用空间向量求直线与平面所成的角(二)(人教A版)(含答案)
用空间向量研究距离、夹角问题(第二课时) 高中数学新教材人教A版
)
A1
A
E
C
B
A
在直角三角形中,易求得 BD1
6
,
2
5
,设向量BD1 与AF1
2
BD1 ⋅AF1
30
10
=
AF1 =
的夹角为θ,则直线BD1与AF1 ,所成
角的余弦值为|cos θ | ,则 cos θ
=
BD1 AF1
=
课堂检测
1.在直三棱柱 ABC-A1B1C1中,∠BCA=90°D1, F1分别是A1B1,A1C1
则
,
·=0
+ =0
⇒
,
x
+
z
=
0
根据这个不定方程组,可以求得
若取z=1,则x=−1,y=−1,所以n=(−1,−1,1)是
平面的一个法向量.
一个法向量n=(x0,y0,z0).
若取z=−2,则x=2,y=2,所以n=(2,2,−2)是平
面的另一个法向量.
n
α
a
b
求得的n=(x0,y0,z0)是法向量中的一个,不是所有的法
Q
P
B
R
C1
B1 y
A1
x
分析:因为平面
PQR与平面A1B1C1
的夹角可以转化为平
面 PQR与平面
A1B1C1的法向量的
夹角,所以只需要求
出这两个平面的法向
量的夹角即可.
例题精讲 ——例
如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,∠ACB=90°,P为
z
C
P
BC的中点,点Q,R分别在棱AA1,BB1上,A1Q=2AQ,BR=2RB1,求平面PQR
专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)
专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。
用空间向量研究直线、平面的位置关系4种常见考法归类(80题)(学生版)25学年高二数学(人教A选修一
专题1.4.1 用空间向量研究直线、平面的位置关系4种常见考法归类(80题)题型一 求直线的方向向量题型二 求平面的法向量题型三 用空间向量证明平行问题(一)判断直线、平面的位置关系(二)已知直线、平面的平行关系求参数(三)证明直线、平面的平行问题(1)利用向量方法证明线线平行(2)利用向量方法证明线面平行(3)利用向量方法证明面面平行(4)与平行有关的探索性问题题型四 利用空间向量证明垂直问题(一)判断直线、平面的位置关系(二)已知直线、平面的垂直关系求参数(三)证明直线、平面的垂直问题(1)利用向量方法证明线线垂直(2)利用向量方法证明线面垂直(3)利用向量方法证明面面垂直(4)与垂直有关的探索性问题在空间中,我们取一定点O 作为基点,那么空间中任意一点P 就可以用向量OP 表示.我们把向量OP称为点P 的位置向量.如图.注:线段中点的向量表达式:对于AP → =tAB →,当t =12时,我们就得到线段中点的向量表达式.设点M 是线段AB 的中点,则OM → =12(OA → +OB →),这就是线段AB 中点的向量表达式.2、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=3、空间直线的向量表示式如图②,取定空间中的任意一点O ,可以得到点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①或OP OA t AB =+ ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.4、用向量表示空间平面的位置根据平面向量基本定理,存在唯一实数对(,)x y ,使得AP xa yb =+,如图;取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP OA xAB y AC =++ .5.直线的方向向量若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量.【注意】①在直线上取有向线段表示的向量,或在与它平行的直线上取有向线段表示的向量,均为直线的方向向量;②在解具体立体几何题时,直线的方向向量一般不再叙述而直接应用,可以参与向量运算或向量的坐标运算.6.平面的法向量定义:AB l ABl直线l ⊥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a.注:一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量.已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量.7.平面法向量的性质(1)平面a 的一个法向量垂直于平面a 内的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.8.平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面a 的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ì×=ïí×=ïî列出方程组解方程组:解方程组00n AB n AC ì×=ïí×=ïî赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.题型一 求直线的方向向量解题策略:1、理解直线方向向量的概念(1)直线上任意两个不同的点都可构成直线的方向向量.(2)直线的方向向量不唯一.(空间中一条直线的方向向量有无数个).2.求直线的方向向量,首先是找到直线上两点,然后用坐标表示以这两点为起点和终点的向量,该向量就是直线的一个方向向量.1.(23-24高二下·江苏扬州·期末)已知一直线经过点()()2,3,2,1,0,1A B --,下列向量中是该直线的方向向量的为( )A .()1,1,1a =-B .()1,1,1a =-C .()1,1,1a =-D .()1,1,1a =2.【多选】(2024·湖北十堰·高二校联考阶段练习)如图,在正方体1111ABCD A B C D -中,E 为棱1CC上不与1C ,C 重合的任意一点,则能作为直线1AA 的方向向量的是( )A .1AAB .1C EC .ABD .1A A3.(2024·高二课时练习)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD的中点,AB =AP =1,AD PC 的一个方向向量.4.(2024·高二课时练习)已知直线1l 的一个方向向量为()5,3,2-,另一个方向向量为(),,8x y ,则x =________,y = ________.5.(2024·江苏常州·高二校联考期中)已知直线l 的一个方向向量()2,1,3m =-,且直线l 过A (0,y ,3)和B (-1,2,z )两点,则y -z 等于( )A .0B .1C .2D .36.(23-24高二上·江西赣州·期中)已知直线1l 的方向向量是()2,2,a x =-,直线2l 的方向向量是()2,,2b y =-,若3a = ,且12l l ^,则x y -的值是( )A .-4或0B .4或1C .-4D .07.(23-24高二上·湖北武汉·期中)两条不同直线1l ,2l 的方向向量分别为()1,1,2m =-,()2,2,1n =- ,则这两条直线( )A .相交或异面B .相交C .异面D .平行题型二 求平面的法向量解题策略:1.求平面法向量的方法①设出平面的法向量为n =(x ,y ,z );②找出(或求出)平面内的两个不共线的向量的坐标:a =(a 1,a 2,a 3),b =(b 1,b 2,b 3);③依据法向量的定义建立关于x ,y ,z 的方程组00{=×=×b n a n ④解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数多个,故可在方程组的解中取一个最简单的作为平面的法向量.注:利用待定系数法求平面的法向量,求出向量的横、纵、竖坐标是具有某种关系的,而不是具体的值,可设定某个坐标为常数,再表示其他坐标.2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量(3)注意0:提前假定法向量n =(x ,y ,z )的某个坐标为某特定值时一定要注意这个坐标不为08.【多选】(23-24高二上·浙江绍兴·期中)直线l 的方向向量是(1,2,0)a =,若l a ^,则平面a 的法向量可以是( )A .()1,2,0n = B .()2,4,0n =--C .()2,1,0n =-D .()2,1,2n =-9.(2024·江苏淮安·高二校考阶段练习)空间直角坐标系O xyz -中,已知点()2,0,2A ,()2,1,0B ,()0,2,0C ,则平面ABC 的一个法向量可以是( ).A .()2,1,2B .()1,2,1-C .()2,4,2D .()2,1,2-10.(2024·高二课时练习)已知()()()1,1,0,1,0,1,0,1,1A B C ,则平面ABC 的一个单位法向量是( )A .()1,1,1B .C .111(,,)333D .11.(2023秋·湖北荆州·高二沙市中学校考期末)已知正方体1111ABCD A B C D -的棱长为 1, 以D 为原点, {}1,,DA DC DD为单位正交基底, 建立空间直角坐标系, 则平面1AB C 的一个法向量是( )A .(1,1,1)B .(1,1,1)-C .(1,1,1)-D .(1,1,1)-12.(2024·高二课时练习)在如图所示的坐标系中,1111ABCD A B C D -为正方体,给出下列结论:①直线1DD 的一个方向向量为(0,0,1);②直线1BC 的一个方向向量为(0,1,1);③平面11ABB A 的一个法向量为(0,1,0);④平面1B CD 的一个法向量为(1,1,1).其中正确的个数为( )A .1个B .2个C .3个D .4个13.(2023春·高二课时练习)已知四边形ABCD 是直角梯形,90ABC ∠= ,SA ^平面ABCD ,1SA AB BC ===,12A D =,求平面SCD 的一个法向量.14.(2024·高二课时练习)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1111,A D A B 的中点,在如图所示的空间直角坐标系中,求:(1)平面11BDD B 的一个法向量;(2)平面BDEF 的一个法向量.15.(2024·福建龙岩·高二校联考期中)《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在鳖臑A BCD -中,AB ^平面BCD ,=90BDC ∠°,BD AB CD ==.若建立如图所示的“空间直角坐标系,则平面ACD 的一个法向量为( )A .()0,1,0B .()0,1,1C .()1,1,1D .()1,1,016.(2024·全国·高三专题练习)放置于空间直角坐标系中的棱长为2的正四面体ABCD 中,H 是底面中心,DH ^平面ABC ,写出:平面BHD 的一个法向量___________;17.(2023春·高二课时练习)如图的空间直角坐标系中,PD 垂直于正方形ABCD 所在平面,2,AB PB =与平面xDy 的所成角为4p,E 为PB 中点,则平面ABE 的单位法向量0n =______.(用坐标表示)18.【多选】(2024·福建宁德·高二校联考期中)已知空间中三个向量()2,1,0AB =,()1,2,1AC =- ,()3,1,1BC =-,则下列说法正确的是( )A .AB与AC 是共线向量B .与AB同向的单位向量是ö÷÷øC .BC 在AB方向上的投影向量是()2,1,0--D .平面ABC 的一个法向量是()1,2,5-19.(2024·四川成都·高二成都市锦江区嘉祥外国语高级中学校考期中)已知()2,0,2a =,()3,0,0= b 分别是平面a ,b 的法向量,则平面a ,b 交线的方向向量可以是( )A .()1,0,0B .()0,1,0C .()0,0,1D .()1,1,120.(2024·湖北·高二校联考阶段练习)已知点()2,6,2A -在平面a 内,()3,1,2=n 是平面a 的一个法向量,则下列点P 中,在平面a 内的是( )A .()1,1,1P -B .31,3,2P æöç÷èøC .31,3,2P æö-ç÷èøD .31,3,4P æö---ç÷èø(1)线线平行的向量表示:设u 1,u 2分别是直线l 1,l 2的方向向量,则l 1∥l 2⇔u 1∥u 2⇔∃λ∈R ,使得u 1=λu 2.(2)线面平行的向量表示:设u 是直线 l 的方向向量,n 是平面α的法向量,l ⊄α,则l ∥α⇔u ⊥n ⇔u ·n =0.注:(1)在平面a 内取一个非零向量a ,若存在实数x ,使得u xa =,且l a Ë,则//l a .(2)在平面a 内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l a Ë,则//l a .(3)面面平行的向量表示:设n 1 ,n 2 分别是平面α,β的法向量,则α∥β⇔n 1∥n 2⇔∃λ∈R ,使得n 1=λn 2 .2.利用向量证明线线平行的思路:证明线线平行只需证明两条直线的方向向量共线即可.3.证明线面平行问题的方法:(1)证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;(2)证明直线的方向向量可以用平面内两个不共线向量表示且直线不在平面内;(3)证明直线的方向向量与平面的法向量垂直且直线不在平面内.4.证明面面平行问题的方法:(1)利用空间向量证明面面平行,通常是证明两平面的法向量平行.(2)将面面平行转化为线线平行然后用向量共线进行证明.题型三 用空间向量证明平行问题(一)判断直线、平面的位置关系21.(2024·湖北黄石·高二校考阶段练习)若直线l 的一个方向向量为()257,,a =,平面α的一个法向量为()111,,u ®=-,则( )A .l ∥α或l ⊂αB .l ⊥αC .l ⊂αD .l 与α斜交22.(2024·高二单元测试)若平面a 与b 的法向量分别是()1,0,2a =- ,()1,0,2b =-r,则平面a 与b 的位置关系是( )A .平行B .垂直C .相交不垂直D .无法判断23.(2024·山东菏泽·高二统考期末)已知平面a 与平面ABC 是不重合的两个平面,若平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,则平面a 与平面ABC 的位置关系是________.24.(2024·陕西宝鸡·高二统考期末)在长方体ABCD A B C D -¢¢¢¢中,222AA AB AD ¢===,以点D 为坐标原点,以,,DA DC DD ¢分别为x 轴,y 轴,z 轴建立空间直角坐标系,设对角面ACD ¢所在法向量为(,,)x y z ,则::x y z =__________.25.【多选】(2024·甘肃张掖·高二高台县第一中学校考期中)下列利用方向向量、法向量判断线、面位置关系的结论中正确的是( )A .若两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,则12//l l B .若直线l 的方向向量()0,3,0a = ,平面a 的法向量是()0,5,0m =-,则l //a C .若两个不同平面a ,b 的法向量分别为()12,1,0n =- ,()24,2,0n =-,则//a bD .若平面a 经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,向量()11,,n u t =是平面a 的法向量,则1u t +=(二)已知直线、平面的平行关系求参数26.(2023春·四川成都·高二四川省成都市新都一中校联考期中)已知直线l 的方向向量为1,2,4)m (-=,平面a 的法向量为,1,2)n x =(-,若直线l 与平面a 平行,则实数x 的值为( )A .12B .12-C .10D .10-27.(2024·广东广州·高二广州市第九十七中学校考阶段练习)直线l 的方向向量是()1,1,1s =-,平面a 的法向量()222,,n x x x =+- ,若直线//l 平面a ,则x =______.28.(2024·上海浦东新·高二上海南汇中学校考期末)已知直线l 的一个方向向量为(1,2,1)d =-,平面a 的一个法向量(,4,2)n x =-,若//l a ,则实数x =_______.29.(2024·天津蓟州·高二校考期中)直线l 的方向向量是()1,1,1s ®=,平面a 的法向量()21,,n x x x ®=--,若直线l a ∥,则x =___________.30.(2023·全国·高三专题练习)在长方体1111ABCD A B C D -中,E 是1BB 的中点,111B F B D l =,且//EF 平面1ACD ,则实数l 的值为( )A .15B .14C .13D .1231.【多选】(2023春·高二课时练习)在正方体1111ABCD A B C D -中,E 为1AA 中点,若直线//EF 平面11A BC ,则点F 的位置可能是( )A .线段1CC 中点B .线段BC 中点C .线段CD 中点D .线段11C D 中点32.(2024·上海·高二校联考阶段练习)已知平面a 的一个法向量为()11,2,3n =-,平面b 的一个法向量为()22,4,n k =--,若//a b ,则k 的值为______(三)证明直线、平面的平行问题(1)利用向量方法证明线线平行解题策略:向量法证明两条直线平行的方法:两直线的方向向量共线时,两直线平行或共线,否则两直线相交或异面.33.(2023·江苏·高二专题练习)在正方体1111ABCD A B C D -中,点P 在线段1A D 上,点Q 在线段AC 上,线段PQ 与直线1A D 和AC 都垂直,求证:1PQ BD .34.(2023·江苏·高二专题练习)已知长方体1111ABCD A B C D -中,4AB =,3AD =,13AA =,点S 、P 在棱1CC 、1AA 上,且112CS SC =,12AP PA =,点R 、Q 分别为AB 、11D C 的中点.求证:直线PQ ∥直线RS .35.(2023·江苏·高二专题练习)已知在正四棱柱1111ABCD A B C D -中,1AB =,12AA =,点E 为1CC 的中点,点F 为1BD 的中点.(1)求证:1EF BD ^ 且1EF CC ^ ;(2)求证:EF AC ∥.(2)利用向量方法证明线面平行解题策略:1.利用向量法证明平行问题的两种途径(1)利用三角形法则、平行四边形法则和空间向量基本定理实现向量间的相互转化,得到向量的共线关系.(2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.2.利用向量法证明线面平行的三种思路(1)与法向量垂直:设直线l 的方向向量是a ,平面α的法向量是u , 则要证明l //α,只需证明u a ^,即0=×u a .(2)与平面内一个向量平行:在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)用平面内两个不共线向量线性表示:证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.注:证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的两个不共线的向量共面,或证直线的方向向量与平面内某直线的方向向量共线,再说明直线在平面外即可.这样就把几何的证明问题转化为向量的运算.36.(2022春·江苏镇江·高二江苏省镇江第一中学校联考期末)如图,三棱柱11ABC AB C -中侧棱与底面垂直,且AB =AC =2,AA 1=4,AB ⊥AC ,M ,N ,P ,D 分别为CC 1,BC ,AB ,11B C 的中点.求证:PN ∥面ACC 1A 1;37.(2024·湖北黄冈·浠水县第一中学校考模拟预测)如图,在三棱柱111ABC A B C -中,1BB ^平面ABC ,D ,E 分别为棱AB ,11B C 的中点,2BC =,AB =114A C =.证明://DE 平面11ACC A ;38.(2023春·高二课时练习)如图,在四面体A BCD -中,AD ^平面BCD ,BC CD ^,2AD =,BD =.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =.证明:PQ 平面BCD ;39.(2023·全国·高二专题练习)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中//AD BC .,3,2,AD AB AD AB BC PA ^===^平面ABCD ,且3PA =,点M 在棱PD 上,点N 为BC 中点.若2DM MP =,证明:直线//MN 平面PAB .40.(2024·天津和平·耀华中学校考二模)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形,线段AD 的中点为O 且PO ^底面ABCD ,112AB BC AD ===,π2BAD ABC ∠==∠,E 是PD 的中点.证明:CE ∥平面PAB ;41.(2024·江苏盐城·高二盐城市大丰区南阳中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ^底面ABC ,90BAC ∠=°.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,2PA AC ==,1AB =.求证://MN 平面BDE ;42.(2024·天津南开·南开中学校考模拟预测)在四棱锥P ABCD -中,PA ^底面ABCD ,且2PA =,四边形ABCD 是直角梯形,且AB AD ^,//BC AD ,2AD AB ==,4BC =,M 为PC 中点,E 在线段BC 上,且1BE =.求证://DM 平面PAB ;43.(2024·高二课时练习)如图所示,在直角梯形ABCP 中,AP BC ∥,AP AB ^,122AB BC AP ===,D 是AP 的中点,,,E F G 分别为,,PC PD CB 的中点,将PCD V 沿CD 折起,使得PD ^平面ABCD ,试用向量方法证明AP 平面EFG .(3)利用向量方法证明面面平行解题策略:(1)由面面平行的判定定理,要证明面面平行,只要转化为证明相应的线面平行、线线平行即可;(2)若能求出平面b a ,的法向量υm ,,则要证明b a //,只需证明υm //.值得注意的是,虽然空间向量的坐标运算比线性运 算更为简单,但法向量的求解有时比较烦琐,有时在 平面内找与直线平行的向量也不直观,因此求解时,需要灵活选择解题方法.44.(2024·高二课时练习)如图,在长方体1111ABCD A B C D -中,点E ,F ,G 分别在棱1A A ,11A B ,11A D 上,1111A E A F A G ===;点P ,Q ,R 分别在棱1CC ,CD ,CB 上,1CP CQ CR ===.求证:平面//EFG 平面PQR .45.(2024·上海普陀·曹杨二中校考模拟预测)如图所示,正四棱柱ABCD ﹣A 1B 1C 1D 1的底面边长1,侧棱长4,AA 1中点为E ,CC 1中点为F .求证:平面BDE ∥平面B 1D 1F ;46.(2023春·高二课时练习)如图所示,平面PAD ^平面ABCD ,四边形ABCD 为正方形,PAD ∆是直角三角形,且2PA AD ==,E ,F ,G 分别是线段PA ,PD ,CD 的中点,求证:平面EFG 平面PBC .47.(23-24高二上·新疆·期末)已知正方体1111ABCD A B C D -的棱长为a ,M ,N ,E ,F 分别是棱11A D ,11A B ,11D C ,11B C 的中点.求证:平面//AMN 平面BDEF .(4)与平行有关的探索性问题解题策略:平行关系中的探究性问题探究点的位置时,可先设出对应点的坐标,然后根据面面平行的判定定理转化为向量共线问题或者利用两个平面的法向量共线,建立与所求点的坐标有关的方程,通过解方程可得点的坐标.48.(2023秋·高二课时练习)如图,已知空间几何体P ABCD -的底面ABCD 是一个直角梯形,其中90BAD ∠=,//AD BC ,BA BC a ==,2AD a =,且PA ^底面ABCD ,PD 与底面成30 角.(1)若8BC PD ×= ,求该几何体的体积;(2)若AE 垂直PD 于E ,证明:BE PD ^;(3)在(2)的条件下,PB 上是否存在点F ,使得//EF BD ,若存在,求出该点的坐标;若不存在,请说明理由.49.(2023·全国·高三专题练习)如图,在斜三棱柱111ABC A B C - 中,已知ABC ∆为正三角形,四边形11ACC A 是菱形,D ,E 分别是AC ,1CC 的中点,平面11ACC A ⊥平面ABC .(1)求证:1A C ^平面BDE ;(2)若160C CA ∠= ,在线段1DB 上是否存在点M ,使得//AM 平面BDE ?若存在,求1DM DB 的值,若不存在,请说明理由.50.(2023·江苏·高二专题练习)如图所示,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =.(1)求证:1AC BC ^;(2)在AB 上是否存在点D ,使得1//AC 平面1CDB ,若存在,确定D 点位置并说明理由,若不存在,说明理由.51.(2022·高二课时练习)如图,在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,P 是1DD 的中点.在棱1CC 上是否存在一点Q ,使得平面1//D BQ 平面PAO ?若存在,指出点Q 的位置;若不存在,请说明理由.(1)线线垂直的向量表示:设 u 1,u 2 分别是直线 l 1 , l 2 的方向向量,则l 1⊥l 2⇔u 1⊥u 2⇔u 1·u 2=0.(2)线面垂直的向量表示:设u 是直线 l 的方向向量,n 是平面α的法向量, l ⊄α,则l ⊥α⇔u ∥n ⇔∃λ∈R ,使得u =λn .