(完整版)有理数数轴基础巩固练习题附答案

合集下载

【七年级数学】数轴练习题(含答案)

【七年级数学】数轴练习题(含答案)

数轴练习题(含答案)§2.2 数轴在线检测1.画一条水平直线,在直线上取一点表示0,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______表示.2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.4.判断下列所画的数轴是否正确,如不正确,请指出.5.在所给的数轴上画出表示下列各数的点2,-3,,0,,5,。

6.指出数轴上A,B,c,D,E,F各点所代表的数字.7.在数轴上画出表示下列各数的点,并回答下列问题.-3,2,-15,-2,0,15,3.(1)哪两个数的点与原点的距离相等?(2)表示-2的点与表示3的点相差几个单位长度?8.将-1所对应的点在数轴上先向右移动4个单位长度,再向左移动5•个单位长度后,得到的点对应的数是什么?基础巩固训练一、选择题1.图1中所画的数轴,正确的是()2.在数轴上,原点及原点左边的点所表示的数是()A.正数 B.负数 c.非负数 D.非正数3.与原点距离是2.5个单位长度的点所表示的有理数是() A.2.5 B.-2.5 c.±2.5 D.这个数无法确定4.关于- 这个数在数轴上点的位置的描述,正确的是()A.在-3的左边 B.在3的右边 c.在原点与-1之间 D.在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()A.+6 B.-3 c.+3 D.-96.不小于-4的非正整数有()A.5个 B.4个 c.3个 D.2个7.如图所示,是数a,b在数轴上的位置,下列判断正确的是() A.a 0 B.a 1 c.b -1 D.b -1二、填空题1.数轴的三要素是______ _______.2.数轴上表示的两个数,________边的数总比________边的数大.3.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.4.有理数a,b,c在数轴上的位置如图所示,用“ ”将a,b,•c•三个数连接起________.5.大于-3.5小于4.7的整数有_______个.6.用“ ”、“ ”或“=”填空.(1)-10______0;(2) ________- ;(3)- _______- ;(4)-1.26________1 ;(5) ________- ;(6)- _______3.14;(7)-0.25______- ;(8)- ________ .7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.三、解答题1.画出数轴并标出表示下列各数的点,并用“〈”把下列各数连接起.-3 ,4,2.5,0,1,7,-5.2.如图所示,根据数轴上各点的位置,写出它们所表示的数.3.一个点从数轴上表示-2的点开始,按下列条移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单位,再向左移动6.5个单位.四、创新题1.初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下A队-50分;B队150分;c队-300分;D队0分;E队100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A队与B队相差多少分?c队与E队呢?2.超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边a的大小.2.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,c,•D对应的数分别是数a,b,c,d,且d-2a=10,那么数轴的原点应是哪一点?中考题回顾六、中考题1.(7℃,把它们从高到低排列正确的是()A.-10℃,-7℃,1℃; B.-7℃,-10℃,1℃c.1℃,-7℃,-10℃; D.1℃,-10℃,-7℃2.(2.3.(.4.(2答案一、1.D 2.D 3.c 4.D 5.c 6.A 7.D二、1.原点、正方向和单位长度 2.右左 3.右 6 左 8 14 4.ca b • 5.86.(1)(2)(3)(4)(5)(6)(7)= (8)7.6或-10三、1.画图(略) -5 -3 -1 0 1 2.5 4 72.A0 B-1 c4 D-2.5 E2 F-43.如图所示(1)(2)(3)(4)四、1.(1)c队 A队 D队 E队 B队;(2)如图所示(3)A队与B队相差a;(3)当a 0时,a -a.2.B为原点.六、1.c 2. 3. 4.-3 2。

有理数_数轴训练

有理数_数轴训练

有理数数轴同步练习基础巩固题:1.在数轴上表示的两个数中,的数总比的数大。

2.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度3.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。

4.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。

5.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。

6.到原点的距离不大于3的整数有个,它们是:。

7.下列说法错误的是()A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小8.下列结论正确的有()个:①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0 ③正数,负数和零统称有理数④数轴上的点都表示有理数A.0B.1C.2D.39.在数轴上,A点和B点所表示的数分别为-2和1,若使A点表示的数是B点表示的数的3倍,应把A点()A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位10在数轴上画出下列各点,它们分别表示,并把它们用“<”连接起来。

+3, 0,-314,112,-3,-1.25应用与提高11.小明的家(记为A)与他上学的学校(记为B),书店(记为C)依次座落在一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条街向东走40米,接着又向西走了70米到达D处,试用数轴表示上述A、、B、C、D的位置。

12.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来。

中考链接 13.如图,数轴上的点A 所表示的数是a ,则A 点到原点的距离是 。

14.在数轴上,离原点距离等于3的数是 。

15.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是 ( )A.1B.-6 C.2或-6 D.不同于以上答案参考答案:1.右边,左边2.左边,53.右边,2,左,7,9 4.—25.2个,±2.56.7个,±1,±2,±3,0 7.D8.C9.B10.-314<-3<-1.25<0<112<311.12.-12,-11,-10,-9,-8,11,12,13,14,15,16,17 13.∣a∣14.±315.C。

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

z!"#$#%&!"#$%&'()*+,-./0+123445"6$&60+12-7.890:;<=344>"6$0?+**********?C-D0?EFG0344H"IJ0?K&60L'MNO+-PQRSTU0TVWXYZ 4知识点1 :正数和负数(1)概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

) (2)意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2: 有理数(1)概念整 数:正整数、0、负整数统称为整数。

分 数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

(2)分类:两种⑴按正、负性质分类: ⑵按整数、分数分类:正有理数 正整数 正整数 有理数 正分数 整数 0 零 有理数 负整数 负有理数 负整数 分数 正分数 负分数 负分数z知识点3:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度(2)对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大 。

