练习册 第11章《热力学基本原理》答案

合集下载

大学热力学基础习题答案

大学热力学基础习题答案

大学热力学基础习题答案大学热力学基础习题答案热力学是物理学中的重要分支,研究物质能量转化和能量守恒的规律。

在大学物理学课程中,热力学是一个重要的内容,学生通过习题练习可以更好地理解和掌握热力学的基本原理和计算方法。

下面将为大家提供一些大学热力学基础习题的答案,希望能够对大家的学习有所帮助。

1. 一摩尔理想气体在等温过程中,从体积V1膨胀到体积V2。

求气体对外界做功W。

答案:根据理想气体的状态方程PV=nRT,可以得到P1V1=P2V2,其中P1和P2分别为气体的初始和末态压强,R为气体常数,T为气体的温度。

由于等温过程中温度不变,所以P1V1=P2V2。

根据气体对外界做功的定义,W=PdV,其中P为气体的压强,dV为气体的体积变化。

将P1V1=P2V2代入上式,可以得到W=P1(V2-V1)。

2. 一个物体的内能U与温度T的关系为U=aT^3,其中a为常数。

求物体的热容C。

答案:热容C定义为物体单位温度变化时吸收或释放的热量与温度变化之比。

根据题目中给出的内能与温度的关系式,可以得到U=aT^3。

对该式两边求导,得到dU=3aT^2dT。

根据热容的定义,C=dU/dT,即C=3aT^2。

所以物体的热容C为3aT^2。

3. 一个物体从初始温度T1加热到温度T2,吸收的热量为Q。

如果将该物体再从温度T2降到温度T1,释放的热量是多少?答案:根据热力学第一定律,物体吸收的热量等于内能的增加,即Q=ΔU。

由于物体在加热过程中内能增加,所以ΔU>0。

而在降温过程中,物体内能减少,即ΔU<0。

根据热力学第一定律的表达式Q=ΔU+W,可以得到释放的热量为Q+W。

由于该物体在加热过程中对外界做正功,所以W>0。

因此,在降温过程中释放的热量为Q+W<0。

4. 一个物体的熵S与温度T的关系为S=bT^2,其中b为常数。

求物体的热容C。

答案:热容C定义为物体单位温度变化时吸收或释放的热量与温度变化之比。

练习册 第11章《热力学基本原理》答案

练习册 第11章《热力学基本原理》答案

第11章 热力学基本原理一、选择题1(A),2(A),3(C),4(D),5(C)二、填空题(1). 不变,增加(2). 在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部分热量.(3). 500,700 (4). 11+=w η (或11-=ηw ) (5). 功变热,热传递三 计算题1. 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A .(1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J .B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J .C →A : W 3 = p A (V A -V C )=-100 J . 150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J2. 汽缸内有2 mol 氦气,初始温度为27℃,体积为20 L(升),先将氦气等压膨胀,直至体积加倍,然后绝热膨涨,直至回复初温为止.把氦气视为理想气体.试求: (1) 在p ―V 图上大致画出气体的状态变化过程.(2) 在这过程中氦气吸热多少? (3) 氦气的内能变化多少?(4) 氦气所作的总功是多少?(普适气体常量R =8.31 11K mol J --⋅⋅)m 3) 5解:(1) p -V 图如图.(2) T 1=(273+27) K =300 K据 V 1/T 1=V 2/T 2,得 T 2 = V 2T 1/V 1=600 K Q = C p (T 2-T 1)= 1.25×104 J(3) ∆E =0 (4) 据 Q = W + ∆E∴ W =Q =1.25×104 J3. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气).已知气体的初压强p 1=1atm ,体积V 1=1L ,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止, (1) 在p -V 图上将整个过程表示出来.(2) 试求在整个过程中气体内能的改变.(3) 试求在整个过程中气体所吸收的热量.(1 atm =1.013×105 Pa) (4) 试求在整个过程中气体所作的功.解: (1) p -V 图如右图.(2) T 4=T 1 ∆E =0 (3) )()(2312T T C M MT T C M M Q V mol p mol -+-=)]2(2[23)2(25111111p p V V V p -+-= 11211V p ==5.6×102 J (4) W =Q =5.6×102 J4. 1 mol 单原子分子的理想气体,经历如图所示的可逆循环,联结ac 两点的曲线Ⅲ的方程为2020/V V p p =, a 点的温度为T 0(1) 试以T 0 , 普适气体常量R 表示Ⅰ、Ⅱ、Ⅲ过程中气体吸收的热量。

ch11 热力学基础 习题及答案(word文档良心出品)

ch11 热力学基础 习题及答案(word文档良心出品)

第11章 热力学基础 习题及答案1、内能和热量的概念有何不同?下面两种说法是否正确? (1) 物体的温度越高,则热量越多; (2) 物体的温度越高,则内能越大。

答:内能是组成物体的所有分子的动能与势能的总和。

热量是热传递过程中所传递的能量的量度。

内能是状态量,只与状态有关而与过程无关,热量是过程量,与一定过程相对应。

(1) 错。

热量是过程量,单一状态的热量无意义。

(2) 对。

物体的内能与温度有关。

2、V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高? 答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 3、评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程. 答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功;(2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程.4、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题4图解:(1)由热力学第一定律有 A E Q +∆= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=∆A Q E 经绝热b a →过程 012=+∆A E 012<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.(2)若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 5、一循环过程如图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.题5图 题6图解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得 KvR p =故bc 过程为等压过程ca 是等温过程(2)V p -图如图 (3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形. (5) abca bc abQ Q Q Q e -+=6、两个卡诺循环如图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7、4.8kg 的氧气在27.0℃时占有1000m³的体积,分别求在等温、等压情况下,将其体积压缩到原来的1/2所需做的功、所吸收的热量以及内能的变化。