注:在平面a 内取两个不共线向量,a b ,若0a u b u ×=×= .则l a ^.(3)面面垂直的向量表示:设n 1,n 2 分别是平面α,β的法向量,则α⊥β⇔n 1⊥n 2⇔n 1·n 2=0.2.利用向量法证明空间中的平行、垂直可以通过建立空间直角坐标系,把要证的空间中的平行与垂直问题转化为证明空间向量之间的平行和垂直问题.破解此类题的关键点如下:①合理建系,抓住空间几何体的结构特征,充分利用图形中的垂直关系(或在图形中构造垂直关系)建立空间直角坐标系.②确定坐标,利用题设条件写出相关点的坐标,进而获得相关向量的坐标.③准确运算,验证两向量平行或垂直的条件成立.④得出结论,由运算结果说明原问题得证.题型四 利用空间向量证明垂直问题(一)判断直线、平面的位置关系52.(2021秋·北京·高二校考期中)直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--= ,则( )A .12l l ^B .1l ∥2lC .1l 与2l 相交不平行D .1l 与2l 重合53.(2024·北京·高二校考阶段练习)若直线l 的方向向量为e (2,3,1)=- ,平面a 的法向量为311,,22n æö=--ç÷èø ,则直线l 和平面a 位置关系是( )A .l a ^B .//l a C .l a ÌD .不确定54.【多选】(2024·广东珠海·高二珠海市斗门区第一中学校考期末)已知v 为直线l 的方向向量,12,n n 分别为平面a ,b 的法向量(a ,b 不重合),那么下列说法中正确的有( ).A .12n n a bÛ∥∥ B .12n n a b ^Û^ C .1v n l Û a ∥∥D .1v n l ^Û^ a55.(23-24高二上·浙江·期中)如图,在正方体1111ABCD A B C D -中,不能互相垂直的两条直线是( )A .1AB 和1AC B .1A B 和1CD C .1C D 和1B C D .1A B 和11B C 56.(2024·江苏·高二南师大二附中校联考阶段练习)下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是( )A .两条不重合直线12,l l 的方向向量分别是()()2,3,1,2,3,1a b =-=-- ,则12l l ∥B .直线l 的方向向量()112a ,,=- ,平面a 的法向量是()6,4,1u =- ,则l a^C .两个不同的平面,a b 的法向量分别是()()2,2,1,3,4,2u v =-=- ,则a b^D .直线l 的方向向量()0,3,0a = ,平面a 的法向量是()0,5,0u =- ,则l a∥57.【多选】(2024·高二课时练习)下列命题是真命题的有( )A .A ,B ,M ,N 是空间四点,若,,BA BM BN 不能构成空间的一个基底,那么A ,B ,M ,N 共面B .直线l 的方向向量为()1,1,2a =- ,直线m 的方向向量12,1,2b æö=-ç÷èør 为,则l 与m 垂直C .直线l 的方向向量为()1,1,2a =- ,平面α的法向量为10,1,2n æö=ç÷èø ,则l ⊥αD .平面α经过三点()()()1,0,1,0,1,0,1,2,0A B C --,()1,,=r n u t 是平面α的法向量,则u +t =1(二)已知直线、平面的垂直关系求参数58.(2023·全国·高三专题练习)设直线12,l l 的方向向量分别为(1,2,2),(2,3,)a b m =-=- ,若12l l ^,则实数m等于()A .1B .2C .3D .459.(2024·北京海淀·高二中央民族大学附属中学校考开学考试)已知平面a 的法向量为()1,2,0n = ,直线l的方向向量为v ,则下列选项中使得l a ^的是( )A .()2,1,0v =- B .()2,1,0v = C .()2,4,0v = D .()1,2,0v =- 60.(江苏省扬州市2023-2024学年高二下学期6月期末数学试题)已知直线l 的方向向量为()2,1,2e =- ,平面a 的法向量为()()2,,,n a b a b a b =--+ÎR .若l a ^,则3a b +的值为( )A .5-B .2-C .1D .461.(2024·高二课时练习)已知()()3,,,R u a b a b a b =-+Î 是直线l 的方向向量,()1,2,4n =r 是平面a 的法向量.若l a ^,则ab =______.62.(2024·广东珠海·高二珠海市实验中学校考阶段练习)若直线l 方向向量为()2,1,m ,平面a 的法向量为11,,22æöç÷èø,且l a ^,则m 为( )A .1B .2C .4D .54-63.(2023秋·北京石景山·高二统考期末)已知(2,,)(,)=-+-Î m a b a b a b R 是直线l 的方向向量,(2,1,2)=- n 是平面a 的法向量.若l a ^,则下列选项正确的是( )A .340a b --=B .350a b --=C .13,22a b =-=D .13,22a b ==-64.(2024·江苏盐城·高二江苏省响水中学校考阶段练习)如图,在正三棱锥D -ABC 中,AB =2DA =,O 为底面ABC 的中心,点P 在线段DO 上,且PO DO l =uuu r uuu r ,若PA ^平面PBC ,则实数l =( )A .12B .13-C D 65.(2023春·高二课时练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为棱11B C ,1BB 的中点,G 为面对角线1A D 上的一点,且1(01)DG DA l l =££ ,若1A C ^平面EFG ,则l =( )A .14B .13C D .1266.(2023·江苏·高二专题练习)如图,在四棱锥E ABCD -中,平面ADE ^平面ABCD ,O ,M 分别为AD ,DE 的中点,四边形BCDO 是边长为1的正方形,AE DE =,AE DE ^.点N 在直线AD 上,若平面BMN ^平面ABE ,则线段AN 的长为_________.(三)证明直线、平面的垂直问题(1)利用向量方法证明线线垂直解题策略:利用空间向量证明两直线垂直的常用方法及步骤(1)基向量法:①选取三个不共面的已知向量(通常是它们的模及其两两夹角为已知)为空间的一个基底;②把两直线的方向向量用基底表示;③利用向量的数量积运算,计算出两直线的方向向量的数量积为0;④由方向向量垂直得到两直线垂直.(2)坐标法:①根据已知条件和图形特征,建立适当的空间直角坐标系,正确地写出各点的坐标;②根据所求出点的坐标求出两直线方向向量的坐标;③计算两直线方向向量的数量积为0;④由方向向量垂直得到两直线垂直.67.【多选】(2023春·江苏盐城·高二盐城中学校考期中)点P 在正方体1111ABCD A B C D -的侧面11CDD C 及其边界上运动,并保持1BP A C ^,若正方体边长为,则1A P 的可能取值是( )A B C D 68.(2023秋·高二课时练习)如图,在棱长为1的正方体1111ABCD A B C D -中,,E F 分别是1DD BD 、的中点,建立适当的空间直角坐标系,证明:1EF B C ^.69.(2023·江苏·高二专题练习)如图,在直棱柱111ABC A B C -中,12AA AB AC ===,π2BAC ∠=,,,D E F 分别是11A B ,1CC ,BC 的中点.求证:AE DF ^;70.(2023·四川雅安·统考模拟预测)已知下面给出的四个图都是各棱长均相等的直三棱柱,A 为一个顶点,D ,E ,F 分别是所在棱的中点.则满足直线AD EF ^的图形个数是( )A .1B .2C .3D .4(2)利用向量方法证明线面垂直解题策略:向量法证明线面垂直的两种思路(1)根据线面垂直的判定定理证明:求出直线的方向向量,在平面内找两条相交直线,并分别求出表示它们的方向向量,计算两组向量的数量积为0,得到该直线与平面内的两条相交直线都垂直.(2)法向量法:求出直线的方向向量与平面的法向量,用向量法判断直线的方向向量与平面的法向量平行.71.(2024·高二课时练习)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3,试证明AM ⊥平面BMC .72.(2023春·高二课时练习)如图所示,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 的中点.求证:1AB ^平面1A BD .73.(2024·安徽合肥·合肥市第八中学校考模拟预测)如图,在三棱柱111ABC A B C -中,底面ABC V 是等腰三角形,且π,26ACB AB AC ∠===,又侧棱1BB =面对角线116A C A B ==,点,D F 分别是棱11,A B CB 的中点,11344AE AC AC =+ .证明:1B E ^平面AEF ;74.(2024·河北唐山·唐山市第十中学校考模拟预测)如图,在四棱台1111ABCD A B C D -中,平面11ADD A ^平面ABCD ,底面ABCD 为正方形,2AD =,11111DD D A A A ===.求证:1AD ^平面11CDD C .(3)利用向量方法证明面面垂直解题策略:证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.75.(2024秋·广东深圳·高二深圳外国语学校校考期末)已知:在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ^平面ABCD ,点M 为PD 中点,1PA AD ==.求证:平面MAC ^平面PCD ;76.(2024·高二课时练习)如图所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD .求证:平面DEA ⊥平面ECA .77.(2024·全国·高二专题练习)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,底面ABCD 是梯形,点E 在BC 上,,,22248AD BC AB AD BC AB AD AP BE ^=====∥.求证:平面PDE ^平面PAC ;(4)与垂直有关的探索性问题解题策略:解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP → =λAB →,表示出点P 的坐标,或直接利用向量运算.78.(2024·江苏连云港·高二统考期中)如图,在多面体ABCDE 中,ABC V ,BCD △,CDE V 都是边长为2的等边三角形,平面ABC ^平面BCD ,平面CDE ^平面BCD .(1)判断A ,B ,D ,E 四点是否共面,并说明理由;(2)在ABC V 中,试在边BC 的中线上确定一点Q ,使得DQ ^平面BCE .79.(2023春·广东汕尾·高二陆丰市龙山中学校考阶段练习)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,正方形ABCD 的边长为2,E 是PA 的中点.(1)求证://PC 平面BDE .(2)若2PA =,线段PC 上是否存在一点F ,使AF ^平面BDE ?若存在,求出PF 的长度;若不存在,请说明理由.80.(2023春·高二课时练习)如图1,在边长为2的菱形ABCD 中,60,BAD DE AB ∠=^ 于点E ,将ADE △沿DE 折起到1A DE △的位置,使1A D BE ^,如图2.(1)求证:1A E ^平面BCDE ;(2)在线段BD 上是否存在点P ,使平面1A EP ^平面1A BD ?若存在,求BP BD 的值;若不存在,说明理由.。
用空间向量研究距离、夹角问题(第2课时+用空间向量研究夹角问题)课件
21 = 0.
· = 0,
取 m=(-1,0,1).
设平面 PAB 的法向量为 n=(x2,y2,z2),同理,可取 n=( 2,1,0).
∵|cos<m,n>|=
·
| |||
=
3
,
3
∴平面 PAB 与平面 PBC 的夹角的余弦值为
3
.
3
解法二:建立如图所示的空间直角坐标系Cxyz.
3
.
6
探究三
求平面与平面的夹角
【例3】 在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面
ABCD,且PA=AB,E是PD的中点,求平面EAC与平面ABCD的夹角的大小.
分析:有两种思路,思路一:根据二面角的定义找出平面EAC与平面ABCD
的夹角,再求其大小;思路二:建立空间直角坐标系,求平面的法向量,利用法
∴=
1
2
1
−2,− 2 ,−2
1 2 1
, ,
2 2 2
.
.
∵Rt△PAE∽Rt△ABE,∴
=
,即
=
2
.
2
又
Rt△BAE∽Rt△BPA,∴
∴ =
∴ =
1
3 2 3
.∴E , ,
4
4 4 4
1
2 3
,- ,4
4
4
∴cos<, >=
=
,- ,
2 2 2
, =(b,0,0).
设平面 AEC 的法向量为 m=(x,y,z).
· = 0,
2020版高考数学大一轮复习-8.8立体几何中的向量方法二——求空间角和距离教案(理)(含解析)新人教A版
§8.8立体几何中的向量方法(二)——求空间角距离1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.斜线和平面所成的角(1)斜线和它在平面内的射影的所成的角叫做斜线和平面所成的角(或斜线和平面的夹角). (2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角. 3.二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角. 4.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.概念方法微思考1.利用空间向量如何求线段长度?提示 利用|AB →|2=AB →·AB →可以求空间中有向线段的长度. 2.如何求空间点面之间的距离? 提示 点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为 |BO →|=|AB →||cos 〈AB →,n 〉|.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π]. ( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a-β的大小是π-θ.( ×)题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A.45° B.135° C.45°或135° D.90°答案 C解析 cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案π6解析 如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22), AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos∠C 1AD =AC 1→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32, 又∵∠C 1AD ∈⎣⎢⎡⎦⎥⎤0,π2,∴∠C 1AD =π6.题组三 易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110B.25C.3010D.22 答案 C解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos〈BM →,AN →〉=BM →·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010. 5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为________. 答案 30°解析 设l 与α所成角为θ,∵cos〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一求异面直线所成的角例1 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.(1)证明如图所示,连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC=2,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=22.在Rt△FDG中,可得FG=62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC , 所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华 用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( ) A.110B.35C.710D.45 答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),N ⎝ ⎛⎭⎪⎫-32,-12,2, 所以AM →=(0,1,2), BN →=⎝⎛⎭⎪⎫32,-12,2,所以cos 〈AM →,BN →〉=AM →·BN →|AM →|·|BN →|=725×5=710,故选C.题型二求直线与平面所成的角例2 (2018·全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(1)证明由已知可得BF⊥PF,BF⊥EF,PF∩EF=F,PF,EF⊂平面PEF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)解如图,作PH⊥EF,垂足为H.由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝⎛⎭⎪⎫-1,-32,0,DP →=⎝⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32. 又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 思维升华 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值. (1)证明 因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 如图,连接OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC , 所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0), P (0,0,23),AP →=(0,2,23).由(1)知平面PAC 的一个法向量为OB →=(2,0,0). 设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取y =3a ,得平面PAM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=OB →·n |OB →||n |=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB →,n 〉|=cos30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去)或a =43.所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 题型三 求二面角例3 (2018·锦州模拟)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =2,∠ABC =60°,平面ACEF ⊥平面ABCD ,四边形ACEF 是菱形,∠CAF =60°.(1)求证:BF ⊥AE ;(2)求二面角B -EF -D 的平面角的正切值.(1)证明 依题意,在等腰梯形ABCD 中,AC =23,AB =4,∵BC=2,∴AC2+BC2=AB2,即BC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,∴BC⊥平面ACEF,而AE⊂平面ACEF,∴AE⊥BC,连接CF,∵四边形ACEF为菱形,∴AE⊥FC,又∵BC∩CF=C,BC,CF⊂平面BCF,∴AE⊥平面BCF,∵BF⊂平面BCF,∴BF⊥AE.(2)解取EF的中点M,连接MC,∵四边形ACEF是菱形,且∠CAF=60°,∴由平面几何易知MC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,CM⊂平面ACEF,∴MC⊥平面ABCD.以CA ,CB ,CM 所在直线分别为x ,y ,z 轴建立空间直角坐标系,各点的坐标依次为C (0,0,0),A (23,0,0),B (0,2,0),D (3,-1,0),E (-3,0,3),F (3,0,3),设平面BEF 和平面DEF 的一个法向量分别为n 1=(a 1,b 1,c 1),n 2=(a 2,b 2,c 2), ∵BF →=(3,-2,3),EF →=(23,0,0), ∴⎩⎪⎨⎪⎧BF →·n 1=0,EF →·n 1=0,即⎩⎨⎧3a 1-2b 1+3c 1=0,23a 1=0,即⎩⎪⎨⎪⎧a 1=0,2b 1=3c 1,不妨令b 1=3,则n 1=(0,3,2), 同理可求得n 2=(0,3,-1),设二面角B -EF -D 的大小为θ,由图易知θ为锐角, ∴cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=7130,故二面角B -EF -D 的平面角的正切值为97.思维升华 利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC , 所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为»CD的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0),设n =(x ,y ,z )是平面MAB 的法向量,则 ⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2), DA →是平面MCD 的一个法向量,因此cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例(12分)如图,四棱锥S-ABCD中,△ABD为正三角形,∠BCD=120°,CB=CD=CS=2,∠BSD=90°.(1)求证:AC⊥平面SBD;(2)若SC⊥BD,求二面角A-SB-C的余弦值.(1)证明设AC∩BD=O,连接SO,如图①,因为AB=AD,CB=CD,所以AC 是BD 的垂直平分线, 即O 为BD 的中点,且AC ⊥BD .[1分]在△BCD 中,因为CB =CD =2,∠BCD =120°, 所以BD =23,CO =1.在Rt△SBD 中,因为∠BSD =90°,O 为BD 的中点, 所以SO =12BD = 3.在△SOC 中,因为CO =1,SO =3,CS =2, 所以SO 2+CO 2=CS 2, 所以SO ⊥AC .[4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD , 所以AC ⊥平面SBD .[5分](2)解 方法一 过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB . 因为OK ∩AO =O ,OK ,AO ⊂平面AOK , 所以SB ⊥平面AOK .[6分] 因为AK ⊂平面AOK ,所以AK ⊥SB . 同理可证CK ⊥SB .[7分]所以∠AKC 是二面角A -SB -C 的平面角. 因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . 在Rt△SOB 中,OK =SO ·OB SB =62. 在Rt△AOK 中,AK =AO 2+OK 2=422, 同理可求CK =102.[10分] 在△AKC 中,cos∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535.[12分] 方法二 因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC . 而SO ⊂平面SAC , 所以SO ⊥BD .[6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD , 所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD , 所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3). 所以AB →=(-3,3,0),CB →=(1,3,0), SB →=(0,3,-3).[8分]设平面SAB 的法向量n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧AB →·n =-3x 1+3y 1=0,SB →·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3). 同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分]所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为( )A.60°B.120°C.60°或120°D.90° 答案 C解析 cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55B.53C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22 答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12.