负。
1. 有理数的乘法法则:
2. 小学学过乘法的哪些运算律:
两数相乘,同号得正,
任何数与 0 相乘,积仍为 0。
异号得负,并把绝对值相乘。
乘法交换律、结合律和分配律。
例1 计算
(1) (-4)×5×(-0.25);
解:(1) 原式=[-(4×5)]×(-0.25)
=(-20)×(-0.25)
=+(20×0.25)
一个数同两个数的和相乘,等于把这个数分别同________相乘,再把积_____
两个数相乘,交换_____的位置,____相等
相加
这两
有理数乘法运算律
ba
a(bc)
ab+ac
因数
个数
前两个



乘法对加法的分配律
1. 运用分配律计算 (-3)×(-4 + 2 - 3),下面有四种不同的结果,其中正确的是( )A. (-3)×4 - 3×2 - 3×3B. (-3)×(-4) - 3×2 - 3×3C. (-3)×(-4) + 3×2 - 3×3D. (-3)×(-4) + (-3)×2 + (-3)×(-3)
=+5
有没有更加简便的方法?
探究1:观察下列各式,它们的积是正的还是负的?

2024年秋新北师大版数学七年级上册课件 2.3.1 有理数的乘法(第2课时)

2024年秋新北师大版数学七年级上册课件 2.3.1 有理数的乘法(第2课时)
ab=ba
注意:用字母表示乘数时,“×”号可以写成“·”或省略, 如a×b可以写成a·b或ab.
探究新知
2.乘法结合律: 三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.
(ab)c = a(bc)
根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换因数的位置,也可先把 其中的几个数相乘.
配律对于两个以上的数相加的情形仍然成立.
课后作业
作业 内容
教材作业 从课后习题中选取
自主安排 配套练习册练习
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
特别提醒: 1.正确确定积的符号. 2.不要漏乘.
课堂检测 计算:
拓广探索题
课堂检测 解: 原式=
拓广探索题
课堂小结
乘法交换律 ab=ba
有 理
乘法结合律 (ab)c=a(bc)

的 乘
乘法对加法的分配律 a(b+c)=ab+ac


根据乘法的运算律,三个或三个以上的数相乘时,
算 律
可以任意交换因数的位置,也可以将几个因数结 合在一起先相乘,所得积不变,乘法对加法的分
5
-26
课堂检测
5. 计算: 解: 原式
基础巩固题
课堂检测
能力提升题
下面这道题的解法有错吗?错在哪里?
解: 原式=
?
?
?
__ __ __
=-8-18 +4-15
=-41+4 =-37.
课堂检测 正确解法:
能力提升题
_____ _____ _____ _____

北师版七年级数学上册课件(BS) 第二章 有理数及其运算 有理数的乘法 第2课时 有理数的乘法运算律

北师版七年级数学上册课件(BS) 第二章 有理数及其运算 有理数的乘法 第2课时 有理数的乘法运算律
=1
=4 000×25-5×25(____乘__法__分__配__律_____)
4.(4 分)运用运算律填空:
(1)(-3)×(-6)=-6×___(_-__3_)__;
(2)[(-3)×2]×(-5)=-3×[__2__×(-5)];
1 (3)3
×[(-9)+(-43
)]=31
×__(_-__9_)_+31
数学 七年级上册 北师版
第二章 有理数及其运算
2.7 有理数的乘法
第2课时 有理数的乘法运算律
1.(4 分)算式-54 ×(10-54 +0.05)=-8+1-0.04 这个运算运用了( D ) A.加法结合律 B.乘法交换律
C.乘法结合律 D.乘法分配律
2.(4 分)在算式-57×24+36×24-79×24=(-57+36-79)×24 中,逆用了( D )
15 (3)1916
×(-8)=(20-116
)×(-8)=20×(-8)-116
×(-8)=-160+21
=-
15912
【素养提升】
12.(15 分)计算:(1+21 )×(1-13 )=32 ×32 =1, (1+21 )×(1+14 )×(1-13 )×(1-15 ) =32 ×54 ×32 ×45 =(32 ×23 )×(54 ×45 ) =1×1=1.
8.下列变形不正确的是( C )
A.5×(-6)=(-6)×5 B.(41 -21 )×(-12)=(-12)×(41 -12 ) C.(-16 +13 )×(-4)=(-4)×(-16 )+13 ×4 D.(-25)×(-16)×(-4)=[(-25)×(-4)]×(-16)
9.计算
5 137Βιβλιοθήκη ×_(_-__34__)__.

北师大版七年级数学上册第二章 2. 7有理数的乘法教案

北师大版七年级数学上册第二章  2. 7有理数的乘法教案

第七节有理数的乘法考点一:有理数的乘法法则1、法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0。

2、方法导引:(1)几个有理数相乘,先确定积的符号,再把绝对值相乘。

(2)当几个因数中有一个为0时,不用再判断符号,直接得0. 3、总结提升:(1)两个有理数相乘,积的符号是由两个因数的符号确定,同号(++,或--)得正,异号(+-或-+)得负。

(2)0与任何数相乘,积都是0.(3)1乘任何数得原数,-1乘任何数得原数的相反数。

4、题型解析:例1 (1)已知两个数a,b在数轴上对应的点如图所示,下列结论正确的是()A、-a<-bB、a+b>0C、ab<0D、b-a>0(2)一个有理数与它的相反数的积是()A 、正数B 、负数C 、非正数D 、非负数 (3)计算3×(-2)的结果是(4)计算 ①-2×(-5) ②34×(83-) ③-3×0 ④(-312)×(-3)考点二:倒数1、定义:如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个有理数互为倒数,如54和45,-7和71-互为倒数。

2、 求法:求带分数的倒数时,先把带分数化成假分数,再求倒数;求小数的倒数时,先把小数化成分数,在求倒数;求整数的倒数时,先把整数看作是分母为1的分数,在求倒数。