(3)应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)【题型 1 正数与负数】【典例1】(2023•西乡塘区二模)在﹣2,0,0.5,3四个数中,是负数的是( ) A .﹣2 B .0 C .0.5 D .3【答案】A【解答】解:在﹣2,0,0.5,3四个数中,是负数的是﹣2. 故选:A .【变式1-1】(2023•安徽模拟)数1,,0,﹣2,﹣3中正数有( )个. A .2 B .3C .4D .5【答案】A【解答】解:在:1,,0,﹣2,﹣3中, 正数有:1,,共2个. 故选:A .【变式1-2】(2022秋•防城港期末)下列各数中,是负数的是( ) A .0 B .﹣C .πD .3【答案】B【解答】解:A .0既不是正数,也不是负数,故选项不符合题意; B .﹣是负数,故选项符合题意; C .π是正数,故选项不符合题意;D.3是正数,故选项不符合题意;故选:B.【变式1-3】(2022秋•石楼县期末)下列各数:﹣2,0.8,﹣5,0,﹣3.14,8.3,﹣11,其中负数的有( )个.A.2B.3C.4D.5【答案】C【解答】解:负数有﹣2,﹣5,﹣3.14,﹣11,共4个,故选:C.【题型 2 相反意义的量表示】【典例2】(2023•船营区一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若气温上升7℃记作:+7℃,那么气温下降10℃可记作( )A.7℃B.10℃C.﹣10℃D.﹣7℃【答案】C【解答】解:若气温上升7℃记作:+7℃,那么气温下降10℃可记作﹣10℃.故选:C.【变式2-1】(2023•吉林一模)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作﹣500年,那么公元2023年应记作( )A.﹣2023年B.+1523年C.+2023年D.+2523年【答案】C【解答】解:∵公元前500年记作﹣500年,∴公元前为“﹣”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式2-2】(2022秋•佛山期末)下列四组量中,不具有相反意义的是( )A.海拔“上升200米”与“下降400米”B.温度计上“零上15℃”与“零下5℃”C.盈利100元与亏本25元D.长3米与重10千克【答案】D【解答】解:上升于下降具有相反意义,故A不符合题意;零上于零下具有相反意义,故B不符合题意;盈利于亏本具有相反意义,故C不符合题意;长度于质量步具有相反意义,故D符合题意;故选:D.【变式2-3】(2023•衡水二模)某日,四个城市的日平均气温如表所示:城市石家庄邢台保定张家口日平均气温/℃﹣110﹣6则日平均气温最低的是( )A.石家庄B.邢台C.保定D.张家口【答案】D【解答】解:∵﹣6<﹣1<0<1,∴日平均气温最低的城市是张家口,故选:D.【典例3】(2023•长春模拟)班级组织了一次跳远比赛,若成绩以250cm为标准,小明跳出了253cm,记做+3cm,则小亮跳出了246cm应记作( )A.+4cm B.﹣4cm C.+6cm D.﹣6cm【答案】B【解答】解:246﹣250=﹣4(cm),故选:B.【变式3-1】(2023•衡水二模)某品牌米线的包装袋上写着“300克±4%”,则下列不可能是米线的重量的是( )A.285克B.295克C.304克D.310克【答案】A【解答】解:∵300克±4%,即300×(1+4%)=312,300×(1﹣4%)=288z∴米线的重量为288~312克, 故选:A .【变式3-2】(2022秋•武陵区期末)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不是标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解答】解:|﹣1.2|=1.2;|﹣2.3|=2.3;|0.9|=0.9;|﹣0.8|=0.8, ∵0.8<0.9<1.2<2.3, ∴0.8最小. 故选:D【变式3-3】(2022秋•德州期末)某中学进行立定跳远测试,男生成绩合格标准定为1.85米,体育老师记录了甲、乙、丙、丁四位男生成绩如下表:(超出标准的部分记为“+”,不足标准的部分记为“﹣”),你认为立定跳远成绩最好的是( ) 学生 甲 乙 丙丁成绩/米 +0.25+0.45 ﹣0.10 ﹣0.25A .甲B .乙C .丙D .丁【答案】B【解答】解:∵﹣0.25<﹣0.10<+0.25<+0.45, ∴四位男同学成绩最好的是乙; 故选:Bz【题型 3 相反意义的应用】【典例4】(2022秋•社旗县期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克. (2)这8筐白菜中最重的重 千克;最轻的重 千克. (3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元? 【答案】(1)24.5; (2)27;22; (3)389.【解答】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25﹣0.5=24.5(千克), 故答案为:24.5;(2)∵记录中最大的数为2,最小的数为﹣3 ∴25+2=27(千克),25﹣3=22(千克) ∴这8筐白菜中最重的重27克;最轻的22千克,故答案为:27;22.(3)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.525×8+(﹣5.5)=194.5(千克)194.5×2=389(元),答:出售这8筐白菜可卖389元.【变式4-1】(2022秋•绥德县期末)某登山队5名队员以大本营为基地,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下:(单位:米)+115,﹣30,﹣45,+180,+25,﹣20,+30,+110,﹣25,+100 (1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米? (2)登山时,5名队员在行进中全程均消耗了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?【答案】(1)没有登上顶峰,他们距离顶峰60米;(2)他们共消耗了17 升氧气.【解答】解:(1)500﹣(115﹣30﹣45+180+25﹣20+30+110﹣25+100)=60(米).答:没有登上顶峰,他们距离顶峰60米;(2)115+30+45+180+25+20+30+110+25+100=680(米),因为每人每100米消耗氧气0.5升,所以680×5÷100×0.5=17(升),答:他们共消耗了17 升氧气.【变式4-2】(2022秋•枣阳市期末)某校积极开展劳动教育活动,七年级(2)班利用劳动课举行包饺子比赛,以小组为单位(共分7个小组),以包100个饺子为基准,将这7个小组所包饺子的数量(单位:个)记录如下:﹣8,+5,+3,﹣2,+3,+7,+6.(超过100个的部分记为“+”,不足100个的部分记为“﹣”)(1)包饺子数量最多的小组与数量最少的小组相差多少个?(2)本次活动该班共包饺子多少个?【答案】(1)包饺子数量最多的小组与数量最少的小组相差15个;(2)本次活动该班共包饺子714个.【解答】解:(1)由题意,得:包的最多的小组比基准多7个,包的最少的小组比基准少8个;+7﹣(﹣8)=15(个);答:包饺子数量最多的小组与数量最少的小组相差15个;(2)(﹣8+5+3﹣2+3+7+6)+7×100=714(个);答:本次活动该班共包饺子714个.【变式4-3】(2022秋•慈溪市期末)2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值+43﹣35﹣50+142﹣82+21﹣29(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生产成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?【答案】(1)本周生产量最多的一天比生产量最少的一天多生产224个;(2)本周实际生产总量达到了计划数量,理由见解析;(3)350050.【解答】(1)解:由表可知:因为本周生产量最多的一天是周四,最少的一天是周五,∴142﹣(﹣82)=224(个).答:本周生产量最多的一天比生产量最少的一天多生产224个.(2)∵43+(﹣35)+(﹣50)+(+142)+(﹣82)+(+21)+(﹣29)=43﹣35﹣50+142﹣82+21﹣29=10.∵10>0,∴本周实际生产总量达到了计划数量.(3)由利润=总量×(单价﹣成本)有:(10000×7+10)×(30﹣25)=70010×5=350050(元).答:该工厂本周的生产总利润是350050元.【题型 4 有理数的概念辨析】【典例5】(2022秋•朝阳区期末)下面的说法中,正确的是( )A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【答案】C【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.z故选:C .【变式5-1】(2022秋•长沙期末)在﹣3.5,,0.3070809,0,中,有理数有( )个. A .1 B .2C .3D .4【答案】D【解答】解:在﹣3.5,,0.3070809,0,中,有理数有﹣3.5,,0.3070809,0,共4个,故选:D .【变式5-2】(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是( )A .正有理数B .负有理数C .0D .非负数【答案】C【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数, 则“”表示的是0. 故选:C .【变式5-3】(2022秋•颍州区期末)下列说法正确的是( ) A .3.14不是分数B .不带“﹣”号的数都是正数C .0是自然数也是正数D .整数和分数统称为有理数 【答案】 Dz【解答】解:A 、3.14是分数,属于有理数,故A 不符合题意; B 、0不带“﹣”号,但不是正数,故B 不符合题意;C 、0是自然数,但既不是正数,也不是负数,故C 不符合题意;D 、整数和分数统称为有理数,说法正确,故D 符合题意. 故选:D .【题型 5 有理数的分类】【典例6】(2022秋•宁陕县校级期中)把下列各数填入相应的大括号里: ﹣3,3.14,﹣0.1,80,﹣25%,0,正数集合:{ }; 整数集合:{ }; 负数集合:{ }; 正分数集合:{ }. 【答案】3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【解答】解:﹣3,3.14,﹣0.1,80,﹣25%,0,,正数集合:{3.14,80,,};整数集合:{﹣3,80,0,}; 负数集合:{﹣3,﹣0.1,﹣25%,}; 正分数集合:{3.14,,}.故答案为:3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【变式6-1】把下列各数填入相应的集合里:﹣3.14,4.3,+72,0,,﹣6,﹣7.3,﹣12,0.4,﹣,,26.(1)正数集合:{ …}; (2)负数集合:{ …}; (3)正整数集合:{ …}; (4)负整数集合:{ …};(5)非负数集合:{ …}. 【答案】(1)4.3,+72,,0.4,,26;(2)﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)+72,26;(4)﹣6,﹣12;(5)4.3,+72,0,,0.4,,26.【解答】解:(1)正数集合:{4.3,+72,,0.4,,26…};故答案为:4.3,+72,,0.4,,26;(2)负数集合:{﹣3.14,﹣6,﹣7.3,﹣12,﹣…};故答案为:﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)正整数集合:{+72,26…};故答案为:+72,26;(4)负整数集合:{﹣6,﹣12…};故答案为:﹣6,﹣12;(5)非负数集合:{4.3,+72,0,,0.4,,26…}.故答案为:4.3,+72,0,,0.4,,26.【变式6-2】(2022秋•雁塔区校级月考)把下列各数填在相应的横线上:5%,z﹣,﹣12,0,0.,﹣3.14,+6,0.101101110,.整数集合:{…};正数集合:{…};负分数集合:{…};非负整数集合:{…}.【答案】﹣12,0,+6;5%,0.,+6,0.101101110,;﹣,﹣3.14;0,+6.【解答】解:整数集合:{﹣12,0,+6…};z正数集合:{5%,0.,+6,0.101101110,…};负分数集合:{﹣,﹣3.14…}; 非负整数集合:{0,+6…}; 故答案为:﹣12,0,+6; 5%,0.,+6,0.101101110,;﹣,﹣3.14; 0,+6.【题型 6 数轴的画法及应用】【典例7】(2022•苏州模拟)以下是四位同学画的数轴,其中正确的是( ) A . B .C .D .【答案】D【解答】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D 符合题意, 故选:D .【变式7-1】(2022•杭州模拟)下列说法中正确的是( )A .数轴是一条射线B .数轴上离开原点距离越远的点表示的数越大C .数轴上的点所表示的数从左到右依次减小D .任何一个有理数都可以用数轴上的一个点表示 【答案】D【解答】解:数轴是一条直线,A 说法错误;在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,B 说法错误; 数轴上的点所表示的数从左到右依次增大,C 说法错误; 任何一个有理数都可以用数轴上的一个点表示,D 说法正确. 故选:D .【变式7-2】(2021秋•凉州区校级期末)判断下列图中所画的数轴正确的个数是( )个.A.0B.1C.2D.3【答案】B【解答】解:数轴的三要素是:原点、正方向、单位长度,图(1)没有原点,故(1)不正确;图(2)满足数轴的定义,故(2)正确;图(3)所画负半轴上的数字排列顺序不对,故(3)错误;图(4)所画单位长度不一致,故(4)不正确.故选:B.【典例8】(2022秋•自贡期末)a,b为有理数,它们在数轴上对应点的位置如z图所示.则下列关系式正确的是( )A.﹣a<﹣b<b<a B.﹣a<b<﹣b<aC.﹣b<b<﹣a<a D.a<﹣b<b<﹣a【答案】B【解答】解:如图,由数轴可得,﹣a<b<﹣b<a,故选:B.【变式8-1】(2023•贵阳模拟)有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )zA .a +b >0B .a ﹣b >0C .ab >0D .【答案】D【解答】解:由数轴可知b >0>a ,且b <|a|, ∴a+b <0,故A 错误,不符合题意; a ﹣b <0,故B 错误,不符合题意; ab <0,故C 错误,不符合题意;,故D 正确,符合题意.故选:D .【变式8-2】(2022秋•鼓楼区校级期末)如图,A ,B ,C ,D 是数轴上的四个点,已知a ,b 均为有理数,且a +b =0,则它们在数轴上的位置不可能落在( )A .线段AB 上 B .线段BC 上 C .线段BD 上 D .线段AD 上【答案】A【解答】解:∵a ,b 均为有理数,且a+b =0, ∴a ,b 位于原点两侧,∴a ,b 在数轴上的位置不可能落在线段AB 上.故选:A .【变式8-3】(2022秋•江阴市期末)如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .以上都不正确【答案】C【解答】解:由数轴可知,a <b <0, ∴a+b <0,故A 不符合题意; a ﹣b <0,故B 不符合题意;ab >0,故C 符合题意,D 不符合题意.【题型 7 数轴上的点所表示的数】【典例9】(2022秋•天津期末)已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )A.4或﹣4B.6或﹣2C.6或2D.﹣6或﹣2【答案】B【解答】解:∵点B到点A的距离是4.∵B表示2,∴A表示为2﹣4=﹣2或2+4=6.故选:B.【变式9-1】(2022秋•武冈市期末)点A为数轴上表示﹣2的点,当点A沿数轴移动5个单位长度到点B时,点B所表示的数为( )A.7或﹣3B.3或﹣7C.3或﹣3D.7或﹣7【答案】B【解答】解:向左移动5个单位长度对应的点表示﹣2﹣5=﹣7,向右移动5个单位长度对应的点表示﹣2+5=3,故选:B.【变式9-2】(2023•义乌市校级开学)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是( )A.﹣1B.0C.1D.2【答案】C【解答】解:由图可知,被墨水盖住的整数为:﹣3,﹣2,1,2,3,相加为﹣3+(﹣2)+1+2+3=1;故选:C【变式9-3】(2023•新邵县校级一模)在数轴上表示数﹣1和2021的两个点之间的距离为( )个单位长度.A.2022B.2021C.2020D.2019z【解答】解:|﹣1﹣2021|=2022, 故选:A .【题型 8 数轴中点规律问题】【典例10】(2023•新华区校级二模)如图,不完整的数轴上有A ,B 两点,原点在A 、B 之间,沿原点将负半轴折叠到正半轴上,点A 落在点B 左侧4个单位长度处,则线段AB 的中点表示的数为( )A .2B .﹣2C .4D .﹣4【答案】A【解答】解:根据题意可设点A 表示的数为a ,则折叠后的点A 的对称点为﹣a , 因为点A 落在点B 左侧4个单位长度处,所以点B 表示的数为﹣a+4, 则AB =﹣a+4﹣a =4﹣2a , 线段AB 的一半为2﹣a ,所以AB 中点为:﹣a+4﹣(2﹣a )=2, 故选:A .【变式10-1】(2022秋•公安县期末)在数轴上,若点A ,B 表示的数分别是﹣3和5,点M 是线段AB 的中点,则M 表示的数为( ) A .1 B .2C .4D .﹣4【答案】A【解答】解:∵点A ,B 表示的数分别是﹣3和5, ∴AB =5﹣(﹣3)=8, ∵点M 是线段AB 的中点, ∴,∴点M 表示的数为:5﹣4=1; 故选:A .【变式10-2】(2022秋•江岸区期末)如图,在数轴上,点A 、B 表示的数分别是﹣19和3.点C 为线段AD 的中点,且BC =6BD ,则点C 表示的数为( )zA .﹣9B .﹣9.5C .﹣10D .﹣10.5【答案】A【解答】解:∵数轴上A ,B 两点所表示的数分别是﹣19和3, ∴AB =3+19=22, 设BD =x , ∵BC =6BD , ∴BC =6x , ∴CD =5x ,∵点C 为线段AD 的中点, ∴AD =2CD =10x , ∴AB =11x =22, ∴x =2, ∴AC =5x =10,∴点C 所表示的数是﹣19+10=﹣9. 故选:A .1.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作( ) A .﹣2℃ B .+2℃C .﹣3℃D .+3℃【答案】C【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .2.(2022•益阳)四个实数﹣,1,2,中,比0小的数是( )A .﹣B .1C .2D .【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.3.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.4.(2021•南京)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.10:00B.12:00C.15:00D.18:00【答案】C【解答】解:由题意得,北京时间应该比莫斯科时间早5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为12:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C.5.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.z6.(2021•广州)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【答案】A【解答】解:∵a+b =0, ∴a =﹣b ,即a 与b 互为相反数. 又∵AB =6, ∴b ﹣a =6. ∴2b =6. ∴b =3.∴a =﹣3,即点A 表示的数为﹣3. 故选:A .7.(2021•凉山州)下列数轴表示正确的是( ) A . B .C .D .【答案】D【解答】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确; 故选:D .8.(2020•乐山)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( ) A .4 B .﹣4或10C .4或﹣10D .﹣10【答案】C【解答】解:如果A 向右平移得到,点B 表示的数是:﹣3+7=4, 如果A 向左平移得到,点B 表示的数是:﹣3﹣7=﹣10,z故点B 表示的数是4或﹣10. 故选:C .9.(2020•临沂)如图,数轴上点A 对应的数是,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣B .﹣2C .D .【答案】A【解答】解:点A 向左移动2个单位, 点B 对应的数为:﹣2=﹣. 故选:A .10.(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可) 【答案】见试题解答内容【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可);1.(2023•河北模拟)向东走2m ,记为+2m ,那么走﹣7m ,表示( ) A .向南走7m B .向东走7mC .向西走7mD .向北走7m【答案】C【解答】解:向东走2m ,记为+2m ,那么走﹣7m ,表示向西走7m . 故选:C .2.(2022秋•河池期末)下列说法错误的是( ) A .0既不是正数,也不是负数B .零上4摄氏度可以写成+4°C ,也可以写成4°CzC .若盈利100元记作+100元,则﹣20元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示 【答案】D【解答】解:A .0既不是正数,也不是负数,正确,故不符合题意; B .零上4摄氏度可以写成+4°C ,也可以写成4°C ,正确,故不符合题意; C .若盈利100元记作+100元,则﹣20元表示亏损20元,正确,故不符合题意; D .规定向正北走用正数表示,则向正南走才用负数表示,原说法错误,故符合题意. 故选:D .3.(2023•海安市一模)手机移动支付给生活带来便捷.如图是小颖某天微伯账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )A .收入18元B .收入6元C .支出6元D .支出12元【答案】B【解答】解:+18+(﹣12)=6(元),即小颖当天微信收支的最终结果是收入6元.故选:B .4.(2023•官渡区校级模拟)检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,结果如下表: 其中质量最好的是( )篮球编号 甲 乙 丙 丁与标准质量的差(g ) +4+7﹣3﹣8A .甲B .乙C .丙D .丁【答案】C【解答】解:根据题意可得:超过标准质量的克数记为正数,不足标准质量的克z数记为负数;观察图表,找绝对值最小的.易得|﹣3|=3最小, 故3号球最接近标准质量,质量最好, 故选:C .5.(2022秋•广西期末)在,﹣4,0,这四个数中,属于负整数的是( ) A .B .C .0D .﹣4【答案】D【解答】解:∵﹣,都是分数, ∴选项A ,B 不符合题意; ∵0既不是正数,也不是负数, ∴选项C 不符合题意; ∵﹣4是负整数, ∴选项D 符合题意, 故选:D .6.(2022秋•红河县期末)下列说法正确的是( ) A .0不是正数,不是负数,也不是整数 B .正整数与负整数包括所有的整数C .﹣0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数【答案】C【解答】解:A 0不是正数也不是负数,0是整数,故A 错误; B 正整数于负整数不包括0,故B 错误; C ﹣0.6是分数,负数,有理数,故C 正确; D 0是最小的自然数,故D 错误; 故选:C .7.(2023•晋安区校级模拟)如图,数轴的单位长度是1,若点A 表示的数是﹣1,则点B 表示的数是( )zA .1B .2C .3D .4【答案】D【解答】解:∵数轴的单位长度为1,如果点A 表示的数是﹣1, ∴点B 表示的数是:﹣1+5=4,故D 正确. 故选:D .8.(2022秋•惠阳区期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣1B .﹣a <bC .a +b <0D .a ﹣b >0【答案】B【解答】解:观察数轴得:﹣2<a <﹣1,2<b <3, ∴A 选项错误,不符合题意; ∴1<﹣a <2,∴﹣a <b ,故B 选项正确,符合题意; ∴|a|<|b|,∴a+b >0,故C 选项错误,不符合题意; ∴a ﹣b <0,故D 选项错误,不符合题意; 故选:B .9.(2022秋•沈丘县月考)已知数轴上A ,B 两点到原点的距离分别是3和9,则A ,B 两点间的距离是( ) A .6 B .9或12C .12D .6或12【答案】D【解答】解:A 、B 两点表示的数同号时,A ,B 两点间的距离是9﹣3=6或﹣3﹣(﹣9)=6,A 、B 两点表示的数异号时,A ,B 两点间的距离是9﹣(﹣3)=12或3﹣(﹣9)=12,∴A ,B 两点间的距离是6或12. 故选:D .10.(2022秋•文成县期中)点A、B在同一条数轴上,其中点A表示的数为1,若点B到点A的距离为4,则点B表示的数是( )A.3B.5C.3或﹣3D.5或﹣3【答案】D【解答】解:∵1+4=5,1﹣4=﹣3,∴点B表示的数是5或﹣3,故选:D.11.(2022秋•济南期中)如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是( )A.1B.﹣3C.1或﹣5D.1或﹣4【答案】C【解答】解:10+6=16,10﹣6=4,当A落在16对应的点时,C表示的数为:(16﹣14)=1,z当A落在4对应的点时,C表示的数为:(4﹣14)=﹣5,故选:C.12.(2023春•荣县月考)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).【答案】见试题解答内容【解答】解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1,∴第16个答案为:.故答案为:.13.(2022秋•武侯区校级月考)把下列各数分别填入相应的集合里.0,,5,3.14,π,﹣3,0.1.(1)整数集合:{…};(2)分数集合:{…};(3)有理数集合:{…};(4)非负数集合:{…}.【答案】(1)0,5,﹣3;(2),3.14,0.1;(3)0,,5,3.14,﹣3,0.1;(4)0,5,3.14,π,0.1.【解答】解:0,,5,3.14,π,﹣3,0.1.(1)整数集合:{0,5,﹣3,…};故答案为:0,5,﹣3;(2)分数集合:{,3.14,0.1,…};、故答案为:,3.14,0.1;z(3)有理数集合:{0,,5,3.14,﹣3,0.1,…};故答案为:0,,5,3.14,﹣3,0.1;(4)非负数集合:{0,5,3.14,π,0.1,…}.故答案为:0,5,3.14,π,0.1.14.(2023•泰山区校级开学)自行车厂要生产一批相同型号的自行车,计划每天生产200辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过200辆记为正,不足200辆记为负)星期一二三四五六日增减(辆)+5﹣3﹣4+13﹣10+15﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.【答案】(1)598;(2)25;(3)工人这一周的工资总额是140840元.【解答】解:(1)由表格可得,(200+5)+(200﹣3)+(200﹣4)=205+197+196=598(辆),即前三天共生产了598辆,故答案为:598;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了15﹣(﹣10)=15+10=25(辆),故答案为:25;(3)200×7×100+[5+(﹣3)+(﹣4)+13+(﹣10)+15+(﹣9)]×120=140000+7×120=140000+840=140840(元),答:工人这一周的工资总额是140840元.15.(2022秋•长安区校级期末)某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:﹣3﹣2﹣1.501 1.5 2.5与标准质量的差/克袋数1434323(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?【答案】(1)这批样品的总质量比标准总质量少,少2克;(2)这批样品平均每袋的质量是199.9克.【解答】解:(1)(﹣3)×1+(﹣2)×4+(﹣1.5)×3+0×4+1×3+1.5×2+2.5×3=﹣3﹣8﹣4.5+0+3+3+7.5=﹣2(克),即这批样品的总质量比标准总质量少,少2克;(2)200×20﹣2=4000﹣2=3998(克),3998÷20=199.9(克),即这批样品平均每袋的质量是199.9克.。