热力学习题及答案解析

热力学习题及答案解析

热力学习题及答案解析热力学是物理学中的一个重要分支,研究热量和能量转化的规律。

在学习热力学的过程中,经常会遇到一些题目,下面我将针对几个常见的热力学学习题目进行解析。

1. 热力学第一定律是什么?请用自己的话解释。

热力学第一定律,也被称为能量守恒定律,它表明能量在系统中的转化是守恒的。

简单来说,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。

这个定律可以用数学公式表示为:ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做的功。

2. 一个物体从20°C加热到80°C,热量变化是多少?要计算这个问题,我们需要使用热容量的概念。

热容量表示单位温度变化时物体吸收或释放的热量。

对于一个物体,它的热容量可以表示为C = m × c,其中m表示物体的质量,c表示物体的比热容。

假设这个物体的质量为1kg,比热容为4.18J/g°C。

那么它的热容量就是C =1kg × 4.18J/g°C = 4.18J/°C。

根据热力学第一定律,热量的变化等于系统内能的变化,即Q = ΔU。

由于这个物体只发生温度变化,内能的变化可以表示为ΔU = C × ΔT,其中ΔT表示温度的变化。

根据题目给出的信息,温度变化为80°C - 20°C = 60°C。

将这些数值代入公式,我们可以得到热量变化为Q = ΔU = C × ΔT = 4.18J/°C × 60°C = 250.8J。

所以,这个物体的热量变化为250.8J。

3. 一个气体在等温过程中吸收了300J的热量,对外做了100J的功,求系统内能的变化。

在等温过程中,温度保持不变,因此根据热力学第一定律,系统内能的变化等于吸收的热量减去对外做的功,即ΔU = Q - W。

根据题目给出的信息,吸收的热量Q = 300J,对外做的功W = 100J。

基础物理学下册【韩可芳】第11章习题答案

基础物理学下册【韩可芳】第11章习题答案

基础物理学下册【韩可芳】第11章习题答案第四篇第四篇第四篇第四篇热学热学热学热学第十一章第十一章第十一章第十一章气体分子运动论气体分子运动论气体分子运动论气体分子运动论思考题思考题思考题思考题11-1 气体的平衡状态有何特征?当气体处于平衡状态时,还有分子热运动吗?气体的平衡与力学中所指的平衡有何不同?答答答:答:::平衡态的特征:(1)系统与外界在宏观上无能量和物质的交换(2)系统的宏观性质不随时间改变。

热平衡态是指:在无外界的影响下,不论系统初始状态如何,经过足够长的时间后,系统的宏观性质不随时间改变的稳定状态。

它与稳定态或力学中的平衡不是一个概念。

1.平衡态是一种热动平衡状态。

处在平衡态的大量分子并不是静止的,它们仍在作热运动,而且因为碰撞,每个分子的速度经常在变,但是系统的宏观量不随时间改变。

例如:粒子数问题:箱子假想分成两相同体积的部分,达到平衡时,两侧粒子有的穿越界线,但两侧粒子数相同。

2.平衡态是一种理想状态。

11-2 理想气体状态方程可以表达为或。

在怎样的情况下,用第一种表达式较方便?又在怎样的情况下,用第二种表达式较方便?答:11-3 制造电灯泡要在低压(比大气压低很多)条件下把氮气充入灯泡里。

为什么要在这样的条件下进行?答:11-4 对一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大;当体积不变时,气体的压强随温度的升高而增大。

从宏观来看,这两种变化都使气体压强增大;从微观来看,它们有什么区别?答答答:答:::有区别。

从微观上看:当温度不变时,气体的压强随体积的减小而增大是因为:当一定时,体积减小,n 越大,即单位时间内碰撞到器壁的分子越多,则P 就越大;当体积不变时,压强随温度的升高而增大是因为:当n 一定时,w 越大,即单位时间内分子对器壁的碰撞越厉害,则P 就越大。

P1V PV2 M T T μ p = w1 2 1 2 23nw= PV = RT11-5 (1)在一个封闭容器中装有某种理想气体,如果保持它的压强和体积不变,问温度能否改变?(2)有两个封闭的容器,装有同一种理想气体,且相同,体积个同,问它们的温度是否一定相同?答答答:答:::(1)在封闭容器内,气体质量不变,满足气态方程 =恒量。

《工程热力学》第十一章制冷循环

《工程热力学》第十一章制冷循环
剂无法被压缩液化。
粘度
粘度小的制冷剂流动性好,有 利于传热。
密度
密度决定了制冷剂在相同体积 下的质量,密度越大,质量越
大,制冷效果越好。
制冷剂的热力学特性
压缩系数
压缩系数决定了制冷剂在压缩过 程中的体积变化,压缩系数越小,
体积变化越小,有利于提高制冷 效率。
热导率
热导率决定了制冷剂的传热效率, 热导率越大,传热效率越高。
制冷剂在蒸发器中蒸发成气体后被压缩机吸入,再次压缩,完成一个循环。
压缩式制冷循环的主要设备
压缩机
用于压缩制冷剂,提高 其压力和温度。
冷凝器
用于将高温高压的制冷 剂冷却成液体,释放出
潜热。
膨胀阀
用于将高压的液态制冷 剂减压至适合蒸发吸热
的低压状态。
蒸发器
用于使液态制冷化
未来的制冷系统将更加注重多功能化,除了温度调节外, 还将具备湿度控制、空气净化等功能,提高室内环境的舒 适度和健康性。
高效化
随着能源价格的上涨和节能减排的需求,制冷循环将更加 注重能效提升,采用先进的节能技术和优化算法,降低运 行成本和提高能源利用效率。
THANKS
感谢观看
吸收式制冷循环利用制冷剂在溶液中的溶解特性,通过制冷剂在溶液中 的蒸发和冷凝,实现制冷效果。
吸收式制冷循环中,常用的制冷剂有氨和水、溴化锂和水的混合溶液等, 这些制冷剂在吸收剂的作用下被吸收,再通过加热解吸,释放出冷量。
吸收式制冷循环的工作原理基于热力学第二定律,通过消耗热能实现制 冷效果,相比压缩式制冷循环,具有更高的能效比。
强化换热器设计
优化换热器的结构和设计,提高换热 效率。
引入智能控制技术
利用先进的控制算法和传感器技术, 实现制冷系统的智能控制,提高运行 效率。

