动点轨迹问题

合集下载

动点轨迹方程问题的解法

动点轨迹方程问题的解法

考点透视董纪琴动点的轨迹方程问题主要考查圆锥曲线的定义与几何性质,通常要求根据已知的条件,求动点的轨迹方程.此类问题具有较强的抽象性,且解题过程中的运算量较大.很多同学由于在解题时没有选择合适的方法,导致解题失败.下面,笔者结合例题探讨一下动点轨迹方程问题的解法.一、直接法运用直接法求解动点的轨迹方程问题,需充分利用题设中的几何条件,寻找与动点有关的几何量或等量关系,并将其转化为关于动点的坐标的关系式,进而得到动点的轨迹方程.其解题步骤为:(1)设动点的坐标;(2)找等量关系;(3)根据已知条件列出方程;(4)整理化简该方程,求得动点的轨迹方程.例1.已知点A(-2,0),B(2,0),直线AM与BM的斜率之积为-12,求点M的轨迹C的方程,并说明C是什么曲线.解:由题意知kAM=yx+2,kBM=yx-2.因为直线AM与BM的斜率之积为-12,故y x+2∙y x-2=-12,化简得x24+y22=1(||x≠2),故曲线C为中心在坐标原点,半长轴为2,半短轴为2,焦点在x轴上,且不含左、右顶点的椭圆.运用直接法求动点的轨迹方程,通常需仔细寻找与动点有关的一些几何量,如相等距离、相等角、成比例的线段等,然后根据两点间的距离公式、点到直线的距离公式、斜率公式、相似三角形的性质等建立关于x,y的等量关系式,再通过化简,就能求出动点轨迹的方程.二、参数法若题目较为复杂,根据题意难以快速建立与动点有关的关系式,或明确动点的运动轨迹,就可以运用参数法,设出相关参数,建立关于参数的方程,再通过化简、消去参数,进而得到动点的轨迹方程.例2.若点A在x轴上移动,点B在y轴上移动,线段AB的长为a,点P是AB上的一动点,且||AP=2||PB,求点P的轨迹方程.解:过点P作PM⊥x轴于M,过点P作PN⊥y轴于N.设点P()x,y,AB与x轴的夹角为θ(||θ≤π2),则||AP=2a3,||BP=a3,于是x=13a cosθ,y=23a sinθ,消去参数,可得æèöø3xa2+æèçöø÷3y2a2=1,即动点的P轨迹方程为36x2+9y2=4a2.由于A,B为动点,所以直线AB与x轴的夹角直接影响着A、B点的横、纵坐标,此时我们要引入参数,运用参数法解题.根据题意绘制出相应的几何图形,再添加合适的辅助线,并根据直角三角形的性质列出关于参数的方程,就能通过消参,快速得出动点的轨迹方程.三、相关点法若动点P随点Q的变化而变化,就可以采用相关点法来求动点的轨迹方程.在解题时,我们首先要设出点P与点Q的坐标,然后根据题意建立两点之间的关系式,再将其代入关系式中进行运算,即可求出动点的轨迹方程.例3.已知点B为椭圆x2a2+y2b2=1(a>b>0)上的动点,点A(2a,0)为定点,试求线段AB的中点M的轨迹方程.解:设中点M的坐标为()x,y,B点的坐标为()x0,y0,因为M为线段AB的中点,所以ìíîïïx0+2a2=x,y0+02=y,可得{x0=2x-2a,y0=2y,则B(2x-2a,2y),因为点B在椭圆x2a2+y2b2=1,所以x02a2+y02b2=1,即(2x-2a)2a2+(2y)2b2=1,整理可得4(x-a)2a2+4y2b2=1,该方程即为中点M的轨迹方程.仔细分析题意可以知道,点M都随着点B的变化而变化,因此需采用相关点法解题比较便捷,用M点的坐标表示B点的坐标,再将其代入题设中进行运算,化简所得的结果,即可快速求得问题的答案.由此可见,无论运用哪种方法求动点的轨迹方程,都要设出动点的坐标,建立关于动点的坐标与已知曲线方程之间的关系式,再通过化简,求得关于动点坐标的方程,从而求出动点的轨迹方程.虽然此类问题较为复杂,难度系数较大,但是只要明确题目中与动点相关的已知条件,选择与之相应的方法进行求解,问题就能迎刃而解.(作者单位:南京航空航天大学附属高级中学)37。