七年级数学上册1.2有理数1.2.2数轴课时练(附模拟试卷含答案)

七年级数学上册1.2有理数1.2.2数轴课时练(附模拟试卷含答案)

1.2 有理数(2)数轴1.下列所示的数轴中,画得正确的是( ) A . B .C .D .2.如图所示,在数轴上点A 表示( )A .-2B .2C .±2D .03.在数轴上表示-12的点与表示-3的点之间的距离是( ) A .9 B .-9 C .2 D .4 4.下列说法,错误的是( )A .所有的有理数都可以用数轴上的点表示B .数轴上的原点表示0C .在数轴上表示-3的点与表示+1的点的距离是2D .数轴上表示-513的点在原点负方向513个单位 5.如图所示,数轴上一点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数( )A .7B .3C .-3D .-26.数轴上,在3-与4之间的点表示的有理数有 .7.把在数轴上表示-2的点移动3个单位长度后,所得到对应点的数是_____. 8.若在数轴上点A ,B 分别表示-12和12,则数轴上与A ,B 两点的距离相等的点表示的数是___________.9. 如图所示,数轴上的点A ,B ,C 、,D 分别表示4,0,211,3--请回答下列问题:(1)在数轴上描出A ,B ,C ,D 四个点;(2)B ,C 两点间的距离是多少?A ,D 两点间的距离是多少?(3)如果把数轴的原点取在点B 处,其余都不变,那么点A ,B ,C ,D 分别表示什么数?10.小李在做题时,画了一个数轴,在数轴上原有一点A , 其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A 正好落在-3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?参考答案 1.A . 2.A . 3.A. 4.C . 5.D .6.无限多个. 7.1或5-. 8.0. 9.(1)(2)1.5,7(3)215,211,0,21,1-. 10.向右移动6个单位.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为﹣5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为13BC的点N,则该数轴的原点为()A.点EB.点FC.点MD.点N2.如图,点E是AB的中点,点F是BC的中点,AB=4,BC=6,则E、F两点间的距离是()A.10 B.5 C.4 D.23.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在()A.点AB.点BC.点CD.点D4.某地原有沙漠地108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( )A.54+x=80%×108 B.54+x=80%(108﹣x)C.54﹣x=80%(108+x) D.108﹣x=80%(54+x)5.下列说法正确的是( )A.1x是单项式 B.πr2的系数是1C.5a2b+ab﹣a是三次三项式D.12xy2的次数是26.下列计算正确的是( )A.x3·x2=x6B.(2x)2=2x2C.()23x=x6D.5x-x=47.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,……按照这样的规律排列下去,则第6个图形由( )个圆组成A .39B .40C .41D .428.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( ) A .()13x 12x 1060=++ B .()12x 1013x 60+=+ C .x x 60101312+-=D .x 60x101213+-= 9.如图,数轴上每个刻度为1个单位长,则 A ,B 分别对应数 a ,b ,且b-2a=7,那么数轴上原点的位置在( )A.A 点B.B 点C.C 点D.D 点10.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b 。

初一数学有理数、数轴、绝对值同步练习(含答案)

初一数学有理数、数轴、绝对值同步练习(含答案)

2.1有理数测试令狐采学基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是()A 、-3.14B 、0C 、37 D 、33、既是分数又是正数的是()A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是()A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是()A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有() ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

A 、1个B 、2个C 、3个D 、4个7、把下列各数分别填入相应的大括号内:自然数集合{ …};整数集合{ …};正分数集合{ …};非正数集合{ …};8、简答题:(1)-1和0之间还有负数吗?如有,请列举。

(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?(3)有比-1大的负整数吗?有比1小的正整数吗?(4)写出三个大于-105小于-100的有理数。

1.2.2数轴基础检测1、 画出数轴并表示出下列有理数:.0,32,29,5.2,2,2,5.1---2、 在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度。

3、比较大小,在横线上填入“>”、“<”或“=”。

10;0-1;-1-2;-5-3;-2.52.5.拓展提高4.数轴上与原点距离是5的点有个,表示的数是。

5.已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有。

新人教版数学七年级上册第1章有理数基础巩固与训练(含解析答案)

新人教版数学七年级上册第1章有理数基础巩固与训练(含解析答案)

新人教版数学七年级上册第一章有理数基础巩固与训练总分数分时长:题型单选题填空题简答题综合题题量8 6 1 5总分一、选择题(共8题 ,总计0分)1.- 的倒数是()A. -4B. 4C.D. -2.下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是13.计算(-3)3+52-(-2)2=()A. 2B. 5C. -3D. -64.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到B时,点B所表示的数是()A. 1B. -6C. 2或-6D. 不同于以上答案5.下面各数是负数的是()A. 0B. -2017C.D.6.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A. a+b<0B. ab<0C. b-a<0D. >07.某日,北京、上海、重庆、银川的最低气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃.这四个城市中,气温最低的是()A. 北京B. 上海C. 重庆D. 银川8.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000 m3.140 000用科学记数法表示为()A. 14×104B. 1.4×105C. 1.4×106D. 0.14×106二、填空题(共6题 ,总计0分)9.如果把增产10%记作+10%,那么减产50%记作____1____,-12%表示____2____.10.若(a+3)2+|b-2|=0,则(a+b)2015=____1____.11.若x2=16,则x=____1____;若x3=-8,则x=____2____.12.一个数的相反数是它本身,这个数是____1____;一个数的倒数是它本身,这个数是____2____;一个数的绝对值是它本身,这个数是____3____;最大的负整数是____4____. 13.观察下列一组数:,….根据该组数的排列规律,可推出第10个数是____1____.14.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=____1____.三、解答题(共6题 ,总计0分)15.把下列各数按要求分类.-4,10%,-1,-2,101,2,-1.5,0,,0.,7.(1).负整数集合:{____1____},(2).正分数集合:{____1____},(3).负分数集合:{____1____},(4).整数集合:{____1____}.16.计算:(1). ×××;(2).(-3.2)×(-4.8)-6.8×(-4.8);(3).×(-36);(4).9×15-12×(-8).17.小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有一人参加,数学老师想出了一个主意,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组.你也一起来试一试吧!18.综合(1).填空:①(2×3)2=____1____,22×32=____2____;=____3____,=____4____;=____5____,____6____.(2).想一想:(1)中每组中的两个算式的结果是否相等?(3).猜一猜:当n为正整数时,(ab)n等于什么?(4).试一试:结果是多少?19.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1).请你在④和⑤后面的横线上分别写出相对应的等式:(2).通过猜想,写出与第n个图形相对应的等式.20.某自行车厂计划一周生产自行车1 400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负).一二三四五六日星期+5 -2 -4 +13 -10 +16 -9 生产辆数(1).根据记录的数据可知该厂星期五生产自行车辆.(2).根据记录的数据可知该厂本周实际生产自行车辆.(3).该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;若没有完成计划产量,少生产一辆扣20元.那么该厂工人这一周的工资总额是多少元?(4).若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.第1章基础巩固与训练参考答案与试题解析一、选择题(共8题 ,总计0分)1.- 的倒数是()A. -4B. 4C.D. -【解析】略【答案】A2.下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【解析】一个数的绝对值不一定比0大,有可能等于0,故选项A错误;负数的相反数比它本身大,0的相反数是0,故选项B错误;0的绝对值等于其本身,故选项C错误.【答案】D3.计算(-3)3+52-(-2)2=()A. 2B. 5C. -3D. -6【解析】原式=-27+25-4=-6.【答案】D4.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到B时,点B所表示的数是()A. 1B. -6C. 2或-6D. 不同于以上答案【解析】向右移动时,点B表示的数是2;向左移动时,点B表示的数是-6.【答案】C5.下面各数是负数的是()A. 0B. -2017C.D.【解析】|-2017|=2017,只有-2017为负数.【答案】B6.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A. a+b<0B. ab<0C. b-a<0D. >0【解析】由题图知a<0,b>0,|a|<|b|,所以a+b>0,ab<0,b-a>0,<0.只有选项B正确.【答案】B7.某日,北京、上海、重庆、银川的最低气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃.这四个城市中,气温最低的是()A. 北京B. 上海C. 重庆D. 银川【解析】本题考查实数的大小比较.-4,5,6,-8这四个数中,按大小顺序排列为6>5>-4>-8,因此最小的数是-8,所以银川的气温最低.【答案】D8.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000 m3.140000用科学记数法表示为()A. 14×104B. 1.4×105C. 1.4×106D. 0.14×106【解析】略【答案】B二、填空题(共6题 ,总计0分)9.如果把增产10%记作+10%,那么减产50%记作____1____,-12%表示____2____.【解析】略【答案】-50%减产12%10.若(a+3)2+|b-2|=0,则(a+b)2015=____1____.【解析】由题意得a+3=0,b-2=0,得a=-3,b=2,所以(a+b)2015=(-3+2)2015=(-1)2015=-1.【答案】-111.若x2=16,则x=____1____;若x3=-8,则x=____2____.【解析】略【答案】±4-212.一个数的相反数是它本身,这个数是____1____;一个数的倒数是它本身,这个数是____2____;一个数的绝对值是它本身,这个数是____3____;最大的负整数是____4____. 【解析】略【答案】0±1非负数-113.观察下列一组数:,….根据该组数的排列规律,可推出第10个数是____1____.【解析】分母为奇数,分子为自然数,所以它的规律用含n的代数式表示为,则n=10时可得结果为.【答案】14.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=____1____.【解析】由定义可得将集合A与集合B的所有元素放一起但必须删除重复的那部分元素0,1,5.【答案】{-3,-2,0,1,3,5,7}三、解答题(共6题 ,总计0分)15.把下列各数按要求分类.-4,10%,-1,-2,101,2,-1.5,0,,0.,7.(1).负整数集合:{____1____},(2).正分数集合:{____1____},(3).负分数集合:{____1____},(4).整数集合:{____1____}.【解析】(1)略(2)略(3)略(4)略【答案】(1)-4,-2(2)10%,,(3) -1,-1.5(4)-4,-2,101,2,0,716.计算:(1). ×××;(2).(-3.2)×(-4.8)-6.8×(-4.8);(3).×(-36);(4).9×15-12×(-8).【解析】(1)略(2)略(3)略(4)略【答案】(1)×××=-×××=-.(2)(-3.2)×(-4.8)-6.8×(-4.8)=-4.8×(-3.2-6.8)=-4.8×(-10)=48.(3)×(-36)=-×36+×36-×36+×36=-28+30-21+120=101.(4)9×15-12×(-8)=×15-×(-8)=150-+104-2=251.17.小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有一人参加,数学老师想出了一个主意,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组.你也一起来试一试吧!【解析】略【答案】解:①-(-2)=2;②(-1)3=-1;③-|-3|=-3;④0的相反数是0;⑤-0.4的倒数是- ;⑥比-1大的数是.在数轴上表示如下:用“<”连接起来为:③<⑤<②<④<⑥<①.18.综合(1).填空:①(2×3)2=____1____,22×32=____2____;=____3____,=____4____;=____5____,____6____.(2).想一想:(1)中每组中的两个算式的结果是否相等?(3).猜一猜:当n为正整数时,(ab)n等于什么?(4).试一试:结果是多少?【解析】(1)略(2)略(3)略(4)略【答案】(1)36361616-1-1(2)由上面的计算结果可知,(1)中每组中的两个算式的结果相等.(3)(ab)n=a n b n.(4)==119.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1).请你在④和⑤后面的横线上分别写出相对应的等式:(2).通过猜想,写出与第n个图形相对应的等式.【解析】(1)略(2)略【答案】(1)④4×3+1=4×4-3⑤4×4+1=4×5-3(2)4(n-1)+1=4n-3.20.某自行车厂计划一周生产自行车1 400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负).一二三四五六日星期生产+5 -2 -4 +13 -10 +16 -9(1).根据记录的数据可知该厂星期五生产自行车辆.(2).根据记录的数据可知该厂本周实际生产自行车辆.(3).该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;若没有完成计划产量,少生产一辆扣20元.那么该厂工人这一周的工资总额是多少元?(4).若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.【解析】(1)略(2)略(3)略(4)略【答案】(1)周五生产自行车减产10辆,实际生产200+(-10)=190(辆).(2)本周生产自行车为1400+(+5-2-4+13-10+16-9)=1400+9=1409(辆).(3)1409×60+15(5+13+16)+20(-2-4-10-9)=84540+510-500=84550(元).(4)周计工资更多,因为实行每周计件工资制,总工资为1409×60+15(5+13+16-2-4-10-9)=84540+15×9=84675(元).84675>84550,所以按周计件工资更多.。