高二物理热力学原理练习题及答案

高二物理热力学原理练习题及答案

高二物理热力学原理练习题及答案一、选择题1.热力学是研究什么的科学?A.物质的热运动和传热现象B.物质的化学性质C.物质的力学性质D.物质的光学性质答案:A2.下列哪个不属于热力学中的基本概念?A.热平衡B.热力学第一定律C.摩尔气体定律D.热力学第二定律答案:C3.热力学第一定律是指什么?A.能量守恒B.熵增原理C.热平衡状态D.热力学函数定义答案:A4.以下哪个过程是等温过程?A.绝热膨胀B.绝热压缩C.等容过程D.等压过程答案:A5.下列哪项是热力学第二定律的表述?A.熵增原理B.热平衡状态C.热力学函数定义D.内能守恒答案:A二、填空题1.气体温度的单位是_________。

答案:摄氏度(℃)2.某物体的热容为50 J/℃,将其加热10℃,所需的热量为_________。

答案:500 J3.理想气体状态方程为_________。

答案:PV=nRT4.内能是指物体_________。

答案:分子的平均动能5.密封容器中的气体,在绝热条件下压强增加,温度_________。

答案:增加三、计算题1.一根铁棒原长为50 cm,被火烧热,变长为50.3 cm。

已知铁的线胀系数为12×10^-6/℃,求温度升高了多少度?答案:ΔL = αLΔTΔT = ΔL / (αL) = 0.3 cm / (12×10^-6/℃ × 50 cm) ≈ 0.5 ℃2.一瓶空气体积为2 L,在压强保持不变的条件下温度升高了100℃,求气体内能的增加量。

答案:ΔU = nCΔTΔU = 2L × (100℃+273.15K)× 8.31 J/(mol·K) ≈ 4000 J3.某容器中有1 mol理想气体,初温为200℃,初容积为5 L,末温为400℃,求末容积。

答案:P1V1/T1 = P2V2/T2V2 = V1 × T2/T1 = 5 L ×(400℃+273.15K)/(200℃+273.15K)≈ 7.22 L四、解答题1.简述热力学第一定律的内容。

大学热力学基础习题答案

大学热力学基础习题答案

大学热力学基础习题答案【篇一:《物理学基本教程》课后答案第七章热力学基础】>7-1 假设火箭中的气体为单原子理想气体,温度为2000 k,当气体离开喷口时,温度为1000 k,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率v2气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.分析气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度.当气体的内能转化为定向运动的动能时,即表现为平均平动动能的减少,也就是温度的降低.解(1)由气体动理论的能量公式mv2?2v2132kt,得?3ktm?3?1.38?10?23?2000?274?1.6605?10m/s?3530.7 m/s(2)气体总的能量不变,气体内能的减少应等于定向运动动能的增量,就气体分子而言,即分子的平均平动动能的减少应等于定向运动动能的增量.若分子定向运动速度为vd,则有12mvd?232kt1?32kt2vd?3k(t1?t2)m?3?1.38?10?23?(2000?1000)?274?1.6605?10m/s?2496.6 m/s7-2 单原子理想气体从状态a经过程abcd到状态d,如图7-2所示.已知pa?pd?1.013?10 pa55,pb?pc?2.026?10 pa,vb?1.5 l,va?1 l,vc?3 l,(1)试计算气体在abcd过程中作的功,内能的变化和吸收的热量;(2)如果气体从状态d保持压强不变到a状态,如图中虚线所示,问以上三项计算变成多少?(3)若过程沿曲线从a到c状态,已知该过程吸热257 cal,求该过程中气体所作的功.分析理想气体从体积v1膨胀到体积v2的过2v程中所作的功为?p(v)dv,其量值为p?v图上 0 1 1.53 4v/lv1过程曲线下的面积.如果过程曲线下是规则的几图7-2何图形,通常可以直接计算面积获得该过程中气体所作的功.解(1)气体在abcd过程中作的功应等于过程曲线下的面积,得wabcd?s14da?sadcb?1.013?10?3?10?531.8 pa5?3?12?1.013?10?(3?1.5)?105?3pa内能改变为ed?ea? ?mm32cv,m(td?ta)?53m2m?3r(td?ta)??1?10?332pa(vd?va)?1.013?10?(4?10) j?455.9 j应用热力学第一定律,系统吸热为q?wabcd?ed?ea?531.8 j?455.9 j?987.7 j(2)气体在等压过程da中作的功为wda?pa(va?vd)?1.013?10?(1?4)?105?3j?-303.9 j内能改变为 ed?ea??455. 9j系统吸热为q?wda?ea?ed??303.9 j-455.9 j??759.8 j (3)若沿过程曲线从a到c状态,内能改变为ec?ea? ?mm32cv,m(tc?ta)?3m2mr(tc?ta)?5?332(pcvc?pava)?(2?3?1?1)?1.013?10?10 j?759.8 j应用热力学第一定律,系统所作的功为wac?qac?ec?ea?257?4.18 j-759.8 j?314.5 j7-3 2 mol的氮气从标准状态加热到373 k,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?分析根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 k,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.解(1)氮气可视为双原子理想气体,i?5.在等体过程中,系统吸热为qv?mim2r(t2?t1)?2?52?8.31?(373?273) j?4155 j(2)在等压过程中,系统吸热为qp?mi?2m2r(t2?t1)?2?72?8.31?(373?273) j?5817 j分析气体在等压过程中吸收的热量为qp?mi?2m2r(t2?t1),其中t1已知,t2可以通过气体状态方程由已知的该状态的压强和体积求出.用同样的方法可以计算内能的变化.再应用热力学第一定律计算出系统所作的功.解(1)气体在等压过程中吸收的热量为qp? ?mi?2m722r(t2?t1)?5?3i?22?10(pv2?mmrt1)?(3?10?10?1032?8.31?283) j?7928 j(2)内能的变化为e2?e1? ?52mim2r(t2?t1)?5?3i2?(pv2?mmrt1)?(3?10?10?101032?8.31?283) j?5663 j(3)应用热力学第一定律,系统所作的功为w?q?e2?e1?7928 j-5663 j?2265 j7-5 双原子理想气体在等压膨胀过程中吸收了500 cal的热量,试求在这个过程中气体所作的功.解双原子理想气体在等压膨胀过程中吸热为qp?mi?2m2r(t2?t1)?i?22p(v2?v1)所作的功为wp?p(v2?v1)?2i?2qp?25?2?500?4.18 j?597 j分析在热力学中,应该学会充分利用p?v图分析和解题.从图7-6所示的p?v图 p可以看出,ac和db过程为等体过程,ad和cb过程为等压过程.理想气体的内能是温度的 p单值函数,在常温和常压下氧气可视为理想气体,只要始末状态相同,无论经过什么样的准静态过程,其内能的变化都相同.但是气体吸o v1 v2 v图7-6收的热量和完成的功则与过程有关,在等压过程中吸收的热量为qp?mi?2m2r(t2?t1),在等体过程中吸收的热量为qv?mim2r(t2?t1),其中温度值可以利用状态方程代换为已知的压强和体积参量.解(1)经acb过程,即经等体和等压过程,气体吸热为qacb?qv?qp? ? ?i?225?22p2v2?i25i2(pcvc?pava)?i?22(pbvb?pcvc)p1v1?p2v1?352?8.2?10?3?105?3?6?10?4.5?10 j? j?6?10?3?105?3j?1500 j所作的功为wacb?wcb?p2(v2?v1)?6?10?(4.5?3)?105?3j?900 j应用热力学第一定律,系统内能改变为eb?ea?qacb?wacb?1500 j-900 j?600 j(2)经adb过程,所作的功为wadb?wad?p1(v2?v1)?8.2?10?(4.5?3)?105?3j?1230 jj 系统内能改变为 eb?ea?600【篇二:大学物理气体动理论热力学基础复习题及答案详解】>一、填空题:轮胎内空气的压强是。