3、辨析:(1)0没有倒数。

(2)互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数。

(3)若两个数互为倒数,则它们的成绩为1. (4)倒数等于它本身的数是1和-1. 4、题型解析:例2 (1)有理数51-的倒数为( )A 、5B 、51C 、-51 D 、-5 (2)2017的倒数为( ) A 、20171 B 、2017 C 、-2017 D-20171(3)相反数是其本身的是 ,倒数是其本身的是 。

(4)若a,b 互为相反数,c,d 互为倒数,m 的绝对值是3,求:cd m ba -++35的值。

2.3.2 有理数乘法的运算律(课件)2024-2025-北师大版(2024)数学七年级上册

2.3.2 有理数乘法的运算律(课件)2024-2025-北师大版(2024)数学七年级上册

新知导入
复习导入
回顾小学学过的乘法运算律,思考:引入负数后,三个运算律是否成 立呢?
问题导入 问题1:计算4×8×12.5×2.5。 问题2:说说你是怎样做的,与同伴交流。
归纳导入
利用有理数乘法运算对乘法交换律、乘法结合律和乘法对加法的分配 律进行探究,归纳发现的结论。
自主探究
1.请同学们阅读教材51-52页,思考下列问题。 观察下列各题。 (1)(-7)×8与8×(-7); (2)[(-4)×(-6)]×5与(-4)×[(-6)×5]; (3)(-4)×(-3)+-32与(-4)×(-3)+(-4)×-32。 通过计算可得到它们的计算结果一样,说明了什么?
2.下面是31+14-16×24 的两种解法。 解法一:13+14-61×24=142+132-122×24=152×24=10。 解法二:13+14-61×24=31×24+14×24-61×24=8+6-4=10。 比较两种解法,说说它们的区别。
第一种解法是按照先计算括号里面的,再计算括号外的运算顺 序进行的;第二种解法运用了乘法对加法的分配律,比较简单
( 3 ) ( - 5 . 25 ) × ( - 4 . 73 ) - 4 . 73× ( - 19 . 75 ) - 25× (-5.27)=____2_5_0____。
课堂小结
同学们,今天我们主要学习了哪些内容? 多个有理数相乘,有理数乘法运算律 学习了今天的内容,我们对有理数运算的学习又前进了一大步, 有理数的乘法运算也将接近尾声,同学们有怎样的感受呢?一 起交流一下吧!
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识讲解
知识点1:多个有理数相乘(重难点) 1.几个不是0的数相乘,负因数的个数是奇数时,积是负数;负