人教版七级上《1.2.2数轴》同步练习含解析

人教版七级上《1.2.2数轴》同步练习含解析

人教版数学七年级上册第1章 1.2.2数轴同步练习一、单选题(共12题;共24分)1、有理数a,b在数轴上的位置如图所示,那么下列式子中成立的是( )A、ab>0B、C、a﹣1>0D、a<b2、数轴上原点和原点左边的点表示的数是( )A、负数B、正数C、非负数D、非正数3、在数轴上有一点A,它所对应表示的数是3,若将点A在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,此时点B所对应表示的数( )A、3B、﹣1C、﹣5D、44、下列所画的数轴中正确的是( )A、B、C、D、5、大于﹣2.6而又不大于3的整数有( )A、7个B、6个C、5个D、4个6、有理数a,b,c在数轴上大致位置如图,则下列关系式正确的是( )A、a<b<cB、a<c<bC、b<c<aD、|a|<|b|<|c|7、数轴上的点A、B、C、D分别表示数a、b、c、d,已知点A在点B的左侧,点C在点B的左侧,点D 在点B、C之间,则下列式子中,可能成立的是( )A、a<b<c<dB、b<c<d<aC、c<d<a<bD、c<d<b<a8、已知a,b两数在数轴上的位置如图所示,则下列结果错误的是( )A、a>0B、a>1C、b<﹣1D、a>b9、如图,数a,b在数轴上对应位置是A、B,则﹣a,﹣b,a,b的大小关系是( )A、﹣a<﹣b<a<bB、a<﹣b<﹣a<bC、﹣b<a<﹣a<bD、以上都不对10、如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )A、b>c>0>aB、a>b>c>0C、a>c>b>0D、b>0>a>c11、数m、n在数轴上的位置如图所示,则化简|m+n|﹣m的结果是( )A、2m+nB、2mC、mD、n12、有理数a,b,c在数轴上的位置如图所示,则化简|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|得到的结果是( )A、0B、﹣2C、2aD、2c二、填空题(共6题;共6分)13、数轴上点A表示﹣1,则与A距离3个单位长度的点B表示________.14、在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是________.15、数轴上点A表示的数是﹣5,若将点A向右平移3个单位到点B,则点B表示的数是________.16、在数轴上到表示﹣2的点的距离为4的点所表示的数是________.17、点A在数轴上距原点5个单位长度,且位于原点左侧,若将A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是________.18、如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是________.三、解答题(共5题;共25分)19、画数轴,在数轴上表示下列各数,并用“<”号把它们连接起来﹣3、+2、﹣1.5、0、1.2020出一条数轴,在数轴上表示数﹣12,2,﹣(﹣3),﹣|﹣2 |,0,并把这些数用“<”连接起来.21、在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来: ﹣,0,2,﹣(+3),|﹣5|,﹣1.5.22、小明从家出发(记为原点0)向东走3m,他把数轴上+3的位置记为点A,他又东走了5m,记为点B,点B表示什么数?接着他又向西走了10m到点C,点C表示什么数?请你画出数轴,并在数轴上标出点A、点B的位置,这时如果小明要回家,则小明应如何走?23、画出数轴,把22,0,﹣2,(﹣1)3,﹣|﹣3.5|,这六个数在数轴上表示出来;按从小到大的顺序用“<”号将各数连接起来.答案解析部分一、单选题1、【答案】D【考点】数轴【解析】【解答】解:由表示a和b的点位置可知,a<﹣1,b>0;所以ab<0,<0,a﹣1<0;故A,B,C不成立;a<b,故D成立;故选D.【分析】根据数轴上的点表示的数的规则进行分析即可.2、【答案】D【考点】数轴【解析】【解答】解:∵从原点发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应0;∴数轴上原点和原点左边的点表示的数是0和负数,即非正数.故选D.【分析】根据数轴的意义进行作答.3、【答案】B【考点】数轴【解析】【解答】解:由数轴的特点可知,将数3在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,点B=3﹣8+4=﹣1;故选B【分析】根据数轴的特点进行解答即可.4、【答案】D【考点】数轴【解析】【解答】解:根据数轴的三要素判定可得D正确.故选:D.【分析】运用数轴的三要素判定即可.5、【答案】B【考点】数轴【解析】【解答】解:则大于﹣2.6而又不大于3的整数是﹣2,﹣1,0,1,2,3.共有6个数.故选B.【分析】首先把大于﹣2.6并且不大于3的数在数轴上表示出来,即可判断.6、【答案】A【考点】数轴,有理数大小比较【解析】【解答】解:∵数轴上右边的数总比左边的大,∴a<b<c.故选A.【分析】根据各点在数轴上的位置即可得出结论.7、【答案】C【考点】数轴,有理数大小比较【解析】【解答】解:∵A在点B的左侧,∴a<b;∵点C在点B的左侧,∴c<b;∵点D在点B、C之间,∴c<d<b,∴可能成立的是:c<d<a<b.故选:C.【分析】数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,据此判定出a、b、c、d 的大小关系即可.8、【答案】B【考点】数轴,有理数大小比较【解析】【解答】解:A、∵a在原点的右边,∴a>0,故本选项错误;B、∵a在1的左边,∴a<1,故本选项正确;C、∵b在﹣1的左边,∴b<﹣1,故本选项错误;D、∵b在a的左边,∴a>b,故本选项错误;故选B.【分析】在数轴上表示的数,右边的数总比左边的数大,根据以上结论逐个判断即可.9、【答案】C【考点】数轴,有理数大小比较【解析】【解答】解:由数轴可知a<0,b>0,所以所以﹣a>0,﹣b<0,且|a|<|b|,所以﹣b<a,﹣a<b,所以其大小关系为:﹣b<a<﹣a<b,故选:C.【分析】由数轴可知a<0,b>0,且|a|<|b|,所以﹣a>0,﹣b<0,进一步即可确定其大小关系.10、【答案】D【考点】数轴,有理数大小比较【解析】【解答】解:根据数轴上点的位置可知:b>0>a>c.故选D.【分析】根据数轴上点的位置即可得出a、b、c及0之间的大小关系,此题得解.11、【答案】D【考点】数轴,绝对值,整式的加减【解析】【解答】解:∵m<0,n>0,且|m|<|n|,∴|m+n|﹣m=m+n﹣m=n.故选:D.【分析】由题意可知,m<0,n>0,且|m|<|n|,由此利用绝对值的意义与整式的加减运算方法化简即可.12、【答案】B【考点】数轴,绝对值,整式的加减【解析】【解答】解:根据数轴上点的位置得:b<a<0<c<1,∴a+b<0,b﹣1<0,a﹣c<0,1﹣c>0,则原式=﹣a﹣b+b﹣1+a﹣c﹣1+c=﹣2,故选B【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.二、填空题13、【答案】﹣4或2【考点】数轴【解析】【解答】解:①点B在点A的左边时,∵点A表示﹣1,∴点B表示﹣1﹣3=﹣4,②点B在点A的右边时,∵点A表示﹣1,∴点B表示﹣1+3=2,综上所述,点B表示的数是﹣4或2.故答案为:﹣4或2.【分析】根据数轴上的数右边的总比左边的大,分点B在点A的左边与右边两种情况讨论求解.14、【答案】-3【考点】数轴【解析】【解答】解:设点A表示的数为x,由题意得,x+7﹣4=0,解得x=﹣3,所以,点A表示的数是﹣3.故答案为:﹣3.【分析】设点A表示的数为x,根据向右平移加,向左平移减列出方程,然后解方程即可.15、【答案】-2【考点】数轴【解析】【解答】解:∵A为数轴上表示﹣5的点,将点A沿数轴向右平移3个单位到点B,∴﹣5+3=﹣2,即点B所表示的数是﹣2,故答案为:﹣2【分析】根据题意得出﹣5+3=﹣2,即得出了答案.16、【答案】﹣6或2【考点】数轴【解析】【解答】解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.【分析】根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.17、【答案】-2【考点】数轴【解析】【解答】解:因为点A在数轴上距原点5个单位长度,且位于原点左侧,所以,点A表示的数为﹣5,移动后点A所表示的数是:﹣5+4﹣1=﹣2.故答案为:﹣2.【分析】根据题意先确定点A表示的数,再根据点在数轴上移动的规律,左加右减,列出算式,计算出所求.18、【答案】m<0【考点】数轴【解析】【解答】解:根据题意得:2m<m,m<1﹣m,2m<1﹣m,解得:m<0,m<,m<,∴m的取值范围是m<0.故答案为:m<0.【分析】如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,即已知2m<m,m<1﹣m,2m<1﹣m,即可解得m的范围.三、解答题19、【答案】解:如图所示: ﹣3<﹣1.5<0<1<+2.【考点】数轴,有理数大小比较【解析】【分析】首先在数轴上表示各数,然后再根据在数轴上右边的点表示的数大于左边的点表示的数用“<”号把它们连接起来.2020答案】解:因为﹣12=﹣1,﹣(﹣3)=3,﹣|﹣2 |=﹣2 ,把各数表示在数轴上,如下图所示:所以﹣|﹣2 |<﹣12<0<2<﹣(﹣3)【考点】数轴,绝对值,有理数大小比较【解析】【分析】先化简﹣12,﹣(﹣3),﹣|﹣2 |,再把各数表示在数轴上,最后用“<”连接各数.21、【答案】解:如图,由数轴上的点表示的数右边的总比左边的大,得﹣(+3)<﹣1.5<﹣<0<|﹣5|【考点】数轴,绝对值,有理数大小比较【解析】【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.22、【答案】解:∵小明从家出发(记为原点0)向东走3m,他在数轴上+3位置记为点A,∴他又东走了5m,记为点B,点B表示的数是3+5=8,数轴如图所示:∴接着他又向西走了10m到点C,点C表示表示的数是:8+(﹣10)=﹣2,∴当小明到点C时,要回家,小明应向东走2米即可.即点B表示的数是8,点C表示的数是﹣2,小明到点C时,要回家,小明应向东走2米【考点】数轴【解析】【分析】根据小明的位置以及行走的方向和距离,可以求得点B和点C的坐标,从而可以知道小明要回家应如何走.23、【答案】解:22=4,(﹣1)3=﹣1,﹣|﹣3.5|=﹣3.5,=2,如图,用“<”号把这些数连接起来为:﹣|﹣3.5|<﹣2<(﹣1)3<0<<22【考点】数轴,绝对值,有理数大小比较【解析】【分析】先计算22=4,(﹣1)3=﹣1,﹣|﹣3.5|=﹣3.5,=2,再根据数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.。

华东师大版数学-七年级上册-第二章-有理数-巩固练习(含答案)

华东师大版数学-七年级上册-第二章-有理数-巩固练习(含答案)

华东师大版数学-七年级上册-第二章-有理数-巩固练习一、单选题1.在下列各数:﹣3,+8,3.14,0,π,,﹣0.4,2.75%,0.1010010001…中,有理数的个数是()A. 6个B. 7个C. 8个D. 9个2.一个数的相反数是最大的负整数,则这个数是()A. -1B. 1C. 0D. ±13.定义运算a⊗b=a(1﹣b),下面给出的关于这种运算的四个结论中正确的是()A. 2⊗(﹣2)=﹣4B. a⊗b=b⊗aC. (﹣2)⊗2=2D. 若a⊗b=0,则a=04.6912的相反数是()A. ﹣6912B.C. ﹣1269D. ﹣5.如果a<0,那么a和它的相反数的差的绝对值等于()A. aB. 0C. 2aD. -2a6.去年五月奥运圣火在高度约为8848米的珠峰项上传递,创造了世界之最.这个高度的百万分之一相当于 ( )A. 一间教室的高度B. 一块黑板的宽度C. 一张讲桌的高度D. 一本数学课本的厚度7.如果ab<0,那么下列判断正确的是()A. a<0,b<0B. a>0,b>0C. a≥0,b≤0D. a<0,b>0或a>0,b<08.用四舍五入按要求对分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.06(精确到千分位)C. 0.06(精确到百分位)D. 0.0602(精确到0.0001)9.某天股票A开盘价为12元,上午12:00跌1.0元,下午收盘时又涨了0.2元,则股票A的收盘价是()A. 0.2元B. 9.8元C. 11.2元D. 12元二、填空题10.﹣9的绝对值是________ .11.计算:3﹣(﹣5)+7=________;计算﹣2﹣|﹣6|的结果是________.12.如果|x|+y2=5,且y=﹣1,则x=________.13.已知数m小于它的相反数且数轴上表示数m的点与原点相距3个单位的长度,将该点m向右移动5个单位长度后,得到的数是________.14.若x<0,化简=________15.绝对值小于10的所有整数的和为________,积为________.16.数轴上到原点的距离小于2 个单位长度的点中,表示整数的点共有________个.三、解答题17.某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0.5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)18.在数轴上表示下列各数:0,,,,,,并用“<”号连接.四、综合题19.“十一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为________万人;(2)七天中旅客人数最多的一天比最少的一天多________万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?20.某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?________.(3)这五天的收盘价中哪天的最高?________哪天的最低?________相差多少?________.答案一、单选题1.【答案】B【解析】【解答】有理数有::﹣3,+8,3.14,0,,﹣0.4,2.75%,共7个;无理数有:π,0.1010010001…,共2个.故选B.【分析】根据整数和分数统称为有理数,及无理数的三种形式即可解答.2.【答案】B【解析】【分析】由于最大的负整数是-1,本题即求-1的相反数.【解答】最大的负整数是-1,根据概念,(-1的相反数)+(-1)=0,则-1的相反数是1.故选B.【点评】此题主要考查相反数、负整数的概念.3.【答案】C【解析】【解答】解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,∴选项A不正确;∵a⊗b=a(1﹣b),b⊗a=b(1﹣a),∴a⊗b=b⊗a只有在a=b时成立,∴选项B不正确;∵(﹣2)⊗2=(﹣2)×(1﹣2)=(﹣2)×(﹣1)=2,∴选项C正确;∵a⊗b=0,∴a(1﹣b)=0,∴a=0或b=1∴选项D不正确.故选:C.【分析】A:根据新运算a⊗b=a(1﹣b),求出2⊗(﹣2)的值是多少,即可判断出2⊗(﹣2)=﹣4是否正确.B:根据新运算a⊗b=a(1﹣b),求出a⊗b、b⊗a的值各是多少,即可判断出a⊗b=b⊗a是否正确.C:根据新运算a⊗b=a(1﹣b),求出(﹣2)⊗2的值是多少,即可判断出(﹣2)⊗2=2是否正确.D:根据a⊗b=0,可得a(1﹣b)=0,所以a=0或b=1,据此判断即可.4.【答案】A【解析】【解答】解:6912的相反数是﹣6912,故选:A.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.5.【答案】D【解析】【分析】首先根据题意表示出代数式,再根据负数的绝对值等于它的相反数可得答案.【解答】由题意得:|a-(-a)|=|2a|=-2a.故选D.【点评】此题主要考查了列代数式,以及绝对值,关键是掌握绝对值的性质.6.【答案】D【解析】【分析】这个高度的百万分之一,即除以1000000.【解答】8848÷1000000=0.008848米,相当于一本数学课本的厚度.故选D.【点评】本题属于基础题,考查了对有理数的除法运算法则掌握的程度.7.【答案】D【解析】【解答】解:∵ab<0,∴a与b异号,∴a<0,b>0或a>0,b<0.故选D.【分析】根据有理数的乘法符号法则作答.8.【答案】B【解析】【解答】A.0.06019≈0.1(精确到0.1),所以A选项的说法正确;B.0.06019≈0.060(精确到千分位),所以B选项的说法错误;C.0.06019≈0.06(精确到百分),所以C选项的说法正确;D.0.06019≈0.0602(精确到0.0001),所以D选项的说法正确。

浙教版数学七年级上册-第一章-有理数-巩固练习(含答案)

浙教版数学七年级上册-第一章-有理数-巩固练习(含答案)