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第11章 热力学基础

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第11章 热力学基础

第十一章 热力学基础11-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。

(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。

利用理想气体物态方程即可求解本题。

位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。

解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。

由分析知湖底处压强为gh p gh p p ρρ+=+=021。

利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ11-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。

某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。

从氧气质量的角度来分析。

利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。

解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n11-3 一抽气机转速ω=400rּmin -1,抽气机每分钟能抽出气体20升。

热工基础课后答案超详细版(张学学)

热工基础课后答案超详细版(张学学)

p1 p真空室 pa 2 360 362kPa
p2 p1 pb 362 170 192kPa
pc pb p真空室 192 2 190kPa
F
( pb
p真空室 ) A
745 133.3
1 4
π 0.45 2
15.8kN
1-4 解:
p pb p水柱 +p汞柱=760+300 9.81 /133.3+800=1582mmHg 2.11bar
ΔU ab U b U a Q W 100 40 60kJ
所以, a-d-b 过程中工质与外界交换的热量为:
Qa d b ΔU ab W 60 20 80kJ
工质沿曲线从 b 返回初态 a 时,工质与外界交换的热量为:
Qb a 给定的 a 点内能值,可知 b 点的内能值为 60kJ,所以有 :
气体可以看作是理想气体理想气体的内能是温度的单值函数选取绝热气缸内的两部分气体共同作为热力学系统在过程中由于气缸绝热系统和外界没有热量交换同时气缸是刚性的系统对外作功为零故过程中系统的内能不变而系统30所以平衡时系统的温度仍为30
第一章 思考题 1. 平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念? 答:平衡状态是在不受外界影响的条件下, 系统的状态参数不随时间而变化的状态。 而稳定 状态则是不论有无外界影响, 系统的状态参数不随时间而变化的状态。 可见平衡必稳定, 而 稳定未必平衡。 热力学中引入平衡态的概念, 是为了能对系统的宏观性质用状态参数来进行 描述。
1-9 解:由于假设气球的初始体积为零, 则气球在充气过程中, 内外压力始终保持相等, 恒等于大气压力 0.09MPa,所以气体对外所作的功为:
W p V 0.09 106 2 1.8 105 J