轨迹问题

轨迹问题

轨迹专题动点的轨迹在初中范围内一般有两种(1)弧线(2)线段判定方法:描出三个点:起点,终点,中间点如果是弧线要做到以下几点:确定圆心(一般按照斜边中线等于斜边的一半来确定)确定半径确定圆心角(把圆心和起点,终点相连)注意:点的轨迹有时候存在返回典例:1、例1、已知AB是⊙O的直径,点C是圆上一个动点,OD⊥AC于D,如果点C在圆上运动一周,则点D运动的路线长是2、一个矩形按照如图翻转61次,AB=2,AD=1,则点D走过的路程为如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为______.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()如图,将半径为1cm的圆形纸板,沿着边长分别为8cm和6cm的矩形外侧滚动一周并回到开始的位置,则圆心所经过的路线长约为(精确到0.01)如图,将半径为1cm的圆形纸板,沿着周长为8cm三角形外侧滚动一周并回到开始的位置,则圆心所经过的路线长约为1、如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点。

P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D。

(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动。

请直接写出点H所经过的路径长。

(不必写解答过程)2、如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O运动,动点O从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了xs。

例谈动点的轨迹方程的四种求法

例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。

动点轨迹类型题

动点轨迹类型题

一、一个等腰梯形ABCD中,AD//BC,AB=CD,AD=10cm,BC=30cm,动点P从点A开始沿AD边向点D以每秒1cm的速度运动,同时动点Q从点C开始沿CB边向点B以每秒3cm的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.⒈t为何值时,四边形ABQP为平行四边行?⒉四边形ABQP能为等腰梯形吗?如果能,求出t的值,如果不能,请说明理由。

二、若直线Y=X-6与X轴Y轴分别交于E,F点,与反比例函数图像交于G,H点,P为GH 上一动点,PM⊥x轴于M点,交反比例函数图像于Q点,QM平行X轴交直线EF于N,下列结论:1,EP×FN为定值。

2,EN×FP为定值,其中有且只有一个是正确的,请选择正确的结论证明,并求出其值三、动点P从A点开始在线段AO上,以每秒3个长度单位的速度向原点O运动,直线EF 从X轴开始以每秒1个长度单位的速度向上平行移动(即EF//X轴),并分别与Y轴、线段AB交于E、F两点,连接PF、PB.设动点P与直线EF同时出发,并且运动时间为t秒。

(1)当t=1时,求梯形OPFE的面积四、菱形ABCD中∠A=60°,边长为4cm,动点P从A出发,以1cm/秒的速度沿A-B-C的路线运动,在点P出发1秒后,点Q以同样的速度,沿同样的路径运动,过点P、Q的直线L1、L2互相平行,且都与AB边所在的直线成60°角,设点P运动的时间是X(1〈X〈8)秒,直线L1、L2在菱形上截出的图形周长为Y厘米,⒈求Y与X的函数关系。

⒉当X取何值时,Y的值最大?最大值是多少?五、、在△ABC中, 点O是AC边上的一个动点,过点O作直线MN∥BC,MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F(1) 求证: OE=OF(3分)(2) 当点O运动到AC的何处时,四边形AECF是矩形?简述一下你的理由.(3分)(3) 若当四边形AECF是正方形时, , 求∠B的大小(2分)。

立体几何动点轨迹问题

立体几何动点轨迹问题

立体几何动点轨迹问题立体几何里的动点轨迹问题啊,就像一场在三维空间里的神秘舞蹈,那些动点就像舞者,它们的轨迹让人捉摸不透,可一旦搞清楚了,又觉得特别有趣。

我记得在高中上立体几何课的时候,老师在黑板上画了一个复杂的立体图形,然后说有个动点在这个图形里按照一定规则运动,让我们找出它的轨迹。

当时我就懵了,感觉像是在看一场没有头绪的魔术表演。

老师在讲台上滔滔不绝地讲着各种定理和方法,我却在下面听得云里雾里。

有一次考试就碰到了一道动点轨迹的难题。

那是一个正方体,在它的棱上有一个动点,规定这个动点到正方体某个面的距离始终保持不变。

我看着题目,脑海里就像一团乱麻。

我先试着在草稿纸上把正方体画出来,可是怎么画都觉得不太对劲,那线条歪歪扭扭的,就像喝醉了酒的蚯蚓。

我想象着那个动点在正方体的棱上慢慢移动,可就是想不出它到底会画出什么样的轨迹。

我旁边的同桌倒是很淡定,他拿着铅笔在纸上比划着。

我凑过去看,他一边画一边说:“你看,这个动点到那个面的距离不变,就相当于它在和这个面平行的一个平面上运动。

”我似懂非懂地点点头,可还是不太明白。

他无奈地看了我一眼,然后拿了一个橡皮擦,放在正方体的模型上,说:“你把这个橡皮擦当成动点,现在你看,它沿着棱移动的时候,是不是始终在一个平面内?”我仔细一看,好像有点明白了。