杜集区九中七年级数学上册第二章有理数及其运算7有理数的乘法第2课时有理数乘法的运算律教案新版北师大版

杜集区九中七年级数学上册第二章有理数及其运算7有理数的乘法第2课时有理数乘法的运算律教案新版北师大版

第2课时有理数乘法的运算律【知识与技能】掌握有理数乘法的运算律,并利用运算律简化乘法运算.【过程与方法】经历探索有理数乘法运算律的过程,发展学生观察、归纳、猜测、验证等能力.【情感态度】结合本课教学特点,向学生进行热爱生活、热爱学习教育,培养学生观察、归纳、概括及运算能力.【教学重点】乘法的运算律.【教学难点】利用运算律简化乘法运算.一、情境导入,初步认识在有理数运算中,加法的交换律、结合律仍然成立.那么乘法的交换律、结合律以及乘法对加法的分配律还成立吗?【教学说明】学生已经知道加法的交换律、结合律在有理数运算中仍然成立,很容易猜想乘法的交换律、结合律、分配律也会成立,激发学生探求新知识的欲望.二、思考探究,获取新知1.有理数乘法的运算律问题1计算下列各题,并比较它们的结果.【教学说明】学生通过观察、分析、计算,与同伴交流,归纳有理数乘法的运算律.【归纳结论】乘法交换律:两个有理数相乘、交换因数的位置,积相等,即ab=ba.乘法结合律:三个有理数相乘,先把前面两个数相乘,或者先把后面两个数相乘,积相等,即(ab)c=a(bc).乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即a(b+c)=ab+ac.注意:同加法的运算律一样,这里的a、b、c表示任意三个有理数.2.运算乘法的运算律进行计算问题2计算:【教学说明】学生通过计算、交流,进一步掌握乘法的运算律.问题3 计算:【教学说明】学生通过计算,与同伴进行交流,熟练地运用乘法的运算律.【归纳结论】运用乘法的交换律和结合律时,一般把①互为倒数的因数,②便于约分的因数,③积为正或末尾产生0的因数先结合起来相乘;运用乘法分配律时,不仅要注意把乘积形式a(b+c)转化为ab+ac,也要注意有时候逆用(即把ab+ac转化为a(b+c))会使运算简便.另外把一个数拆成两个数,再运用分配律也是一种非常重要的方法.注意:在计算时要注意符号问题.3.其他一些简算技巧问题4观察下列各式:用你发现的规律计算:【教学说明】学生通过观察、分析、思考找出规律,再进行计算,进一步掌握一些简算技巧.【归纳结论】有时利用发现的规律也能使运算简便.三、运用新知,深化理解1.5×(-6)=(-6)×5运用的是乘法的律,[(-3)×2]×(-5)=-3×[2×(-5)]运用的是乘法的律.2.计算(-4)×(-91)×(-25)可用乘法的律和律转化成(-91)×[(-4)×(-25)],结果是 .4.计算:5.已知:1+2+3+4+…+33=17×33.计算:1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.【教学说明】学生自主完成,加深对新学知识的理解,检测对有理数乘法运算律的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.交换,结合2.交换,结合,-91005.原式=1+2+3+…+33-3-6-9-…-96-99=17×33-3(1+2+3+…+33)=17×33-3×17×33=17×33×(1-3)=17×33×(-2)=-1122四、师生互动,课堂小结1.师生共同回顾有理数乘法的运算律.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对有理数乘法运算律的理解与运用.【板书设计】1.布置作业:从教材“习题2.11”中选取.2.完成练习册中本课时的相应作业.本节课从学生感受乘法的运算律对于有理数仍然成立,到运用乘法的运算律进行计算,提高了学生的运算能力,对于有疑问的学生还需加强指导.【知识与技能】1.了解近似数的概念.2.会按精确度要求取近似数.3.给一个近似数,会说出它精确到哪一位.【过程与方法】通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.【情感态度】通过师生合作,联系实际,激发学生学好数学的热情.【教学重点】近似数和精确度的意义.【教学难点】由给出的近似数求其精确度,按给出的精确度求近似数.一、情境导入,初步认识我们常会遇到这样的问题:(1)七年级(2)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:(3)我国的领土面积约为960万平方千米;(4)王强的体重约是49千克.960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.我们把像960万、49这些与实际数很接近的数称为近似数.近似数产生的主要原因在于:①在计算时,有时只能得到近似数,如10÷3得近似商3.33;②在度量时,由于受测量工具和测量技术的局限性影响,一般只能得到近似数.如现有最小刻度分别是厘米、毫米的尺子各一把,用它们分别测量同一个人的身高就会得到不完全相同的结果;③在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也就是精确度的问题.我们都知道,π=3.14159…….我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.二、典例精析,掌握新知例1指出下列问题中出现的数,哪些是准确数?哪些是近似数?(1)某中学七年级有897人;(2)小华的身高为1.6m;(3)一本书共有178页;(4)临园口每天的车流量大约有30000辆;(5)地球的平均半径约为6370km;(6)某小区在入冬以后有38户人家向物业部门报修暖气.【分析】在实际生活中,我们会遇到很多数字,在有些实际问题中我们不可能得到准确数字,如(5)中地球的半径,这时我们研究问题时一般都取近似数字.解:(1)(3)(6)中给出的数字是准确数;(2)(4)(5)中给出的数字是近似数.例2按括号内的要求,用四舍五入法对下列各数取近似数:(教材第46页例6)(1)0.0158(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01).解:(1)0.0158≈0.016;(2)304.35≈304;(3)1.804≈1.8;(4)1.804≈1.80.【教学说明】教师提醒学生精确到0.1就是精确到十分位,精确到0.01就是精确到百分位,精确到0.001就是精确到千分位,精确到0.0001就是精确到万分位.试一试教材第46页练习.例3下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4;(2)0.0572;(3)2.40万解:(1)132.4精确到十分位(精确到0.1);(2)0.0572精确到万分位(精确到0.0001);(3)2.40万精确到百位.【教学说明】教师提醒学生由于2.40万的单位是万,所以不能说它精确到百分位.例4一辆卡车最多能装4吨沙子,现有沙子79吨.(1)至少需要多少辆这样的卡车才能运完沙子?(2)这些沙子能装满多少辆这样的卡车?【分析】题目中所要求的是运沙子的卡车辆数,必须取整数.解:(1)因为79÷4=19.75,所以至少需要20辆这样的卡车才能运完这些沙子.(2)因为79÷4=19.75,所以这些沙子能装满19辆这样的卡车.【教学说明】取近似数常用的是“四舍五入”法,但在实际问题中就不一定能用“四舍五入”法,而要用“去尾法”或“进一法”来取近似数.本例中(1)是采用的“进一法”,(2)是采用的“去尾法”.“进一法”和“去尾法”在小学时曾学过,所以设计本例的目的在于让学生回顾所学知识,并让学生知道取近似数并不是只有“四舍五入”这一种方法.三、运用新知,深化理解1.请你列举出生活中准确值和近似值的实例.2.下列各题中的数,哪些是精确数?哪些是近似数?(1)某中学共有98个教学班;(2)我国约有13亿人口.3.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到0.0001).4.下列由四舍五入得到的近似数,各精确到哪一位?(1)54.8;(2)0.00204;(3)3.6万.【教学说明】上面4题都是有关近似数的题,比较简单,可由学生口答.【答案】1.略.2.(1)精确值;(2)近似值.3.(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310.4.(1)精确到十分位;(2)精确到十万分位;(3)精确到千位.四、师生互动,课堂小结引导学生回忆相关概念,并由学生表述,互相指点.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.3.选做题.(1)下列由四舍五入得到的近似数各精确到哪一位?①32;②17.93;③0.084;④7.250;⑤1.35×104;⑥0.45万;⑦2.004;⑧3.1416.(2)23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?①23.04②23.06③22.99④22.85【答案】3.(1)①精确到个位;②精确到百分位;③精确到千分位;④精确到千分位;⑤精确到百位;⑥精确到百位;⑦精确到千分位;⑧精确到万分位.(2)②和④.本课时教学应多角度选择生活事例作为情境,激发学生参与学习的热情,以学生身边最熟悉的数据引导学生认识概念,再在习题的解答和纠错中准确接受新知识.同时,可鼓励学生积极查阅资料,收集分析数据,形成数感.6.3 实数第1课时实数一、新课导入:1.导入课题:上学期,我们学习了负数之后,就把小学学过的数扩充到了有理数.这节课,我们再来认识一种新的数,从而把有理数继续扩充到实数(板书课题).2.学习目标:(1)知道什么叫无理数,什么叫实数,会对实数进行分类.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想.3.学习重、难点:重点:无理数和实数的概念,知道实数与数轴上的点的一一对应关系.难点:对无理数的认识.二、分层学习1.自学指导:(1)自学内容:课本P53的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,从有理数的不同表现形式中认识无理数,弄清实数的两种分类方法.(4)自学参考提纲:①从探究中可以发现,任何分数都可以写成有限小数或无限循环小数的形式.(还可再举例验证),而有理数包括整数和分数,其中整数可看作是小数点后是0的小数,所以任何有理数都可写成有限小数或无限循环小数的形式,反过来,任何有限小数或无限循环小数也都是有理数.②在前两节中,我们见过像2323…这样的数,它们都是无限不循环小数,无限不循环小数叫做无理数.③有理数和无理数统称为实数.④你能按定义和大小两种不同方式对实数进行分类吗?⑤说出下列各数哪些是有理数,哪些是无理数.5,3.14,0, 3,-43,••750.,4-π,0.1010010001…(相邻两个1之间0的个数逐次加1)2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:对学习有困难和学法不当的学生进行点拨指导.(2)生助生:小组内同学间相互交流和纠错.4.强化:(1)无理数和实数的概念.(2)有理数、无理数的常见表现形式.(3)实数的两种分类.(4)判断正误,并说明理由:①无理数都是无限小数; ②实数包括正实数和负实数;③带根号的数都是无理数; ④不带根号的数都是有理数.1.自学指导:(1)自学范围:课本P54开头至“思考”上面第二行为止的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,思考图6.3-1和图6.3-2的作用,理解实数和数轴上的点一一对应的关系.(4)自学参考提纲:①直径为1的圆的周长是π(这里π不能取近似值),那么如课本中图6.3-1所示,直径为1的圆从原点沿数轴向右(或向左)滚动一周,圆上的点由原点到达点O′,则点O′对应的数是π(或-π).②从课本P41“探究”中知道边长为1的正方形的对角线长为2,那么如课本中图6.3-2所示,在数轴上,以原点为圆心,以单位长度为边长的正方形的对角线长为半径画弧,与正半轴的交点表示的数为2,与负半轴的交点表示的数为-2.③由①和②说明:数轴上的点不仅可用来表示有理数,还可表示无理数.④实数与数轴上的点之间有怎样的对应关系?⑤如何用数轴比较两个实数的大小?2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况(如进度、效果、存在的问题等).②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流、纠错、互助解疑难.4.强化:实数与数轴上的点之间的对应关系.三、评价1.学生的自我评价:学生代表交流学习目标的达成情况和学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时应从注重学生认知水平和亲身感受出发,创设学习情境,调动学生主动参与的积极性.强调分类思想的认识,并设计开放性问题引领学生体验知识的形成过程.(时间:12分钟满分:100分)一、基础巩固(70分)1.(20分)判断下列说法是否正确:(1)有限小数都是有理数; (2)无限小数都是无理数;(3)所有有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;(4)所有实数都可以用数轴上的点表示,反过来,数轴上的所有点都表示实数;(5)对于数轴上的任意两个点,右边的点表示的实数总比左边的点表示的实数大.答案:(1)√;(2)×;(3)×;(4)√;(5)√.2.(20分)把下列各数分别填在相应的集合中:22 7,3.141592657-8,20.6,036π3有理数集合{22736}无理数集合72π3…}3.(30分)在0,1,2,3,4,5,6,7,8,9,10的平方根及立方根中,哪些是有理数?哪些是无理数?解:平方根:有理数:0,1,2,3;23567810立方根:有理数:0,1,2无理数:23,45,679,10二、综合运用(20分)4.(10分)在下列各数中:316,-3.14,-π2,0.1010010001,0.121212…,是无理数的有(B)A.1个B.2个C.3个D.4个5.(10分)在数轴上画出表示-2-1的点.解:以单位长度为边长画一个正方形如图,以(-1,0)为圆心,正方形的对角线为半径画弧,与负半轴的交点就表示点-2-1.三、拓展延伸(10分)6.(1)有没有最小的正整数?有没有最小的整数?(2)有没有最小的有理数?有没有最小的无理数?(3)有没有最小的正实数?有没有最小的实数?解:(1)有最小的正整数,没有最小的整数;(2)没有最小的有理数,没有最小的无理数;(3)没有最小的正实数,没有最小的实数.。