设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为( ) A.π6B.π4C.π3D.π2 答案 D解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·包头模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为( ) A.0B.-14C.14D.12答案 C解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C →=(0,2,-2),设异面直线AB 1和A 1C 所成的角为θ, 则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于( )A.43B.53C.23D.-23答案 C解析 由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.7.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案55解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2, 得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1.∴PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,PA →〉|=|PA →·n ||PA →||n |=55, ∴直线PA 与平面DEF 所成角的正弦值为55. 8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2, ∴AE ⊥ED ,即AE ,DE ,EF 两两垂直, 所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1), ∴AF →=(-1,2,0),EC →=(0,2,1), ∴cos〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案 60°解析 以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°], ∴EF 和BC 1所成的角为60°.10.(2019·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan∠EHB =EB BH =23. 方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝⎛⎭⎪⎫1,1,13,F ⎝⎛⎭⎪⎫0,1,23,AE →=⎝⎛⎭⎪⎫0,1,13,AF →=⎝⎛⎭⎪⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 设平面AEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 11.(2018·鄂尔多斯联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明 如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形, ∴M 是AC 1的中点, 又Q 是A 1B 的中点, ∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1, ∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M , ∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解 ∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1, ∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2), ∴CA →=(3,-1,0),B 1A 1—→=(3,-2,0),B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ), 则由n ⊥B 1A 1—→,n ⊥B 1B →, 可得⎩⎨⎧3x -2y =0,y -2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3), 设直线AC 与平面A 1BB 1所成的角为α, 则sin α=|n ·CA →||n |·|CA →|=23231=9331.12.(2019·盘锦模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,PA =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ; (2)求二面角A -BF -C 的余弦值. (1)证明 在Rt△ABE 中,由AB =AE =1, 得∠AEB =45°,同理在Rt△CDE 中,由CD =DE =2,得∠DEC =45°,所以∠BEC =90°,即BE ⊥EC . 在△PAD 中,cos∠PAD =PA 2+AD 2-PD 22PA ·AD =5+9-82×3×5=55,在△PAE 中,PE 2=PA 2+AE 2-2PA ·AE ·cos∠PAE =5+1-2×5×1×55=4, 所以PE 2+AE 2=PA 2,即PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD , 所以PE ⊥平面ABCD ,所以PE ⊥BE . 又因为CE ∩PE =E ,CE ,PE ⊂平面PEC , 所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解 由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),A ⎝⎛⎭⎪⎫22,-22,0,D (-2,2,0),F ⎝ ⎛⎭⎪⎫-22,22,1, AB →=⎝⎛⎭⎪⎫22,22,0,BF →=⎝ ⎛⎭⎪⎫-322,22,1, BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=22x 1+22y 1=0,m ·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22), 设平面BFC 的法向量为n =(x 2,y 2,z 2),则⎩⎨⎧n ·BC →=-2x 2+22y 2=0,n ·BF →=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角), 则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.答案916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3, ∴B (0,4,0),S (0,0,3). 设BC =m ,则C (m ,4,0), ∵SF BF =CE BE=λ, ∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3), ∴F ⎝ ⎛⎭⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎫m 1+λ,4,0, ∴FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. ∵FA →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角, 即FA →·FE →=0,则0·m1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0, ∴16λ=9,解得λ=916. 14.(2018·满洲里模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1—→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明 连接A 1Q .∵AA1=AC=1,M,Q分别是CC1,AC的中点,∴Rt△AA1Q≌Rt△CAM,∴∠MAC=∠QA1A,∴∠MAC+∠AQA1=∠QA1A+∠AQA1=90°,∴AM⊥A1Q.∵N,Q分别是BC,AC的中点,∴NQ∥AB.又AB⊥AC,∴NQ⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∴NQ⊥AA1.又AC∩AA1=A,AC,AA1⊂平面ACC1A1,∴NQ⊥平面ACC1A1,∴NQ⊥AM.由NQ∥AB和AB∥A1B1可得NQ∥A1B1,∴N,Q,A1,P四点共面,∴A1Q⊂平面PNQ.∵NQ∩A1Q=Q,NQ,A1Q⊂平面PNQ,∴AM⊥平面PNQ,∴无论λ取何值,总有AM⊥平面PNQ.(2)解如图,以A为坐标原点,AB,AC,AA1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,12,0,Q ⎝ ⎛⎭⎪⎫0,12,0,NM →=⎝ ⎛⎭⎪⎫-12,12,12,A 1B 1→=(1,0,0).由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),∴PN →=⎝ ⎛⎭⎪⎫12-λ,12,-1.设n =(x ,y ,z )是平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·NM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧ -12x +12y +12z =0,⎝ ⎛⎭⎪⎫12-λx +12y -z =0,得⎩⎪⎨⎪⎧y =1+2λ3x ,z =2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量.取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去). 综上,存在点P ,且当A 1P =7-354时, 满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( )A.1B.2C.13D.26 答案 B解析 设平面ABCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ⊥AB →,n ⊥AD →,即⎩⎪⎨⎪⎧ 4x -2y +3z =0,-4x +y =0,令y =4,则n =⎝⎛⎭⎪⎫1,4,43, 则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626, ∴h =2626×226=2. 16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值.(1)证明设AD=CD=BC=1,∵AB∥CD,∠BCD=120°,∴AB=2,∴AC2=AB2+BC2-2AB·BC·cos60°=3,∴AB2=AC2+BC2,则BC⊥AC.∵CF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥CF,而CF∩BC=C,CF,BC⊂平面BCF,∴AC⊥平面BCF.∵EF∥AC,∴EF⊥平面BCF.(2)解以C为坐标原点,分别以直线CA,CB,CF为x轴、y轴、z轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1).设n =(x ,y ,z )为平面MAB 的法向量,由⎩⎪⎨⎪⎧ n ·AB →=0,n ·BM →=0,得⎩⎨⎧ -3x +y =0,λx -y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4. ∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77, ∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。
专题5:向量法做立体几何的线面角问题(解析版)
专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。
新人教版高中数学选修一第一单元《空间向量与立体几何》检测(答案解析)(2)
一、选择题1.在棱长为2的正四面体ABCD 中,点M 满足()1AM xAB yAC x y AD =+-+-,点N 满足()1BN BA BC λλ=+-,当AM 、BN 最短时,AM MN ⋅=( ) A .43-B .43C .13-D .132.如图,已知正四面体1234A A A A ,点5A ,6A ,7A ,8A ,9A ,10A 分别是所在棱中点,点P 满足4414243A P xA A yA A zA A =++且1x y z ++=,记44min ||||A Q A P =,则当1i ≤,10j ≤且i j ≠时,数量积4i j A Q A A ⋅的不同取值的个数是( )A .3B .5C .9D .213.在一直角坐标系中,已知(1,6),(3,8)A B --,现沿x 轴将坐标平面折成60︒的二面角,则折叠后,A B 两点间的距离为( ) A .241B .41C .17D .2174.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为( )A 30B 6C .33D .665.已知向量{},,a b c 是空间的一组基底,则下列可以构成基底的一组向量是( ) A .a b +,a ,a b - B .a b +,b ,a b - C .a b +,c ,a b -D .a b +,2a b -,a b -6.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,且6AB AP ==,2AD =,60BAD BAP DAP ∠=∠=∠=︒,E ,F 分别为PB ,PC 上的点,且2PE EB =,PF FC =,EF =( )A .1B .2C .2D .67.在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D 与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( ) A .2123,θθθθ<<B .2123 ,θθθθ><C .2123 ,θθθθD .2123 ,θθθθ>>8.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11A C 和11A B 的中点,当AE 和BF 所成角的余弦值为14时,AE 与平面11BCC B 所成角的正弦值为( ) A .62B .64C .104D .1029.如图,平行六面体中1111ABCD A B C D -中,各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,则对角线1BD 的长为( )A .1B .2C .3D .210.在正方体1111ABCD A B C D -中,在正方形11DD C C 中有一动点P ,满足1PD PD ⊥,则直线PB 与平面11DD C C 所成角中最大角的正切值为( ) A .1B .2C .312+ D .512+ 11.已知四边形ABCD 为正方形,GD ⊥平面ABCD ,四边形DGEA 与四边形DGFC 也都为正方形,连接,,EF FB BE ,点H 为BF 的中点,有下述四个结论: ①DE BF ⊥; ②EF 与CH 所成角为60︒; ③EC ⊥平面DBF ; ④BF 与平面ACFE 所成角为45︒. 其中所有正确结论的编号是( ) A .①②B .①②③C .①③④D .①②③④12.如图,在60︒二面角的棱上有两点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,若4AB AC BD ===,则线段CD 的长为( )A .3B .16C .8D .4213.在正方体1111ABCD A B C D -中,点E ,F 分别是AB ,1CC 的中点,则直线1A E 与平面11B D F 所成角的正弦值是( ) A 15 B 15C 5 D 30第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题14.已知向量()()0,1,1,4,1,0,29a b a b λ=-=+=,且0λ>,则λ=____________.15.在一直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角,则折叠后A ,B 两点间的距离为__________.16.平行六面体1111ABCD A B C D -中,已知底面四边形ABCD 为正方形,且113A AB A AD π∠=∠=,其中,设1AB AD ==,1AA c =,体对角线12AC=,则c的值是______.17.已知向量(1,2,1)a =-,(2,2,0)b =-,则a 在b 方向上的投影为________. 18.已知A(1,2,0),B(0,1,-1),P 是x 轴上的动点,当0AP BP ⋅=取最小值时,点P 的坐标为__________.19.已知空间三点(0,A 2,3),(2,B 5,2),(2,C -3,6),则以,AB AC 为邻边的平行四边形的面积为______.20.ABC ∆的三个顶点分别是(1,1,2)A -,(5,6,2)B -,(1,3,1)C -,则AC 边上的高BD 长为__________.21.已知点P 是平行四边形ABCD 所在平面外一点,如果(2,1,4),(4,2,0),AB AD =--=(1,2,1)AP =--,对于结论:①AP AB ⊥;②AP AD ⊥;③AP 是平面ABCD 的法向量;④//AP BD .其中正确的说法的序号是__________.22.设平面α的法向量为()1122n =-,,,平面β的法向量为()224n λ=,,,若α⊥β,则2n =_____.23.设向量(2,23,2),(4,21,32)a m n b m n =-+=+-,且//a b ,则a b ⋅的值为__________.24.如图,平行六面体1111ABCD A B C D -的所有棱长均为1,113BAD A AD A AB π∠=∠=∠=,E 为1CC 的中点,则AE 的长度是________.25.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为顶点的三条棱的长均为2,且两两所成角均为60°,则1||AC =__________.26.已知三棱锥 A BCD -每条棱长都为1,点E ,G 分别是AB ,DC 的中点,则GE AC ⋅=__________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意可知M ∈平面BCD ,N ∈直线AC ,根据题意知,当M 为BCD ∆的中心、N 为线段AC 的中点时,AM 、BN 最短,然后利用MC 、MA 表示MN ,利用空间向量数量积的运算律和定义可求出AM MN ⋅的值. 【详解】由共面向量基本定理和共线向量基本定理可知,M ∈平面BCD ,N ∈直线AC , 当AM 、BN 最短时,AM ⊥平面BCD ,BN AC ⊥, 所以,M 为BCD ∆的中心,N 为AC 的中点, 此时,2432sin 60MC ==23MC ∴= AM ⊥平面BCD ,MC ⊂平面BCD ,AM MC ∴⊥,2222232623MA AC MC ⎛⎫∴=-=-= ⎪ ⎪⎝⎭又()12MN MC MA =+,()2114223AM MN AM MC AM MA MA ∴⋅=⋅+⋅=-=-. 故选:A. 【点睛】本题考查空间向量数量积的计算,同时也涉及了利用共面向量和共线向量来判断四点共面和三点共线,确定动点的位置是解题的关键,考查计算能力,属于中等题.2.B解析:B 【分析】由条件可知点P 在平面123A A A 上,并且由几何意义可知4A Q ⊥平面123A A A ,利用数量积的几何意义求4i j A Q A A ⋅的不同取值的个数. 【详解】条件“4414243A P xA A yA A zA A =++且1x y z ++=”,说明点P 在平面123A A A 上,而44min ||A Q A P =说明Q 为平面123A A A 的中心,此时4A Q ⊥平面123A A A ,由向量数量积的几何意义,i j A A 在4A Q 的投影有5种情况:0、41||2A Q ±、4||A Q ±,∴数量积4i j A Q A A ⋅的不同取值的个数是5,故选:B . 【点睛】本题考查空间向量共面定理的应用,数量积的几何意义,重点考查转化思想,数形结合思想,属于中档题型.3.D解析:D 【分析】画出图形,作,AC CD BD CD ⊥⊥,则6,8,4AC BD CD ===,可得0,0AC CD BD CD ⋅=⋅=,沿x 轴将坐标平面折成60︒的二面角,故两异面直线,CA DB所成的角为60︒,结合已知,即可求得答案. 【详解】如图为折叠后的图形,其中作,AC CD BD CD ⊥⊥则6,8,4AC BD CD ===,∴0,0AC CD BD CD ⋅=⋅=沿x 轴将坐标平面折成60︒的二面角∴两异面直线,CA DB 所成的角为60︒.可得:.cos6024CA DB CA DB ︒⋅=⋅= 故由AB AC CD DB =++ 得22||||AB AC CD DB =++2222+22AC CD DB AC CD CD DB AC DB +++⋅⋅+⋅=2222+22AC CD DB AC CD CD DB CA DB +++⋅⋅-⋅=36166448=++-68=||AB ∴=故选:D. 【点睛】本题考查了立体几何体中求线段长度,解题的关键是作图和掌握空间向量的距离求解公式,考查了分析能力和空间想象能力,属于中档题.4.D解析:D 【分析】根据三棱柱的边长和角度关系,设棱长为1,分别求得AB AC ⋅、1AB AA ⋅、1AC AA ⋅的数量积,并用1,,AA AC AB 表示出1AB 和1BC ,结合空间向量数量积的定义求得11AB BC ⋅,再求得1AB 和1BC ,即可由向量的夹角公式求得异面直线1AB 与1BC 所成角的余弦值. 【详解】三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,设棱长为1,则111cos602AB AC ⋅=⨯⨯︒=,1111cos602AB AA ⋅=⨯⨯︒=,1111cos602AC AA ⋅=⨯⨯︒=. 11AB AB AA =+,11BC AA AC AB =+-,所以()()1111AB BC AB AA AA AC AB ⋅=+⋅+-221111AB AA AB AC AB AA AA AC AA AB =⋅+⋅-++⋅-⋅11111112222=+-++-= 而()222111123AB AB AA AB AB AA AA =+=+⋅+=,()2111BC AA AC AB =+-==,所以111111cos 62AB BC AB BC AB BC ⋅<⋅>===⋅,故选:D. 【点睛】本题考查了空间向量的线性运算,空间向量数量积的定义与运算,异面直线夹角的向量求法,属于中档题.5.C解析:C 【分析】空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明A 、B 、D 三个选项中的向量均为共面向量,利用反证法可证明C 中的向量不共面 【详解】 解:()()2a b a b a ++-=,∴a ,a b +,a b -共面,不能构成基底,排除A ; ()()2a b a b b +--=,∴b ,a b +,a b -共面,不能构成基底,排除B ;()()31222a b a b a b -=-++,∴a b +,a b -,2a b -共面,不能构成基底,排除D ; 若c 、a b +,a b -共面,则()()()()c a b m a b m a m b λλλ=++-=++-,则a 、b 、c 为共面向量,此与{},,a b c 为空间的一组基底矛盾,故c 、a b +,a b -可构成空间向量的一组基底. 故选:C . 【点睛】本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属于中档题.6.B解析:B 【分析】把EF 用,,AB AD AP 表示出来,然后平方转化为数量积求模. 【详解】∵2PE EB =,PF FC =, ∴1132EF EB BA AP PF BP AB AP PC =+++=--++ 1111()()()()3232AP AB AB AP AB BC AP AP AB AB AP AB AD AP =--+++-=---+++-111626AB AD AP =-++,又62cos606AB AD AP AD ⋅=⋅=⨯⨯︒=,66cos6018AB AP ⋅=⨯⨯︒=, ∴2222111111111626364366186EF AB AD AP AB AD AP AB AD AB AP AD AP⎛⎫=-++=++-⋅-⋅+⋅ ⎪⎝⎭1111113643661862364366186=⨯+⨯+⨯-⨯-⨯+⨯=. 故选:B . 【点睛】方法点睛:本题考查求向量的模,解题方法是用基底表示出向量,然后平方把模转化为数量积计算,本题在用基底表示向量时直接用向量的加法法则和数乘定义,如果结合减法可以更加容易理解,直接表示为:EF AF AE =-,再结合线性运算的结论分别基底去表示,AE AF .7.A解析:A 【分析】以A 为坐标原点,建立空间直角坐标系,写出点的坐标,分别求出直线的方向向量以及平面的法向量,通过向量法即可求得各个角度的余弦值,再结合余弦函数的单调性即可判断. 