就像一个小蚂蚁在正方体的框架上爬行,但是只能在一个特定高度的平面上爬,这样它的轨迹就不是随意的了。

还有一道题是关于圆锥里的动点。

一个动点在圆锥的母线和底面圆周之间运动,并且它到圆锥顶点的距离和到底面圆心的距离有一定的比例关系。

这可把我难住了,我看着圆锥的图形,想象着那个动点像个调皮的小精灵在圆锥里穿梭。

我尝试着建立空间直角坐标系,想用坐标来表示动点的位置,可是那些坐标值就像调皮的数字,在我脑袋里跳来跳去,怎么都理不顺。

我叹了口气,觉得自己像是迷失在立体几何的迷宫里,找不到出口。

不过,经过不断地练习和老师的耐心讲解,我慢慢地开始掌握了一些门道。

(完整版)高中数学动点轨迹问题专题讲解

(完整版)高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。

立体几何中的动点轨迹问题

立体几何中的动点轨迹问题

同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为

数学专题:动点轨迹长度问题

数学专题:动点轨迹长度问题
2
一、直线型:
【特殊型变一般型】
变式2:如图,等腰Rt∆ABC中,斜边AB的长为2,O为AC上的
动点,过点O作OP⊥AB交AB于点P,过点P作PQ∥AC交BC于
点Q,连接OQ,M为OQ的中点,当点O从点A运动到点C时,
点M所经过的路线长为

一、直线型:
【变2:解法分析】
转化中点,由题意可得四边形ODQC为矩形,则OQ的中点也是 DC的中点,点M所经过的路线长= 1 点D所经过的路线长. 那如何求点D所经过的路线长呢? 2
10 4
.
一、直线型:
【往返型轨迹】
变式3:如图,等腰Rt∆ABC中,斜边AB的长为2,O为AB上的
动点,连接OC将点C绕着点O逆时钟旋转45°交AB于点P,线段
BP的中点为点M,当点O从点A运动到点B时,点M所经过的路
线长为

一、直线型: 【变3:解法分析】
由一线三等角模型可得,∆AOC∽∆BPO,
1 OM=CM= 2 PQ,可知点M在线段OC的垂直平分线上,即点M 的轨迹为直线(OC的垂直平分线)一部分。
一、直线型:
【解法分析】 (2)确定始末点:连接OC易证∆APO≌∆CQO(ASA), 则可得OP=OQ,即∆POQ为等腰直角三角形。 易确定始末两点分别是AC,BC的中点, 即点M的轨迹长度= 1 AB=1。
在等边三角形ABC中,PC为AB边上的高,所以PC= 3a,在
2
⊿OPC中,根据三角形三边关系,OC ≤ OP+PC
所以OC的长的最大值为 1 a + 3a,
2
2
二、圆弧型:
变式练习:如图,∠MON=90°,矩形ABCD的顶点A、B分别在
边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,

几何中的动点问题:中考数学轨迹与路径

几何中的动点问题:中考数学轨迹与路径

几何中的动点问题:中考数学轨迹与路径几何作为数学的一部分,一直以来被认为是高难度的学科之一,但是在实际中,几何也是生活和科学中必不可少的组成部分。

而在几何中,动点问题一直是人们感到困惑的一个问题。

在这篇文章中,我们将为大家全面介绍几何中的动点问题,以及如何在中考数学中处理轨迹和路径的问题。

一、动点问题的基本定义及特点动点问题可以简单定义为:在几何图形中,设有一个动点进行运动,如何求出该点的轨迹和路径。

动点问题是几何中的一个重要问题,具有以下特点:1. 动点问题一般是基于静态点进行分析,因此需要对静态点的性质有深刻的认识。

2. 动点问题的解决需要具备一定的数学能力和三维空间思维能力,需要较高的数学水平。

3. 动点问题结合实际进行探究,可以帮助人们更好地理解几何、物理等知识,也有益于培养人们的空间思维能力。

二、动点问题的基本应用1. 针对不同的几何图形,我们可以找到它们的动点问题:(1)直线的动点问题:一般是着眼于直线上的动点,分析其轨迹和路径;(2)圆的动点问题:针对圆上的任意一点,求其轨迹和路径;(3)曲线的动点问题:着重考虑曲线上的动点,探究它们的轨迹和路径。

2. 在实际生活中,动点问题也有很多应用:(1)公路的修建:如何建设一条曲线公路,使得大车可以顺利通过,是一个很好的动点问题实例;(2)太空飞行器飞行:在太空中,如何预测航天器的运动轨迹,需要运用动点问题的相关知识;(3)排球比赛中跑位:排球比赛中,如何控制自己的跑位,使得球能够顺利地落到自己的手中,也是一种动点问题的体现。