有理数的乘法第2课时有理数乘法的运算律课件

有理数的乘法第2课时有理数乘法的运算律课件

乘法对加法的分配律
两个数的和与一个数相乘,可以先把它们 分别与这个数相乘,再将积相加.
新课探究
计算下列各题,并比较它们的结果. (1)( - 7 )×8 与 8×( - 7 );
5 3
9 10

9 10
5 3
.
解:( - 7 )×8 = - 56
8×( - 7 ) = - 56
5 3
9 10
=
10 2
9 10
5 3
=
10 2
(2)[(-4)×(-6)]×5与(-4)×[(-6)×5];
1 2
7 3
4 与
1 2
7 3
4
.
解:[(-4)×(-6)]×5 =120
(-4)×[(-6)×5]=120
1 2
7 3
4
=
14 3
1 2
7 3
4
(1)0
5 6

0
(2)3
1 3
;1
(3) 3 0.3;0.9(4)Fra bibliotek1 6
6 7
.
1 7
2.计算:
(1)
3 4
8;
(2)30
1 2
1 3

(3)
0.25
2 3
36;
(4)8
4 5
1 16
.
解:(1)
3 4
8
=
3 4
8
=
6
(2)30
1 2
1 3
=
30
1 2
30
=
14 3
(3)
2
3
+
3 2

北师大版七年级上册数学.2有理数乘法的运算律课件

北师大版七年级上册数学.2有理数乘法的运算律课件
几个有理数相乘,积的符号由负因数的个数确定: 负因数的个数为偶数 个,则积为正数 .负因数的个数 为奇数个,则积为负数 .当有一个因数为零时,积为 零 .
Ø活动二
活动规则:班级分成8个小组,每个小 组成员写出自己喜欢的有理数,老师将会任 选几名小组的成员来展示,要求其他同学回 答他们的乘积.
Ø实践出真知
解:原式 (8 4) 39
32 27
同号得正, 绝对值相乘
Ø活动一
活动规则:班级分成8个小组,每个小 组成员写出自己喜欢的有理数,老师将会任 选两名小组的成员来展示,要求其他同学回 答他们的乘积.
Ø探究二
先计算,再视察算式和结果特征,得出结论.
(1)( 8) ( 3) 38
解:原式 (8 3) 38
例2:计算
(1)(6) 7 ( 5) 4
解:原式 (6 7 5) 4
105 2
(2) 3 10 2
5 9
解:原式 (3 10 2) 59
4 3
①几个有理数相乘,先确定积的符号,再把绝对值相乘.
②同级运算,从左向右,依次运算.
Ø强化训练
(1)( 6) 2 (1 1) (3 1)
(5)若a 0,b 0,c 0,则abc < 0 (6)若a 0,b 0,c 0,则abc > 0 (7)若a和b互为倒数,则a b 1
回顾本节课的内容,本节课你收 获到了什么?
感谢光临!
你能写出下列结果吗?
(-3)×(-1)= 3 (-3)×(-2)= 6 (-3)×(-3)= 9
(-3)×(-4)= 12
当第二个因数减小1时,积增大3.
Ø探究一
视察以下算式中因数的符号和积的符号,你认为有怎样的规律?