浙教版数学七年级上册-第一章-有理数-巩固练习一、单选题1.8的相反数是()A. 8B.C. ﹣8D. -2.下列四种运算中,结果最大的是()A. 1+(﹣2)B. 1﹣(﹣2)C. 1×(﹣2)D. 1÷(﹣2)3.﹣2的相反数是()A. ﹣2B. -C. 2D.4.已知a>0,b<0,|a|<|b|<1,那么下列判断正确的是( )A. 1-b>-b>1+a>aB. 1+a>a>1-b>-bC. 1+a>1-b>a>-bD. 1-b>1+a>-b>a5.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的有( )①a<b<0;②|a|>|b|;③a•b>0;④b﹣a>0;⑤a+b<0.A. 5个B. 4个C. 3个D. 2个6.-2+5的相反数是( )A. 3B. -3C. -7D. 77.点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N表示的数是()A. 3B. 5C. -7D. 3或﹣78.下列各对关系中,不具有相反意义的量的是()A. 运进货物5t与运出货物2tB. 向前走9m与向后走4mC. 产量增加600kg与减少300kgD. 胜1局与亏本70元9.若一个数的相反数是6,则这个数是( )A. B. C. 6 D. -6二、填空题10.数轴上表示数-3和2之间的所有整数(包括-3和2两个数)的和等于.11.如果a,b互为相反数,那么a+b=________,2a+2b=________.12.在数轴上表示+3的点在原点的________侧,离原点的距离是________个单位长度;表示-5的点在原点的________侧,它离原点的距离是________个单位长度;表示+3的点位于表示-5的点的________侧,两个点之间的距离是________个单位长度.13.在﹣5,,﹣1,﹣0.15,﹣这五个数中,与其他四个数不同的数是________14.在数轴上,到原点距离不大于2的所有整数有________;三、解答题15.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不这批样品的平均质量比标准质量多还是少,多(或少)几克? 若每袋标准质量为450g,则抽样的总质量是多少?16.把下列各数及其相反数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来﹣2.5,0,+3.5,﹣.四、综合题17.七名七年级学生的体重,以48.0kg为标准,把超过标准体重的千克数记为正数,不足的(2)最高体重与最低体重相差多少?(3)按体重的轻重排列时,恰好居中的是哪个学生?(4)求七名学生的平均体重.18.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数满足,求的值.【解决问题】解:由题意,得三个有理数都为正数或其中一个为正数,另两个为负数.① 都是正数,即时,则;②当中有一个为正数,另两个为负数时,不妨设,则.综上所述,值为3或-1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数满足,求的值;(2)若为三个不为0的有理数,且,求的值19.某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存280吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费?答案一、单选题1.【答案】C【解析】【分析】根据相反数的概念,互为相反数的两个数和为0,即可得出答案.【解答】根据概念可知8+(8的相反数)=0,0-8=-8所以8的相反数是-8.故选C.【点评】主要考查相反数概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是02.【答案】B【解析】【解答】解:A、1+(﹣2)=﹣1,B、1﹣(﹣2)=1+2=3,C、1×(﹣2)=﹣2,D、1÷(﹣2)=﹣,3>﹣>﹣1>﹣2,故选:B.【分析】根据有理数的加法、减法、乘法、除法法则分别计算出四个选项中式子的得数,再比较大小及可选出答案.3.【答案】C【解析】【解答】解:﹣2的相反数是2,故选:C.【分析】根据只有符号不同的两个数互为相反数,可得答案.4.【答案】D【解析】【解答】解:根据a>0,b<0,|a|<|b|<1可简单设a为,b为(-),所以1-b=,1+a=,-b=,故答案为:D。

(600)初中数学有理数之数轴专项练习30题 (有答案) 20页

(600)初中数学有理数之数轴专项练习30题 (有答案) 20页

初中数学有理数之数轴专项练习30题(有答案)1.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.2.点A是数轴上表示4的点,与点A距离为5.5的点B所表示的数为.3.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若|a|>|b|>|c|,则该数轴的原点O的位置应该在.4.数轴上点A先向左移动3个单位长度,再向右移动5个单位长度,正好是﹣8这个点,那么原来点A对应的数是.5.在数轴上,点A表示的数是﹣3,点B表示x,且A与B的距离是6,那么x表示的数是.6.利用数轴回答:(1)写出所有不大于4且大于﹣3的整数有;(2)比﹣2大的数是.7.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.8.有理数a,b在数轴上的位置如图所示,下列各式:①b﹣a>0,②﹣b>0,③a>﹣b,④﹣ab<0,正确的个数是.9.已知有理数a,b在数轴上的位置如图所示,若|a|>|b|,则a+b 0,a﹣b 0,ab 0.10.如图,数轴上有四点A,B,C,D,它们表示的数分别为2,x,﹣3,﹣4.(1)A、D两点间的距离是;(2)若将数轴对折,使得点A与点C重合,则折叠点恰好为点B,写出点B表示的数x是,折叠后与点D重合的点表示的数是;(3)若点B从题(2)中的位置出发沿数轴先向右移动,到达A点后,随即折返一直向左移动,移动过程中,将数轴对折,使得折叠点为点B,设与点A重合的点为A′,当A′、D两点的距离为是A′、A两点间距离的时,点B移动的距离为.11.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.12.已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数﹣1的点重合,则表示﹣2的点与表示数的点重合;(2)若表示数﹣1的点与表示数3的点重合,回答以下两个问题:①表示数5的点与表示数的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),且A、B两点经折叠后重合,直接写出A、B两点表示的数(用含m的式子表示)是多少?13.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:①如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B 两点间的距离是;②如果点A表示数3,将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是;③一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,请你猜想终点B表示的数是,A、B两点间的距离是.14.如图,先在数轴上画出表示2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表示的数,以及B,C两点间的距离.15.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?16.如图,一只蚂蚁从原点O出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,然后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据C点在数轴上的位置回答蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?17.在数轴上表示下列各数:0,﹣4.2,,﹣2,+7,,并用“<”号连接.18.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数﹣1,将点A向右移动4个单位长度,那么终点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B表示的数是.A、B两点间的距离是.(3)如果点A表示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是.A、B两点间的距离是.19.一辆货车从货场A出发,向东走了4千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了8.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置.(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.在数轴上有三个点A、B、C(如图).请回答:(1)写出数轴上距点B三个单位的点所表示的数;(2)将点C向左移动6个单位到达点D,用“<”号把A、B、D三点所表示的数连接起来;(3)怎样移动A、B、C中的两个点才能使三个点所表示的数相同(写出一种移动方法即可)21.如图一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到B点时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为5(单位:cm),由此可得到木棒长为cm.(2)由题(1)的启发,请你能借助“数轴”这个工具帮助小红解决下列问题:问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?22.数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:(1)如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是,A、B两点间的距离是;(2)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度到达点B,那么点B表示的数是,A、B两点间的距离是;(3)一般的,如果点A表示的数为a,将点A先向左移动b个单位长度,再向右移动c个单位长度到达点B,那么点B表示的数是.23.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.24.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?25.电子跳蚤落在数轴上(向右为正方向)上某点K.第一步从K0向左跳1个单位到K1,第二部由K1向右跳2个单位到K2,第三步有K2向左跳3个单位到K3,第四步由K3向右跳4个单位到K5…按以上规律跳了100步时,电子跳蚤落在数轴上点K100表示的实数为2008.电子跳蚤的初始位置K表示的数是多少?26.在下面的数轴中,把下列各数在数轴上表示出来,并按从小到大的顺序,用“<”号连接起来..27.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为.28.一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?29.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?30.已知A、B两地相距50米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣16.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?初中数学有理数之数轴30题答案:1.【分析】此题可借助数轴用数形结合的方法求解.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣32.【分析】根据数轴上到一点距离相等的点有两个,可得所求点表示的数.【解答】解:∵4+5.5=9.5,4﹣5.5=﹣1.5,∴与点A距离为5.5的点B所表示的数为﹣1.5,9.5,故答案为:﹣1.5,9.5.3.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|b|>|c|,∴点A到原点的距离最大,点B其次,点C最小,又∵AB=BC,∴原点O的位置应该在点C的右边或者在点B与点C之间(且靠近点C)的地方.故答案为:点C的右边或者在点B与点C之间(且靠近点C)的地方.4.【分析】原来点A对应的数为x,再根据左减右加的法则求出x的值即可.【解答】解:原来点A对应的数为x,则x﹣3+5=﹣8,解得x=﹣10.故答案为:﹣10.5.【分析】根据数轴上的点到一点的距离相等的点有两个,可得B点有两个,根据AB的距离等于6,可得x的值.【解答】解:∵AB=6,=6,x=﹣9,或x=3,故答案为:﹣9,3.6.【分析】(1)设这个数为x,则﹣3<x≤4,在数轴上表示出不等式组的解集,即可得出答案;(2)根据题意在数轴上把符合条件的数表示出来,即可得出答案.【解答】解:(1)设这个数为x,则﹣3<x≤4,在数轴上表示为:,根据数轴可以看出所有不大于4且大于﹣3的整数有﹣2、﹣1、0、1、2、3、4,故答案为:﹣2、﹣1、0、1、2、3、4;(2)在数轴上表示为:则比﹣2大的数是﹣1.5,故答案为:﹣1.5.7.【分析】根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处,依此即可求解.【解答】解:第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,…则跳动n次后,即跳到了离原点的处,则第5次跳动后,该质点到原点O的距离为.故答案为:.8.【分析】观察数轴a、b位置,a<0,b>0,在数轴上找出a、b的相反数并分析得出正确答案.【解答】解:a<0,b>0,b﹣a>0,故①b﹣a>0正确,b>0,﹣b<0,故②﹣b>0错误,a<0,b>0,|a|>|b|,a<﹣b,故③a>﹣b错误,a<0,b>0,﹣ab>0,故④﹣ab<0错误,故只有①正确.故答案为:1.9.【分析】根据数轴上点的排列判断出a、b的符号,再根据有理数的加减运算法则计算.【解答】解:∵a<0,b>0,∴ab<0,a﹣b<0,又∵|a|>|b|,∴a+b<0.故答案为<,<,<.10.【分析】(1)直接利用两点间距离公式计算;(2)先由轴对称的性质求x的值,再利用轴对称求出结果;(3)先设点B向左移动后与点A的距离为m,则AB=A′B=m,A′D=AD﹣2m=6﹣2m,根据当A′、D两点的距离为是A′、A两点间距离的时列式得出m的值,最后计算点B的总距离.【解答】解:(1)2﹣(﹣4)=6,所以A、D两点间的距离是6;(2)由折叠得:AB=BC,则2﹣x=x﹣(﹣3),x=﹣,设折叠后与点D重合的点表示的数是a,则﹣﹣(﹣4)=a﹣(﹣)∴a=3,∴折叠后与点D重合的点表示的数是3,(3)设点B向左移动后与点A的距离为m,由题意得:6﹣2m=×2m,m=,+2﹣(﹣)=,∴点B移动的距离为,故答案为:(1)6,(2)﹣,3,(3).11.【分析】(1)(2)根据图形可直接的得出结论;(3)先求出B点表示的数,然后由数轴上两点间的距离公式:两点间的距离是两点所表示的数差的绝对值,计算即可.【解答】解:(1)由图可知,点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是|﹣3﹣4|=7;故答案为:4,7;(2)如果点A表示数3,将点A向左移动7个单位长度,则点A表示3﹣7=﹣4,再向右移动5个单位长度,那么终点B表示的数是﹣4+5=1,A、B两点间的距离是|3﹣1|=2;故答案为:1,2;(3)点A表示数为a,将点A向右移动b个单位长度,则点A表示a+b,再向左移动c个单位长度,那么终点B表示的数是a+b﹣c,A、B两点间的距离是|a+b﹣c﹣a|=|b﹣c|.故答案为:a+b﹣c,|b﹣c|.12.【分析】(1)根据对称的知识,若1表示的点与﹣1表示的点重合,则对称中心是原点,从而找到﹣2的对称点;(2)①若﹣1表示的点与3表示的点重合,则对称中心是1表示的点,从而找到5的对称点;②根据对应点连线被对称中心平分,则点A和点B到1的距离都是,从而求解.【解答】解::(1)根据题意,得对称中心是原点,则﹣2表示的点与数2表示的点重合;(2)∵﹣1表示的点与3表示的点重合,∴对称中心是1表示的点.∴①5表示的点与数﹣3表示的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),则点A表示的数是1﹣,点B表示的数是1+.故填空中的答案为(1)2,(2)①﹣3,②1﹣,1+13.【分析】①根据“左减右加”进行计算,此题中两点间的距离即为移动的单位长度;②根据“左减右加”进行计算,两点间的距离即为两点对应的数的差的绝对值;③根据“左减右加”进行计算,两点间的距离即为两点对应的数的差的绝对值.【解答】解:①﹣3+7=4,7;②3﹣4+5=4;4﹣3=1;③m+n﹣p;|m+n﹣p﹣m|=|n﹣p|.故答案为4,7;4,1;m+n﹣p,|n﹣p|.14.【分析】根据题目的叙述即可作出图形,从而解决本题.【解答】解:点B,C表示的数分别是﹣2.5,1,B,C两点间的距离是3.5.15.【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.16.【分析】(1)根据题中所给图形即可写出答案;(2)根据所给图形,向右为正,向左为负,继而得出答案.【解答】解:根据所给图形可知:(1)A点表示2,B点表示5,C点表示﹣4,O点表示0;(2)蚂蚁实际上是从原点出发,向原点左侧爬行了4个单位.17.【分析】先分别把各数化简为0,﹣4.2,,﹣2,7,,再在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数.【解答】解:这些数分别为0,﹣4.2,,﹣2,7,,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“<”连接为:﹣4.2<﹣2<0<<+7.18.【分析】(1)根据数轴的特点向右移动加,A、B两点间的距离等于移动的距离求解即可;(2)(3)根据数轴的特点向左移动减,向右移动加,A、B两点间的距离等于移动的距离求解即可.【解答】解:(1)终点B表示:﹣1+4=3,A、B间的距离是4;(2)终点B表示:2﹣6+3=﹣1,A、B间的距离是2﹣(﹣1)=2+1=3;(3)终点B表示:m+n﹣p,A、B两点间的距离是|m+n﹣p﹣m|=|n﹣p|.故答案为:(1)3,4;(2)﹣1,3;(3)m+n﹣p,|n﹣p|.19.【分析】(1)根据题意画出数轴,并在数轴上表示出各点即可;(2)根据(1)中数轴上D点的位置即可得出结论;(3)把各数相加即可得出货车行驶的距离.【解答】解:(1)如图所示:;(2)由图可知,超市D距货场A3千米;(3)4+1.5+8.5+3=17(千米).答:货车一共行驶了17千米.20.【分析】(1)本题可直接根据数轴观察出A、B、C三点所对应的数;(2)根据移动的方向,得D所表示的数是3﹣6=﹣3.比较负数的时候,绝对值大的反而小;(3)根据点的移动和数的大小变化规律即可回答.此题方法不唯一,移动其中任意两个点均可.【解答】解:(1)因为点B所表示的数是﹣2,则距点B三个单位的点所表示的数有﹣2﹣3=﹣5,﹣2+3=1;(2)点C向左移动6个单位到达点D,则点D表示的数为﹣3,所以﹣4<﹣3<﹣2.(3)把A点向右移动2个单位,C点向左移动5个单位.(答案不唯一)21.【分析】(1)此题关键是正确识图,由数轴观察知三根木棒长是20﹣5=15(cm),则此木棒长为5cm,(2)在求爷爷年龄时,借助数轴,把小红与爷爷的年龄差看做木棒AB,类似爷爷比小红大时看做当A点移动到B点时,此时B点所对应的数为﹣40,小红比爷爷大时看做当B点移动到A点时,此时A点所对应的数为125,所以可知爷爷比小红大[125﹣(﹣40)]÷3=55,可知爷爷的年龄.【解答】解:(1)由数轴观察知三根木棒长是20﹣5=15(cm),则此木棒长为:15÷3=5cm,故答案为:5.(2)借助数轴,把小红与爷爷的年龄差看做木棒AB,类似爷爷比小红大时看做当A点移动到B点时,此时B点所对应的数为﹣40,小红比爷爷大时看做当B点移动到A点时,此时A点所对应的数为125,∴可知爷爷比小红大[125﹣(﹣40)]÷3=55,可知爷爷的年龄为125﹣55=70.答:爷爷的年龄是70岁.22.【分析】充分运用相反数表示两个相反意义的量,列式计算.【解答】解:规定向右为正,向左为负,根据正负数的意义得(1)点B表示的数是﹣2+5=3,A、B两点间的距离是3﹣(﹣2)=5;(2)点B表示的数是5﹣4+7=8,A、B两点间的距离是8﹣5=3;(3)点B表示的数是a﹣b+c.23.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:(1)第一次移动后这个点在数轴上表示的数:+2﹣1+2=+3;(2)第二次移动结果这个点在数轴上表示的数:+3﹣3+4=+4;(3)第五次移动后这个点在数轴上表示的数:+3+1+1+1+1=7;(4)第n次移动结果这个点在数轴上表示的数:+3+n﹣1=n+2.24.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.表示的数为x,可25.【分析】规定向左跳为负数,向右跳为正数,设电子跳蚤的初始位置K以列方程求解.表示的数是x,则【解答】解:设电子跳蚤的初始位置Kx﹣1+2﹣3+4﹣5+…+100=2008,x+50=2008,解得x=1958.答:电子跳蚤的初始位置K表示的数是1958.26.【分析】将各点在数轴上表示出来,再由数轴上的点从左至右依次减小可得出正确的排序.【解答】解:在数轴上表示各点如下:大小排序如下:﹣5<﹣3<0<<2.27.【分析】(1)根据题意列出算式2+5,求出即可得出动点A所走过的路程,求出5﹣2即可得出A、C之间的距离;(2)设点A表示的数十x,根据题意得出算式x+(﹣2)+(+5)=1,求出x即可.【解答】解:(1)动点A所走过的路程2+5=7,A、C之间的距离是AC=5﹣2=3;(2)设点A表示的数十x,则x+(﹣2)+(+5)=1,x=﹣2,故答案为:﹣2.28.【分析】(1)由于向右爬行的路程记为正数,向左爬行的路程为负数,所以要计算出它爬行所有数的和,而(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=0,于是可判断回到出发点;(2)依次往后计算看哪个数最大即可得到离O点的最远距离;(3)计算所有数的绝对值得到小虫爬行的路程,再把路程乘以2得到小虫共得的芝麻.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10,=27﹣27,=0,∴小虫最后可以回到出发点;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离开出发点O最远时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2,=(5+3+10+8+6+12+10)×2,=54×2,=108,所以小虫共可得108粒芝麻.29.【分析】(1)由已知得OA=6,则OB=AB﹣OA=4,因为点B在原点左边,从而写出数轴上点B所表示的数;动点P从点A出发,运动时间为t(t>0)秒,所以运动的单位长度为6t,因为沿数轴向左匀速运动,所以点P所表示的数是6﹣6t;(2)①点P运动t秒时追上点Q,由于点P要多运动10个单位才能追上点Q,则6t=10+4t,然后解方程得到t=5;②分两种情况:当点P运动a秒时,不超过Q,则10+4a﹣6a=8;超过Q,则10+4a+8=6a;由此求得答案解即可.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.30.【分析】(1)在数轴上表示﹣16的点移动50个单位后,所得的点表示为﹣16﹣50=﹣66或﹣16+50=34;(2)数轴上点的移动规律是“左减右加”.依据规律计算即可;(3)根据100为偶数可得在数轴上表示的数,再根据两点间的距离公式即可求解.【解答】解:(1)﹣16+50=34,﹣16﹣50=﹣66.答:B地在数轴上表示的数是34或﹣66.(2)第七次行进后:1﹣2+3﹣4+5﹣6+7=4,第八次行进后:1﹣2+3﹣4+5﹣6+7﹣8=﹣4,因为点P、Q与A点的距离都是4米,所以点P、点Q到A地的距离相等;(3)当n为100时,它在数轴上表示的数为:﹣16+1﹣2+3﹣4+…+(100﹣1)﹣100==﹣66,34﹣(﹣66)=100(米).答:小乌龟到达的点与点B之间的距离是100米.。