三、如何在中考数学中处理轨迹和路径在中考数学中,轨迹和路径的处理是重点。

我们可以通过以下方法来解决问题:1. 把动点分解成几个静止的点,结合点的特性,推导出动点刚好经过这些点时的轨迹和路径。

2. 找到一个合适的坐标系,将动点变成坐标,问题就可以转化为一个数学问题,更加便于解决。

3. 运用相关的几何定理,如垂线定理、角平分线定理等,结合动点的运动特性,解决问题。

求动点轨迹的几种方法

求动点轨迹的几种方法

求动点轨迹的几种方法求动点轨迹的几种方法求动点轨迹是一种常见的计算问题,它可以用来描述物体在空间中的运动轨迹。

求动点轨迹的方法有很多,本文将介绍几种常用的求动点轨迹的方法。

一、求动点轨迹的数学方法数学方法是求动点轨迹的最常用方法,它可以用来求解物体在空间中的运动轨迹。

数学方法的基本思想是,通过分析物体的运动规律,求出物体在某一时刻的位置,从而求出物体在空间中的运动轨迹。

数学方法的具体步骤如下:1、首先,根据物体的运动规律,求出物体在某一时刻的位置;2、然后,根据物体在某一时刻的位置,求出物体在下一时刻的位置;3、重复上述步骤,直到求出物体在空间中的运动轨迹。

二、求动点轨迹的视觉方法视觉方法是求动点轨迹的另一种常用方法,它可以用来求解物体在空间中的运动轨迹。

视觉方法的基本思想是,通过观察物体的运动,求出物体在空间中的运动轨迹。

视觉方法的具体步骤如下:1、首先,观察物体的运动,求出物体在某一时刻的位置;2、然后,根据物体在某一时刻的位置,求出物体在下一时刻的位置;3、重复上述步骤,直到求出物体在空间中的运动轨迹。

三、求动点轨迹的计算机方法计算机方法是求动点轨迹的另一种常用方法,它可以用来求解物体在空间中的运动轨迹。

计算机方法的基本思想是,通过计算机程序,求出物体在空间中的运动轨迹。

计算机方法的具体步骤如下:1、首先,根据物体的运动规律,编写计算机程序;2、然后,根据计算机程序,求出物体在某一时刻的位置;3、重复上述步骤,直到求出物体在空间中的运动轨迹。

四、求动点轨迹的物理方法物理方法是求动点轨迹的另一种常用方法,它可以用来求解物体在空间中的运动轨迹。

物理方法的基本思想是,通过物理实验,求出物体在空间中的运动轨迹。

物理方法的具体步骤如下:1、首先,根据物体的运动规律,设计物理实验;2、然后,根据物理实验,求出物体在某一时刻的位置;3、重复上述步骤,直到求出物体在空间中的运动轨迹。

以上就是求动点轨迹的几种方法,它们各有优劣,可以根据实际情况选择合适的方法来求解物体在空间中的运动轨迹。

高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题

高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题

高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题本文介绍了解动点轨迹问题的四种方法:直译法、定义法、代入法和参数法。

其中,直译法包括建系、设点、列式、代换和证明五个步骤;定义法则是根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;代入法和参数法则是在特定条件下使用的方法。

此外,文章还提到了解轨迹问题时需要注意的两点:求点的轨迹与求轨迹方程是不同的要求,要验证曲线上的点是否都满足方程。

接下来,文章以一个例题为例,介绍了利用代点法求轨迹方程的具体步骤。

该例题要求求出点P的轨迹方程,通过设点、列式、代换和证明四个步骤,最终得出了轨迹方程x2+y2=2.此外,文章还介绍了如何利用轨迹方程验证曲线上的点是否都满足方程,以及如何去掉满足方程的解而不再曲线上的点。

最后,文章介绍了另一种解轨迹问题的方法:定义法。

该方法是先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程。

I)设圆心C的坐标为(x,y),则圆方程为(x-1)^2+y^2=1,又因为在y轴上截得的弦长为2,所以C到y轴的距离为1,即x^2+y^2=1.联立两式可得圆心C的轨迹方程为x^2+y^2-x-1=0.II)由题意可知,直线l的斜率为k,且过点Q(1,0),则直线方程为y=k(x-1)。