七年级数学上册 第二章 有理数及其运算 7 有理数的乘法课件 (新版)北师大版

七年级数学上册 第二章 有理数及其运算 7 有理数的乘法课件 (新版)北师大版

C.恰有一个数为零 D.均为零
答案 B 0乘任何数均为零.多个有理数相乘,当积为零时,因数中至少
有一个数为零.
5.-1 3 的倒数与 1 的相反数的积为
.
5
20
答案 1
32
解析
-1
3 5
=-
8 5
,它的倒数为-
5 8
,
1 20
的相反数为-
1 20
,
5 8
×
1 20
=
5 8
×
1 20
=
1 ,故答案为 1 .
(1)-10;(2) 5 ;(3)-0.25;(4)3 1 .
7
2
解析 求倒数时,对于小数和带分数,应先将小数化成分数,将带分数化
成假分数,然后将分子、分母交换位置即可.
(1)-10的倒数是- 1 .
10
(2) 5 的倒数是 7 .
7
5
(3)-0.25=- 1,所以-0.25的倒数是-4.
4
(4)3 1 = 7 ,所以3 1 的倒数是 2 .
32
32
6.(2016江西小松中学联考)某商店以32元的价格购进30个茶杯,针对不 同的顾客,30个茶杯的售价不完全相同.若以47元为标准,将超过的钱数 记为正,不足的钱数记为负,记录结果如下表:
售出个数
7
6
3
5
4
5
每件(元)
+3
+2
+1
0
-1
-2
该超市售完这30个茶杯后,赚了多少钱? 解析 (+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5=22(元). (47-32)×30+22=472(元). 答:该超市售完这30个茶杯后,赚了472元.

最新版初中数学教案《有理数乘法的运算律》精品教案(2022年创作)

最新版初中数学教案《有理数乘法的运算律》精品教案(2022年创作)

有理数的乘法第2课时有理数乘法的运算律教学目标【知识与技能】1.理解并掌握有理数乘法的运算律:乘法交换律、乘法结合律、分配律.2.能运用乘法运算律简化计算.【过程与方法】经历探索有理数乘法的运算律的过程,开展学生观察、归纳等能力.【情感态度价值观】进一步提高学生的运算能力.教学重难点【教学重点】乘法的运算律【教学难点】灵活运用乘法的运算律简化运算课前准备课件教学过程〔一〕回忆复习,引入课题1.计算:(3)(-4)×7×0你能说出各题的解答根据吗?表达有理数的乘法运算的法那么是什么?多个不为0的有理数相乘,积的符号怎样确定?有理数的乘法法那么:两数相乘,同号得正,异号得负,绝对值相乘.任何数与0相乘,积为0.几个不等于0的因数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正.只要有一个因数为0,积就为0.2.学生练习:简便计算,并答复根据什么?〔1〕125×0.05×8×40〔小学数学乘法的交换律和结合律.〕 (2)361276595321⨯⎪⎭⎫ ⎝⎛++++〔小学数学的分配律〕 3.上题变为〔1〕〔-0.125〕×〔-0.05〕×8×〔-40〕 (2)()361276595321-⨯⎪⎭⎫ ⎝⎛-+--. 能否简便计算?也就是小学数学的乘法交换律和结合律、分配律在有理数范围内能否使用?[引出课题:有理数的乘法(二)]〔二〕交流对话,探索新知4.多媒体显示:学生练习:计算以下各题:〔1〕〔-5〕×2;〔2〕2×〔-5〕;〔3〕[2×〔-3〕]×〔-4〕;〔4〕2×[〔-3〕×〔-4〕];〔5〕()⎪⎭⎫ ⎝⎛+⨯-3123; 〔6〕()()31323⨯-+⨯-. 在进行加、减、乘的混合运算时,应注意:有括号时,要先算括号里面的数,没有括号时,先算乘法,后算加减.比较的结果.:(1)与(2);(3)与(4);(5)与(6)的计算结果一样.计算结果一样,说明了什么?生:说明算式相等.即:〔1〕〔-5〕×2=2×〔-5〕;〔2〕[2×〔-3〕]×〔-4〕=2×[〔-3〕×〔-4〕];〔3〕()⎪⎭⎫ ⎝⎛+⨯-3123=()()31323⨯-+⨯- 由(1),我们可以得到乘法交换律;由(2),可以得到乘法结合律;由(3),可以得到分配律. 师:乘法的运算律在有理数范围内还成立吗?大家每人写一些不同的数据来试一试.〔学生活动.〕乘法的运算律在有理数范围内成立.5.这节课我们探讨的乘法运算律在有理数运算中的应用.我们首先要知道乘法运算律有哪几条?能用文字表达吗?乘法运算律有:乘法的交换律、乘法的结合律、分配律等三条.多媒体显示:乘法的交换律.:两个数相乘,交换因数的位置,积不变;乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;分配律:一个数与两个数的和相乘,等于把这个数分别与这两数相乘,再把积相加.乘法的交换律和结合律仅涉及一种运算,分配律要涉及两种运算.你能用字母表示乘法的交换律、结合律,分配律吗?如果a ,b ,c 分别表示任一有理数,那么:乘法的交换律:a ×b =b ×a .乘法的结合律:(a ×b )×c =a ×(b ×c )分配律:a ×(b +c )=a ×b +a ×c练习:多媒体显示 以下各式中用了哪条运算律?如何用字母表示?〔1〕〔-5〕×3=3×〔-5〕;(2)[-325+736]+(-729)=(-325)+[736+(-729)];(3)(-6)×[32+(-21)]=(-6)×32+(-6)×(-21); 〔4〕[29×(-65)]×(-12)=29×[(-65)×(-12)]; 〔5〕〔-8〕+(-9)=(-9)+(-8).运算律在计算中起到了简化运算的作用.那我们看刚刚做的5个题中,计算等号右边比较简便还是计算等号左边比较简便?〔略〕6.新知应用 乘法的运算律在有理数运算中的应用例1简便计算〔1〕〔-0.125〕×〔-0.05〕×8×〔-40〕; (2) ()361276595321-⨯⎪⎭⎫ ⎝⎛-+--. 师生共析〔1〕题先确定符号,再算绝对值;先用乘法的交换律,然后用结合律进行计算.(2)题用分配律.运用运算律,有时可使运算简便.解:〔1〕〔-0.125〕×〔-0.05〕×8×〔-40〕=-0.125×0.05×8×40=-0.125×8×0.05×8×40 (乘法的交换律)=-(0.125×8)×(0.05×40 ) (乘法的结合律)=-1×2=—2. (2) ()361276595321-⨯⎪⎭⎫ ⎝⎛-+-- =()()()()()36127366536953633621-⨯--⨯+-⨯--⨯--⨯〔分配律〕 =-18+108+20-30+21=149-48=101.例2计算〔1〕()()653712⨯-⨯-;()()311.01062⨯⨯-⨯; ()⎪⎭⎫ ⎝⎛+-⨯-543221303;()()1299.44-⨯. 学生板书完成,并说明根据什么?略例3某校体育器材室共有60个篮球.一天课外活动,有3个班级分别方案借篮球总数的21,31和41.请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?解:=60-30-20-15 =-5答:不够借,还缺5个篮球.7.探究活动 〔1〕如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律?〔2〕逆用分配律 第42页 5、用简便方法计算〔三〕课堂小结通过本节课的学习,大家学会了什么?本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.第1课时有理数的加减混合运算及运算律在其中的应用1.理解有理数加减混合运算统一成加法运算的意义,掌握有理数加减混合运算的方法,并能熟练运算.2.能根据具体问题,适当运用运算律简化运算.一、情境导入甲、乙两队进行拔河比赛,规定标志物向某队方向移动2米,该队即可获胜.比赛开始后,标志物先向乙队方向移动0.2米,又向甲队方向移动0.5米,相持一会儿后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家欢呼声鼓励中,标志物又向甲队移动了0.9米,请你通过计算判断哪队获胜.就让我们带着这一问题去学习有理数的加减混合运算.二、合作探究探究点一:有理数的加减混合运算计算:12+(-23)-(-45). 解析:先将减法统一为加法,再按有理数的加法运算法那么进行计算. 解:原式=12+(-23)+(+45)=-16+45=1930. 方法总结:有理数加减混合运算的步骤是:(1)用减法法那么将减法转化为加法;(2)写成省略加号的和的形式;(3)进行有理数的加法运算.探究点二:利用加法运算律进行计算计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|; (2)-1423+11215-(-1223)-14+(-11215); (3)23-18-(-13)+(-38). 解析:此题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后运用加法运算律简化运算,求出结果.其中互为相反数的两数先结合,能凑成整数的各数先结合.另外,同号各数先结合,同分母或易通分的各数先结合.解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2-14=-16; (3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 方法总结:(1)为使运算简便,可适当运用加法的结合律与交换律.在交换加数的位置时,要连同前面的符号一起交换.(2)注意同分母分数相加,互为相反数相加,凑成整数的数相加,这样计算简便.(3)当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.三、板书设计本课时在学习了有理数加减法运算的根底上,通过对同一具体情境两种算法的比较,让学生体会加减混合运算可以统一成加法运算,以及加法运算可以写成省略括号及前面加括号的形式,渗透“转化〞思想.通过师生、生生之间的交流,培养学生的口头表达能力和计算能力.。