【详解】由题可知,直三棱柱111ABC A B C -的底面为锐角三角形,D 是棱BC 的中点, 设三棱柱111ABC A B C -是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则1(0,0,2)A ,1(3,1,2)B ,(0,2,0)C ,33,022D ⎛⎫⎪ ⎪⎝⎭,(0,0,0)A , (0,2,0)AC =,131,22B D ⎛⎫=- ⎪ ⎪⎝⎭,11(3,1,0)A B =,因为直线1B D 与直线AC 所成的角为1θ,10,2πθ⎛⎤∈ ⎥⎝⎦,111||cos ||||2θ⋅∴==⋅B D AC B D AC ,因为直线1B D 与平面111A B C 所成的角为2θ,20,2πθ⎡⎤∈⎢⎥⎣⎦, 平面111A B C 的法向量()0,0,1n =,121||sin ||5∣θ⋅∴==⋅B Dn B D n ,2cos θ∴==, 设平面11A B D 的法向量(,,)m a b c =,则1113031202m A B ab m B D bc ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩, 取a =33,3,2m ⎛⎫=-- ⎪⎝⎭,因为二面角111C A B D --的平面角为3θ, 由图可知,其为锐角,33||2cos ||57m n m n θ⋅∴===⋅∣,231cos cos cos θθθ>>, 由于cos y θ=在区间(0,)π上单调递减,故231θθθ<<, 则2123,θθθθ<<. 故选:A . 【点睛】本题考查利用向量法研究空间中的线面角以及二面角,属综合基础题.8.B解析:B 【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为14,求出t 的值,由此能求出AE 与平面11BCC B 所成角的正弦值.【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则)3,1,0A,()0,0,0B , ()0,2,0C ,33,22E t ⎛⎫⎪ ⎪⎝⎭,31,22F t ⎛⎫ ⎪ ⎪⎝⎭ , 31,22AE t ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BF t ⎛⎫= ⎪ ⎪⎝⎭,因为AE 和BF BF 所成角的余弦值为14, 所以222112cos ,411t AE BF AE BF AE BFt t -⋅===++, 解得:1t =所以31,12AE ⎛⎫=- ⎪ ⎪⎝⎭,平面11BCC B 的法向量()1,0,0n =,所以AE 与平面11BCC B 所成角的正弦值为362sin 421AE nAE nα⋅===⨯ 故选:B 【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面的位置关系等基础知识,属于中档题.9.B解析:B 【分析】在平行六面体中1111ABCD A B C D -中,利用空间向量的加法运算得到11BD BA BB BC =++,再根据模的求法,结合各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,由()()2211BD BA BB BC =++222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅求解.【详解】在平行六面体中1111ABCD A B C D -中,因为各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,所以111111cos120,11cos6022BA BB BA BC BC BB ⋅=⋅=⨯⨯=-⋅=⨯⨯=, 所以11BD BA BB BC =++, 所以()()2211BD BA BB BC =++,222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅,113+22+2222⎛⎫=⨯-⨯⨯= ⎪⎝⎭,所以12BD =,故选:B 【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题.10.D解析:D 【分析】根据题意,可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点.由BPC ∠即为直线PB 与平面11DD C C 所成的角可知当PC 取得最小值时,PB 与平面11DD C C 所成的角最大.而连接圆心E 与C 时,与半圆的交点为P ,此时PC 取得最小值.设出正方体的棱长,即可求得PC ,进而求得tan BPC ∠. 【详解】正方体1111ABCD A B C D -中,正方形11DD C C 内的点P 满足1PD PD ⊥ 可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点,设圆心为E,如下图所示:当直线PB 与平面11DD C C 所成最大角时,点P 位于圆心E 与C 点连线上 此时PC 取得最小值.则BPC ∠即为直线PB 与平面11DD C C 所成的角 设正方体的边长为2,则51PC EC EP =-=-,2BC = 所以51tan 251BC BPC PC +∠===- 故选:D 【点睛】本题考查了空间中动点的轨迹问题,直线与平面夹角的求法,对空间想象能力要求较高,属于中档题.11.B解析:B 【分析】根据题意建立空间直角坐标系,写出所有点的坐标,利用向量法可以判断出正确的结论. 【详解】由题意得,所得几何体可以看成一个正方体,因此,,,DA DC DG 所在直线分别为,,x y z 轴,建立空间直角坐标系, 设2AD DC DG ===,(0,0,0)D ,(2,0,0)A ,(0,2,0)C ,(0,0,2)G ,(2,0,2)E , (0,2,2)F ,(2,2,0)B ,(1,2,1)H ,①(2,0,2)DE =,(2,0,2)BF =-,4040DE BF ∴⋅=-++=,DE BF ∴⊥,DE BF ∴⊥,①是正确的.②(2,2,0)EF =-,(1,0,1)CH =, 设EF 与CH 所成的角为θ,1cos 2||||EF CH EF CH θ⋅∴==⋅,[0,]θπ∈60θ︒∴=,②是正确的.③(2,2,2)EC =--,(2,2,0)DB =,(0,2,2)DF =,设(,,)n x y z 是平面DBF 的一个法向量,DB n DF n ⎧⋅⊥∴⎨⊥⎩,00DB n DF n ⎧⋅=∴⎨⋅=⎩ 00x y y z +=⎧⇒⎨+=⎩取1x =,(1,1,1)n ∴=-,2EC n =-,//EC n ,EC ∴⊥平面DBF ,③是正确.④(2,0,2)BF =-,由图像易得:(1,1,0)m =是平面 ACEFF 的一个法量,设BF 与平面 ACFE 所成的角为θ,0,2πθ⎡⎤∴∈⎢⎥⎣⎦,sin cos ,BF m θ∴= 12||||BF m BF m ⋅==⋅, 30θ︒∴=,④不正确,综上:①②③正确. 故选:B . 【点睛】本题考查异面直线、直线与平面所成角的求法,直线与直线、直线与平面垂直的判断定理的应用,考查空间想象能力以及转化思想的应用,是中档题.12.D解析:D 【分析】分别过点A 、点D 作BD 、AB 的平行线相交于点E ,连接CE ,则由题意可知ACE ∆为等边三角形,CDE ∆为直角三角形,求解CD 即可. 【详解】分别过点A 、点D 作BD 、AB 的平行线相交于点E ,连接CE , 则四边形ABDE 为平行四边形.线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB .AC AB ∴⊥,AE AB ⊥则CAE ∠为二面角的平面角,即60CAE ∠= 4AB AC BD ===4AC BD AE AB DE ∴=====,如图所示.ACE ∴∆为等边三角形,4CE =AC DE ⊥,AE DE ⊥,AC AE A ⋂=,AC ⊂平面ACE ,AE ⊂平面ACE DE ∴⊥平面ACE 又CE ⊂平面ACE∴DE CE ⊥在Rt CDE ∆中22224442CD CE DE =+=+= 故选:D 【点睛】本题考查空间的距离问题,属于中档题.13.D解析:D 【分析】设正方体棱长为2,以1,,AD AB AA 为,,x y z 轴建立空间直角坐标系,求得1(0,1,2)A E =-和平面11B D F 的一个法向量为(1,1,2)n =,利用向量的夹角公式,即可求解. 【详解】设正方体棱长为2,分别以1,,AD AB AA 为,,x y z 轴建立空间直角坐标系, 则111(0,0,2),(0,1,0),(0,2,2),(2,0,2),(2,2,1)A E B D F , 所以1111(0,1,2),(2,2,0),(2,0,1)A E B D B F =-=-=-.设平面11B D F 的法向量为(,,)n x y z =,则1110,0,n B D n B F ⎧⋅=⎪⎨⋅=⎪⎩即220,20,x y x z -=⎧⎨-=⎩令1x =,则1,2y z ==,即平面11B D F 的一个法向量为(1,1,2)n =. 设直线1A E 与平面11B D F 所成角为θ,则11sin 30n A E n A Eθ⋅===⋅ 故选D. 【点睛】本题主要考查了利用空间向量求解直线与平面所成的角,根据几何体的结构特征,建立适当的空间直角坐标系,求得直线的方向向量和平面的一个法向量,利用向量的夹角公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题14.3【分析】利用向量的坐标运算求得求出根据空间向量模的公式列方程求解即可【详解】因为所以可得因为解得故答案为3解析:3 【分析】利用向量的坐标运算求得求出()4,1,a b λλλ+=-,根据空间向量模的公式列方程求解即可. 【详解】因为()()0,1,1,4,1,0,29a b a b λ=-=+=, 所以()4,1,a b λλλ+=-, 可得()2216129λλ+-+=, 因为0λ>,解得3λ=,故答案为3.15.【分析】通过用向量的数量积转化求解距离即可【详解】解:在直角坐标系中已知现沿轴将坐标平面折成的二面角后在平面上的射影为作轴交轴于点所以所以所以故答案为:【点睛】此题考查与二面角有关的立体几何综合题考 解析:【分析】通过用向量的数量积转化求解距离即可 【详解】解:在直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角后,()1,6A -在平面xOy 上的射影为C ,作BD x ⊥轴,交x 轴于点D , 所以AB AC CD DB =++,所以2222222AB AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅2221648268682=++-⨯⨯⨯=, 所以217AB =, 故答案为:217【点睛】此题考查与二面角有关的立体几何综合题,考查了数形结合的思想,属于中档题.16.【分析】根据平方得到计算得到答案【详解】故解得故答案为:【点睛】本题考查了平行六面体的棱长意在考查学生的计算能力和空间想象能力 解析:13【分析】根据11AC AB AD AA =+-,平方得到2224c c +-=,计算得到答案. 【详解】11AC AB AD AA =+-, 故2222211111222AC AB AD AA AB AD AA AB AD AA AB AD AA =+-=+++⋅-⋅-⋅ 2224c c =+-=,解得31c =.31. 【点睛】本题考查了平行六面体的棱长,意在考查学生的计算能力和空间想象能力.17.【分析】根据向量投影的计算公式计算出在方向上的投影【详解】依题意在方向上的投影为【点睛】本小题主要考查向量在另一个向量上的投影的计算考查空间向量的数量积的坐标运算属于基础题 解析:322-【分析】根据向量投影的计算公式,计算出a 在b 方向上的投影. 【详解】依题意a 在b 方向上的投影为()223222222a b b⋅===-+-.【点睛】本小题主要考查向量在另一个向量上的投影的计算,考查空间向量的数量积的坐标运算,属于基础题.18.(00)【分析】设P(x00)求出·=x(x -1)+2=(x -)2+再利用二次函数求出函数的最小值和此时点P 的坐标【详解】设P(x00)则=(x -1-20)=(x -11)·=x(x -1)+2=(x -解析:(12,0,0) 【分析】设P (x,0,0),求出·=x (x -1)+2=(x -)2+,再利用二次函数求出函数的最小值和此时点P 的坐标. 【详解】 设P (x,0,0),则=(x -1,-2,0),=(x ,-1,1),·=x (x -1)+2=(x -)2+, ∴当x =时,·取最小值,此时点P 的坐标为(,0,0).故答案为(12,0,0) 【点睛】(1)本题主要考查空间向量的坐标表示和数量积的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 111222121212(,,),(,,),a x y z b x y z a b x x y y z z ==⋅=++.19.【解析】分析:利用终点坐标减去起点坐标求得对应的向量的坐标进而求得向量的模以及向量的夹角的余弦值应用平方关系求得正弦值由此可以求得以为邻边的平行四边形的面积详解:由题意可得所以所以所以以为邻边的平行 解析:5【解析】分析:利用终点坐标减去起点坐标,求得对应的向量的坐标,进而求得向量的模以及向量的夹角的余弦值,应用平方关系求得正弦值,由此可以求得以AB ,AC 为邻边的平行四边形的面积.详解:由题意可得(2,3,1),(2,1,3)AB AC =-=-,49114,41914AB AC =++==++=,所以2cos7BAC ∠==-,所以sin 7BAC ∠=,所以以AB ,AC 为邻边的平行四边形的面积为S == 点睛:该题考查的是有关空间向量的坐标以及夹角余弦公式,在解题的过程中,需要对相关公式非常熟悉,再者就是要明确平行四边形的面积公式,以及借助于向量的数量积可以求得对应角的余弦值.20.5【解析】分析:设则的坐标利用求得即可得到即可求解的长度详解:设则所以因为所以解得所以所以点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加减或数乘运算(2)解析:5 【解析】分析:设AD AC λ=,则,OD BD 的坐标,利用BD AC ⊥,求得45λ=-,即可得到 912(4,,)55BD =-,即可求解BD 的长度. 详解:设AD λAC =,则()()()OD OA λAC 1,1,2λ0,4,31,14λ,23λ=+=-+-=-+-,所以()BD OD OB 4,54λ,3λ=-=-+-,因为BD AC ⊥, 所以()BD AC 0454λ9λ0⋅=+++=,解得4λ5=-, 所以912BD 4,,55⎛⎫=- ⎪⎝⎭,所以(22912BD 5⎫⎛⎫=-=.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.21.①②③【解析】由在①中所以所以所以是正确的;在②中所以所以所以是正确的;在③中由于且可知是平面的法向量所以是正确的;在④中假设存在实数使得则此时无解所以是不正确的所以正确命题的序号为①②③点睛:本题解析:①②③ 【解析】由(2,1,4),(4,2,0),(1,2,1)AB AD AP =--==--,在①中,2240AP AB ⋅=--+=,所以AP AB ⊥,所以AP AB ⊥,所以是正确的; 在②中,4400AP AD ⋅=-++=,所以⊥AP AD ,所以AP AD ⊥,所以是正确的; 在③中,由于AP AB ⊥,AP AD ⊥,且AB AD A ⋂=,可知AP 是平面ABCD 的法向量,所以是正确的;在④中,(2,3,4)BD AD AB =-=,假设存在实数λ使得λ=AP BD ,则122314λλλ-=⎧⎪=⎨⎪-=⎩,此时无解,所以是不正确的,所以正确命题的序号为①②③.点睛:本题主要考查了命题的真假判定问题,其中解答中涉及到空间向量的数量积的运算,空间向量的坐标表示,平面法向量的概念,同时考查了向量垂直、向量平行等基础知识,着重考查了推理能力与计算能力,属于基础题,解答中熟记向量的坐标运算的基本公式是解答的关键.22.3【分析】根据题意可知⊥所以•0解出λ的值从而得出利用模长公式求出向量模长即可【详解】平面α的法向量为平面β的法向量为因为α⊥β所以⊥所以•2﹣2λ+8=0解得λ=5所以(254)所以3故答案为:3解析:【分析】根据题意可知1n ⊥2n ,所以1n •2n =0,解出λ的值,从而得出2n ,利用模长公式求出向量模长即可. 【详解】平面α的法向量为()1122n =-,,,平面β的法向量为()224n λ=,,, 因为α⊥β,所以1n ⊥2n ,所以1n •2n =2﹣2λ+8=0,解得λ=5,所以2n =(2,5,4), 所以222n ==故答案为:【点睛】本题主要考查法向量及其模长公式,属于基础题.23.168【分析】根据向量设列出方程组求得得到再利用向量的数量积的运算公式即可求解【详解】由题意向量设又因为所以即解得所以所以故答案为:【点睛】本题主要考查了向量的共线的坐标运算以及向量的数量积的运算其解析:168 【分析】根据向量//a b ,设λab ,列出方程组,求得12λ=,得到(2,4,8),(4,8,16)a b ==,再利用向量的数量积的运算公式,即可求解. 【详解】由题意,向量//a b ,设λab ,又因为(2,23,2),(4,21,32)a m n b m n =-+=+-,所以(2,23,2)(4,21,32)m n m n λ-+=+-,即2423(21)2(32)m m n n λλλ=⨯⎧⎪-=+⎨⎪+=-⎩,解得17,,622m n λ===, 所以(2,4,8),(4,8,16)a b ==,所以2448816168a b ⋅=⨯+⨯+⨯=.故答案为:168.【点睛】本题主要考查了向量的共线的坐标运算,以及向量的数量积的运算,其中解答中熟记向量的共线条件,熟练应用向量的数量积的运算公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.24.【分析】根据向量的线性运算得出根据向量的数量积运算即可求出结果【详解】解:由题可知所以得故答案为:【点睛】本题考查向量的运算涉及到线性运算和向量的数量积同时考查学生的化归和转化思想【分析】 根据向量的线性运算,得出112AE AB BC CC =++,根据向量的数量积运算,即可求出结果.【详解】 解:由题可知,112AE AB BC CC =++, 所以2211()2AE AB BC CC =++ 222111124AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅ 22211112cos60cos60cos604AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅11111711242224=+++⨯++= 得172AE =. . 【点睛】本题考查向量的运算,涉及到线性运算和向量的数量积,同时考查学生的化归和转化思想. 25.【分析】设且利用数量积运算即得解【详解】设故答案为:【点睛】本题考查了空间向量的模长数量积运算考查了学生空间想象数学运算能力属于中档题 解析:【分析】设1,,AB a AD b AA c===,且1|||++|AC a b c =,利用数量积运算即得解. 【详解】设1,,||||||2,,,60o AB a AD b AA c a b c a b a c c b ===∴===<>=<>=<>=, 222221|||++|||||||22224AC a b c a b c a b a c c b ==+++⋅+⋅+⋅=||26AC ∴=故答案为:【点睛】本题考查了空间向量的模长,数量积运算,考查了学生空间想象,数学运算能力,属于中档题.26.【分析】构造一个正方体三棱锥放入正方体中建立坐标系利用数量积公式求解即可【详解】将三棱锥放入如下图所示的正方体中且棱长为分别以为轴故答案为:【点睛】本题主要考查了求空间向量的数量积属于中档题解析:12- 【分析】构造一个正方体,三棱锥A BCD -放入正方体中,建立坐标系利用数量积公式求解即可.【详解】将三棱锥A BCD -放入如下图所示的正方体中,且棱长为2分别以,,OC OD OB 为,,x y z 轴(,(,0,0),(,(,222244442A C G E(0,02,),(0,GE AC ==12(=2GE AC ∴⋅=- 故答案为:12-【点睛】本题主要考查了求空间向量的数量积,属于中档题.。
03教学设计_1.4.1 用空间向量研究直线、平面的位置关系(2)
1.4.1 用空间向量研究直线、平面的位置关系(2)本节课选自《2019人教A 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习运用空间向量解决线线、线面、面面的位置关系,主要是垂直。
在向量坐标化的基础上,将空间中线线、线面、面面的位置关系,转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决立体几何问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。
1.教学重点:用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系2.教学难点:用向量方法证明空间中直线、平面的垂直关系多媒体一、情境导学类似空间中直线、平面平行的向量表示,在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?二、探究新知空间中直线、平面垂直的向量表示位置关系向量表示线线垂直设直线l1,l2的方向向量分别为μ1,μ2,则l1⊥l2⇔μ1⊥μ2⇔μ1·μ2=0线面垂直设直线l的方向向量为μ,平面α的法向量为n,则l⊥α⇔μ∥n⇔∃λ∈R,使得μ=λn面面垂直设平面α,β的法向量分别为n1,n2,则α⊥β⇔n1⊥n2⇔n1·n2=01.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.(1)若两条直线的方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )(4)若两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β互相垂直.( )答案: (1)× (2)√ (3)× (4)√2.设平面α的法向量为(1,2,-2),平面β的法向量(-2,-4,k ),若α⊥β,则k=( ) A.2 B.-5C.4D.-2答案:B解析:因为α⊥β,所以-2-8-2k=0,解得k=-5.例1如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,四边形ABCD 是矩形,PA=AB=1,点F 是PB 的中点,点E 在边BC 上移动.求证:无论点E 在边BC 上的何处,都有PE ⊥AF.思路分析只需证明直线PE 与AF 的方向向量互相垂直即可. 证明:(方法1)以A 为原点,以AD ,AB ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD=a ,则A (0,0,0),P (0,0,1),B (0,1,0),C (a ,1,0),于是F (0,12,12).∵E 在BC 上,∴设E (m ,1,0),∴PE ⃗⃗⃗⃗⃗ =(m ,1,-1), AF ⃗⃗⃗⃗⃗ =(0,12,12). ∵PE⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =0,∴PE ⊥AF . ∴无论点E 在边BC 上何处,总有PE ⊥AF .(方法2)因为点E 在边BC 上,可设BE⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ , 于是PE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ )·12(AP ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=12(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +λBC ⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ ) =12(PA ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +PA ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ ++λBC ⃗⃗⃗⃗⃗ ·AB⃗⃗⃗⃗⃗ ++λBC ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ )=12(0-1+1+0+0+0)=0,因此PE ⃗⃗⃗⃗⃗ ⊥AF ⃗⃗⃗⃗⃗ . 故无论点E 在边BC 上的何处,都有PE ⊥AF . 延伸探究本例条件不变,求证:AF ⊥BC. 证明:同例题建系,易知AF ⃗⃗⃗⃗⃗ += 0,12,12,BC ⃗⃗⃗⃗⃗ +=(a ,0,0),因为AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +=0,所以AF ⊥BC.利用向量方法证明线线垂直的方法(1)坐标法:建立空间直角坐标系,写出相关点的坐标,求出两直线方向向量的坐标,然后通过数量积的坐标运算法则证明数量积等于0,从而证明两条直线的方向向量互相垂直;(2)基向量法:利用空间向量的加法、减法、数乘运算及其运算律,结合图形,将两直线所在的向量用基向量表示,然后根据数量积的运算律证明两直线所在的向量的数量积等于0,从而证明两条直线的方向向量互相垂直.跟踪训练1在正方体ABCD-A 1B 1C 1D 1中,E 为AC 的中点.求证:(1)BD 1⊥AC ;(2)BD 1⊥EB 1.