将直线方程代入圆的方程中,得到方程x^2+(k(x-1))^2-x-1=0,化简可得x^2(1+k^2)-2xk^2+k^2-1=0.由于直线l与轨迹C有交点A、B,所以方程有两个不同的实根,即Δ=4k^4-4(k^2+1)(k^2-1)≥0.解得-1≤k≤1.再将k带入直线方程可求出交点A、B的坐标,进而证明AR//FQ。

求AB中点的坐标为((k^2-1)/(1+k^2),k(k^2-2)/(1+k^2)),将其代入x^2+y^2-x-1=0中得到轨迹方程为x^4-2x^3+6x^2-2x+1-4y^2=0.1.定点、定值问题的解法定点、定值问题通常可以通过设定参数或取特殊值来确定“定点”是什么、“定值”是多少。

动点轨迹问题——终稿

动点轨迹问题——终稿

专题动点轨迹问题——直线、圆弧型路径一.几何模型(1)直线型路径①【定距离判断直线型路径】当某一动点到某条直线的距离不变时,该动点的路径为直线.②【定角度判断直线型路径】当某一动点与定线段的一个端点连接后所成的角度不变,该动点的路径为直线. (2)圆弧型路径①【用一中同长定圆】到定点的距离等于定长的点的集合是圆.②【用定弦对定角定圆】当某条边与该边所对的角是定值时,该角的顶点的路径是圆弧.二.典例分析①【定距离判断直线型路径】当某一动点到某条直线的距离不变时,该动点的路径为直线.例1如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P从点A出发,沿AB 运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为 .例2.如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连结EG、FG.(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;(2)P是MG的中点,请直接写出点P运动路线的长.练:如图,等边三角形ABC中,BC=6,D、E是边BC上两点,且BD=CE=1,点P是线段DE上的一个动点,过点P分别作AC、AB的平行线交AB、AC于点M、N,连接MN、AP交于点G,则点P由点D移动到点E的过程中,线段BG扫过的区域面积为 .②【定角度判断直线型路径】当某一动点与定线段的一个端点连接后所成的角度不变,该动点的路径为直线.2.1动点在定直线上运动旋转型——八字蝴蝶找夹角例1.如图,在边长为3的等边三角形ABC中,P为AC边上一动点,Q为线段PC上一点,∠PBQ=30°,D为1AC时,点D经过的路线长为 .BQ延长线上一点,PD=PB. 当点P从点A运动到AP=3练1:如图,在△ABC中,∠ABC=90°,AB=AC=2,线段BC上一动点P从点C开始运动,到点B停止,以AP 为边在AC的右侧作等边△APQ,则点Q运动的路径长为 .练2:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为 .练3:如图,已知点A是第一象限内横坐标为32的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径是.2.2同坐标轴夹角为定值问题例1.如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.(1)请用含t的代数式表示出点D的坐标;(2)求t为何值时,△DPA的面积最大,最大为多少?(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值;若不能,请说明理由;(4)请直接写出随着点P的运动,点D运动路线的长.练:如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O运动,动点Q 从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了x秒.(1)Q点的坐标为( , )(用含x的代数式表示);(2)当x为何值时,△APQ是一个以AP为腰的等腰三角形?(3)记PQ的中点为G.请你直接写出点G随点P,Q运动所经过的路线的长度.2.3到两定点的距离相等——中垂线例1.已知抛物线 ()023:21≠−+=a bx ax y C 经过点A (1,0)和B (-3,0). (1)求抛物线1C 的解析式,并写出其顶点C 的坐标;(2)如图1,把抛物线1C 沿着直线AC 方向平移到某处时得到抛物线2C ,此时点A ,C 分别平移到点D ,E 处.设点F 在抛物线1C 上且在x 轴的上方,若△DEF 是以EF 为底的等腰直角三角形,求点F 的坐标.(3)如图2,在(2)的条件下,设点M 是线段BC 上一动点,EN ⊥EM 交直线BF 于点N ,点P 为线段MN 的中点,当点M 从点B 向点C 运动时:①tan ∠ENM 的值如何变化?请说明理由;②点M 到达点C 时,直接写出点P 经过的路线长.3图2图BC OABC OAABC O 图1①【用一中同长定圆】到定点的距离等于定长的点的集合是圆.——定长线段绕定点旋转,中位线的长度不变1) 共端点,等线段模型模型分析(1)若有共端点的三条等线段,可考虑构造辅助圆; (2)构造辅助圆是方便利用圆的性质快速解决角度问题。

专题:解析几何中的动点轨迹问题 - 学生版

专题:解析几何中的动点轨迹问题 - 学生版

专题:解析几何中的动点轨迹问题Part 1 几类动点轨迹问题一、动线段定比分点的轨迹例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。