2.3《有理数的乘法第2课时》北师大版七年级数学上册教案

2.3《有理数的乘法第2课时》北师大版七年级数学上册教案

第二章有理数及其运算7有理数的乘法第2课时一、教学目标1.经历探索有理数乘法运算律的过程,发展观察、归纳、猜测、验证的能力.2.掌握有理数乘法的运算律.3.能正确运用乘法运算律简化运算.4.提高学生的运算能力与解决问题的能力,提升学习兴趣.二、教学重难点重点:掌握有理数乘法的运算律.难点:能正确运用乘法运算律简化运算.三、教学用具多媒体课件四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习引入】教师活动:教师出示练习,并提问,引导学生回顾有理数乘法的计算方法,为探究有理数乘法的运算律奠定基础.算一算:(1)(–7)×2=(2)(–5)×(–3)=(3)8×(1–4)=(4)0×(–12)=师:想一想它们是如何计算的呢?预设答案:1.两数相乘,同号得正,异号得负,并把绝对值相乘.2.任何数同0相乘,结果仍然是0.追问:我们之前学过哪些乘法的运算律?预设答案:乘法交换律:两个数相乘,交换乘数的位学生独立完成计算,思考并回答问题.通过复习有理数乘法的计算方法,以及之前学过的整数乘法的运算律,为接下来探究有理数乘法的运算律奠定基础..置,积不变.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.提问:引入负数后,这些运算律是否还成立呢?环节二 探究新知【探究】计算下列各题,并比较它们的结果.(1)(–7)×8=8×(–7)=(2)[(–4)×(–6)]×5(–4)×[(–6)×5](3)思考:你发现了什么?预设答案:第(1)组:(–7)×8=8×(–7)把两个有理数的位置交换,乘积不变.第(2)组:[(–4)×(–6)]×5=(–4)×[(–6)×5]=三个有理数相乘,不管是先乘前两个数,还是先乘后两个数,乘积不变.第(3)组:==一个有理数乘上两个有理数的和,结果等学生独立计算,观察后思考并交流反馈..通过计算并观察算式的特点,找到算式中蕴含的特点与规律,为接下来将乘法的运算律拓展到有理数范围做铺垫.于这个有理数分别去乘这两个有理数,然后再把积相加.【小组合作】(1)在有理数运算中,乘法的交换律,乘法的结合律,乘法对加法的分配律还成立吗?请你们换一些数试试吧;(2)全班展示交流.【归纳】预设答案:乘法的这些运算律在有理数范围内同样适用.乘法交换律:两个有理数相乘,交换乘数的位置,积不变.乘法结合律:三个有理数相乘,先把前两个有理数相加,或者先把后两个有理数相加,积不变.乘法对加法的分配律:一个有理数同两个有理数的和相乘,等于把这个有理数分别同这两个有理数相乘,再把积相加.用字母表示乘法的运算律如下:乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )乘法对加法的分配律:a (b +c )=ab +ac教师提醒学生要注意:用字母表示乘数时,“×”号可以写成“·”或省略.【做一做】计算:(1);(2).预设答案:(1)解:原式==20+(–9)=11.(2)解:原式=学生小组合作,互相换一些数再计算,并反馈.归纳有理数范围内的乘法的运算律.学生独立计算.通过应用所学的运算律进行计算,巩固学生对运算律的掌握程度,培养学生应用所学知识解决问题的能力.==.环节三 应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再在小组内交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1如何计算?分析:可以将写成,然后利用乘法对加法的分配律进行简化运算.答案:解:原式例2计算,用乘法对加法的分配律计算过程正确的是( )A.B.C.D.分析:乘法对加法的分配律为:a (b +c )=ab +ac答案:A认真观察并思考.观察后思考,说一说.通过讲解一些变式练习,让学生灵活掌握运算律的使用场景,加深对乘法对加法的分配律的理解和掌握.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.在计算中,应用了乘法( )A .交换律B .结合律C .结合律和分配律D .交换律和分配律答案:A2.算式–25×14+1×14–39×(–14)=(–25+18+39)×14是逆用了( )A .加法交换律B .乘法交换律C .乘法结合律D .乘法对加法的分配律答案:D 3.计算.(1);(2);(3);(4).答案:解:==(–1)×(–5)=5.解:==15–10=5.解:==自主完成练习,然后集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.=–9+24=15.解:===.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试归纳总结本节所学内容及收获.回顾知识点,形成知识体系,养成回顾梳理知识的好习惯.环节六布置作业教科书第54页习题2.11第1、3题.学生课后自主完成.加深认识,深化提高.。