热力学 习题答案

热力学 习题答案

一、9选择题(共21分,每题3分)1、1.1mol理想气体从p-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta<Tb,则这两过程中气体吸收的热量Q1和Q2的关系是[ A ](A) Q1>Q2>0; (B) Q2>Q1>0;(C) Q2<Q1<0; (D) Q1<Q2<0;(E) Q1=Q2>0.2、图(a),(b),(c)各表示连接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程, 图(a)和(b)则为半径不相等的两个圆.那么:[ C ](A) 图(a)总净功为负,图(b)总净功为正,图(c)总净功为零;(B) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为正;(C) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为零;(D) 图(a)总净功为正,图(b)总净功为正,图(c)总净功为负.3、如果卡诺热机的循环曲线所包围的面积从图中的abcda增大为ab’c’da,那么循环abcda与ab’c’da所做的净功和热机效率变化情况是:(A)净功增大,效率提高; [ D ](B)净功增大,效率降低;(C) 净功和效率都不变;(D) 净功增大,效率不变.4、一定量的理想气体分别由图中初态a经①过程ab和由初态a’经②过程初态a’cb到达相同的终态b, 如图所示,则两个过程中气体从外界吸收的热量Q1,Q2的关系为[ B ](A) Q1<0,Q1>Q2 ; (B) Q1>0, Q1>Q2 ;(C) Q1<0,Q1<Q2 ; (D) Q1>0, Q1<Q2 .5、根据热力学第二定律可知: [ D ](A) 功可以全部转换为热,但热不能全部转换为功;(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;(C) 不可逆过程就是不能向相反方向进行的过程;(D) 一切自发过程都是不可逆的.6、对于理想气体来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外做的功三者均为负值? [ D ](A) 等容降压过程; (B) 等温膨胀过程; (C) 绝热膨胀过程; (D) 等压压缩过程.7、在下列各种说法中,哪些是正确的? [ B ](1) 热平衡过程就是无摩擦的、平衡力作用的过程.(2) 热平衡过程一定是可逆过程.(3) 热平衡过程是无限多个连续变化的平衡态的连接.(4) 热平衡过程在p-V 图上可用一连续曲线表示. (A) (1),(2); (B) (3),(4); (C) (2),(3),(4); (D) (1),(2),(3),(4).8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比A/Q 等于: [ D ] (A) 1/3; (B) 1/4; (C) 2/5; (D) 2/7.9、在温度分别为 327℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为 [ B ] (A) 25% (B) 50% (C) 75% (D) 91.74%10、一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在 [ B ](A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热. (D) 两种过程中都放热.二、填空题pV1、有1mol刚性双原子分子理想气体,在等压膨胀过程中对外做功A,则其温度变化ΔT=___ A/R ___;从外界吸收的热量Q p=__7A/2 ___.2、一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷机致冷系数w = T2/(T1-T2),则η与w的关系为_____11Wη=-_____.3.一热机由温度为727℃的高温热源吸热,向温度为527℃的低温热源放热.若热机在最大效率下工作,且每一循环吸热2000J,则此热机每一循环做功__400________J. 4.热力学第二定律的克劳修斯叙述是_热量不能自动地从低温物体传向高温物体开尔文叙述是_不可能把从单一热源吸收的热量在循环过程中全部转变为有用的功,而不引起任何其他物体为生变化_________________________.5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1)pdV=(m/M)RdT表示___等压_________过程;(2)Vdp=(m/M)RdT表示_____等体_________过程;(3)pdV+Vdp=0表示_______等温_______过程.6、如图,温度为T0,2T0,3T0三条等温线与两条绝热线围成三个卡诺循环:(1)abcda;(2)dcefd;(3)abefa,则其效率分别为:η1=___33.3%___;η2=___50% ___;η3=____ 66.7%___.7. 理想气体在如图所示a-b-c 过程中,系统的内能增量E =___0__8.已知一定量的理想气体经历p -T 图上所示的循环过程,图中过程1-2中,气体___吸热__(填吸热或放热)。

热力学课程习题解答-109页精选文档

热力学课程习题解答-109页精选文档

目录第一章 (1)第二章 (18)第三章 (258)第一章 温 度1-1 在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标? 解:(1)Q 9325F t t =+∴当F t t =时,即可由9325t t =+,解得325404t ⨯=-=- 故在40c -o 时 F t t =(2)又Q 273.15T t =+ ∴当F T t =时 则即9273.15325t t +=+ 解得:241.155301.444t ⨯== ∴273.15301.44574.59T K =+= 故在574.59T K =时,F T t =(3)Q 273.15T t =+ ∴若T t = 则有273.15t t += 显而易见此方程无解,因此不存在T t =的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg 。

(1)用温度计测量300K 的温度时,气体的压强是多少? (2)当气体的压强为68mmHg 时,待测温度是多少? 解:对于定容气体温度计可知:()273.15trPT P K P = (1) 115030055273.16273.16tr P T P mmHg ⨯===(2) 2268273.16273.1637250tr P T KK K P === 1-3 用定容气体温度计测得冰点的理想气体温度为273.15K ,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

题1-4图解:根据00lim ()273.16limtr tr P P trP T T P K P →→==已知 冰点273.15T K =你∴0273.15lim0.99996273.16273.16tr P trP T KP K K →==。

1-4 用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强500tr P mmHg =;当测温泡浸入待测物质中时,测得的压强值为734P mmHg =,当从测温泡中抽出一些气体,使tr P 减为200mmHg 时,重新测得293.4P mmHg =,当再抽出一些气体使tr P 减为100mmHg 时,测得146.68P mmHg =.试确定待测沸点的理想气体温度.解:根据273.16trPT K P =333146.68273.16273.16400.67100tr P T KK K P === 从理想气体温标的定义:0273.16limtr P trPT K P →=依以上两次所测数据,作T-P 图看趋势得出0tr P →时,T 约为400.5K 亦即沸点为400.5K. 1-5 铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

热力学基础习题答案

热力学基础习题答案

热力学基础习题答案热力学基础习题答案热力学是物理学中的一个重要分支,研究的是能量转化和能量流动的规律。

在学习热力学的过程中,习题是非常重要的一部分,通过解答习题可以加深对热力学理论的理解和应用。

下面将给出一些热力学基础习题的答案,希望对大家的学习有所帮助。

1. 一个物体的体积为V,温度为T,压强为P。

如果将该物体的体积减小到原来的一半,温度保持不变,那么压强会发生怎样的变化?答案:根据热力学的理论,当温度不变时,物体的压强与体积成反比。

因此,当物体的体积减小到原来的一半时,压强将增加到原来的两倍。

2. 一个气体在等温过程中,体积从V1变为V2,压强由P1变为P2。

如果V1/V2 = 2,那么P1/P2等于多少?答案:根据热力学的理论,当气体在等温过程中,压强与体积成反比。

因此,P1/P2 = V2/V1 = 1/2。

3. 一个系统的内能为U,对外做功为W,吸收的热量为Q。

根据热力学第一定律,系统的内能变化ΔU等于什么?答案:根据热力学第一定律,系统的内能变化ΔU等于吸收的热量Q减去对外做的功W,即ΔU = Q - W。

4. 一个物体的热容为C,质量为m,温度变化ΔT。

根据热力学的理论,物体吸收或释放的热量Q等于什么?答案:根据热力学的理论,物体吸收或释放的热量Q等于物体的热容C乘以物体的质量m乘以温度变化ΔT,即Q = C * m * ΔT。