例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程.二、两条动直线的交点问题例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x =AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程例4 已知12A A 、是双曲线22221(0,0)x y a b a b-=>>的两个顶点,线段MN 为垂直于实轴的弦,求直线1MA 与2NA 的交点P 的轨迹三、动圆圆心轨迹问题例5 已知动圆M 与定圆2216x y +=相切,并且与x 轴也相切,求动圆圆心M 的轨迹例6 已知圆221:(3)4C x y ++=,222:(3)100C x y -+=,圆M 与圆1C 和圆2C 都相切,求动圆圆心M 的轨迹例7 已知双曲线过(3,0)A -和(3,0)B ,它的一个焦点是1(0,4)F -,求它的另一个焦点2F 的轨迹例8 已知圆的方程为224x y +=,动抛物线过点(1,0)A -和(1,0)B ,且以圆的切线为准线,求抛物线的焦点F 的轨迹方程Part 2 求动点轨迹的十类方法一、直接法根据已知条件及一些基本公式如两点间距离公式、点到直线的距离公式、直线的斜率公式、切线长公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

过程是“建系设点,列出几何等式,坐标代换,化简整理”,主要用于动点具有的几何条件比较明显时。

例1 已知动点M 到定点A (1,0)与到定直线L :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?例2 已知直角坐标平面上点Q (2,0)和圆C 的切线长与MQ的比等于常数()0>λλ,求动点M 的轨迹方程,说明它表示什么曲线.二、定义法圆锥曲线是解析几何中研究曲线和方程的典型问题,当动点符合圆锥曲线定义时,可直接写出其轨迹方程。

平面几何中的轨迹问题例题和知识点总结

平面几何中的轨迹问题例题和知识点总结

平面几何中的轨迹问题例题和知识点总结在平面几何的世界里,轨迹问题是一个既有趣又具有挑战性的领域。

它不仅要求我们对几何图形的性质有深入的理解,还需要我们具备灵活的思维和解题技巧。

接下来,让我们通过一些具体的例题来深入探讨平面几何中的轨迹问题,并对相关的知识点进行总结。

一、轨迹问题的基本概念轨迹,简单来说,就是一个动点在平面内按照一定的条件运动所形成的图形。

要确定一个轨迹,需要明确两个关键要素:动点满足的条件和动点运动的范围。

例如,一个点到定点的距离等于定长,那么这个点的轨迹就是一个圆。

这就是根据点的运动条件来确定轨迹的典型例子。

二、常见的轨迹类型1、直线型轨迹到两定点距离之和为定值的点的轨迹是椭圆(当定值大于两定点间的距离时)。

到两定点距离之差的绝对值为定值的点的轨迹是双曲线(当定值小于两定点间的距离时)。

到一条定直线的距离等于定长的点的轨迹是两条平行于该直线且与直线距离为定长的直线。

2、圆型轨迹到定点的距离等于定长的点的轨迹是圆。

3、抛物线型轨迹到定点和定直线的距离相等的点的轨迹是抛物线。

三、例题解析例 1:已知点 A(-2,0),B(2,0),动点 P 满足|PA| |PB| = 2,求点 P 的轨迹方程。

解:因为|PA| |PB| = 2 <|AB| = 4,所以点 P 的轨迹是以 A、B 为焦点的双曲线的右支。

2a = 2,a = 1,c = 2,b²= c² a²= 3所以点 P 的轨迹方程为 x² y²/3 = 1(x ≥ 1)例 2:一动点到直线 x = 4 的距离等于它到点 A(1,0)的距离,求动点的轨迹方程。

解:设动点坐标为(x,y),则动点到直线 x = 4 的距离为|x 4|,动点到点 A(1,0)的距离为√(x 1)²+ y²由题意可得:|x 4| =√(x 1)²+ y²两边平方得:(x 4)²=(x 1)²+ y²展开化简得:y²= 6x 15所以动点的轨迹方程为 y²= 6x 15例 3:在平面直角坐标系中,点 P 到点 F(1,0)的距离比它到 y 轴的距离大 1,求点 P 的轨迹方程。