沪教版数学六年级(下)第五章有理数5.2 数轴练习卷一和参考答案

沪教版数学六年级(下)第五章有理数5.2 数轴练习卷一和参考答案

ba 数学六年级(下) 第五章 有理数5.2 数轴(1) 一、填空题1. 数轴的定义:规定了______、_________、_________的直线叫做数轴。

2. 数轴的性质:数轴上表述的数,右边的数总是_______左边的数,正数_____零,负数______零,正数______一切负数。

(填“大于”或“小于”)3. 相反数的概念:只有______不同的两个数互为相反数,其中一个数是另一个数的_______,0的相反数是_____。

正数的相反数是_______,负数的相反数是_________。

4. 相反数的几何意义:在数轴上,表示相反数的两个点,它们分别位于_______的两侧,而且与原点的_______相等。

5. 互为相反数的两个数的性质是___________________。

6. a 的相反数的相反数等于 ,-5的相反数的相反数等于 .7. 53的相反数的相反数是_______ ;a 的相反数是___________ ;a-2的相反数是________ ;______的相反数是本身。

8.数轴上原点左边的点表示________数,原点右边的点表示_________数,________点表示零。

9.数轴上表示-5的点离开原点的距离是_______个单位长度;数轴上与原点相距5个单位长度的点有________个,它们表示的数是_________。

10.一个点从数轴上表示-2的点开始,向右移动8个单位长度,再向左移动6个单位长度,说明最后到达的终点所表示的数是 。

11. 23的相反数是________,-15的相反数是______,0的相反数是________. 12.若a=7.9,则-a=_______,-(-a )=________,+(-a )=________.13.-(-5.8)的相反数是________.14.化简: -(-32)=________; +(+15)=_______; +[-(+1)]=________; -[-(-7)]=_________. 15.若-a=52,则a=_______,若-a=-6.3,则a=________. 16.若4x-5与3x-9互为相反数,则x=________.17.若-(b-3)是负数,则b-3________0.(填“<”、“=”或“>”)18.如图所示,有理数a ,b 的位置.则a______b ;-a________-b ;-a_______b ; -b______+a .(填“<”、“=”或“>”) 19.在数轴上到原点距离等于3的点所对应的数是_________,•这两点之间的距离是______.20. 如果一个数的相反数不是负数,那么这个数是 。

(完整版)有理数数轴基础巩固练习题附答案

(完整版)有理数数轴基础巩固练习题附答案

1.2.1有理数数轴同步练习基础巩固题:1.在数轴上表示的两个数中,的数总比的数大。

2.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。

3.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。

4.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。

5.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。

6.到原点的距离不大于3的整数有个,它们是:。

7.下列说法错误的是()A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小8.下列结论正确的有()个:①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0③正数,负数和零统称有理数④数轴上的点都表示有理数A.0B.1C.2D.39.在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点()A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位10.在数轴上画出下列各点,它们分别表示:+3, 0,-3并把它们用“<”连接起来。

应用与提高11.小明的家(记为A)与他上学的学校(记为B),书店(记为C)依次座落在一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条街向东走40米,接着又向西走了70米到达D 处,试用数轴表示上述A、、B、C、D11, 1,-3,-1.2542的位置。

12.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来。

中考链接13.如图,数轴上的点A所表示的数是a,则A点到原点的距离是。

A14.在数轴上,离原点距离等于3的数是。

15.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长到B时,点B所表示的实数是()A.1B.-6C.2或-6D.不同于以上答案参考答案:1.右边,左边2.左边,53.右边,2,左,7,94.—25.2个,±2.56.7个,±1,±2,±3,07.D8.C9.B10.-311.11<-3<-1.25<0<1<34212.-12,-11,-10,-9,-8,11,12,13,14,15,16,17 13.∣a∣14.±315.C。

数轴练习题(含答案)

数轴练习题(含答案)

数轴练习题(含答案)篇一:专题练习(含答案)专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为A.-5B.5C.-1 5 D.1 52.-的相反数是A.-8B. 1818 C..83.在下面所画的数轴中,你认为正确的数轴是 ()4.下列说法正确的是A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为 ( )A.-3B.5C.6D.76.若a=7,b=5,则a-b的值为A.2C.2或12 B.12 D.2或12或-12或-27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是A.?4?4B.11? 22C.0?0 D.9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b+c2-d的值是A.-2B.-1C.0D.110.如果abcd0,那么这四个数中的负因数至少有A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-111的相反数是______;-2是______的相反数;_______与互为倒数. 21013.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x?1=x-1成立,你写出的x的值是______.17.若x,y是两个负数,且xb>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-120.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:31,-(+),+(-32),12,3. 52(2)用数轴上的点表示下列各数,并用“篇二:浙教版七上同步练习含答案数轴一、基础训练1.在数轴上离原点8个单位长度的点所表示的有理数是_____. 2.-4的相反数是_____,_____的相反数是-,0的相反数是_____.3.在数轴上离表示1的点的距离为3个单位长度的点表示的数是______.4.若有理数a,b在数轴上的位置如图所示,下列说法正确的是() A.a,b都是正数 B.a,b都是负数C.a是正数,b是负数D.a是负数,b是正数5.在数轴上,点A表示-1.2,点B表示+0.9,那么______点离原点更近.6.数轴上+5表示的点位于原点_____边距原点_____个单位长度,?数轴上位于原点左边4个单位长度的点表示______,数轴上距原点6?个单位长度并在原点右边的点表示的数是_______.7.数轴上点A先向左移动3个单位长度,再向右移动5个单位长度,正好是-8?这个点,那么原来点A对应的数是______.8.一个数的相反数是非负数,那么这个数一定是() A.非正数 B.非负数 C.正数D.负数二、提高训练9.数轴上表示-的点在()A.-2与-1之间 B.-3与-2之间 C.2与3之间 D.1与2之间 10.一个数和它的相反数相等,那么这个数是______.11.已知x与y互为相反数,x与z互为相反数,且x=-6,则z+y=______. 12.已知2n+3与-5互为相反数,则n=_______.13.一个点从数轴上的原点开始,先向右移动一个单位长度,再向左移动4个单位长度,从图中可以看出,终点表示的数是-3.请参照上图,完成填空:(1)如果点A表示的数是-5,向左移动4个单位长度,那么终点表示的数是_____.(2)如果点B表示的数是4,将点B向右移动6个单位长度,再向左移动5个单位长度,那么终点表示的数是______.三、拓展训练14.明明向东走20米,又向西走35米,再向东走10米,请你用数轴直观表示明明走的过程,并说明明明最后在什么位置.15.如图是一个正方体纸盒的两个侧面展开图,请你在其余三个正方体内分别填上适当的数,使得折成正方体后,相对的面上的两个数互为相反数.答案:1.+8或-8 2.+4,,0 3.-2或4 4.D 5.B 6.右,5,-4,+6 7.-10 8.A 9.B 10.0 11.12 12.1 13.(1)-9 (2)+514.明明最后在原位置的西面5米处 ?15.篇三:有理数_数轴_基础巩固练习题附答案有理数数轴同步练习基础巩固题:1.在数轴上表示的两个数中,的数总比的数大。

人教版七年级数学上册第1章《有理数-数轴》课后测试题(附答案)

人教版七年级数学上册第1章《有理数-数轴》课后测试题(附答案)

人教版七年级数学上册第1章《有理数-数轴》课后测试题(附答案)一.选择题1.下列数轴画正确的是()A.B.C.D.2.下列一组数:1,4,0,−12,−3在数轴上表示的点中,不在原点右边的点的个数为()A.2个B.3个C.4个D.5个3.数轴上表示−5的点到原点的距离为()A.5B.−5C.15D.−154.如图,点M表示的数是()A.1.5B.−1.5C.2.5D.−2.55.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C6.数轴上与原点距离为5的点表示的是()A.5B.−5C.±5D.6二.填空题10.如果数轴上的点A对应的数为−1,那么与A点相距3个单位长度的点所对应的有理数为.三.解答题12.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A ,B 两点之间的距离是多少? (3)在数轴上画出与点A 的距离为2的点(用不同于A ,B 的其它字母表示),并写出这些点表示的数.答案:1.C2.B 解析:1,4是正数在数轴的右边,0在原点,−12 ,−3是负数在数轴的左边,所以不在原点右边的点的数是1,4,0,共3个.3.A 解析:∵在数轴上,表示数a 的点到原点的距离可表示为|a|,∴数轴上表示−5的点到原点的距离为|−5|=5.4.D5.C 解析:由数轴可得:点A 表示的数为−2,点D 表示的数为2,根据数轴上表示数a 的点与表示数−a 的点到原点的距离相等,∴点A 与点D 到原点的距离相等.6.C 解析:∵数轴上与原点距离为5,设该点为x ,得|x|=5,∴x=±5.7.28±2.5.解析:设数轴上,到原点的距离等于2.5个单位长度的点所表示的有理数是x ,则|x|=2.5, 解得:x=±2.5.9.5解:如图所示:,数轴上到原点的距离小于223 个长度单位的点中,表示整数的点有:−2,−1,0,1,2共5个. 10.−4或2解析:在A 点左边与A 点相距3个单位长度的点所对应的有理数为−4;在A 点右边与A 点相距3个单位长度的点所对应的有理数为 2.11.解:如图,12.解:(1)根据所给图形可知A :1,B :−2.5;(2)依题意得:AB 之间的距离为:1+2.5=3.5; (3)设这两点为C 、D ,则这两点为C :1−2=−1,D :1+2=3.。

七年级数学正负数有理数加减数轴综合练习(附答案)

七年级数学正负数有理数加减数轴综合练习(附答案)

七年级数学正负数有理数加减数轴综合练习一、单选题1.下列各数中,小于4-的是( )A.3-B.5-C.0D.12.下面说法正确的是( )A.1是最小的自然数;B.正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数 3.下列比较大小正确的是( ) A.5465-<- B.(21)(21)--<+- C.1210823--> D.227(7)33--=-- 4.两千多年前,中国人就开始使用负数,且在世界上也是首创《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100,那么支出40元应记作( )A.﹣60B.﹣40C.+40D.+605.如图,数轴上A B ,两点分别对应有理数a b ,,则下列结论正确的是( ).A.0b a -<B.0a b ->C.0a b +>D.0a b >-6.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最大值是( )A.9B.10C.12D.13二、解答题7.“十一”黄金周,坚胜家电城大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况.已知9月30日的营业额为26万元.(2)黄金周内平均每天的营业额是多少? 8.把下列各数填在相应的横线上. 133431,3.14,0,1,2,70, 3.2,,130,0.001,π, 2.2,,5%41135------- 正数集合: ;负数集合: ;分数集合: ;偶数集合: 。