5. 一个系统的熵变为ΔS,吸收的热量为Q。

根据热力学第二定律,系统对外做的功W等于什么?答案:根据热力学第二定律,系统对外做的功W等于吸收的热量Q减去系统的熵变ΔS,即W = Q - ΔS。

6. 一个物体的热容为C,质量为m,温度变化ΔT。

如果将该物体的温度从T1变为T2,吸收或释放的热量Q等于什么?答案:根据热力学的理论,物体吸收或释放的热量Q等于物体的热容C乘以物体的质量m乘以温度变化ΔT,即Q = C * m * ΔT。

通过以上习题的解答,我们对热力学的基础知识有了更深入的理解。

第11章 大学物理热力学基础

第11章 大学物理热力学基础
20
例: 一卡诺循环热机,高温热源的温度是400K,每一循 环从此热源吸进100J热量并向一低温热源放出80J热量。 求(1)这循环的热机的效率;(2)低温热源的温度。 解:(1)这循环的热机的效率为:
Q放 % Q吸
(2)设低温热源的温度T2,有
Q放 T % Q吸
(2)每一循环中外界必须作的功 Q吸 T2 w T1 T2 A
A 200J
22
§11.7 热力学第二定律的统计意义
一、热力学第二定律的微观解释
1、宏观状态与微观状态 宏观看:
左、右两部分各有多少粒子 而不去区分究竟是哪个粒子 微观上看: 具体哪个粒子在哪? 编号为 a b c d

宏观态
20世纪六七十年代以后,自从“大爆炸”宇宙模型 逐渐得到天体物理学界公认以来,“热寂”说这朵 漂浮在物理学上空的“乌云”逐渐云开雾散,人类 曾一度阴霾笼罩的心头终于迎来了一片朗朗晴空。
33
“大爆炸”宇宙模型
该理论认为,宇宙大约是在100—200亿年以前,从 高温高密的物质与能量的“大爆炸”而形成。随着 宇宙的不断膨胀,其中的温度不断降低,物质密度 也不断减小,逐渐衍生成众多的星系、星体、行星 等,直至出现生命。宇宙大爆炸理论是20世纪科学 研究的重大成就,是基于几十年的创新实验与理论 研究的结果。因而获得了科学界的公认,并成为现 代宇宙学的标准模型。
几率大的宏观态最易出现。 (平衡态)
1 4 6 4 1
1 4 6 4 1
在一孤立系统内,一切实际过程都是从概率小(微 观态小)的状态向概率大的宏观态(微观态多)进 行的 ——为热力学第二定律的统计意义
25
4. 热二律的微观解释 自发过程的方向性 如 自由膨胀

热学第11章热力学第二定律

热学第11章热力学第二定律

∴ 原可逆循环可用多个小卡诺循环等效。
p
Q1i
对第 i 个小卡诺循环:
T1i
i
T2i
ηi
=
Ai Q1i
= 1 − T2i T1i
0
|Q2i |
V

ηi
≤1−
T2 T1
η = ∑ Ai ∑ Q1i
∑ = ηiQ1i ∑ Q1i
≤ (1 − T2 ) ∑ Q1i
∑ T1
Q1i
∴ η ≤ 1 − T2
T1
∫ ΔSCu
T2
= mc
T1
dT T
= mc ln T2 T1
<0
水恒温吸热:− T2 ) T2
>0
总熵变:ΔS总
=
ΔS水
+ ΔSCu
=
mc( T1 T2
− 1 − ln
T1 T2
)
>
0
有限温差热传导 — 不可逆,“系统总熵”增加。
【例2】理想气体经绝热自由膨胀后的熵变。
§11.1 自然过程的方向
符合热 I 律的过程不一定能在自然界发生。 例如:
重物下落,功全部转化 成热而不产生其它变化, 可自然进行。
水冷却使叶片旋转,从 而提升重物,则不可能 自然进行。
一些自然过程的方向: 过程的唯一效果
热功 功全部转变成热 转换 热全部转变成功
能否发生

×
热 热量从高温传向低温 √
V1
>0
方法三 直接由理想气体熵公式计算
理想气体经绝热自由膨胀 T 不变,
ΔS

CV,m
ln
T2 T1
+νR ln V2

《大学物理》第十一章 热力学基础参考答案

《大学物理》第十一章   热力学基础参考答案

第十一章 热力学基础一、选择题参考答案1. (B) ;2. (A) ;3. (A) ;4. (B) ; 5.(B) ;6. (D) ;7.(B) ;8.(D) ;9.(C) ;10.(B) ;11.(D) ;12.(C) ;13.(B) ;14.(D) ;15. (A)二、填空题参考答案1.、温度;做功或热传递 2、>0;>0 3、166 J4、110101--V V p p5、等压;等压;等压6、1A -;2A -7、2/5;2/78、(1)AM ; (2)AM ;BM 9、500;100 10、320K 11、200 J 12、40013、从单一热源吸取热量把它全部用来作功而不把热量放给其他物体的机器;热力学第二定律14、不可能把热量从低温物体传到高温物体而不引起其他变化。