(2)∵BD 1⃗⃗⃗⃗⃗⃗⃗⃗ +=(-1,-1,1),EB 1⃗⃗⃗⃗⃗⃗⃗ =(12,12,1) ,∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EB 1⃗⃗⃗⃗⃗⃗⃗ +=(-1)×12++(-1)×12+1×1=0,∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⊥EB 1⃗⃗⃗⃗⃗⃗⃗ ,∴BD 1⊥EB 1.证明:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B (1,1,0),D 1(0,0,1),A (1,0,0),C (0,1,0),E (12,12,0),B 1(1,1,1).(1)∵BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-1,1), AC⃗⃗⃗⃗⃗ =(-1,1,0), ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(-1)×(-1)+(-1)×1+1×0=0. ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,∴BD 1⊥AC.例2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E ,F ,M 分别为棱AB ,BC ,B 1B 的中点.求证:D 1M ⊥平面EFB 1.思路分析一种思路是不建系,利用基向量法证明D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 与平面EFB 1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 与平面EFB 1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB 1的法向量,然后说明D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 与法向量共线,从而证得结论.证明:(方法1)因为E ,F ,M 分别为棱AB ,BC ,B 1B 的中点, 所以D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =D 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ +12B 1B ⃗⃗⃗⃗⃗⃗⃗ , 而B 1E ⃗⃗⃗⃗⃗⃗⃗ =B 1B ⃗⃗⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =B 1B ⃗⃗⃗⃗⃗⃗⃗ −12DC ⃗⃗⃗⃗⃗ ,于是D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·B 1E ⃗⃗⃗⃗⃗⃗⃗ =(DA ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ +12B 1B ⃗⃗⃗⃗⃗⃗⃗ )·(B 1B ⃗⃗⃗⃗⃗⃗⃗ −12DC ⃗⃗⃗⃗⃗ )=0-0+0-12+12−14×0=0,因此D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥B 1E ⃗⃗⃗⃗⃗⃗⃗ .同理D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥B 1F ⃗⃗⃗⃗⃗⃗⃗ ,又因为B 1E ⃗⃗⃗⃗⃗⃗⃗ ,B 1F ⃗⃗⃗⃗⃗⃗⃗ 不共线,因此D 1M ⊥平面EFB 1.(方法2)分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.则D 1(0,0,1),M (1,1,12),B 1(1,1,1),E (1,12,0),F (12,1,0),于是D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,−12),B 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,−12,−1),B 1F ⃗⃗⃗⃗⃗⃗⃗ =(−12,0,−1),因此D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·B 1E ⃗⃗⃗⃗⃗⃗⃗ =1×0+1×(−12)+(−12)×(-1)=0,故D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥B 1E ⃗⃗⃗⃗⃗⃗⃗ ; 又D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·B 1F ⃗⃗⃗⃗⃗⃗⃗ =1×(−12)+1×0+(−12)×(-1)=0,故D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥B 1E ⃗⃗⃗⃗⃗⃗⃗ .又B 1E ⃗⃗⃗⃗⃗⃗⃗ ,B 1F ⃗⃗⃗⃗⃗⃗⃗ 不共线,因此D 1M ⊥平面EFB 1.(方法3)分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则D 1(0,0,1),M (1,1,12),B 1(1,1,1),E (1,12,0),F (12,1,0),于是D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,−12), B 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,−12,−1),B 1F ⃗⃗⃗⃗⃗⃗⃗ =(−12,0,−1),设平面EFB 1的法向量为n =(x ,y ,z ), 于是n ⊥B 1E ⃗⃗⃗⃗⃗⃗⃗ ,n ⊥B 1F ⃗⃗⃗⃗⃗⃗⃗ ,因此{−12y −z =0,−12x −z =0, 取x=2,则y=2,z=-1,即n =(2,2,-1),而(1,1,−12)=12(2,2,-1),即D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =12n , 所以D 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥n ,故D 1M ⊥平面EFB 1.利用空间向量证明线面垂直的方法(1)基向量法:选取基向量,用基向量表示直线所在的向量,在平面内找出两个不共线的向量,也用基向量表示,然后根据数量积运算律分别证明直线所在向量与两个不共线向量的数量积均为零,从而证得结论. (2)坐标法:建立空间直角坐标系,求出直线方向向量的坐标以及平面内两个不共线向量的坐标,然后根据数量积的坐标运算法则证明直线的方向向量与两个不共线向量的数量积均为零,从而证得结论. (3)法向量法:建立空间直角坐标系,求出直线方向向量的坐标以及平面法向量的坐标,然后说明直线方向向量与平面法向量共线,从而证得结论.跟踪训练2如图,在四棱锥P-ABCD 中,AB ∥CD ,AB ⊥AD ,AB=4 ,CD=2, AD=2√2,PA ⊥平面ABCD ,PA=4. 求证:BD ⊥平面PAC.证明:因为AP ⊥平面ABCD ,AB ⊥AD ,所以以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系. 则B (4,0,0),P (0,0,4), D (0,2√2,0),C (2,2√2,0), 所以BD⃗⃗⃗⃗⃗⃗ =(-4,2√2,0),AC⃗⃗⃗⃗⃗ =(2,2√2,0),AP ⃗⃗⃗⃗⃗ =(0,0,4). 所以BD⃗⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(-4)×2+2√2×2√2+0×0=0, BD⃗⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =(-4)×0+2√2×0+0×4=0,所以BD ⊥AC ,BD ⊥AP . 因为AP ∩AC=A ,AC ⊂平面P AC ,AP ⊂平面P AC , 所以BD ⊥平面P AC.例3如图所示,在直三棱柱ABC-A 1B 1C 1中,AB ⊥BC ,AB=BC=2,BB 1=1,点E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C.思路分析要证明两个平面垂直,由两个平面垂直的条件,可证明这两个平面的法向量垂直,转化为求两个平面的法向量n 1,n 2,证明n 1·n 2=0.解:由题意得AB ,BC ,B 1B 两两垂直.以点B 为原点,BA ,BC ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E 0,0,12,则AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,1),AC ⃗⃗⃗⃗⃗ =(-2,2,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-2,2,1), AE ⃗⃗⃗⃗⃗ =-2,0,12. 设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1).则{n 1·AA 1⃗⃗⃗⃗⃗⃗⃗ =0,n 1·AC⃗⃗⃗⃗⃗ =0⇒{z 1=0,−2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则{n 2·AC 1⃗⃗⃗⃗⃗⃗⃗ =0,n 2·AE ⃗⃗⃗⃗⃗ =0⇒{−2x 2+2y 2+z 2=0,−2x 2+12z 2=0, 令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4).∵n 1·n 2=1×1+1×(-1)+0×4=0, ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C.利用空间向量证明面面垂直的方法1.利用空间向量证明面面垂直通常有两个途径:一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直.2.向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系,恰当建系或用基向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度.跟踪训练3如图,在五面体ABCDEF 中,FA ⊥平面ABCD , AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=12AD 求证:平面AMD ⊥平面CDE.分析:因为FA ⊥平面ABCD ,所以可以以点A 为坐标原点建立空间直角坐标系.证明:如图,建立空间直角坐标系,点A 为坐标原点,设AB=1,依题意得A (0,0,0),M (12,1,12) ,C (1,1,0),D (0,2,0),E (0,1,1),则AM ⃗⃗⃗⃗⃗⃗ =(12,1,12),CE⃗⃗⃗⃗⃗ +=(-1,0,1),AD ⃗⃗⃗⃗⃗ =(0,2,0),可得AM ⃗⃗⃗⃗⃗⃗ ·CE ⃗⃗⃗⃗⃗ =0,CE ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,因此CE ⊥AM ,CE ⊥AD. 又AM ∩AD=A ,∴CE ⊥平面AMD.又CE ⊂平面CED ,∴平面AMD ⊥平面CED.金题典例 如图,在直三棱柱ABC -A 1B 1C 1中,底面是以∠ABC 为直角的等腰直角三角形,AC=2a ,BB 1=3a ,D 是A 1C 1的中点,E 是B 1C 的中点.(1)求cos <BE ⃗⃗⃗⃗⃗ ,CA 1⃗⃗⃗⃗⃗⃗⃗ >.(2)在线段AA 1上是否存在点F ,使CF ⊥平面B 1DF ?若存在,求出|AF ⃗⃗⃗⃗⃗ |;若不存在,请说明理由.解:(1)以B 为坐标原点,建立如图所示的空间直角坐标系.∵AC=2a ,∠ABC=90°,∴AB=BC=√2a. ∴B (0,0,0),A (√2a ,0,0),C (0,√2a ,0),B 1(0,0,3a ),A 1(√2a ,0,3a ),C 1(0,√2a ,3a ),D (√22a,√22a,3a),E (0,√22a,32a), CA 1⃗⃗⃗⃗⃗⃗⃗ =(√2a ,-√2a ,3a ), BE ⃗⃗⃗⃗⃗ =(0,√22a,32a). ∴|CA 1⃗⃗⃗⃗⃗⃗⃗ |=√13a ,|BE ⃗⃗⃗⃗⃗ |=√112a ,CA 1⃗⃗⃗⃗⃗⃗⃗·BE ⃗⃗⃗⃗⃗ =0-a 2+92a 2=72a 2. ∴cos <BE ⃗⃗⃗⃗⃗ ,CA 1⃗⃗⃗⃗⃗⃗⃗ >=BE⃗⃗⃗⃗⃗ ·CA 1⃗⃗⃗⃗⃗⃗⃗⃗ |BE ⃗⃗⃗⃗⃗ ||CA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=7√143143.(2)存在.理由如下:假设存在点F ,使CF ⊥平面B 1DF.不妨设AF=b ,则F (√2+a ,0,b ),CF ⃗⃗⃗⃗⃗ +=(√2+a ,-√2+a ,b ),B 1F ⃗⃗⃗⃗⃗⃗⃗ +=(√2+a ,0,b-3a ),B 1D ⃗⃗⃗⃗⃗⃗⃗ =(√22a,√22a,0). ∵CF ⃗⃗⃗⃗⃗ ·B 1D ⃗⃗⃗⃗⃗⃗⃗ =a 2-a 2+0=0,∴CF ⃗⃗⃗⃗⃗ ⊥B 1D ⃗⃗⃗⃗⃗⃗⃗ 恒成立.由B 1F ⃗⃗⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ =2a 2+b (b-3a )=b 2-3ab+2a 2=0,得b=a 或b=2a , ∴当|AF ⃗⃗⃗⃗⃗ |=a 或|AF ⃗⃗⃗⃗⃗ |=2a 时,CF ⊥平面B 1DF . 应用空间向量解答探索性(存在性)问题 立体几何中的存在探究题,解决思路一般有两个:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论;(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在. 三、达标检测B.平面AED ⊥平面A 1FD 1C.平面AED 与平面A 1FD 1相交但不垂直D.以上都不对答案:B 解析:以D 为原点, DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 分别为x ,y ,z 建立空间直角坐标系,求出平面AED 的法向量n 1与平面A 1FD 1的法向量n 2.因为n 1·n 2=0,所以n 1⊥n 2,故平面AED ⊥平面A 1FD 1.3.若直线l 的方向向量是a =(1,0,-2),平面β的法向量是b =(-1,0,2),则直线l 与β的位置关系是 . 答案:l ⊥β 解析:因为a ∥b ,所以l ⊥β.4.如图,在四面体ABCD 中,AB ⊥平面BCD ,BC=CD , ∠BCD=90°,∠ADB=30°,E ,F 分别是AC ,AD 的中点, 求证:平面BEF ⊥平面ABC.证明:建立空间直角坐标系,如图,取A (0,0,a ),则易得B (0,0,0), C√32a ,√32a ,0,D (0,√3a ,0),E√34a ,√34a ,a2,F (0,√32a,a2).∵∠BCD=90°,∴CD ⊥BC.∵AB ⊥平面BCD ,∴AB ⊥CD.又∵AB ∩BC=B ,∴CD ⊥平面ABC. ∴CD⃗⃗⃗⃗⃗ =(−√32a,√32a,0)为平面ABC 的一个法向量.设平面BEF 的法向量n =(x ,y ,z ),∴n ·EF ⃗⃗⃗⃗⃗ =0, 即(x ,y ,z )·(−√34a,√34a,0)=0.∴x=y.由n ·BF⃗⃗⃗⃗⃗ =0,即(x ,y ,z )·(0,√32a,a 2)=0, 有√32ay+a2z=0,∴z=-√3y. 取y=1,得n =(1,1,-√3). ∵n ·CD⃗⃗⃗⃗⃗ =(1,1,-√3)·(−√32a,√32a,0)=0, ∴n ⊥CD ⃗⃗⃗⃗⃗ .∴平面BEF ⊥平面ABC.5.如图所示,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点.(1)求证://NM 平面11A ADD ; (2)求证:NM ⊥平面11A B M .证明:(1)以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点,(0M ∴,1,1),(1N ,1,0),(1MN =,0,1)-,平面11A ADD 的法向量(0n =,1,0),∴0MN n =,MN ⊂/平面11A ADD ,//MN ∴平面11A ADD .(2)1(1A ,0,2),1(1B ,2,2),11(0A B =,2,0),1(1A M =-,1,1)-,∴11·0MN A B =,1·0MN AM =,11MN A B ∴⊥,1MN A M ⊥, 1111A B A M A ⋂=,NM ∴⊥平面11A B M .四、小结五、课时练教学中主要突出了几个方面:一是突出类比学习,让学生类比向量解决平行问题,进而学习运用空间向量解决垂直问题,发展学生的类比思想和逻辑推理能力。
用空间向量研究直线、平面的位置关系(第2课时)高二数学(人教A版2019选择性必修第一册)
B
所以A1C是平面BDD1B1的法向量. 所以A1C 平面BDD1B1 .
例5 证明“平面与平面垂直的判定定理”:若一个平面过另一个平面的垂线, 则这两个平面垂直.
已知:如图, l , l , 求证: .
证明:取直线l的方向向量u, 平面的法向量n. 因为l , 所以u是平面的法向量.
中点, F是BC的中点. 求证:平面EAD1 平面EFD1.
证明:建立如图所示的空间直角坐标系, 则A(1, 0, 0), D1(0, 0, 1), E(0,1, 0),
F
1 2
, 2, 0 ,
AD1
(1, 0,1),
AE
(1,1, 0),
ED1
z
(0, 1,1),
EF
1 2
,1,
0
设n1 ( x1, y1, z1 )是平面EAD1的法向量,
那么是否能用这些向量来刻画空间直线、平面的平行 、垂直关系呢?
首先来看平行的问题.
环节二:观察分析,感知概念
知识点1:空间中直线、平面的平行
我们知道,直线的方向向量和平面的法向量是确定空间中的直线和平面 的关键量.
那么是否能用这些向量来刻画空间直线、平面的平行、垂直关系呢? 首先来看平行的问题.
思考 由直线与直线、直线与平面或平面与平面的平行关系,可以得到
EF n,
DE
C y
又EF 平面ACD1, EF / / 平面ACD1. A
B
x
环节四:辨析理解,深化概念
知识点2:空间中直线、平面的垂直
思考 类似空间中直线、平面平行的向量表示在直线与直线、直线与平面、平面与 平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?
用空间向量求直线与平面所成的角(二)(人教A版)(含答案)
用空间向量求直线与平面所成的角(二)(人教A版)一、单选题(共7道,每道14分)1.如图,在三棱锥P-ABC中,PA=PB=PC=BC,且∠BAC=90°,AB=AC,若、分别是、上,且,,直线MN与底面ABC所成角的正弦值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角2.如图,在四棱锥A-BCDE中,AC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1. (1)直线AE与平面ABC所成角的正切值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角3.(上接第2题)(2)直线AB与平面ADE所成角的正弦值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角4.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,高为2,底面是边长为2的正三角形. (1)若P为A1C1的中点,则直线PB与平面BCC1B1所成角的正弦值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角5.(上接第4题)(2)若P为线段A1C1上一点,且直线PB与平面BCC1B1所成的角的正弦值为,则的长为( )A. B.1C. D.答案:A解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角6.如图,已知△ABS是等边三角形,四边形ABCD是正方形,平面ABS⊥平面ABCD.(1)直线SC与平面ABCD所成角的正弦值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角7.(上接第6题)(2)若为线段SB上一点,且平面,则( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角第11页共11页。
2020-2021人教版数学2-1教师用书:第3章 3
2020-2021学年人教A版数学选修2-1教师用书:第3章3.2 第3课时空间向量与空间角含解析第3课时空间向量与空间角学习目标核心素养1.会用向量法求线线、线面、面面的夹角.(重点、难点) 2.正确区分向量夹角与所求线线角、面面角的关系.(易错点)通过利用空间向量求异面直线所成的角、直线与平面所成的角和二面角的学习,提升学生的逻辑推理、数学运算的核心素养.空间角的向量求法角的分类向量求法范围两异面直线l1与l2所成的角θ设l1与l2的方向向量为a,b,则cos θ==错误!错误!直线l与平面α所成的角θ设l的方向向量为a,平面α的法向量为n,则sin θ==错误!错误!二面角α-l。
β的平面角θ设平面α,β的法向量为n1,n2,则|cos θ|==错误![0,π]量所成的角有怎样的关系?(2)二面角与二面角的两个半平面的法向量所成的角有怎样的关系?[提示](1)设n为平面α的一个法向量,a为直线a的方向向量,直线a与平面α所成的角为θ,则θ=错误!(2)条件平面α,β的法向量分别为u,υ,α,β所构成的二面角的大小为θ,〈u,υ〉=φ,图形关系θ=φθ=π-φ计算cos θ=cos φcos θ=-cos φ1.如图所示,在正方体ABCD。
A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小是()A.等于90°B.小于90°C.大于90°D.不确定A[A1B1⊥平面BCC1B1,故A1B1⊥MN,则错误!·错误!=(错误!+错误!)·错误!=错误!·错误!+错误!·错误!=0,∴MP ⊥MN ,即∠PMN =90°.]2.已知二面角α.l 。
β等于θ,异面直线a ,b 满足a ⊂α,b ⊂β,且a ⊥l ,b ⊥l ,则a ,b 所成的角等于( )A .θB .π-θC .错误!-θD .θ或π-θD [应考虑0≤θ≤错误!与错误!<θ≤π两种情况.]3.已知向量m ,n 分别是直线l 与平面α的方向向量、法向量,若cos 〈m ,n >=-错误!,则l 与α所成的角为( )A .30°B .60°C .150°D .120°B [设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=错误!,∴θ=60°,应选B .]4.正方体ABCD -A ′B ′C ′D ′中,M ,N 分别是棱BB ′和B ′C ′的中点,则异面直线MN 与AD 所成角的大小为________.45° [以错误!,错误!,错误!为正交基底建立空间直角坐标系O .xyz ,设正方体棱长为1,则A (1,0,0),M 错误!,N 错误!,∴AD→=(-1,0,0),错误!=错误!. ∵cos 〈错误!,错误!>=错误!=错误!=错误!,∴<错误!,错误!〉=45°,即MN 和AD 所成角的大小为45°.]求两条异面直线所成的角【例1】如图,在三棱柱OAB-O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA=错误!,求异面直线A1B与AO1所成角的余弦值的大小.[解]建立如图所示的空间直角坐标系,则O(0,0,0),O1(0,1,3),A(错误!,0,0),A1(错误!,1,错误!),B(0,2,0),∴错误!=(-错误!,1,-错误!),错误!=(错误!,-1,-错误!).∴|cos<错误!,错误!〉=错误!=错误!=错误!.∴异面直线A1B与AO1所成角的余弦值为错误!.1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程,只需对相应向量进行运算即可.2.由于两异面直线夹角θ的范围是错误!,而两向量夹角α的范围是[0,π],故应有cos θ=|cos α|,求解时要特别注意.错误!1.如图所示,在平行六面体ABCD。
高中数学第一章用空间向量研究距离夹角问题第2课时夹角问题课件新人教A版选择性必修第一册
解 设正方体棱长为1.以B为坐标原点,BA,BE,BC所在直线分别为x轴、y轴、
z轴建立空间直角坐标系B-xyz(图略),则
M
1
1
,0, 2
2
,N
1 1
, ,0
2 2
,A(1,0,0),B(0,0,0).
设平面 AMN 的法向量 n1=(x,y,z).
由于 =
(1)证明 由已知得AM=
2
AD=2.
3
如图,取BP的中点T,连接AT,TN,由N为PC的中点知TN∥BC,TN=
1
BC=2.
2
又AD∥BC,故TN AM,所以四边形AMNT为平行四边形,于是MN∥AT.因为
AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.
(2)解 如图,取BC的中点E,连接AE.
则B1(2,2,2),M(1,1,0),D1(0,0,2),N(1,0,0),
∴1 =(-1,-1,-2),1 =(1,0,-2),
∴B1M 与 D1N 所成角的余弦值为
|cos<1 , 1 >|=
-1+4
√1+1+4× √1+4
=
√30
.
10
知识点2 利用向量方法求直线与平面所成的角
=
所以直线 AN 与平面 PMN
8√5
.
25
8√5
所成角的正弦值为 25 .