七年级数学上册 2.7 有理数的乘法教案 (新版)北师大版 教案

七年级数学上册 2.7 有理数的乘法教案 (新版)北师大版 教案
例2 (1)(-4)×5×(-0.25);(2)(-3/5)×(-5/6)×(-2).
做一做2:课本P51页随堂练习1;
四、反思
两个负数相乘得正数,简单地说:“负负得正”。
布置作业
习题2.10知识技能
教学后记
本节课内容较为简单,学生掌握良好,课上反应热烈。
课 时 教 案
第 周 星期 第 节 年 月 日
二、探究问题
问题1甲水库的水位每天升高3厘米,4天升高了多少厘米?3+3+3+3=3×4=12(厘米)
问题2乙水库的水位每天下降3厘米,4天下降了多少厘米?
(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)
议一议:(-3)×4=-12;(-3)×3=;(-3)×2=;(-3)×1=;(-3)×0=;
有理数的乘法
课 题
2.7.1有理数的乘法
教 学
目 标
1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;
2.经历探索有理数乘法法则的过程,发展观察、归纳、猜测、验证等能力;
3. 情感与态度:培养学生观察、归纳、概括及运算能力。


分析
重 点
有理数乘法的运算。
难 点
ቤተ መጻሕፍቲ ባይዱ有理数乘法中的符号法则。
教 具
电脑、投影仪




一、创设情境
1.计算(-2)+(-2)+(-2).
2.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
3.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

《有理数的乘法(第2课时)》优质教案

《有理数的乘法(第2课时)》优质教案

有理数的乘法和除法有理数的乘法第2课时有理数乘法的运算律教学目标:1、知识与技能:经历探索乘法运算律的过程,进一步发展观察、验证、猜想、归纳的能力,促使学生学好乘法运算律及多个有理数相乘积的符号的确定。

2、过程与方法:运用乘法的运算律简化乘法运算。

重点、难点:1、重点:乘法运算律的理解和运用2、难点:乘法运算律的灵活运用及运算中符号的确定。

教学过程:一、创设情景,导入新课复习:有理数的乘法法则,互为倒数的定义,两个有理数相乘积的符号的确定。

二、合作交流,解读探究1、做一做:P32“做一做”填空,并比较她们的结果。

<1> (-2) ×7=,7×(-2)=(-3)×(-4)=,(-4)×(-3)=师:由上面的两组式子,我们发现了什么规律生:乘法满足交换律。

<2> [3×(-4)]×(-5)=×(-5)=3×[(-4)×(-5)]=3×=师:由上面的两组式子,我们发现了什么规律学:乘法满足结合律。

<3>(-6)×[4+(-9)]=(-6)×=(-6)×4+(-6)×(-9)=+=师:由上面的两组式子,我们发现了什么规律学:乘法满足分配律2、想一想:<1>由上面的几道题,我们已经知道了在有理数运算中,乘法的交换律、结合律以及分配律均成立。

那么同学们现在再给你们几分钟的时间,你们分别写出满足乘法的交换律、结合律以及分配律的式子。

2、刚才我们都是通过具体的数来表示乘法的交换律、结合律与分配律的,现在请你们用字母表示乘法的交换律、结合律与分配律。

乘法的交换律:a×b=b×a乘法的结合律:(a×b )×c=a×(b×c)乘法的分配律:a×(b+c)=a×b+a×c三、应用迁移,巩固提高1、例2计算:(1) (-12)×(-37)×65 (2) 6×(-10)××31 (3)-30×(21-32+54) (4) ×(-12) (1)、(2)两题的解题过程引导学先处理符号,再运用交换律与结算.(3)师:这道题如何计算能相对简便一些,请同学们思考一下。