不可能从单一热量吸取热量,使它完全变成有用的功而不引起其他变化。

15、状态几率增大;不可逆的三、计算题参考答案1、解:(1) 气体对外作的功等于线段ac 下所围的面积,即:J 2.40510210103.1)31(2135=⨯⨯⨯⨯+⨯=-W (2) 由图看出:c c a a V p V p =,c a T T =∴内能增量:0=∆E .(3) 由热力学第一定律得: J 2.405=+∆=W E Q 2、解:(1)过程的p —V 图V (L)(2) 在3个过程中气体吸收的热量,所作的功和内能的改变 1→2等压过程:)(249)(111121J RT M mV P V V P W ===-=,212112122()()()872()22P m m m i i Q C T T R T T P V V J M M ++=-=-=-=623()E Q W J ∆=-=2→3等体过程:0=W ,3232321211()()()1245()22V m m m i iE Q C T T R T T PV PV iPV J M M ∆==-=-=-==3→4等温过程:0=∆E)J (690ln ln ln 132********=====P P V P V VV P V V RT M m W Q3、解:解此题要注意与2题的区别 (1) p –V 图: (2) 14 T T =0 =∴E ∆(3) ,21,32()()p m V m m m Q C T T C T T M M=-+- J106.5 211 )]2(2[23)2(25 211111111⨯==-+-=V p p p V V V p (4)J 106.52⨯==Q Wp (atm)V1 2T12 T 1T 3T 24、 证明:)(22211V p V p RC T C M MQ V V mol -=∆=)(22122V p V p RC T C M M Q p P mol -=∆=)1()1(1)()(1121212221221212---=---=-=p pV V V p V p C V p V p C Q Q V p γη5、解:水蒸汽的质量M =36×10-3 kg水蒸汽的摩尔质量M mol =18×10-3 kg ,i = 6(1) W da = p a (V a -V d )=-5.065×103 J (2)ΔE ab =(M /M mol )(i /2)R (T b -T a )=(i /2)V a (p b - p a )=3.039×104J (3) 914)/(==RM M V p T mol ab b KW bc = (M /M mol )RT b ln(V c /V b ) =1.05×104 J净功 W =W bc +W da =5.47×103 J(4) Q 1=Q ab +Q bc =ΔE ab +W bc =4.09×104 Jη=W / Q 1=13%6、解:)(1035.5ln )1(31211J V V RT M mQ ⨯==25.011)2(12121=-=-==T T Q Q Q Wη)(1034.1)3(31J Q W ⨯=⋅=ηpT 1T 2 V 1V 2V 4pV2V O绝热1V 1p 2p p (atm )V (L)Oab cd25 5026)(1001.4)1()4(3112J Q W Q Q ⨯=-=-=η。

大学物理物理-热力学课后参考答案

大学物理物理-热力学课后参考答案

m
4 1
Q放
M
CP (T4
T1)
p
2
3
1 Q放 1 T4 T1
p1
Q吸
T3 T2
p2
1
4
0
V
1 2
P2 1 P1 1
T2
T1
1
T1 T2
P1 P2
3 4
P2 1 P1 1
T3
T4
1
T4 T3
P1 P2
1
1
T1
P1 P2
T2
T4
P1 P2
P1 4
VC
VC 4V1
p1
a
c p1/4 b
V1
ca
等稳
W3
P1V1
ln
V1 Vc
P1V1 ln 4
净功
3
W
W1
W2
W3
( 4
ln
4) P1V1
净热
3
Q
W
( 4
ln
4) P1V1
0.636P1V1
三、4
循环效率
算Q1Q2还是算Q1W净
两绝热,算Q只两过程,算W四过程
m 2 3 Q吸 M CP (T3 T2 )
T3
1
1 Q放 Q吸
1 T4 T1 T3 T2
1
P1 P2
Q E W AB过程做功最大 内能增加最多 吸热最多
一、6 C 热二定律
(A)热量不能自发地从低温物体传到 高温物体。
(B)热不能全部变为功而不产生其它影响。 (D)无规则运动的能量不能自发地变为有
规则运动的能量。
一、7 B W图示面积 初终态E 热一比Q
由图 W 0 对外做正功. 由图 PaVa PbVb Ta Tb E 0 Q E W W 0 吸热

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第11章 热力学基础

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第11章 热力学基础

第十一章 热力学基础11-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。

(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。

利用理想气体物态方程即可求解本题。

位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。

解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。

由分析知湖底处压强为gh p gh p p ρρ+=+=021。

利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ11-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。

某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。

从氧气质量的角度来分析。

利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。

解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n11-3 一抽气机转速ω=400rּmin -1,抽气机每分钟能抽出气体20升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cd 为绝热过程,据绝热过程方程 TcVc 1 Td Vd 1 , (Vd Va ) , 得
Td (
(3) 在本题循环过程中 ab 和 cd 为绝热过程,不与外界交换热量; bc 为等压膨胀过程,吸收 热量为 Qbc=Cp(Tc-Tb) 式中 C p 可得
7 R .又据理想气体状态方程有 paVa= RTa, 2 7 pV Qbc a a (Tc Tb ) 1.65 10 3 J 2 Ta
da 为等体降温过程,放出热量为
3
Qda CV (Td Ta )
5 p aVa (Td Ta ) 1.24 10 2 J 2 Ta
四 研讨题 1. 热力学中经常用到理想气体, 理想气体与热力学究竟是什么关系? 参考解答: 1.热力学的理论框架无需理想气体 热力学理论是普遍的,当然不依赖于理想气体.基础物理热力学的理论框架如下: 第一步:由热功当量实验得到了热力学第一定律,由热机与冷机分别得到了热力学第二定律 的开尔文表述与克劳修斯表述; 第二步:由热力学第二定律导出卡诺定理,给出可逆机效率的表述; 第三步:由卡诺定理导出了克劳修斯等式与不等式,定义了熵S,建立了孤立系统熵增加原 理。 热力学的理论框架, 显然并未用到理想气体。 2.理想气体在热力学中的作用 (1) 理想气体为热力学提供了一个简单的实例 任何普遍的理论要被人们所接受, 就必须有实例,例如在力学中, 要使人们接受势能的 理论, 必须有 “万有引力势能与弹簧势能” 这种实例. 由于理想气体遵从状态方程和焦耳定 律,因此理想气体就成了热力学中最简单的实例. (2) 理想气体为测量热力学温度提供了一种简单的温度计 当可逆卡诺机的工作物质为理想气体时,以理想气体状态方程和焦耳定律为前提,由热 力学第一定律和卡诺定理对可逆机效率的表述,可以论证用理想气体温度计就可以测量热力 学温度,这体现了理想气体的重要性. 除此之外,还可以依据普朗克黑体辐射定律、 聂奎斯脱 噪声方程设计出辐射温度计、噪声温度计,来直接复现热力学温度. 但使用这些所谓‘绝对 测量仪器’在技术上是十分繁难的,而且费用昂贵,所以不能普及.这也凸显了理想气体温度 计的实用价值. 2. 冰融化成水需要吸热,因而其熵是增加的.但水结成冰,这时要放热,即 dQ 为负,其熵 是减少的.这是否违背了熵增加原理?试解释之. 参考解答: 熵增加原理的表述是:在孤立系统(或绝热系统)中发生的任何不可逆过程,系统的熵 必增大,只有对可逆过程,系统熵不变. 现在水结成冰要放热给环境, 应该把水和环境组成孤立系统, 在水结成冰的过程中要考 虑整个系统的熵变,水的熵減少不违背熵增加原理.
2. 汽缸内有 2 mol 氦气,初始温度为 27℃,体积为 20 L(升),先将氦气等压膨胀,直至体 积加倍,然后绝热膨涨,直至回复初温为止.把氦气视为理想气体.试求: (1) 在 p―V 图上大致画出气体的状态变化过程. (2) 在这过程中氦气吸热多少? (3) 氦气的内能变化多少? (4) 氦气所作的总功是多少?(普适气体常量 R=8.31 J mol 1 K 1 )
5. 如图所示,用绝热材料包围的圆筒内盛有一定量的刚性双原子分子的理想气体,并用可 活动的、绝热的轻活塞将其封住.图中 K 为用来加热气体的电热丝,MN 是固定在圆筒上的 环,用来限制活塞向上运动.Ⅰ、Ⅱ、Ⅲ是圆筒体积等分 刻度线,每等分刻度为 1 10 3 m3.开始时活塞在位置 Ⅰ,系统与大气同温、同压、同为标准状态.现将小砝码 逐个加到活塞上,缓慢地压缩气体,当活塞到达位置Ⅲ时 停止加砝码;然后接通电源缓慢加热使活塞至Ⅱ;断开电 源,再逐步移去所有砝码使气体继续膨胀至Ⅰ,当上升的 活塞被环 M、N 挡住后拿去周围绝热材料,系统逐步恢复 到原来状态,完成一个循环. (1) 在 p-V 图上画出相应的循环曲线; (2) 求出各分过程的始末状态温度; (3) 求该循环过程吸收的热量和放出的热量.
解:(1)
W Q1 Q2 T1 T2 Q1 Q1 T1 T1 Q 2 T2 Q1 W 且 T1 T2 Q1 T1