规律方法 若直线l与平面α的夹角为θ,利用法向量计算θ的步骤如下
变式训练2
在棱长为1的正方体ABCD-A1B1C1D1中,E为CC1的中点,则直线A1B与平面
BDE所成的角为(
1.4空间向量的应用-【新教材】人教A版(2019)高中数学选择性必修第一册同步讲义
2.4 空间向量的应用 1、如图,直线α⊥l ,取直线l 的方向向量a ,则称向量a 为平面α为平面α的法向量给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合}|{0=⋅AP a P2、求直线与平面所成的角(1)设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |. (2)线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|3、求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).(3)二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.4、设a AP =,则向量AP 在直线l 上的投影向量u u a AQ)(⋅=,在APQ Rt ∆中,由勾股定理,得 2222)(||||u a a AQ AP PQ ⋅-=-=5、点P 到平面α的距离是AP 在直线l 上的投影向量QP 的长度:||||||||||||n n AP n n AP n n AP PQ ⋅=⋅=⋅= 知识梳理题型一 法向量例 1 已知平面α的一个法向量是(2,1,1)-,//αβ,则下列向量可作为平面β的一个法向量的是( )A .()4,22-,B .()2,0,4C .()215--,,D .()42,2-,【答案】D【分析】 两个平面平行,其法向量也平行,即可判断各选项.【详解】平面α的一个法向量是(2,1,1)-,//αβ,设平面β的法向量为(),,x y z ,则()(2,1,1),,,0x y z λλ=≠-,对比四个选项可知,只有D 符合要求,故选:D.1、如图,在正方体ABCD1111A B C D 中,以D 为原点建立空间直角坐标系,E 为B 1B 的中点,F 为11A D 的中点,则下列向量中,能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)【答案】B 巩固练习 知识典例【分析】由A 、E 、F 的坐标算出AE =(0,2,1),AF =(﹣1,0,2).设n =(x ,y ,z )是平面ABC 的一个法向量,利用垂直向量数量积为零的方法建立关于x 、y 、z 的方程组,再取y=1即可得到向量n 的坐标,从而可得答案.【详解】设正方体棱长为2,则A (2,0,0),E (2,2,1),F (1,0,2),∴AE =(0,2,1),AF =(﹣1,0,2)设向量n =(x ,y ,z )是平面A EF 的一个法向量则2020n AE y z n AF x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取y=1,得x=﹣4,z=﹣2∴n =(﹣4,1,﹣2)是平面AEF 的一个法向量因此可得:只有B 选项的向量是平面AEF 的法向量故选B .2、在空间直角坐标系中,已知三点(1,2,1)A --,(0,3,1)B -,(2,2,1)C -,若向量n 与平面ABC 垂直,且21n =,则n 的坐标为________.【答案】(2,4,1)--或()2,4,1-【分析】先求得,AB AC ,设(),,n x y z =,利用0,0,21n AB n AC n ⋅=⋅==列方程组,解方程组求得n 的坐标.【详解】由A ()1,2,1--,()0,3,1B -,()2,2,1C -,可得()()1,1,2,1,0,2AB AC =--=, 设(),,n x y z =,根据题意可得0021n AB n AC n ⎧⋅=⎪⋅=⎨⎪=⎩,可得222202021x y z x z x y z --+=⎧⎪+=⎨⎪++=⎩,解得241x y z =⎧⎪=-⎨⎪=-⎩或241x y z =-⎧⎪=⎨⎪=⎩.所以()2,4,1n =--或2,4,1)n =-(.故答案为:()2,4,1--或2,4,1)(-. 题型二 线面角例 2 在棱长为1的正方体1111ABCD A BC D -中,点M 为棱1CC 的中点,则直线1B M 与平面11A D M 所成角的正弦值是( )A .215B .25C .35D .45【答案】B【分析】通过建立空间直角坐标系,求出平面的法向量,进而求出线面角的正弦值.【详解】建立如图所示的空间直角坐标系,则1111(1,0,1),(0,0,1),(0,1,),(1,1,1)2A D MB 11(1,0,0)=-A D ,11(0,1,)2=-D M ,11(1,0,)2=MB设平面11A D M 的法向量为(,,)m x y z = 则1110=01002x A D m y z D M m -=⎧⎧⋅⎪⎪⇒⎨⎨-=⋅=⎪⎩⎪⎩令1y =可得2z =,所以(0,1,2)=m 设直线1B M 与平面11A D M 所成角为θ,1112sin 5552θ⋅===⋅⨯m MB m MB故选:B巩固练习1、如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,6AC BC ==,D 、E 分别为棱AB 、BC 的中点,M 是棱1AA 上的点,满足6tan 6MDA ∠=.(1)证明:DE ⊥平面11B BCC ;(2)求直线CD 与平面MDE 所成角的正弦值.【答案】(1)证明见解析;(2)24. 【分析】(1)由已知证得1BB ⊥DE ,DE BC ⊥,由线面垂直的判定定理可得证;(2)以点C 为坐标原点建立空间直角坐标系C xyz -如下图所示,根据线面角的向量求解方法可得答案.【详解】(1)三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥平面 ABC ,又DE ⊂平面ABC ,所以1BB ⊥DE , 又90ACB ∠=︒,6AC BC ==, D 、E 分别为棱AB 、BC 的中点,所以 //DE AC ,所以DE BC ⊥, 又1BB BC B =,BC ⊂平面11B BCC ,1BB ⊂平面11B BCC ,所以DE ⊥平面11B BCC ;(2)以点C 为坐标原点建立空间直角坐标系C xyz -如下图所示, 由(1)得1322AD AB ==,又6tan MDA ∠=,所以3AM = 所以()()()(0,0,0,3,3,0,0,3,0,3C D E M ,所以()()()3,3,3,6,3,3,3,3,0DM EM CD =-=-=, 设面MDE 的法向量为(),,n x y z =,则00n DM n EM ⎧⋅=⎪⎨⋅=⎪⎩,所以33+3063+30x y z x y z ⎧-=⎪⎨-=⎪⎩,令1y =,得0,3z =x ,所以(0,1,3n =,设直线CD 与平面MDE 所成角为θ,则32sin 4322θ==⨯,所以直线CD 与平面MDE 所成角的正弦值为24.题型三 点到面的距离 例 3 如图,棱长为1的正方体1111ABCD A BC D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .24C .22D .32【答案】B【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA ,利用点到平面距离的向量公式即得解.【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C111(,,0)22OD ∴=-- 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD1A D ∴⊥平面11ABC D故平面11ABC D 的一个法向量为:1(1,0,1)DA = O ∴到平面11ABC D 的距离为:1111||224||2OD DA d DA ⋅=== 故选:B1、已知A (0,0,2),B (1,0,2),C (0,2,0),则点A 到直线BC 的距离为( )A .223B .1C .2D .22【答案】A【分析】利用向量的模,向量的夹角及三角函数即可求出点到直线的距离.【详解】∵A (0,0,2),B (1,0,2),C (0,2,0),AB →∴=(1,0,0),BC →=(﹣1,2,﹣2),∴点A 到直线BC 的距离为:d =22AB BC AB 1(cos AB,BC )AB 1()AB BC →→→→→→→→⋅-<>=-⋅=1×21113-⎛⎫- ⎪⨯⎝⎭=223. 故选:A题型四 二面角例 4 如图,在三棱柱111-ABC A B C 中,AC BC ⊥,12AC BC CC ===,D 是棱11A B 的中点,侧棱1CC ⊥底面ABC . 巩固练习求平面1ADC 与平面ABC 所成二面角的正弦值.【答案】(Ⅰ)o 60;(Ⅱ)63. 【分析】(Ⅰ)以C 为坐标原点建立空间直角坐标系,写出1CB 和1AC 的坐标,然后计算即可(Ⅱ)先求出平面1ADC 的法向量,1CC 是平面ABC 的法向量,然后计算出平面1ADC 与平面ABC 所成二面角的正弦值即可【详解】 (Ⅱ)∵D 是棱11A B 的中点,∴(1,2,1)D .由(Ⅰ),知(0,0,0)C ,(0,0,2)A ,1(0,2,0)C .∴1(0,2,0)CC =,1(0,2,2)AC =-,(1,2,1)AD =-.∵侧棱1CC ⊥底面ABC ,∴1(0,2,0)CC =是平面ABC 的法向量.设平面1ADC 的法向量为(,,)n x y z =,则1·0,·0.n AC n AD ⎧=⎨=⎩即220,20.y z x y z -=⎧⎨+-=⎩解之,得,.x z y z =-⎧⎨=⎩ 故可取(1,1,1)n =-. ∴112222221·(0,2,0)?(1,1,1)3cos ,3020(1)11CC nCC n CC n-===++⨯-++. ∴16sin ,3CC n <>=. 故平面1ADC 与平面ABC 所成二面角的正弦值为63.1、如图,已知正方形ABCD 和矩形ACEF 中,AB =2,CE =1,CE ⊥平面ABCD .(1)求异面直线DF 与BE 所成角的余弦值;(2)求二面角A -DF -B 的大小.【答案】(1)13;(2)3π. 【解析】分析:(1)建立空间直角坐标系,利用向量法求异面直线DF 与BE 所成角的余弦值.(2)利用向量法求二面角A -DF -B 的大小.详解:⑴以{,,CD CB CE }为正交基底,建立如图空间直角坐标系C -xyz ,则D (2,0,0),F (2,2,1),E (0,0,1),B (0,2,0),C (0,0,0),所以DF =(0,2,1),BE =(0,–2,1),从而cos<DF ,BE >=11333-=-⋅. 所以直线DF 与BE 所成角的余弦值为13. (2)平面ADF 的法向量为m CD == (2,0,0).设面BDF 的法向量为n = (x ,y ,z ).又BF =(2,0,1).巩固练习由n DF ⋅=0,n BF ⋅=0, 得2y +z =0,2 x +z =0取x =1,则y =1,z =–2,所以n = (1,1,-2),所以cos<,m n >=21242=⋅. 又因为<,m n >∈[0,π],所以<,m n >=3π. 所以二面角A – DF – B 的大小为3π. 题型五 动点问题 例 5 如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(1)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由(2)当二面角D-FC-B 的余弦值为42时,求直线PB 与平面ABCD 所成的角1、如图,在四棱锥E ABCD -中,平面ABE ⊥底面ABCD ,侧面AEB 为等腰直角三角形,2AEB π=∠,底面ABCD为直角梯形,//,,22AB CD AB BC AB CD BC ⊥===2,EA ⊥EB(1)求直线EC 与平面ABE 所成角的正弦值;(2)线段EA 上是否存在点F ,使//EC 平面FBD ?若存在,求出EF EA;若不存在,说明理由. 【答案】(1)33(2)点F 满足13EF EA =时,有//EC 平面FBD . 巩固练习1、如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,13AA =,2AB AC BC ===,则1AA 与平面11AB C 所成角的大小为巩固提升A .30B .45︒C .60︒D .90︒【答案】A 取AB 的中点D ,连接CD ,以AD 为x 轴,以CD 为y 轴,以1BB 为z 轴,建立空间直角坐标系,可得()1,0,0A ,()11,0,3A ,故()()()11,0,31,0,00,0,3AA =-=,而 ()()111,0,3,3,3B C -,设平面11AB C 的法向量为()=,,m a b c ,根据 110,0m AB m AC ⋅=⋅=,解得()3,3,2m =-, 111 1,?2|?|m AA cos m AA m AA ==. 故1AA 与平面11AB C 所成角的大小为030,故选A .2、两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,且两平面的一个法向量 ()1,0,1n =-,则两平面间的距离是 ( )A .32B .22C 3D .32【答案】B【解析】两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,()2,1,1OA =,且两平面的一个法向量()1,0,1,n =-∴两平面间的距离201222n OA n ⋅-++===,故选B.3、长方体1111ABCD A BC D -中,6AB =,14A D A A ==.(1)求异面直线1AD 与BD 所成角的余弦值(2)求点1B 到平面1ACD 的距离(3)求二面角11A CD B --的余弦值【答案】(1)1326(212223)112 解:以D 为原点,以1,,DA DC DD 所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -, 则(0,0,0),(4,0,0),(4,6,0),(0,6,0)D A B C ,1111(0,0,4),(4,0,4),(4,6,4),(0,6,4)D A B C , (1)设异面直线1AD 与BD 所成角为θ, 因为1(4,0,4),(4,6,0)AD DB =-=, 所以11626cos cos ,161616364221326AD DB θ-=====+⋅+⋅ (2)设平面1ACD 的法向量为(,,)m x y z =,(4,6,0)AC =-,1(4,0,4)AD =-, 则100m AC m AD ⎧⋅=⎪⎨⋅=⎪⎩,即460440x y x z -+=⎧⎨-+=⎩,令1z =,则21,3x y ==,所以2(1,,1)3m =, 因为1(0,6,4)AB =,所以点1B 到平面1ACD 的距离1441222114119AB md m ⋅+===++, (3)设平面11CB D 的法向量为(,,)n a b c =,11(4,0,4),(0,6,4)CB CD ==-,则1100n CB n CD ⎧⋅=⎪⎨⋅=⎪⎩,即440640a c b c +=⎧⎨-+=⎩,令1c =,则21,3a b =-=, 所以2(1,,1)3n =-, 设二面角11A CD B --的大小为α,则 4411299cos cos ,2211441111999m nm n m n α-++⋅=====++⋅++,4、在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14A A =,点D 是BC 的中点.(1)求异面直线1A B ,1AC 所成角的余弦值; (2)求直线1AB 与平面1C AD 所成角的正弦值; (3)求异面直线1A B 与AD 的距离.【答案】(1)45.(2453)43 【详解】解:以AB ,AC ,1AA 为x ,y ,z 轴建立按直角坐标系A xyz -,则各点的坐标为()2,0,0B ,()10,0,4A ,()10,2,4C ,()1,1,0D .如图:(1)所以()12,0,4A B =-,()10,2,4AC =, 所以114cos 52020A B AC <>==-⨯,. 故异面直线1A B 和1AC 所成角的余弦值为45. (2)()12,0,4AB =,()1,1,0AD =,设平面1C AD 的法向量为(),,n x y z =. 则100n AC n AD ⎧⋅=⎨⋅=⎩即2400y z x y +=⎧⎨+=⎩,取1x =,得11,1,2n ⎛⎫=- ⎪⎝⎭. 设直线1AB 与平面1C AD 所成角为θ,则11145sin cos ,15AB nAB n AB n θ<⋅=>== 所以直线1AB 与平面1C AD 45 (3)连接1AC 交1AC 于点M ,连接DM ,易得1//DM A B , 所以1//A B 平面1C AD ,故点1A 到平面1C AD 的距离即为所求异面直线距离. 记点1A 到平面1C AD 的距离为d ,则()()12222101014432231112AA nd n ⨯+⨯-+⨯⋅====⎛⎫+-+ ⎪⎝⎭. 所以异面直线1A B 与AD 的距离为43.。
空间向量求线面角公式
空间向量求线面角公式空间向量是三维空间中的一种表示方式,它可以用来描述点、直线、平面等几何对象。
线面角是两条直线或直线与平面之间的夹角,它是空间几何中的重要概念。
本文将介绍如何利用空间向量来求解线面角的公式。
在三维空间中,我们可以用向量来表示直线或平面。
设直线L的方向向量为a,平面P的法向量为n。
对于直线L上的一点P和平面P 上的一点Q,连接向量PQ即可得到一条从直线L到平面P的向量。
设这个向量为d。
根据向量的定义,我们知道向量d与直线L垂直。
而向量d与平面P的夹角则可以通过向量点乘来求解。
向量的点乘公式为:a·b = |a| |b| cosθ,其中a和b分别为向量a和向量b的模,θ为a 和b之间的夹角。
将向量d与直线L的方向向量a进行点乘,得到:d·a = |d| |a| cosα其中α为向量d与直线L的夹角。
由于向量d与平面P垂直,所以d·n = 0。
将这个条件带入上式,得到:0 = |d| |a| cosα解得:cosα = 0α = π/2这说明线面角的大小为90度,即直线和平面垂直。
当直线与平面不垂直时,我们需要使用法线向量来求解线面角的大小。
设直线L上的一点P和平面P上的一点Q,连接向量PQ即可得到一条从直线L到平面P的向量。
设这个向量为d。
由于向量d在平面P上,所以它可以表示为平面P的法向量n与某个向量b的线性组合。
即:d = λn + b其中λ为标量。
将这个表达式代入向量点乘公式,得到:(λn + b)·a = |λn + b| |a| cosα化简得:λn·a + b·a = |λn + b| |a| cosα我们知道,向量n垂直于平面P,所以n·a = 0。
将这个条件带入上式,得到:b·a = |λn + b| |a| cosα由于向量b在平面P上,所以b·n = 0。
将这个条件带入上式,得到:b·a = |b| |a| cosα将向量b的模用向量d和法向量n表示,即|b| = |d - λn|,代入上式,得到:(d - λn)·a = |d - λn| |a| cosα展开并化简上式,得到:d·a - λn·a = |d - λn| |a| cosαd·a = |d - λn| |a| cosα我们知道,向量d在平面P上,所以d·n = 0。
高中数学 3.2.3用向量方法求空间中的角课后习题 新人教A版高二选修2-1数学试题
第三课时用向量方法求空间中的角课时演练·促提升A组1.已知A(0,1,1),B(2,-1,0),C(3,5,7),D(1,2,4),则直线AB和直线CD所成角的余弦值为()A. B.-C. D.-解析:=(2,-2,-1),=(-2,-3,-3),而cos =,故直线AB和CD所成角的余弦值为.答案:A2.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于()A.120°B.60°C.30°D.以上均错解析:∵l的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l与平面α所成的角为90°-60°=30°.答案:C3.若二面角α-l-β的大小为120°,那么平面α与平面β的法向量的夹角为()A.120°B.60°C.120°或60°D.30°或150°解析:二面角为120°时,其法向量的夹角可能是60°,也可能是120°.答案:C4.在正方体ABCD-A1B1C1D1中,M是AB的中点,则sin<>的值为()A. B. C. D.解析:如图,以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系.设正方体的棱长为1,则D(0,0,0),B1(1,1,1),C(0,1,0),M,∴=(1,1,1),,∴cos<>==,∴sin<>=.答案:B5.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面ABCD,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A.120°B.45°C.135°D.60°解析:以A为原点,分别以AB,AD,AE所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则E(0,0,1),B(1,0,0),C(1,1,0),则=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z).则有可取n=(1,0,1),又平面EAD的法向量为=(1,0,0),所以cos n, =,故平面ADE与平面BCE所成的二面角为45°.答案:B6.在正四棱锥P-ABCD中,高为1,底面边长为2,E为BC的中点,则异面直线PE与DB所成的角为. 解析:建立空间直角坐标系如图,则B(1,1,0),D(-1,-1,0),E(0,1,0),P(0,0,1), 故=(2,2,0),=(0,1,-1).从而cos<>=,即<>=.于是PE与DB所成的角为.答案:7.若空间直线l的方向向量为t,平面α的法向量为n,t与n的夹角θ>,则l与α所成角为. 解析:如图可知,l与α所成角为θ-.答案:θ-8.如图,已知ABC-A1B1C1是直三棱柱,∠ACB=90°,点D1,F1分别是A1B1,A1C1的中点,BC=CA=CC1,求BD1与AF1所成角的余弦值.解:如图,以C为原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系, 设CB=CA=CC1=1,则A(1,0,0),B(0,1,0),D1,F1,则.故||=,||=,则cos<>=.于是BD1与AF1所成角的余弦值为.9.在正方体ABCD-A1B1C1D1中,E,F分别为AA1,AB的中点,求EF和平面ACC1A1夹角的大小.解:建立如图的空间直角坐标系,设正方体棱长为2,则由E,F分别是AA1,AB的中点,得E(2,0,1),F(2,1,0).过F作FG⊥AC于G,则由正方体性质知FG⊥平面ACC1A1.连接EG,则的夹角即为所求,又因为F是AB的中点,所以AG=AC,所以G=(0,1,-1).cos<>=.∴<>=,即EF与平面ACC1A1的夹角为.10.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F-BD-C的余弦值.(1)证明:∵四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,∴∠ADC=∠BCD=120°.又∵CB=CD,∴∠CDB=30°.∴∠ADB=90°,即AD⊥BD.