七年级上册数学动点问题

七年级上册数学动点问题

七年级上册数学动点问题
动点问题是指在几何图形中,点的坐标发生变化时,研究图形的变化规律的问题。

在七年级上册数学中,动点问题主要包括以下几种类型:
1. 动点轨迹问题:当一个点在平面内按照一定的规律移动时,求这个点的轨迹。

例如,已知点A(x, y)在直线y = kx + b上移动,求点A的轨迹。

2. 动点距离问题:当一个点在平面内按照一定的规律移动时,求这个点到另一个固定点的距离。

例如,已知点A(x, y)在直线y = kx + b上移动,求点A到定点P(a, b)的距离。

3. 动点面积问题:当一个点在平面内按照一定的规律移动时,求这个点与另一个固定点围成的图形的面积。

例如,已知点A(x, y)在直线y = kx + b上移动,求点A与定点P(a, b)围成的三角形的面积。

4. 动点角度问题:当一个点在平面内按照一定的规律移动时,求这个点与另一个固定点连线与某个方向的夹角。

例如,已知点A(x, y)在直线y = kx + b上移动,求点A与定点P(a, b)连线与x轴的夹角。

5. 动点对称问题:当一个点在平面内按照一定的规律移动时,求这个点关于某个固定点的对称点的坐标。

例如,已知点A(x, y)在直线y = kx + b上移动,求点A关于定点P(a, b)的对称点的
坐标。

解决动点问题的关键是找出动点的坐标变化规律,然后根据题目要求求解相应的几何量。

在解题过程中,要注意运用所学的几何知识,如平行线、垂直线、相似三角形等性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题动点轨迹问题
——直线、圆弧型路径
自查:
(2018 广州25题)如图12,在四边形ABCD中,∠B=60°,∠D=30°,AB=B C、
(1)求∠A+∠C得度数;
(2)连接BD,探究AD,BD,CD三者之间得数量关系,并说明理由;
(3)若AB=1,点E在四边形ABCD内部运动,且满足,求点E运动路径得长度、
一.几何模型
(1) 直线型路径
①【定距离判断直线型路径】
当某一动点到某条直线得距离不变时,该动点得路径为直线、
②【定角度判断直线型路径】
当某一动点与定线段得一个端点连接后所成得角度不变,该动点得路径为直线、
(2)圆弧型路径
①【用一中同长定圆】
到定点得距离等于定长得点得集合就是圆、
②【用定弦对定角定圆】
当某条边与该边所对得角就是定值时,该角得顶点得路径就是圆弧、
二.典例分析
例1如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P从点A出发,沿AB 运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M就是线段EF得中点,则在点P运动得整个过程中,点M运动路线得长为、
例2如图,△ABC与△ADE都就是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC 上运动,连接OE,则在点D运动过程中,线段OE得最小值就是为、
例3如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径得半圆上,M为PC得中点,当点P沿半圆从点A 运动至点B时,点M运动得路径长就是、
例4 在正方形ABCD中,AD=2,点E从点D出发向终点C运动,点F从C出发向终点B运动,且始终保持DE=CF、连接AE,DF交于点P,则点P运动得路径长就是、
三、巩固练习
1、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D就是平面内得一个动点,且AD=2,M为BD得中点,在D点运动过程中,线段CM长度得取值范围就是、
1题图 2题图 3题图
2.如图,等边三角形ABC中,BC=6,D、E就是边BC上两点,且BD=CE=1,点P就是线段DE上得一个动点,过点P分别作AC、AB得平行线交AB、AC于点M、N,连接MN、AP交于点G,则点P由点D移动到点E得过程中,线段BG扫过得区域面积为、
3.如图,以G(0,1)为圆心,半径为2得圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F.若点E从在圆周上运动一周,则点F所经过得路径长为、
4.如图,已知点A就是第一象限内横坐标为得一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P就是线段ON 上得一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动得路径就是 .
4题图 5题图 6题图
5.如图,在边长为3得等边三角形ABC中,P为AC边上一动点,Q为线段PC上一点,∠PBQ=30°,D为BQ延长线上一点,PD=PB、当点P从点A运动到AP=AC时,点D经过得路线长为、
6.如图,在△ABC中,∠ABC=90°,AB=AC=2,线段BC上一动点P从点C开始运动,到点B停止,以AP为边在AC得右侧作等边△APQ,则点Q运动得路径长为、
7.(2018 花都区一模 )
已知,如图1,正方形得边长为,点、分别在边、得延长线上,且,连接、
(1)证明:;
(2)将绕点顺时针方向旋转,当旋转角满足时,设与射线交于点G,与AC交于点H,如图所示,试判断线段,,得数量关
系,并说明理由、
(3)若将绕点旋转一周,连接、,并延长交直线于点,连接,试说明点得运动路径并求线段得取值范围、