Q2 = T2 Q1 /T1
2
即 由于第二循环吸热
Q2
(2)
T1 T T2 2W =24000 J T1 T2 T1 T1 T2 W Q2 W Q2 ( ∵ Q2 Q2 ) Q1 29.4% W / Q1 T T1 2 425 K 1
第 11 章 热力学基本原理
一、选择题 1(A),2(A),3(C),4(D),5(C) 二、填空题 (1). 不变,增加 (2). 在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部 分热量. (3). 500,700 (4).

1 1 (或 w 1 ) w 1
Q E
(2) 定压过程,p = 常量,
M CV (T2 T1 ) =623 J M mol
Q
M C p (T2 T1 ) =1.04×103 J M mol
(3)
E 与(1) 相同. W = Q E=417 J Q =0,E 与(1) 同 W = E=623 J (负号表示外界作功)
M Ⅰ Ⅱ Ⅲ
N
K ~
解:(1) 系统开始处于标准状态 a,活塞从Ⅰ→Ⅲ为绝热压缩过程,终态为 b; 活塞从Ⅲ→Ⅱ 为等压膨胀过程,终态为 c;活塞从Ⅱ→Ⅰ为绝热膨胀过程,终态为 d;除去绝热材料系统 恢复至原态 a,该过程为等体过程。该循环过程在 p-V 图上对应 p 的曲线如图所示。 5 (2) 由题意可知 pa=1.013×10 Pa , b c - Va=3×10 3m3, Ta = 273K, - - Vb=1×10 3m3, Vc=2×10 3m3 . ab 为绝热过程,据绝热过程方程 得
4
TaVa 1 TbVb 1 , ( 7 / 5) ,
O Vb Vc
d
Tb (
Va 1 ) Ta 424 K Vb
a Va V
bc 为等压过程,据等压过程方程 Tb / Vb = Tc / Vc 得
Tc
VcTb 848 K Vb Vc 1 ) Tc 721 K Vd
(4) W=Q=5.6×102 J
O
1
2
4. 一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为 27℃时,其每次循 环对外作净功 8000 J.今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外 作净功 10000 J.若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.
3
O
V1
V2
V
3. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与气缸 壁之间无摩擦且无漏气).已知气体的初压强 p1=1atm,体积 V1=1L,现将该气体在等压下加 热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的 2 倍,最后作绝热膨胀, 直到温度下降到初温为止, (1) 在 p-V 图上将整个过程表示出来. (2) 试求在整个过程中气体内能的改变. (3) 试求在整个过程中气体所吸收的热量.(1 atm=1.013×105 Pa) (4) 试求在整个过程中气体所作的功.
1
解:(1) p-V 图如图. (2) T1=(273+27) K=300 K 据 V1/T1=V2/T2, 得 T2 = V2T1/V1=600 K Q =Cp(T2T1) = 1.25×104 J (3) E=0 (4) 据 Q = W + E ∴ W=Q=1.25×104 J
p 1 2
p (atm)
解: (1) p-V 图如右图. (2) T4=T1 E=0 (3)
2 1 T1
T3 T2 T4 V (L)
M M Q C p (T2 T1 ) CV (T3 T2 ) M mol M mol 5 3 p1 (2V1 V1 ) [2V1 (2 p1 p1 )] 2 2 11 p1V1 =5.6×102 J 2
(5). 功变热,热传递 三、计算题 1. 0.02 kg 的氦气(视为理想气体),温度由 1(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热 量、外界对气体所作的功. (普适气体常量 R =8.31 J mol 1 K 1 ) 解:氦气为单原子分子理想气体, i 3 (1) 等体过程,V=常量,W =0 据 Q=E+W 可知
相关文档
最新文档