又∵AE⊥BD,且AE∩AD=A,AE⊂平面AED,AD⊂平面AED,∴BD⊥平面AED.(2)解:由(1)知AD⊥BD,∴AC⊥BC.又FC⊥平面ABCD,因此CA,CB,CF两两垂直.以C为坐标原点,分别以CA,CB,CF所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系.不妨设CB=1,则C(0,0,0),B(0,1,0),D,F(0,0,1),因此=(0,-1,1).设平面BDF的一个法向量为m=(x,y,z),则m·=0,m·=0,即x-y=0,-y+z=0,所以x=y=z.令z=1,得m=(,1,1).由于=(0,0,1)是平面BDC的一个法向量,则cos<m,>=,故二面角F-BD-C的余弦值为.B组1.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.则直线AE与平面A1ED1所成角的大小为()A.60°B.90°C.45°D.以上都不正确解析:以点D为原点,分别以DA,DC,DD1所在直线为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z),则令z=1,得y=1,x=0,所以n=(0,1,1),cos<n,>==-1.所以<n,>=180°.所以直线AE与平面A1ED1所成的角为90°.答案:B2.在空间中,已知平面α过点(3,0,0)和(0,4,0)及z轴上一点(0,0,a)(a>0),如果平面α与平面xOy的夹角为45°,则a=.解析:平面xOy的法向量为n=(0,0,1),设平面α的法向量为u=(x,y,z),则则3x=4y=az,取z=1,则u=,而cos<n,u>=.又a>0,故a=.答案:3.在四面体ABCD中,O是BD的中点,|CA|=|CB|=|CD|=|BD|=2,|AB|=|AD|=,则异面直线AB与CD所成的角的余弦值是.解析:以O为原点,建立如图所示的空间直角坐标系,则点B(1,0,0),D(-1,0,0),C(0,,0),A(0,0,1),=(-1,0,1),=(-1,-,0).所以cos<>=.故异面直线AB与CD所成的角的余弦值为.答案:4.在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,E是PD的中点,求二面角E-AC-D的大小.解:如图,以A为原点,分别以AC,AB,AP所在直线为x轴、y轴、z轴建立空间直角坐标系.设PA=AB=a,AC=b.连接BD与AC交于O,取AD中点F,连接OE,OF,EF,则C(b,0,0),B(0,a,0),.∴D(b,-a,0),P(0,0,a).∴E,O=(b,0,0),∵=0,∴=0.∴.∴∠EOF为二面角E-AC-D的平面角.cos =.∴二面角E-AC-D的大小为45°.5.如图,已知点P在正方体ABCD-A'B'C'D'的对角线BD'上,∠PDA=60°.(1)求DP与CC'所成角的大小;(2)求DP与平面AA'D'D所成角的大小.解:如图,以D为原点,DA为单位长度建立空间直角坐标系Dxyz.则=(1,0,0),=(0,0,1).连接BD,B'D'.在平面BB'D'D中,延长DP交B'D'于点H.设=(m,m,1)(m>0),由已知<>=60°,由=||||cos<>,可得2m=,解得m=,所以.(1)因为cos<>=,所以<>=45°,即DP与CC'所成的角为45°.(2)平面AA'D'D的一个法向量是=(0,1,0).因为cos<>=,所以<>=60°.故DP与平面AA'D'D所成的角为30°.6.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)求证:PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)若E为棱PA上的点,且异面直线BE与CD所成的角为30°,求AE的长.解:如图,以点A为原点,AD,AC,AP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,由题意得A(0,0,0),D(2,0,0),C(0,1,0),B,P(0,0,2).(1)证明:易得=(0,1,-2),=(2,0,0),于是=0,所以PC⊥AD.(2)=(0,1,-2),=(2,-1,0).设平面PCD的法向量n=(x,y,z),则不妨令z=1,可得n=(1,2,1).可取平面PAC的法向量m=(1,0,0).于是cos<m,n>=,从而sin<m,n>=.所以二面角A-PC-D的正弦值为.(3)设点E的坐标为(0,0,h),其中h∈[0,2].由此得=(2,-1,0),故cos<>==.所以=cos 30°=,解得h=,即AE的长为.。
(常考题)人教版高中数学选修一第一单元《空间向量与立体几何》检测(含答案解析)(5)
一、选择题1.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 的最大值为32C .点P 的轨迹是正方形D .点P 轨迹的长度为2+52.若(),,0OA m n =,40,,OB p n ⎛⎫= ⎪⎝⎭,()0,4,0F ,1AF m =+,1BF p =+,则m p +的最小值为( )A .1B .2C .3D .63.直三棱柱111ABC A B C -中,1AC BC AA ==,90ACB ∠=,则直线1A C 与平面11A BC 所成的角的大小为( )A .30B .60C .90D .1204.如图,在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =,OB b =,OC c =,则BD 等于( )A .1122a b c -+ B .a b c +- C .a b c -+D .1122a b c -+- 5.正方体1111ABCD A B C D -中,动点M 在线段1A C 上,E ,F 分别为1DD ,AD 的中点.若异面直线EF 与BM 所成的角为θ,则θ的取值范围为( ) A .[,]63ππB .[,]43ππC .[,]62ππD .[,]42ππ6.如图,三棱锥S ﹣ABC 中,SA =SB =SC ,∠ABC =90°,AB >BC ,E ,F ,G 分别是AB ,BC ,CA 的中点,记直线SE 与SF 所成的角为α,直线SG 与平面SAB 所成的角为β,平面SEG 与平面SBC 所成的锐二面角为γ,则( )A .α>γ>βB .α>β>γC .γ>α>βD .γ>β>α7.若直线l 的方向向量,1)2(,m x -=,平面α的法向量2,2(),4n -=-,且直线l ⊥平面α,则实数x 的值是( )A .1B .5C .﹣1D .﹣58.如图,已知棱长为2的正方体1111ABCD A B C D -中,点G 是1B C 的中点,点,H E 分别为1,GD C D 的中点,GD ⊥平面,HE α⊂平面α,平面11AC D 与平面α相交于一条线段,则该线段的长度是( )A .144B .114C .142D .1129.已知二面角l αβ--的两个半平面α与β的法向量分别为,a b ,且,a b 6π<>=,则二面角l αβ--的大小为( ) A .6π B .56π C .6π或56πD .6π或3π10.四棱锥P ABCD -中,底面ABCD 为直角梯形,AB AD ⊥,//BC AD ,且2AB BC ==,3AD =,PA ⊥平面ABCD 且2PA =,则PB 与平面PCD 所成角的正弦值为( )A .427B 3C .77D 6 11.在棱长为1的正方体1111ABCD A B C D -中,M ,N ,H 分别在棱1BB ,BC ,BA 上,且满足134BM BB =,12BN BC =,12BH BA =,O 是平面1B HN ,平面ACM 与平面11B BDD 的一个公共点,设BO xBH yBN zBM =++,则3x y z ++=( ) A .105B .125C .145D .16512.正四面体ABCD 的棱长为2,E 、F 分别为BC 、AD 的中点,则AE AF ⋅的值为( ) A .-2B .4C .2D .113.如图在一个120︒的二面角的棱上有两点,A B ,线段,AC BD 分别在这个二面角的两个半平面内,且均与棱AB 垂直,若2AB =,1AC =,2BD =,则CD 的长为( ).A .2B .3C .23D .4二、填空题14.如图,已知平面α⊥平面β,l αβ=,∈A l ,B l ∈,AC α⊂,BD β⊂,AC l ⊥,BD l ⊥,且4AB =,3AC =,12BD =,则CD =_________________.15.已知正三棱锥P ABC -的侧棱长为2020,过其底面中心O 作动平面α交线段PC 于点S ,交,PA PB 的延长线于,M N 两点,则111PS PM PN++的取值范围为__________16.设E ,F 是正方体1AC 的棱AB 和11D C 的中点,在正方体的12条面对角线中,与截面1A ECF 成60︒角的对角线的数目是______.17.已知正方体1111ABCD A B C D -的棱长为2,O 是面ABCD 的中心,点P 在棱11C D 上移动,则OP 的最小值时,直线OP 与对角面11A ACC 所成的线面角正切值为__________.18.如图所示,在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在线段OA 上,且2OM MA =,N 为BC 中点,若=MN xa yb zc ++,则x y z ++=_____________19.已知空间三点(0,A 2,3),(2,B 5,2),(2,C -3,6),则以,AB AC 为邻边的平行四边形的面积为______.20.已知点P 是平行四边形ABCD 所在平面外一点,如果(2,1,4),(4,2,0),AB AD =--=(1,2,1)AP =--,对于结论:①AP AB ⊥;②AP AD ⊥;③AP 是平面ABCD 的法向量;④//AP BD .其中正确的说法的序号是__________.21.正三棱柱(底面是正三角形的直棱柱)111ABC A B C -的底面边长为2,侧棱长为22,则1AC 与1B C 所成的角为___________.22.已知直三棱柱111ABC A B C -中,AB AC ⊥,1AB AC AA ==,点E 、F 分别为1AA 、11A C 的中点,则直线BE 和CF 所成角的余弦值为___________.23.在平行六面体1111ABCD A B C D -中,12AB AD AA ===,90BAD ∠=,1160BAA DAA ∠=∠=,则异面直线1AB 与1BC 所成角的余弦值是________.24.如图,在四棱锥P ABCD -中,底面ABCD 是底边为1的菱形,60BAD ∠=,2PB =,PA PD =,当直线PB 与底面ABCD 所成角为30时,二面角P CD A --的正弦值为______.25.已知()2,3,1a =-,()2,0,3b =,()1,0,2c =,则68a b c +-=______.26.在平行六面体1111ABCD A B C D -中,已知1160BAD A AB A AD ∠=∠=∠=︒,14,3,5AD AB AA ===,1AC =__.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据MP CN ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系, 因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点,则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫ ⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥,所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =; 取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭, 所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH , 又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH ,所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动, 所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,5EH FG ==,所以EF EH ≠,则点P的轨迹不是正方形; 且矩形EFGH的周长为2222+⨯=+C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E 和点G 的距离相等,且最大,所以线段MP ,故B 错. 故选:D. 【点睛】关键点点睛:求解本题的关键在于建立适当的空间直角坐标系,利用空间向量的方法,由MP CN ⊥,求出动点轨迹图形,即可求解.2.C解析:C【分析】根据空间向量模的坐标表示,由题中条件,得到11m p =+=+,推出22163282230m p n n n n-+-++=,配方整理,即可求出最小值. 【详解】因为(),,0OA m n =,40,,OB p n ⎛⎫= ⎪⎝⎭,()0,4,0F ,1AF m =+,1BF p =+,所以11m p =+=+,则()2222224214421m n m m p p p n ⎧+-=++⎪⎨⎛⎫-+=++⎪ ⎪⎝⎭⎩,即()224214421n m p n⎧-=+⎪⎨⎛⎫-=+⎪ ⎪⎝⎭⎩, 所以22221632164812261628822n n n m p n n n n n ⎛⎫⎛⎫-++-+-=++-++ ⎪ ⎪⎝⎭⎝⎭+=22444822466n n n n n n ⎛⎫⎛⎫⎛⎫=+-++=+-+≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当44n n+=,即2n =时,22m p +取得最小值3,则m p +的最小值为3. 故选:C. 【点睛】 关键点点睛:求解本题的关键在于利用空间向量模的坐标表示,用n 表示出22m p +,即22164882222n n n m n p ⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭+=,配方整理,即可求解.3.A解析:A 【分析】以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1A C 与平面11A BC 所成的角. 【详解】在直三棱柱111ABC A B C -中,1CC ⊥平面ABC , 又90ACB ∠=,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,如下图所示:设11AC BC AA ===,则()11,0,1A 、()0,1,0B 、()0,0,0C 、()10,0,1C , ()111,0,0A C =-,()10,1,1=-BC ,()11,0,1=--AC , 设平面11A BC 的法向量为(),,n x y z =, 由11100n AC x n BC y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,可得0x y z =⎧⎨=⎩,令1y =,可得0x =,1z =,所以,平面11A BC 的一个法向量为()0,1,1n =,1111cos ,222n A C n A C n A C⋅<>==-⨯⋅,所以,直线1A C 与平面11A BC 所成角的正弦值为12,则直线1A C 与平面11A BC 所成角为30.故选:A. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.4.A解析:A 【分析】利用空间向量的加法和减法法则可得出BD 关于a 、b 、c 的表达式. 【详解】()11112222OD OA AD OA AC OA OC OA OA OC =+=+=+-=+, 因此,11112222BD OD OB OA OB OC a b c =-=-+=-+. 故选:A. 【点睛】本题考查利用基底表示空间向量,考查计算能力,属于中等题.5.A解析:A 【详解】以D 点为原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 如图设DA 2=,易得()1,0,1EF=-,设()()()12,2,20122,2,2CM CA BM λλλλλλλλ==-≤≤=--,, 则cos θcos ,?BM EF =, 即())222201122321222823()33cos θλλλλλλ===≤≤-+-+-+.当13λ=时,cos θ31λ=时,cos θ取到最小值12,所以θ的取值范围为,63ππ⎡⎤⎢⎥⎣⎦. 故选:A.点睛:本题主要考查异面直线所成的角,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.6.A解析:A 【分析】根据题意可知,G 作SE 的垂线l ,显然l 垂直平面SAB ,故直线SG 与平面SAB 所成的角为β=∠GSE ,同理,平面SEG 与平面SBC 所成的锐二面角为γ=∠FSG ,利用三角函数结合几何性质,得出结论. 【详解】因为AB ⊥BC ,SA =SB =SC ,所以AB ⊥SE ,所以AB ⊥平面SGE ,AB ⊥SG , 又SG ⊥AC ,所以SG ⊥平面ABC , 过G 作SE 的垂线l ,显然l 垂直平面SAB , 故直线SG 与平面SAB 所成的角为β=∠GSE ,同理,平面SEG 与平面SBC 所成的锐二面角为γ=∠FSG ,由tanγ=tan FG EGSG SGβ>=,得γ>β,γ也是直线SF 与平面SEG 所成的角, 由cosα=cosβ•cosγ<cosγ,则α>γ,所以α>γ>β, 故选:A .【点睛】本题考查了异面直线夹角,线面夹角,二面角,意在考查学生的空间想象能力和计算能力.7.C解析:C 【分析】根据直线与平面垂直时直线的方向量与平面的法向量共线,利用共线时对应的坐标关系即可计算出x 的值. 【详解】因为直线l ⊥平面α,所以//m n , 所以12224x -==--,所以1x =-.故选:C. 【点睛】本题考查根据直线与平面的位置关系求解参数,其中涉及到空间向量的共线计算,难度一般.已知直线l 的方向向量为a ,平面α的法向量为b ,若//l α则有a b ⊥,若l α⊥则有//a b . 8.C解析:C 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,由题意得到E 是两个平面的一个交点,分析另一个交点的位置,可能在11A C 或1A D 上,设其交点坐标用向量计算可得答案. 【详解】如图,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,()0,0,0D ,()12,0,2A ,()()1,2,10,1,1G E ,,()1,2,1DG =,因为HE ⊂平面α,所以E ∈平面α,因为E ∈1C D ,所以E ∈平面11AC D , 所以E 是两个平面的一个交点,如果另一个交点在11A C 上,设为M 且设(),2,2M a a -,02a ≤≤所以(),1,1EM a a =-,因为EM ⊂平面α,DG ⊥平面α,所以0EM DG ⋅=, 即2210a a +-+=,解得3a =不合题意,所以另一个交点在1A D 上,不妨设为F , 所以平面11AC D ⋂平面EF α=,即求EF 的长度,且(),0,F b b ,02b ≤≤, 因为EF ⊂平面α,DG ⊥平面α,所以0EF DG ⋅=,(),1,1EF b b =--, 即210b b -+-=,解得32b =,所以33,0,22F ⎛⎫⎪⎝⎭,所以2EF ==. 故选:C.【点睛】本题考查了用向量解决线面垂直、线线垂直的问题,关键点是建立空间直角坐标系和分析两个平面的交线的位置,考查了学生的空间想象力、推理能力和计算能力.9.C解析:C 【分析】由于方向量的方向性,平面的法向量有正向量或负向量;当a 、b 为异号向量,二面角为π减去两法向量夹角;当a 、b 为同号向量,二面角即为两法向量的夹角,由此即可求得二面角l αβ-- 【详解】两个半平面α与β的法向量分别为,a b ,且,a b 6π<>=由于向量的方向性,法向量与平面有两种情况 当a 、b 为异号向量,如下图示:,a b 6π<>=∴有二面角l αβ--为56π 当a 、b 为同号向量,如下图示:,a b 6π<>=∴有二面角l αβ--为6π 综上,有二面角l αβ--为6π或56π 故选:C 【点睛】本题考查了二面角与平面法向量夹角的关系,依据法向量的夹角判断平面所成二面角的大小,注意法向量的方向性,讨论在不同情况下二面角的大小10.C解析:C 【分析】以A 为坐标原点建立空间坐标系,进而求得PB 和平面PCD 的法向量,再由向量的数量积即可求得PB 与平面PCD 所成角的正弦值. 【详解】依题意,以A 为坐标原点,分别以,,AB AD AP 为,,x y z 轴建立空间直角坐标系O xyz -,2,3,2AB BC AD PA ====,则()()()()0,0,2,2,0,0,2,2,0,0,3,0P B C D , 从而()()()2,0,2,2,2,2,0,3,2PB PC PD =-=-=-设平面PCD 的法向量为(),,n a b c =,00n PC n PD ⎧⋅=⎨⋅=⎩,即2220320a b c b c +-=⎧⎨-=⎩,不妨取3c =c=3,则1,2a b ==,所以平面PCD 的一个法向量为()1,2,3n =, 所以PB 与平面PCD 所成角的正弦值()22222267sin cos ,22123PB n θ-===+-++, 故选C. 【点睛】本题主要考查了线面所成的角, 其中求解平面的法向量是解题的关键,着重考查了推理与计算能力,属于中档试题.11.C解析:C 【分析】根据条件确定O 点位置,再根据向量表示确定,,x y z 的值,即得结果. 【详解】如图,Q 为AC 与BD 交点,P 为BQ 中点,O 为MQ 与1B P 的交点.过P 作PT 平行MQ 交1BB 于T .如图,则T 为BM 中点,所以1111131334224242MT BM BB MB MB ==⨯=⨯⨯=. 所以123B O OP =, 因此1323421411()555352555BO BB BP BM BH BN BM BH BN =+=⋅+⋅+=++, 因为BO xBH yBN zBM =++,所以411,,555z x y ===,1435x y z ∴++=.故选:C 【点睛】本题考查平面向量基底表示,考查综合分析求解能力,属中档题.12.D解析:D 【解析】 【分析】如图所示,1()2AE AB AC =+,12AF AD =.代入AE AF ⋅,利用数量积运算性质即可得出. 【详解】 解:如图所示,1()2AE AB AC =+,12AF AD =.∴111()()224AE AF AB AC AD AB AD AC AD =+=+ 221(2cos602cos60)4=︒+︒ 1=.故选:D .【点睛】本题考查了向量数量积的运算性质、平行四边形法则,考查了推理能力与计算能力,属于中档题.13.B解析:B 【分析】由CD CA AB BD =++,两边平方后展开整理,即可求得2CD ,则CD 的长可求. 【详解】 解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,()1||||cos 1801201212CA BD CA BD =︒-︒=⨯⨯=.∴2124219CD =+++⨯=,||3CD ∴=,故选:B . 【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.