9.若42a b ==,,且a b <,求a b -的值. 10.如图,数轴上点A 、B 所表示的数分别是4,81.请用尺规作图的方法确定原点O 的位置(不写做法,保留作图痕迹)2.已知动点M 从点A 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,同时点N 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.①运动1秒后,点M 表示的数是__________,点N 表示的数为__________;②运动t 秒后,点M 表示的数是__________,点N 表示的数为__________;③若线段BN=2,求此时t 的大小以及相应的M 所表示的数.11.智能折叠电动车是在传统电动车的基础上,根据消费者需求生产的一种新型电动车.某智能折叠电动车公司计划每周生产1400辆,平均每天生产200辆.由于各种原因实际每天生产量与计划每天生产量相比有出入.下表是某周智能折叠电动车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆)星期一 二 三 四 五 六 七 生产情况 5+ 2- 4-13+ 10- 16+ 9-(2)产量最多的一天比产量最少的一天多生产________辆;(3)若该公司实行按生产的智能折叠电动车数量的多少计工资,即计件工资制.如果每生产一辆智能折叠电动车可得人民币60元,那么该公司工人这一周的工资总额是多少元?12.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:6767+=+;6776-=-;7676-=-;6767--=+根据上面的规律,把(1)(2)(3)中的式子写成去掉绝对值符号的形式,并计算第(4)题.(1)721-=;(2)10.82-+=;(3)771718-=;(4)111111520162016221008-+--+13.明明同学计算25134118133624⎛⎫⎛⎫⎛⎫----+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,他是这样做的:(1)明明的解法从第几步开始出现错误,改正后并计算出正确的结果:(2)仿照明明的解法,请你计算:1123 1029654486234⎛⎫⎛⎫⎛⎫---++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.14.请根据图示的对话解答下列问题.求:(1),,a b c的值;(2)8a b c-+-的值.15.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划世相比有出入,下表与计划量的差值 +4 -3 -5 +14 -8 +21 -62.根据记录的数据可知销售量最多的一天比销售量最少的一天多销售__________斤;3.本周实际销售总量达到了计划数量没有?4.若冬季每斤按8元出倍,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?16.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b,则A 、B 两点之间的距离AB=∣a -b∣,线段AB 的中点表示的数为2a b +. 【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(t>0).【综合运用】1.填空:①A、B 两点之间的距离AB=__________,线段AB 的中点表示的数为__________;②用含t 的代数式表示:t 秒后,点P 表示的数为__________;点Q 表示的数为__________.2.求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;3.求当t 为何值时,PQ=12AB; 4.若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.三、计算题17.计算下列各题(1) 5.3 3.2 2.5 5.7--+--(2)1111513 4.522552---+-+ (3)()()31117 6.2580.7522424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎛⎫+-+⎭--+--+ ⎪⎝⎭. 四、填空题18.粮食产量增产11%,记作+11%,则减产6%应记作__________19.某药品说明书上标明药品保存的温度是()104C ±,设该药品合适的保存温度为C t ,则t 的取值范围是______.20.在数轴上表示a 的点到原点的距离为3,则3a -的值为______.21.若3a -的相反数是5,则a = 。

七年级数学数轴、相反数、绝对值(有理数及其运算)基础练习(含答案)

七年级数学数轴、相反数、绝对值(有理数及其运算)基础练习(含答案)

七年级数学数轴、相反数、绝对值(有理数及其运算)基础练习试卷简介:<strong>全卷共7个选择题,5个填空题,5个计算题和1个解答题,分值100分,测试时间30分钟。

本套试卷立足基础,主要考察了学生对有理数及其运算的掌握。

各个题目难度有阶梯性,学生在做题过程中可以回顾本章知识点,认清自己对知识的掌握及灵活运用程度。

</strong>学习建议:<strong>本讲主要内容是有理数及其运算,是中考常考的内容之一,大多出现在选择题的第一或第二小题,是整个数学学科的基础内容。

本讲题目难度不大,但考验同学们的细心程度,同学们在做这一类练习题时切勿犯眼高手低的毛病。

</strong>一、单选题(共7道,每道5分)1.下面说法正确的是()A.正数都带有“+”号B.不带“+”号的数都是负数C.小学数学中学过的数都可以看作是正数D.0既不是正数也不是负数答案:D解题思路:正数前面的正号是可以省略的,A错;3是正数,但前面没带“+”号,B错;0不属于正数,C错.答案为D.易错点:正负号与正负数的关系试题难度:二颗星知识点:正数和负数2.下列图为数轴的是()A.B.C.D.答案:C解题思路:A中只有原点和单位长度,没有正方向,不能称为数轴;B中单位长度不统一;C选项有正方向、原点和单位长度,是数轴;D选项中有正方向和单位长度,没有原点,不是数轴.易错点:数轴的原点、正方向、单位长度这三要素没掌握试题难度:三颗星知识点:数轴3.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在()A.玩具店B.文具店C.文具店西边40米D.玩具店东边-60米答案:B解题思路:以东为正方向,书店所在的位置为原点画出数轴.在数轴上标出文具店和玩具店位置所对应的点,玩具店对应的点的坐标为100,文具店对应点的坐标为-20,小明从书店沿街向东走了40米,小明所在位置坐标为40,接着又向东走了-60米,小明所在位置坐标为-20.易错点:数轴原点、正方向以及格点位置的确定试题难度:三颗星知识点:数轴4.下列说法中,错误的是()A.最小的正整数是1B.-1是最大的负整数C.在一个数的前面加上负号,就变成了这个数的相反数D.在一个数的前面加上负号,就变成了负数答案:D解题思路:在一个负数的前面加一个负号,则为正数;在0的前面加一个负号,仍然是0,D错.易错点:相反数的含义和求法试题难度:三颗星知识点:相反数5.下列各组数中,互为相反数的是()A.0.4与-0.41B.3.8与-2.9C.-(-8)与-8D.-(+3)与+(-3)答案:C解题思路:当两个数只有符号不同绝对值相等时,称之为互为相反数.题中四个选项中的数只有C符合.易错点:不明确相反数的概念试题难度:二颗星知识点:相反数6.已知a≠b,a=-5,|a|=|b|,则b等于()A.+5B.-5C.0D.+5或-5答案:A解题思路:a=-5,|a|=5=|b|,这说明b所对应的点到原点的距离为5,b的值可能是+5和-5.又由于a≠b,所以b=+5.易错点:绝对值的概念试题难度:三颗星知识点:绝对值7.下列数中,属于正数的是()A.+(-2)B.-3的相反数C.-(-a)D.3的倒数的相反数答案:B解题思路:+(-2)=-2,为负数,A错;-3的相反数为3,是正数,B正确;a=0时,-(-a)=0,不是正数,a为正数时,-(-a)是正数,a为负数时,-(-a)是负数,C错;3的倒数的相反数为,D错易错点:a的不确定性试题难度:三颗星知识点:相反数二、填空题(共5道,每道5分)1.把下列各数填入表示它所在的集合里.-2,7,,0,2003,0.618,3.14,-1.732,-5,+3答案:正数集合{7、2003、0.618、3.14、+3},负数集合{-2、、-1.732、-5},整数集合{-2、7、2003、0、-5、+3},有理数集合{-2,7,,0,2003,0.618,3.14,-1.732,-5,+3}解题思路:依次筛选,正数集合中有7、2003、0.618、3.14、+3;负数集合中有-2、、-1.732、-5;整数集合中有-2、7、0、2003、-5、+3;有理数集合中有-2,7,,0,2003,0.618,3.14,-1.732,-5,+3.易错点:遗漏部分有理数试题难度:三颗星知识点:有理数2.在数轴上大于-4.12的负整数有____.答案:-4、-3、-2、-1解题思路:画出一条数轴,给出它的正方向、原点以及单位长度,大于-4.12的数肯定在-4.12 的右侧,在数轴上找出-4.12的位置,在-4.12的右侧的负整数有-4、-3、-2、-1.易错点:不能正确掌握数轴上的数的大小关系试题难度:三颗星知识点:有理数3.数轴上表示-2和-101的两个点分别为A、B,则A、B两点间的距离等于____.答案:99解题思路:-2到原点的距离是2,-101到原点的距离为101,-2和-101都在原点的左侧,因此-2、-101之间的距离等于101-2=99.易错点:判断点与原点的位置关系试题难度:二颗星知识点:数轴4.已知数轴上A、B两点之间的距离为3,点A与原点O的距离为2,则点B对应的有理数是____.答案:5或-1或1或-5解题思路:A与原点的位置关系有两种,A在原点的右侧或A在原点的左侧.先看第一种情况,A在原点的右侧,A对应的有理数为2,又由A、B两点之间的距离为3可知B点对应的有理数是5或-1;A在原点的左侧时,A对应的有理数为-2,B点对应的有理数是1或-5.易错点:分情况讨论试题难度:三颗星知识点:数轴5.在数轴上,点M表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N,则点N表示的数是____.答案:-2.5解题思路:点M向右移动4.5个单位后的坐标为2.5,再向左移动5个单位后的坐标为-2.5,即点N表示的数为-2.5.易错点:数轴上点对应的有理数试题难度:三颗星知识点:数轴三、计算题(共5道,每道6分)1.|-4.2|-|4.2|答案:原式=4.2-4.2=0解题思路:|-4.2|是指-4.2到原点的距离,等于4.2;|4.2|也是等于4.2,所以原式=4.2-4.2=0. 易错点:绝对值的概念及计算试题难度:三颗星知识点:绝对值2.|-|-(-)答案:原式解题思路:|-|是指-到原点的距离,等于;-(-)是指-的相反数,等于.所以原式=+=.| 易错点:绝对值的概念及计算试题难度:二颗星知识点:绝对值3.||+2|-|-2||答案:原式=|2-2|=|0|=0解题思路:先计算最外面绝对值里面的数,|+2|是指+2到原点的距离,等于2,|-2|是指-2到原点的距离,等于2.那么原式=|2-2|=|0|=0.易错点:绝对值的概念及计算试题难度:三颗星知识点:绝对值4.|-3|+|+5|答案:原式=3+5=8解题思路:|-3|是指-3到原点的距离,等于3,|+5|是指+5到原点的距离,等于5,那么原式=3+5=8.易错点:绝对值的概念及运算试题难度:二颗星知识点:绝对值5.|-|×||答案:原式解题思路:|-|是指-到原点的距离,等于,|-|是指-到原点的距离,等于.原式.易错点:绝对值的概念及运算试题难度:三颗星知识点:相反数四、解答题(共1道,每道10分)1.如图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方体,使得折成正方体后相对的面上的数字互为相反数.答案:(答案不唯一)解题思路:先找出三组相反数,分别是10和-10、8和-8、3和-3,然后找到图形折成正方体后相对的面,正方体的展开图中任何两个相对的面中间总是相隔一个面,给图中每个小正方形标上字母a、b、c、d、e、f,可以得到a和f是相对的面,b和d、c和e是相对的面,这样就可以得到答案.易错点:相对面的寻找试题难度:三颗星知识点:几何体的展开图。

北师大版七年级数学上册期末数轴有关压轴题专题复习练习题(含答案)

北师大版七年级数学上册期末数轴有关压轴题专题复习练习题(含答案)