北师大版七年级上册数学2.7第2课时有理数乘法的运算律优秀教案

北师大版七年级上册数学2.7第2课时有理数乘法的运算律优秀教案

第 2 课时有理数乘法的运算律1.经历研究有理数乘法运算律的过程,理解有理数乘法运算律.2.能娴熟运用有理数乘法运算律简化运算.一、情境导入中央电视台的“高兴辞典”栏目,有一个“快算二十四”的兴趣题,此刻给出1~ 13之间四个自然数,将这四个数(只好用一次 )进行加、减、乘、除运算,可加括号,使其结果等于 24,如:对 1、 2、 3、 4可作运算“ (1+ 2+ 3)× 4= 24”或“ 1×2× 3× 4= 24”.现有四个有理数3、4、- 6、10,你能运用上述规则写出两种不一样的算式,使其结果等于24 吗?二、合作研究研究点一:运用有理数的乘法运算律简化运算计算:152(1)(-- )× 70;275217(2)(- 2)× (- 17)× (- 22)×9.分析: (1)可用乘法对加法的分派律来简化计算;(2)能够利用乘法的互换律和联合律来简化计算.解: (1)原式=12× 70-57× 70-25× 70= 35- 50- 28=- 43;(2)原式=- (2×5×9×7)=- 5. 279方法总结:运用乘法互换律或联合律时要考虑能约分的、凑整的和互为倒数的数,要尽可能地把它们联合在一同;利用乘法分派律计算时,要注意符号,免得发生错误.研究点二:逆用乘法对加法的分派律444计算: 3.94× (-7)+ 2.41× (-7)- 6.35× (-7).分析:逆用乘法对加法的分派律可简化计算.44解:原式= (- ) × (3.94+2.41 - 6.35)= (- )× 0= 0.77方法总结:假如依据先算乘法,再算加减,则运算较繁琐,且符号简单犯错,但假如逆用乘法对加法的分派律,则可使运算简易.研究点三:有理数乘法的运算律的实质应用甲、乙两地相距480 千米,一辆汽车从甲地开往乙地,已经行驶了全程的1,再行3驶多少千米就能够抵达中点?分析:把两地间的距离看作单位“1”,中点即全程1处,依据题意用乘法分别求出480 千2米的 12和 13,再求差.解: 480× 1- 480× 1= 480× (1- 1)= 80(千米 ).2323答:再行 80 千米就能够抵达中点.方法总结:解答此题的要点是依据题意列出算式,而后依据乘法的分派律进行简易计算.新课程理念要求把学生“学”数学放在教师“教”以前,“导学”是教课的要点 .所以,在本节课的教课中,不要直接将结论告诉学生,而是指引学生从大批的实例中找寻解决问题的规律 .学生经历踊跃研究知识的形成过程,最后总结得出有理数乘法的运算律.整个教课过程要让学生踊跃参加,独立思虑和合作研究相联合,教师适合评论,以达到预期的教课成效.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时有理数乘法的运算律
【知识与技能】
掌握有理数乘法的运算律,并利用运算律简化乘法运算.
【过程与方法】
经历探索有理数乘法运算律的过程,发展学生观察、归纳、猜测、验证等能力.
【情感态度】
结合本课教学特点,向学生进行热爱生活、热爱学习教育,培养学生观察、归纳、概括及运算能力.
【教学重点】
乘法的运算律.
【教学难点】
利用运算律简化乘法运算.
一、情境导入,初步认识
在有理数运算中,加法的交换律、结合律仍然成立.那么乘法的交换律、结合律以及乘法对加法的分配律还成立吗?
【教学说明】学生已经知道加法的交换律、结合律在有理数运算中仍然成立,很容易猜想乘法的交换律、结合律、分配律也会成立,激发学生探求新知识的欲望.
二、思考探究,获取新知
1.有理数乘法的运算律
问题1计算下列各题,并比较它们的结果.
【教学说明】学生通过观察、分析、计算,与同伴交流,归纳有理数乘法的运算律.
【归纳结论】
乘法交换律:两个有理数相乘、交换因数的位置,积相等,即ab=ba.乘法结合律:三个有理数相乘,先把前面两个数相乘,或者先把后面两个数相乘,积相等,即(ab)c=a(bc).乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即a(b+c)=ab+ac.
注意:同加法的运算律一样,这里的a、b、c表示任意三个有理数.
2.运算乘法的运算律进行计算
问题2计算:
【教学说明】学生通过计算、交流,进一步掌握乘法的运算律.
问题3 计算:
【教学说明】学生通过计算,与同伴进行交流,熟练地运用乘法的运算律.
【归纳结论】
运用乘法的交换律和结合律时,一般把①互为倒数的因数,②便于约分的因数,③积为正或末尾产生0的因数先结合起来相乘;运用乘法分配律时,不仅要注意把乘积形式a(b+c)转
化为ab+ac,也要注意有时候逆用(即把ab+ac转化为a(b+c))会使运算简便.另外把一个数拆成两个数,再运用分配律也是一种非常重要的方法.
注意:在计算时要注意符号问题.
3.其他一些简算技巧
问题4观察下列各式:
用你发现的规律计算:
【教学说明】学生通过观察、分析、思考找出规律,再进行计算,进一步掌握一些简算技巧.
【归纳结论】
有时利用发现的规律也能使运算简便.
三、运用新知,深化理解
1.5×(-6)=(-6)×5运用的是乘法的律,[(-3)×2]×(-5)=-3×[2×(-5)]运用的是乘法的律.
2.计算(-4)×(-91)×(-25)可用乘法的律和律转化成(-91)×[(-4)×(-25)],结果是 .
4.计算:
5.已知:1+2+3+4+…+33=17×33.计算:1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.
【教学说明】学生自主完成,加深对新学知识的理解,检测对有理数乘法运算律的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.
【答案】1.交换,结合
2.交换,结合,-9100
5.原式=1+2+3+…+33-3-6-9-…-96-99
=17×33-3(1+2+3+…+33)=17×33-3×17×33=17×33×(1-3)=17×33×(-2)=-1122
四、师生互动,课堂小结
1.师生共同回顾有理数乘法的运算律.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?
【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对有理数乘法运算律的理解与运用.
【板书设计】
1.布置作业:从教材“习题
2.11”中选取.
2.完成练习册中本课时的相应作业.
本节课从学生感受乘法的运算律对于有理数仍然成立,到运用乘法的运算律进行计算,提高了学生的运算能力,对于有疑问的学生还需加强指导.。

相关文档
最新文档