二、填空题14.13【分析】根据面面垂直得线面垂直进而得再根据向量模的平方求得结果【详解】因为平面平面所以因为所以故答案为:13【点睛】本题考查面面垂直性质定理利用空间向量求线段长考查基本分析论证与求解能力属中档题解析:13 【分析】根据面面垂直得线面垂直,进而得AC BD ⊥,再根据向量模的平方求得结果. 【详解】因为平面α⊥平面β,l αβ=,AC α⊂,AC l ⊥,所以AC β⊥,因为BD β⊂,所以AC BD ⊥, CD CA AB BD =++2222222CD CA AB BD CA AB CA BD AB BD ∴=+++⋅+⋅+⋅ 2222341200013||13CD =+++++=∴=故答案为:13 【点睛】本题考查面面垂直性质定理、利用空间向量求线段长,考查基本分析论证与求解能力,属中档题.15.【分析】设则根据空间四点共面的条件又四点共面则即得出答案【详解】设则由为底面中心又因为四点共面所以且所以即即故答案为:【点睛】本题考查空间四点共面的条件的应用属于中档题解析:32020⎧⎫⎨⎬⎩⎭【分析】设,,PM x PN y PS z ===,则111333zPAPB PCPO PM PN PS x y =⨯⋅+⨯⋅+⨯⋅,根据空间四点共面的条件,又,,,S M N O 四点共面,则202020202020+1333zx y +=,即得出答案.【详解】设,,PM x PN y PS z ===. 则PA PA PM x=⋅,PB PB PN y=⋅,PC PC PS z=⋅.由O 为底面ABC 中心, ()2132PO PA AO PA AB AC =+=+⨯+ ()()133PA PB PCPA PB PA PC PA ++⎡⎤=+-+-=⎣⎦ 111333z PA PB PCPM PN PS x y =⨯⋅+⨯⋅+⨯⋅ 333zPA PB PC PM PN PS x y=⋅+⋅+⋅ 又因为,,,S M N O 四点共面,所以+1333zPA PB PC xy+=且2020PA PB PC ===.所以202020202020+1333z x y +=,即1113+z 2020x y += 即11132020PS PM PN ++=. 故答案为:32020⎧⎫⎨⎬⎩⎭.【点睛】本题考查空间四点共面的条件的应用,属于中档题.16.【分析】由于平面不是特殊的平面故建系用法向量求解以为原点建系正方体三边为坐标轴求出平面的法向量求解面对角线和的夹角即可求得答案【详解】以点为原点所在直线为轴所在直线为轴所在直线为轴设正方体棱长为2如 解析:4【分析】由于平面1A ECF 不是特殊的平面,故建系用法向量求解,以D 为原点建系,正方体三边为坐标轴,求出平面1A ECF 的法向量n ,求解面对角线和n 的夹角,即可求得答案. 【详解】以点D 为原点,AD 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴 设正方体棱长为2,如图:则(2,0,0),(0,0,0),(2,2,0),(0,2,0)A D B C1111(2,0,2),(2,2,2,),(0,2,2),(0,0,2)A B C D ,(2,1,0),(0,1,2)E F ∴ 1(2,1,0),((0,1,2),(2,2,0)EC A E AC =-==-1(2,2,0),(2,0,2)BD BC =--=-- 11(0,2,2),(0,2,2)B A A B =--=-当面对角线与截面1A ECF 成60︒角,∴ 需保证直线与法向量的夹角为30︒,即其余弦值3±设平面1A ECF 的法向量(,,)n x y z =100n EC n A E ⎧⋅=⎪⎨⋅=⎪⎩ 可得:2020y z x y -=⎧⎨-+=⎩ ,取2y = ∴ (1,2,1)n = ,则||6n =33cos ,||||86n AC AC n n AC ⋅<>===≠⋅⋅3cos ,286BD n <>==⨯ 13cos ,286B C n <>=≠±⋅ 13cos ,86B A n <>==⋅1cos,A B n<>=≠当两条面对角线平行时,求解其中一条与面1A ECF的法向量n夹角即可.平面11AA D D中1AD与EF平行,故不符合题意.综上所述,符合题意的面对角线为:1111,,,BD B D AB DC共4条.故答案为:4.【点睛】本题考查了线面角求法,根据题意画出几何图形,掌握正方体结构特征是解本题的关键.对于立体几何中角的计算问题,可以利用空间向量法,利用向量的夹角公式求解,属于基础题. 17.【分析】由题意以为坐标原点为轴轴轴正方向建立空间直角坐标系求得以当即为中点时求得和平面的一个法向量为利用向量的夹角公式即可求解【详解】由题意以为坐标原点为轴轴轴正方向建立空间直角坐标系则设则所以当即解析:13【分析】由题意,以A为坐标原点,AB,AD,1AA为x轴,y轴,z轴正方向建立空间直角坐标系,求得以当1x=,即P为11C D中点时,求得(0,1,2)OP =和平面11A ACC的一个法向量为BD,利用向量的夹角公式,即可求解.【详解】由题意,以A为坐标原点,AB,AD,1AA为x轴,y轴,z轴正方向建立空间直角坐标系,则()1,1,0O,设()(),2,202P x x≤≤.则OP==所以当1x=,即P为11C D中点时,OP此时点(1,2,2)P,所以(0,1,2)OP =,又由BD⊥平面11A ACC,且(2,2,0)BD=-,即平面11A ACC的一个法向量为(2,2,0)BD=-,设OP与平面11A ACC所成的角为θ,由线面角的公式可得sin cos,210OP BDOP BDOP BDθ⋅====⋅,因为(0,)2πθ∈,由三角函数的基本关系式,可得1tan3θ=.【点睛】本题主要考查了空间向量在空间角的求解中的应用,其中解答中建立适当的空间直角坐标系,确定出点P 的位置,再利用向量的夹角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.18.【分析】用表示从而求出即可求出从而得出答案【详解】点在上且为的中点故故答案为【点睛】本题主要考查了平面向量的线性运算运用向量的加法法则来求解属于基础题 解析:13【分析】用,,a b c 表示,ON OM ,从而求出MN ,即可求出,,x y z ,从而得出答案【详解】,,,OA a OB b OC c ===点M 在OA 上,且2OM MA =,N 为BC 的中点22=33OM OA a ∴= ()111222ON OB OC b c =+=+ 112=223MN ON OM b c a ∴-=+- 211,,322x y z ∴=-== 故21113223x y z ++=-++= 故答案为13【点睛】 本题主要考查了平面向量的线性运算,运用向量的加法法则来求解,属于基础题 19.【解析】分析:利用终点坐标减去起点坐标求得对应的向量的坐标进而求得向量的模以及向量的夹角的余弦值应用平方关系求得正弦值由此可以求得以为邻边的平行四边形的面积详解:由题意可得所以所以所以以为邻边的平行解析:【解析】分析:利用终点坐标减去起点坐标,求得对应的向量的坐标,进而求得向量的模以及向量的夹角的余弦值,应用平方关系求得正弦值,由此可以求得以AB ,AC 为邻边的平行四边形的面积.详解:由题意可得(2,3,1),(2,1,3)AB AC =-=-,49114,41AB AC =++==+=,所以2)31(1)32cos 7BAC -+⨯+-⨯∠==-,所以sin BAC ∠=,所以以AB ,AC为邻边的平行四边形的面积为S == 点睛:该题考查的是有关空间向量的坐标以及夹角余弦公式,在解题的过程中,需要对相关公式非常熟悉,再者就是要明确平行四边形的面积公式,以及借助于向量的数量积可以求得对应角的余弦值.20.①②③【解析】由在①中所以所以所以是正确的;在②中所以所以所以是正确的;在③中由于且可知是平面的法向量所以是正确的;在④中假设存在实数使得则此时无解所以是不正确的所以正确命题的序号为①②③点睛:本题解析:①②③【解析】由(2,1,4),(4,2,0),(1,2,1)AB AD AP =--==--,在①中,2240AP AB ⋅=--+=,所以AP AB ⊥,所以AP AB ⊥,所以是正确的; 在②中,4400AP AD ⋅=-++=,所以⊥AP AD ,所以AP AD ⊥,所以是正确的; 在③中,由于AP AB ⊥,AP AD ⊥,且AB AD A ⋂=,可知AP 是平面ABCD 的法向量,所以是正确的;在④中,(2,3,4)BD AD AB =-=,假设存在实数λ使得λ=AP BD ,则122314λλλ-=⎧⎪=⎨⎪-=⎩,此时无解,所以是不正确的,所以正确命题的序号为①②③.点睛:本题主要考查了命题的真假判定问题,其中解答中涉及到空间向量的数量积的运算,空间向量的坐标表示,平面法向量的概念,同时考查了向量垂直、向量平行等基础知识,着重考查了推理能力与计算能力,属于基础题,解答中熟记向量的坐标运算的基本公式是解答的关键.21.【分析】作出图形分别取的中点连接以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法可求得异面直线与所成的角【详解】分别取的中点连接如下图所示:在正三棱柱中平面且分别为的中点且所以四边形为解析:3π【分析】作出图形,分别取AC、11A C的中点O、E,连接OE、OB,以点O为坐标原点,OB、OC、OE所在直线分别为x、y、z轴建立空间直角坐标系,利用空间向量法可求得异面直线1AC与1B C所成的角.【详解】分别取AC、11A C的中点O、E,连接OE、OB,如下图所示:在正三棱柱111ABC A B C-中,1AA⊥平面ABC,11//AC A C且11AC A C=,O、E分别为AC、11A C的中点,1//AO A E∴且1AO A E=,所以,四边形1AOEA为平行四边形,1//OE AA∴,则OE⊥平面ABC,ABC为等边三角形,O为AC的中点,则OB AC⊥,以点O为坐标原点,OB、OC、OE所在直线分别为x、y、z轴建立空间直角坐标系,则()0,1,0A-、()0,1,0C 、13,0,22B、(10,1,22C,(10,2,22AC=,(13,1,22B C=--,1111111cos,22323AC B CAC B CAC B C⋅<>===-⨯⋅,因此,1AC与1B C所成的角为3π.3【点睛】 方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.22.【分析】作出图形设然后以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法可求得直线和所成角的余弦值【详解】设由于平面以点为坐标原点所在直线分别为轴建立空间直角坐标系如下图所示:则因此直线解析:25【分析】作出图形,设12AB AC AA ===,然后以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线BE 和CF 所成角的余弦值.【详解】设12AB AC AA ===,由于1AA ⊥平面ABC ,AB AC ⊥,以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,如下图所示:则()2,0,0B 、()0,2,0C 、()0,0,1E 、()0,1,2F ,()2,0,1BE =-,()0,1,2CF =-, 2cos ,555BE CFBE CF BE CF ⋅<>===⨯⋅. 因此,直线BE 和CF 所成角的余弦值为25.5【点睛】 方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.23.【分析】利用表示向量利用空间向量数量积计算出即可得解【详解】如下图所示:所以因此异面直线与所成角的余弦值是故答案为:【点睛】方法点睛:求异面直线所成角的余弦值方法如下:一是几何法:作—证—算;二是向解析:23 【分析】利用AB 、AD 、1AA 表示向量1AB 、1BC ,利用空间向量数量积计算出11cos ,AB BC <>,即可得解.【详解】如下图所示:11AB AB AA =+,111BC BC BB AD AA =+=+,()222222*********cos AB AB AA AB AA AB AA AB AA AB AA BAA =+=++⋅=++⋅∠22212222122=++⨯⨯=,123AB ∴= ()222222*********cos BC AD AA AD AA AD AA AD AA AD AA DAA =+=++⋅=++⋅∠22212222122=++⨯⨯=,123BC ∴= ()()21111111AB BC AB AA AD AA AB AD AB AA AD AA AA ⋅=+⋅+=⋅+⋅+⋅+222111111cos cos 22282AB AA BAA AD AA DAA AA =⋅∠+⋅∠+=⨯⨯+=, 所以,()111121182cos ,3AB BC AB BC AB BC ⋅<>===⋅, 因此,异面直线1AB 与1BC 所成角的余弦值是23. 故答案为:23. 【点睛】 方法点睛:求异面直线所成角的余弦值,方法如下:一是几何法:作—证—算;二是向量法:把角的求解转化为向量运算,应注意体会两种方法的特点,“转化”是求异面直线所成角的关键,一般地,异面直线的夹角的余弦值为cos ,m nm n m n ⋅<>=⋅.24.1【分析】取中点过作于点;由等腰三角形三线合一和线面垂直的判定定理可证得平面从而得到;再根据线面垂直判定定理得到面由线面角定义可知通过勾股定理可求得由此可知在直线上从而得到面面垂直关系可知二面角为从 解析:1【分析】取AD 中点E ,过P 作PF BE ⊥于F 点;由等腰三角形三线合一和线面垂直的判定定理可证得AD ⊥平面PBE ,从而得到AD PF ⊥;再根据线面垂直判定定理得到PF ⊥面ABCD ,由线面角定义可知30PBF ∠=,通过勾股定理可求得EF BE =,由此可知F 在直线CD 上,从而得到面面垂直关系,可知二面角为90,从而得到正弦值.【详解】取AD 中点E ,连接BE 并延长,过P 作PF BE ⊥于F 点PA PD =,E 为AD 中点 PE AD ⊥∴四边形ABCD 为菱形,60BAD ∠= ABD ∴∆为等边三角形 BE AD ∴⊥ ,PE BE ⊂平面PBE ,PE BE E ⋂= AD ∴⊥平面PBEPF ⊂平面PBE AD PF ∴⊥又PF BF ⊥,,BF AD ⊂平面ABCD ,BFAD E = PF ∴⊥面ABCD ∴直线PB 与底面ABCD 所成角为PBF ∠ sin 2sin301PF PB PBF ∴=⋅∠=⨯=在PBE ∆中,由余弦定理得:22233372cos 444222PE PB BE PB BE PBE =+-⋅∠=+-⨯= 223EF PE PF ∴=-=,又3BE = F ∴在CD 延长线上 PF ∴⊂平面PCD ∴平面PCF ⊥平面ABCD∴二面角P CD A --的大小为90,正弦值为1故答案为:1【点睛】本题考查立体几何中二面角的求解问题,涉及到线面垂直的判定与性质、面面垂直的判定定理、直线与平面所成角、勾股定理等知识的应用;关键是能够通过线面垂直关系确定直线与平面所成角的位置.25.【分析】先计算再计算即得解【详解】由于故【点睛】本题考查了向量的线性运算的坐标表示考查了学生数学运算的能力属于基础题解析:()6,3,3-【分析】先计算6,8b c ,再计算68a b c +-即得解.【详解】由于6(12,0,18),8(8,0,16)b c ==,故68a b c +-=()6,3,3-.【点睛】本题考查了向量的线性运算的坐标表示,考查了学生数学运算的能力,属于基础题. 26.【分析】先由空间向量的基本定理将向量用一组基底表示再利用向量数量积的性质计算即可【详解】∵六面体ABCD ﹣A1B1C1D1是平行六面体∵=++∴=(++)2=+++2+2+2又∵∠BAD=∠A1AB【分析】先由空间向量的基本定理,将向量1AC 用一组基底1AA AD AB ,,表示,再利用向量数量积的性质22a a =,计算1AC 即可【详解】∵六面体ABCD ﹣A 1B 1C 1D 1是平行六面体,∵1AC =1AA +AD +AB ∴21AC =(1AA +AD +AB )2=21AA +2AB +2AD +21AA AD ⋅+21AA AB ⋅+2AB AD ⋅ 又∵∠BAD=∠A 1AB=∠A 1AD=60°,AD=4,AB=3,AA 1=5, ∴21AC =16+9+25+2×5×4×cos60°+2×5×3×cos60°+2×3×4×cos60°=97 ∴197AC =【点睛】本题考察了空间向量的基本定理,向量数量积运算的意义即运算性质,解题时要特别注意空间向量与平面向量的异同。
1.4.1.1空间中点、直线和平面的向量表示说课课件-优秀公开课获奖课件高二上学期数学人教A版(20
1 = 2, = 21 .求平面与平面1 1 1 夹角的余弦值.
解:(化为向量问题)以1 为原点,1 1 ,1 1 ,1 所在直线为 轴、轴、 轴,
建立如图所示的空间直角坐标系.设平面1 1 1 的法向量为1 ,平面的法向
2
2
= 2,即//.
而 ⊂平面,且 ⊄平面,因此//平面.
例析
例10.如图,在四棱锥 − 中,底面是正方形,侧棱
⊥底面, = ,是的中点,作 ⊥ 交于点
.
(2)求证: ⊥平面;
解:以为原点,,,所在直线分别为轴、轴、轴,建立如图所示的
则 = | < , > | =
|∙|
||||
3
4
所以与平面所成角的正弦值为 .
=
3
4
3
=
3
.
4
3
).
2
练习
方法技巧:
利用法向量求直线与平面的夹角的步骤
(1)建立空间直角坐标系;
(2)求直线的方向向量;
(3)求平面的法向量;
(4)计算:设线面角为,则
∠ = 90°,为的中点,点,分别在棱1 ,1 上,
1 = 2, = 21 .求平面与平面1 1 1 夹角的余弦值.
解:根据所建立的空间直角坐标系,可知(0,1,3),(2,0,2),(0,2,1).
所以 = (2, −1, −1), = (0,1, −2).设2 = (, , ),则
空间直角坐标系,设 = 1.
1 1
2 2
(1)证明:连接,交于点,连接.依题意得(1,0,0),(0,0,1),(0, , ).
1 1
新教材人教a版选择性必修第一册141用空间向量研究直线平面的位置关系
3.
x+ 3y=0,
即
23y+12z=0,
所以平面 ACE 的一个法向量为 n=( 3,-1, 3).
反思感悟 求平面法向量的方法与步骤 (1)求平面ABC的法向量时,要选取平面内两不共线向量,如 A→C,A→B ; (2)设平面的法向量为n=(x,y,z);
(3)联立方程组
n·A→C=0, n·A→B=0,
∴-1=2k,2-y=-k,z-3=3k.
解得 k=-21,y=z=32. ∴y-z=0.
(2)在如图所示的坐标系中,ABCD-A1B1C1D1为正方体,棱长为1,则直线DD1 的一个方向向量为_(不__唯__一__)_(_0_,0_,_1_) ,直线BC1的一个方向向量为__(0_,_1_,1_)__. 解析 ∵DD1∥AA1,—AA→1 =(0,0,1),
8.已知点 P 是平行四边形 ABCD 所在平面外一点,如果A→B=(2,-1,-4),A→D=(4,2,0),A→P=(-1,2,-1).
对于结论:①AP⊥AB;②AP⊥AD;③A→P是平面 ABCD 的法向量;④A→P∥D→B.其中正确的是_①__②___③__.(填序号)
解析
∵A→B·A→P=0,A→D·A→P=0,
∴A→B=(-2,1,3),B→C=(1,-1,0). 则有nn··AB→→BC==00,, 即-x-2yx=+0y+,3z=0, 解得xx= =3y.z, 令 z=1,则 x=y=3. 故平面ABC的一个法向量为n=(3,3,1).
随堂小测
1.若A( -1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为(A )
二、求平面的法向量
例2 如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.AB=AP=1,
用空间向量研究距离、夹角问题(第2课时)高二数学 (人教A版2019选择性 必修第一册)
(2)平面与平面的夹角的向量表示式:设平面α,β的法向量分别是1 和2 ,则平面α与
平面β的夹角即为向量1 和2 的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ
=|cos〈1 ,2 〉|=
1 ∙2
1 2
.
【说明】二面角的平面角也可转化为两直线的方向向量的夹角.在两个半平面内,各
所以PB//平面ACN;
=
1
=2
(三)典型例题
(2)由PD ⊥平面ABCD,∠ = 90°.
以 D 为原点,以DA,DC ,DP 分别为, , 轴建立空间直角坐标系,如图.
由PD=3,PN=2ND,BC=2AD=2DC=3
3
2
3
2
则 N(0,0,1) , A( , 0,0), C(0, , 0),P(0,0,3)
∙
.
3
【做一做】已知向量m,n分别是直线l与平面α的方向向量、法向量,若cos〈,〉=- 2 ,则l与α所成
的角为( B )
A.30° B.60° C.150° D.120°
(二)用空间向量研究夹角
∙
【思考】设平面α的斜线l的方向向量为 ,平面α的法向量为,l与α所成的角的公式为什么不是cosθ=
由(1)易知CD⊥平面AA1B1B,且 CD= 3.
如图,以B为原点,分别以射线BA,BA1为x,y轴的正半轴,建立空间直角坐标系B-xyz,
【做一做】平面α的法向量 1 为(1,0,-1),平面β的法向量 2 为(0,-1,1),则平面α与平面β
的夹角为_______.
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用空间向量求直线与平面所成的角(二)(人教
A版)
一、单选题(共7道,每道14分)
1.如图,在三棱锥P-ABC中,PA=PB=PC=BC,且∠BAC=90°,AB=AC,若、分别是、上,且,,直线MN与底面ABC所成角的正弦值为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:用空间向量求直线与平面所成的角
2.如图,在四棱锥A-BCDE中,AC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1. (1)直线AE与平面ABC所成角的正切值为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:用空间向量求直线与平面所成的角
3.(上接第2题)(2)直线AB与平面ADE所成角的正弦值为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:用空间向量求直线与平面所成的角
4.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,高为2,底面是边长为2的正三角形. (1)若P为A1C1的中点,则直线PB与平面BCC1B1所成角的正弦值为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:用空间向量求直线与平面所成的角
5.(上接第4题)(2)若P为线段A1C1上一点,且直线PB与平面BCC1B1所成的角的正弦值为,则的长为( )
A. B.1
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:用空间向量求直线与平面所成的角
6.如图,已知△ABS是等边三角形,四边形ABCD是正方形,平面ABS⊥平面ABCD.
(1)直线SC与平面ABCD所成角的正弦值为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:用空间向量求直线与平面所成的角
7.(上接第6题)(2)若为线段SB上一点,且平面,则( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:用空间向量求直线与平面所成的角
第11页共11页。