北师大版七年级数学上册期末数轴有关压轴题专题复习练习题1、有理数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,若a =-2,b =-3,c =,(1)填空:A ,B 之间的距离为,之间的距离为 ,A ,C 之间的距离为 ;(2)问在数轴上是否存在一点P ,使P 与A 的距离是P 与C 的距离的3倍,若存在,请求出P 点对应的有理数;若不存在,请说明理由.2、操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A 、B 两点之间距离为11(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少.3、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n |.如果表示数a 和﹣2的两点之间的距离是3,那么a = ;(2)若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(3)当a 取何值时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是多少?请说明理由.4、数轴上从左到右的三个点A,B,C所对应的数分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c的值.(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值.(3)若O是原点,且OB=17,求a+b﹣c的值.5、如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.6、如图所示,点A、B在数轴上分别表示有理数a、b,A、B两点之间距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)若x表示一个有理数,|x﹣2019|+|x﹣2020|有最小值吗?若有,请求出最小值,若没有,写出理由.(2)求|x﹣1|+2|x﹣3|+3|x﹣4|的最小值.(3)已知(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,求x+2y+3z的最大值和最小值.7、已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0;(1)求a、b、c的值;(2)动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)动点P从A出发向右运动,速度为每秒1个单位长度,同时动点Q从C出发向左运动,速度为每秒2个单位的速度.设移动时间为t秒.求t为何值时,P、Q两点之间的距离为8?8、已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc0,a+b0,ab﹣ac0;(填“>”,“=”或“<”)(2)若|a|=2且点B到点A,C的距离相等,①当b2=16时,求c的值;②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.9、如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条使数轴上表示﹣1的点与表示5的点重合,则折痕与数轴的交点表示的数是;(2)如果数轴上两点之间的距离为6+m2(m为常数),这两点经过(1)的折叠方式后折痕与数轴的交点与(1)中的交点相同,求左边这个点表示的数;(用含m的代数式表示)(3)如图2,若将此纸条沿A,B处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,求最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)10、数轴上两个质点A .B 所对应的数为﹣8、4,A .B 两点各自以一定的速度在数轴上运动,且A 点的运动速度为2个单位/秒.(1)点A .B 两点同时出发相向而行,在4秒后相遇,求B 点的运动速度;(2)A 、B 两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A 、B 两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,且在运动过程中,始终有CA =2CB ,若干秒钟后,C 停留在﹣10处,求此时B 点的位置?11、如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB的中点,且a 、b 满足|a+3|+(b+3a )2=0.(1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP+BQ=2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.12、已知:a 是最大的负整数,且a 、b 、c 满足()052=++-b a c . (1)请求出a 、b 、c 的值;(2)所对应的点分别为A 、B 、C ,点P 为动点,其对应的数为x ,当点P 在B 到C 之间运动时,化简:31--+x x ;(写出化简过程)(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC-AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.13、如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒).(1)当t =0.5时,求点Q 到原点O 的距离;(2)当t =2.5时求点Q 到原点O 的距离;(3)当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.14、已知,A ,B 在数轴上对应的数分别用a ,b 表示,且. (1)数轴上点A表示的数是 ,点B 表示的数是(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,当C 点在数轴上且满足AC=3BC 时,求C 点对应的数.15、阅读理解:若A 、B 、C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是【A ,B 】的好点.例如,如图1,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的好点.又如,表示0的点D 到点A 的距离是1,到点B 的距离是2.那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点:知识运用:051-b 5a 2=++)((1)如图1,点B是【D,C】的好点吗?是(填是或不是);(2)如图2,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止当t为何值时,P、A和B中恰有一个点为其余两点的好点?16、如图,数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,a、c满足|a+3|+(c﹣8)2=0,AB表示点A、B之间的距离,且AB=|a﹣b|.(1)a=,b=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B.、C在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AC=,BC=.(用含t的代数式表示)(4)在(3)的条件下,请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.17、已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t 1,t 2的值.参考答案:1、有理数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,若a =-2,b =-3,c =, (1)填空:A ,B 之间的距离为,之间的距离为 ,A ,C 之间的距离为 ;(2)问在数轴上是否存在一点P ,使P 与A 的距离是P 与C 的距离的3倍,若存在,请求出P 点对应的有理数;若不存在,请说明理由.解:(1)1 ,311,38 (2)存在.设P 点对应的有理数为x. ①当点P 在点A 的左边时,有-2-x=3(32-x ) 解之得:x=2 (不合条件,舍去) ②当点P 在点A 和点C 之间时,有x -(-2)= 3 (32-x) 解之得:x=0③当点P 在点C 的右边时,有x -(-2)= 3 (x -32) 解之得:x=2综上所述,满足条件的P 点对应的有理数为0或2.2、操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A 、B 两点之间距离为11(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少.解:(1)3 (2)①-3 ②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.、323、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=1或﹣5 ;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.【解答】解:(1)3,5,1或﹣5;(2)因为|a+4|+|a﹣2|表示数轴上数a和﹣4,2之间距离的和.又因为数a位于﹣4与2之间,所以|a+4|+|a﹣2|=6;(3)根据|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和.所以当a=1时,式子的值最小,此时|a+5|+|a﹣1|+|a﹣4|的最小值是9.4、数轴上从左到右的三个点A,B,C所对应的数分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c的值.(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值.(3)若O是原点,且OB=17,求a+b﹣c的值.【答案】解:(1)∵点B为原点,AB=2017,BC=1000,∴点A表示的数为a=﹣2017,点C表示的数是c=1000,∴a+b+c=﹣2017+0+1000=﹣1017.(2)∵原点在A,B两点之间,∴|a|+|b|+|b﹣c|=AB+BC=2017+1000=3017.答:|a|+|b|+|b﹣c|的值为3017.(3)若原点O在点B的左边,则点A,B,C所对应数分别是a=﹣2000,b=17,c=1017,则a+b﹣c=﹣2000+17﹣1017=﹣3000;若原点O在点B的右边,则点A,B,C所对应数分别是a=﹣2034,b=﹣17,c=983,则a+b﹣c=﹣2034﹣17﹣983=﹣3034.5、如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为﹣3 ,﹣1 ,m的值为﹣4 ;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.【答案】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40综上所述m=8或﹣40.6、如图所示,点A、B在数轴上分别表示有理数a、b,A、B两点之间距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)若x表示一个有理数,|x﹣2019|+|x﹣2020|有最小值吗?若有,请求出最小值,若没有,写出理由.(2)求|x﹣1|+2|x﹣3|+3|x﹣4|的最小值.(3)已知(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,求x+2y+3z的最大值和最小值.解:(1)|x﹣2019|+|x﹣2020|表示数轴上表示x的点到表示2019、2020点的距离之和,要使距离之和最小,则2019≤x≤2020,∴|x﹣2019|+|x﹣2020|的最小值为2020﹣2019=1,答:|x﹣2019|+|x﹣2020|的最小值为1;(2)由(1)得,当x=3时,|x﹣1|+2|x﹣3|+3|x﹣4|的值最小,最小值为5.(3)当﹣1≤x≤2时,|x+1|+|x﹣2|的最小值为3,当﹣1≤y≤2时,|y﹣2|+|y+1|的最小值为3,当﹣1≤z≤3时,|z﹣3|+|z+1|的最小值为4,∵(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,∴各自均取最小值,当x=﹣1、y=﹣1、z=﹣1时,x+2y+3z的值最小,x+2y+3z=﹣6,当x=2、y=2、z=3时,x+2y+3z的值最小,x+2y+3z=15,答:x+2y+3z的最大值为15,最小值为﹣6.7、已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0;(1)求a、b、c的值;(2)动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)动点P从A出发向右运动,速度为每秒1个单位长度,同时动点Q从C出发向左运动,速度为每秒2个单位的速度.设移动时间为t秒.求t为何值时,P、Q两点之间的距离为8?解:(1)∵|a+24|+|b+10|+(c﹣10)2=0,∴a+24=0,b+10=0,c﹣10=0,解得:a=﹣24,b=﹣10,c=10.(2)AB=﹣10﹣(﹣24)=14.①当点P在线段AB上时,t=2(14﹣t),解得:t=,∴点P的对应的数是﹣24+=﹣;②当点P在线段AB的延长线上时,t=2(t﹣14),解得:t=28,∴点P的对应的数是﹣24+28=4.综上所述,点P所对应的数是﹣或4.(3)点P、Q相遇前,t+2t+8=34,解得:t=;点P、Q相遇后,t+2t﹣8=34,解得:t=14.综上所述:当Q点开始运动后第秒或14秒时,P、Q两点之间的距离为8.8、已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc<0,a+b>0,ab﹣ac>0;(填“>”,“=”或“<”)(2)若|a|=2且点B到点A,C的距离相等,①当b2=16时,求c的值;②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.【解答】解:(1)∵a<0<b<c,∴abc<0,a+b>0,ab﹣ac>0,故答案为:<,>,>;(2)①∵|a|=2 且a<0,∴a=﹣2,∵b2=16 且b>0,∴b=4,∵点B到点A,C的距离相等,∴|4﹣(﹣2)|=|c﹣4|,∴c=10;②依题意,得bx+cx+|x﹣c|﹣10|x+a|=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣11)x﹣10a+c,∴原式=(b+c﹣11)x﹣10a+c∵当P点在运动过程中,原式的值保持不变,即原式的值与x无关,∴b+c﹣11=0,∵b+2=c﹣b,∴b=3.9、如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条使数轴上表示﹣1的点与表示5的点重合,则折痕与数轴的交点表示的数是 2 ;(2)如果数轴上两点之间的距离为6+m2(m为常数),这两点经过(1)的折叠方式后折痕与数轴的交点与(1)中的交点相同,求左边这个点表示的数;(用含m的代数式表示)(3)如图2,若将此纸条沿A,B处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,求最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【解答】解:(1)由折叠时,点﹣1与5是对称的,∴﹣1和5的中点为折痕与数轴的交点,∴交点为2,故答案为2;(2)设两个点左边的为x,右边的为y,∵两点之间的距离为6+m2,∴y﹣x=6+m2,由(1)知交点为2,∴x+y=4,∴x=﹣1﹣,∴左边的这个点表示的数是﹣1﹣.(3)对折n次后,每两条相邻折痕间的距离=,∴最右端的折痕与数轴的交点表示的数为4﹣.10、数轴上两个质点A.B所对应的数为﹣8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(1)点A.B两点同时出发相向而行,在4秒后相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CA=2CB,若干秒钟后,C停留在﹣10处,求此时B点的位置?解(1)设B点的运动速度为x个单位/秒,A.B两点同时出发相向而行,他们的时间均为4秒,则有:(2+x)×4=12.解得x=1,所以B点的运动速度为1个单位/秒;(2)设经过时间为t.则B在A的前方,B点经过的路程﹣A点经过的路程=6,则2t﹣t=6,解得t=6.A在B的前方,A点经过的路程﹣B点经过的路程=6,则2t﹣t=12+6,解得t=18.(3)设点C的速度为y个单位/秒,运动时间为t,始终有CA=2CB,即:8+(2﹣y)t=2×[4+(y﹣1)t].解得y=.当C停留在﹣10处,所用时间为:秒.B的位置为.11、如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,若AP+BQ=2PQ,求时间t;(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.【解答】解:(1)∵|a+3|+(b+3a)2=0,∴a+3=0,b+3a=0,解得a=﹣3,b=9,∴=3,∴点C表示的数是3;(2)∵AB=9+3=12,点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,∴AP=3t,BQ=2t,PQ=12﹣5t.∵AP+BQ=2PQ,∴3t+2t=24﹣10t,解得t=;还有一种情况,当P运动到Q的左边时,PQ=5t﹣12,方程变为2t+3t=2(5t﹣12),求得t=24/5(6分)(3)∵PA+PB=AB为定值,PC先变小后变大,∴的值是变化的,∴①错误,②正确;∵BM=PB+,∴2BM=2PB+AP,∴2BM﹣BP=PB+AP=AB=12.12、已知:a 是最大的负整数,且a 、b 、c 满足()052=++-b a c . (1)请求出a 、b 、c 的值;(2)所对应的点分别为A 、B 、C ,点P 为动点,其对应的数为x ,当点P 在B 到C 之间运动时,化简:31--+x x ;(写出化简过程)(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC-AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.解答:(1)依题意得,a=-1,c-5=0,a+b=0解得a=-1,b=1,c=5(2)当点P 在B 到C 之间运动时,1<x<5因此,当1<x ≤3时,x+1>0,x-3≤0,原式=x+1+x-3=2x-2;当3<x<5时, x+1>0,x-3>0,原式=x+1-(x-3)=4.(3)不变。

【3套精选】人教版七年级数学上第一章有理数单元复习巩固练习试题(含答案)

【3套精选】人教版七年级数学上第一章有理数单元复习巩固练习试题(含答案)

人教版七年级数学上册单元试题:第1章有理数(含答案)一、单选题(本题共有10个小题,每题2分,共20分)1.比-7.1大,而比1小的整数的个数是( ).A .6B .7C .8D .92.室内温度是15 0C,室外温度是-3 0C,则室外温度比室内温度低( )(A) 12 0C (B) 18 0C (C) -12 0C (D) -18 0C3.两个非零有理数的和为零,则它们的商是( ) A .0 B . C .+1 D .不能确定4、如果一个数的平方与这个数的差等于0,那么这个数只能是( )A.0B.-1 C .1 D.0或15、绝对值大于或等于1,而小于4的所有的正整数的和是( )A. 8B.7C. 6D.56.有理数a ,b 在数轴上的位置如图所示,下列各式正确的是( ).A .a >0B .b <0C .a >bD .a <b 7.下列各组数中,相等的是( ).A .32与23B .-22与(-2)2C .-|-3|与|-3|D .-23与(-2)38、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、B 、C 、D 、 9、不超过的最大整数是………………………………………( )A 、–4B –3C 、3D 、410、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28%二、填空题(本题共有9个小题,每小题2分,共18分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。

12.在数轴上,与表示-5的点距离为4的点所表示的数是____________.13、某数的绝对值是5,那么这个数是 。

练习题《数轴》知识点巩固练习

练习题《数轴》知识点巩固练习

1.2 数轴课堂笔记1. 数轴是规定了原点,单位长度和的一条.2. 在数轴上,表示互为相反数的两个点位于原点的两侧,并且到原点的距离.3. 的相反数是它本身.分层训练A组基础训练1.(宜宾中考)的相反数是()2.下列各图中,表示的数轴正确的是()3.(株洲中考)a的相反数为-3,则a等于()A.-3B.3C.±3D.4.(长春中考)如图,数轴上被墨水遮盖的数可能为()A.-1 B. -1.5 C. -3 D. -4.25.下列说法正确的是()A.数轴上的点只能表示整数B.数轴上的一个点只能表示一个数C.数轴上的点所表示的数都是负数D.两个不同的有理数可以用数轴上同一个点表示6.如图,数轴的单位长度为1,如果点A,B表示的数互为相反数,那么点A表示的数是()A.-4B.-2C.0D.47.(岳阳中考)如图,数轴上点A所表示的数的相反数是.8.数轴上点P距原点5个单位长度,且在原点的左侧,则点P表示的数是;数轴上点Q距原点 3.5个单位长度,那么点Q表示的数是 .9.如果一个数的相反数是它本身,那么这个数是;a的相反数是. 10.(1)如图,写出数轴上的点A,B,C,D,E所表示的数.(2)写出下列各数的相反数,并将这些数与它们的相反数在数轴上表示出来.11.如图,图中数轴的单位长度为1.(1)如果点B,E表示的两个数互为相反数,那么点为原点,点A表示的数为.(2)如果点C,E表示的两个数互为相反数,那么点A,B,C所表示的数分别是多少?B组自主提高12.数轴上的动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C. 若点C表示的数为1,则点A表示的数为()A.7B.3C.-3D.-213.已知在纸面上有一数轴如图,折叠纸面.(1)若1表示的点与-1表示的点重合,则-3表示的点与数表示的点重合.(2)若5表示的点与-1表示的点重合,回答以下问题:①数3表示的点与数表示的点重合.②若数轴上A,B两点之间的距离为9(点A在点B左侧),且A,B两点经折叠后重合,求A,B两点所表示的数.C组综合运用14.有理数a,b在数轴上的位置如图所示.(1)在数轴上分别用A,B两点表示-a,-b.(2)若数b与-b表示的点相距20个单位长度,则b与-b表示的数分别是什么?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,则a 与-a表示的数是多少?参考答案1.2 数轴【课堂笔记】1. 正方向直线2. 相等3. 0【分层训练】1—5. BCBCB 6. B7. 28. -5 +3.5或-3.59. 0 -a10. (1)A表示0,B表示,C表示-1,D表示,E表示4.(2)它们的相反数分别为画图略.11. (1)D -6 (2)由图可知:点C,E之间相距6个单位长度,因此点C表示的数为-3,∴点A表示的数为-7,点B表示的数为-5.12. D13. (1)3 (2)①1 ②点A表示-2.5,点B表示6.5.14. (1)如图:(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为20÷2=10,所以b表示的数是-10,-b表示的数是10.(3)因为-b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为10-5=5,所以a表示的数是5,-a表示的数是-5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1 有理数数轴同步练习
基础巩固题:
1.在数轴上表示的两个数中,的数总比的数大。

2.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。

3.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。

4.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。

5.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。

6.到原点的距离不大于3的整数有个,它们是:。

7.下列说法错误的是()
A.没有最大的正数,却有最大的负数
B.数轴上离原点越远,表示数越大
C.0大于一切非负数
D.在原点左边离原点越远,数就越小
8.下列结论正确的有()个:
①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0 ③正数,负数和零统称有理数④数轴上的点都表示有理数
A.0
B.1
C.2
D.3
9.在数轴上,A点和B点所表示的数分别为-2和1,若使A点表示的数是B点表示的数的3倍,应把A点()
A.向左移动5个单位
B.向右移动5个单位
C.向右移动4个单位
D.向左移动1个单位或向右移动5个单位
10.在数轴上画出下列各点,它们分别表示:+3, 0,-31
4
, 1
1
2
,-3,-1.25
并把它们用“<”连接起来。

应用与提高
11.小明的家(记为A)与他上学的学校(记为B),书店(记为C)依次座落在一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条街向东走40米,接着又向西走了70米到达D处,试用数轴表示上述A、、B、C、D
的位置。

12.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来。

中考链接
13.如图,数轴上的点A所表示的数是a,则A 点到原点的距离是。

A
14.在数轴上,离原点距离等于3的数是。

15.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B
时,点B所表示的实数是()
A.1
B.-6C.2或-6D.不同于以上答案
参考答案:
1.右边,左边
2.左边,5
3.右边,2,左,7,9 4.—2
5.2个,±2.5
6.7个,±1,±2,±3,0 7.D
8.C
9.B
10.-31
4
<-3<-1.25<0<1
1
2
<3
11.
12.-12,-11,-10,-9,-8,11,12,13,14,15,16,17 13.∣a∣
14.±3
15.C。

相关文档
最新文档