8.(2017 越秀区期末25题)
如图,在平面直角坐标系xoy中,点A(0,3),B(5,3)、点P(x,0)就是x轴正半轴上得一个动点,以BP为直径作圆Q 交x轴于点C,圆Q与直线AC交于点D,连接PD、BD,过点P作PE∥BD交圆Q于点E,连接BE、
(1)求证:四边形BDPE就是矩形;
(2)设矩形BDPE得面积为S,试求S关于x得函数关系式,写出x得取值范围,并判断S就是否存在最大值或最小值?若存在,求出这个最大值或最小值,若不存在,请说明理由;
(3)当0≤x≤5时,求点E移动路线得长、
备用图
9.(2018 越秀区期末25题)
如图1所示,正方形ABCD得边长为2,点E、F分别为边AB、AD得中点,如图2所示,将△AEF绕点A逆时针旋转α(0°<α90°),射线BE、DF相交于点P、
(1)求证:△ABE≌△ADF;
(2)如图2,在△AEF旋转过程中,若射线BE恰好通过AD得中点H,求PF得长;
(3)如图3,若将△AEF从图1得位置旋转至AE⊥BE,试求点P在旋转过程中得运动路径长、
10.如图,正方形ABCD得边长就是2,M就是AD得中点,点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF得垂线交射线BC于点G,连结EG、FG.
(1)设AE=x时,△EGF得面积为y,求y关于x得函数关系式,并写出自变量x得取值范围;
(2)P就是MG得中点,请直接写出点P运动路线得长.
11.如图,在平面直角坐标系中,矩形OABC得两边OA、OC分别在x轴、y轴得正半轴上,OA=4,OC=2.点P从点O 出发,沿x轴以每秒1个单位长得速度向点A匀速运动,当点P到达点A时停止运动,设点P运动得时间就是t秒.将线段CP得中点绕点P按顺时针方向旋转90°得点D,点D随点P得运动而运动,连接DP、DA.
(1)请用含t得代数式表示出点D得坐标;
(2)求t为何值时,△DPA得面积最大,最大为多少?
(3)在点P从O向A运动得过程中,△DPA能否成为直角三角形?若能,求t得值;若不能,请说明理由;
(4)请直接写出随着点P得运动,点D运动路线得长、
12.如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O运动,动点Q从A点出发沿AB 向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了x秒.
(1)Q点得坐标为( , )(用含x得代数式表示);
(2)当x为何值时,△APQ就是一个以AP为腰得等腰三角形?
(3)记PQ得中点为G.请您直接写出点G随点P,Q运动所经过得路线得长度.
13.已知△ABC就是等腰直角三角形,AC=BC=2,D就是边AB上得一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E就是点A得对应点,点F就是点D得对应点.
(1)如图1,当α=90°时,G就是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;
(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.
①当点M与点C、D不重合时,连接CM,求∠CMD得度数;
②设D为边AB得中点,当α从90°变化到180°时,求点M运动得路径长.
14.已知抛物线经过点A(1,0)与B(-3,0)、
(1)求抛物线得解析式,并写出其顶点C得坐标;
(2)如图1,把抛物线沿着直线AC方向平移到某处时得到抛物线,此时点A,C分别平移到点D,E处、设点F在抛物线上且在x轴得上方,若△DEF就是以EF为底得等腰直角三角形,求点F得坐标、
(3)如图2,在(2)得条件下,设点M就是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN得中点,当点M 从点B向点C运动时:①tan∠ENM得值如何变化?请说明理由;②点M到达点C时,直接写出点P经过得路线长、
15.如图1,已知正方形OABC得边长为2,顶点A、C分别在x、y轴得正半轴上,M就是BC得中点.P(0,m)就是线段OC上一个动点(点C除外),直线PM交AB得延长线于点D.
(1)求点D得坐标(用含m得代数式表示);
(2)当△ADP就是等腰三角形时,求m得值;
(3)设过点P、M、B得抛物线与x轴得正半轴交于点E,过点O作直线ME得垂线,垂足为H(如图2).当点P从原点O向点C运动时,点H也随之运动.请直接写出点H所经过得路径长(不写解答过程).
16.问题探究:
(1)请在图①得正方形ABCD内,画出使∠APB=90°得一个点,并说明理由.
(2)请在图②得正方形ABCD内(含边),画出使∠APB=60°得所有得点P,并说明理由.
问题解决:
(3)如图③,现在一块矩形钢板ABCD,AB=4,BC=3.工人师傅想用它裁出两块全等得、面积最大得△APB与△CP′D 钢板,且∠APB=∠CP'D=60度.请您在图③中画出符合要求得点与,并求出△APB得面积(结果保留根号).
17.如图,△ABC与△ADE都就是等腰直角三角形,∠ACB=∠ADE=90°,AC=2,AD=1,F为BE得中点.
(1)如图1,当边AD与边AB重合时,连接DF,求证:DF⊥CF;
(2)若∠BAE=135°,如图2,求CF2得值;
(3)将△ADE绕点A旋转一周,直接写出点F运动路径得长。

相关文档
最新文档