数学建模习题答案复习课程
数学建模习题和答案解析课后习题
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)2.1节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。
6.动物园里的成年热血动物靠饲养的食物维持体温基本不变,在一些合理、简化的假设下建立动物的饲养食物量与动物的某个尺寸之间的关系。
数学建模习题及答案
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)2.1节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
数学建模基础练习一及参考答案
数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。
2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。
3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。
4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。
二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。
6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。
三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。
10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。
11.试找出100以内的所有素数。
12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。
14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。
15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。
数学建模陈东彦版课后答案
数学建模陈东彦版课后答案第⼀部分练习与思考题2.9-3.7 3.6-5.144.1-7.1 4.4-7.35.9-11.1 5.1-9.16.5-4.7 6.10-4.14第1章建⽴数学模型1.1 在稳定的椅⼦问题中,如设椅⼦的四脚连线呈长⽅形,结论如何?(稳定的椅⼦问题见姜启源《数学模型》第6页)1.2 在商⼈们安全过河问题中,若商⼈和随从各四⼈,怎样才能安全过河呢?⼀般地,有n 名商⼈带n 名随从过河,船每次能渡k ⼈过河,试讨论商⼈们能安全过河时,n 与k 应满⾜什么关系。
(商⼈们安全过河问题见姜启源《数学模型》第7页)1.3 ⼈、狗、鸡、⽶均要过河,船需要⼈划,另外⾄多还能载⼀物,⽽当⼈不在时,狗要吃鸡,鸡要吃⽶。
问⼈、狗、鸡、⽶怎样过河?1.4 有3对夫妻过河,船⾄多载两⼈,条件是任⼀⼥⼦不能在其丈夫不在的情况下与其他的男⼦在⼀起。
问怎样过河?1.5 如果银⾏存款年利率为5.5%,问如果要求到20XX 年本利积累为100000元,那么在1990年应在银⾏存⼊多少元?⽽到2000年的本利积累为多少元?1.6 某城市的Logistic 模型为2610251251N N dt dN ?-=,如果不考虑该市的流动⼈⼝的影响以及⾮正常死亡。
设该市1990年⼈⼝总数为8000000⼈,试求该市在未来的⼈⼝总数。
当∞→t 时发⽣什么情况。
1.7 假设⼈⼝增长服从这样规律:时刻t 的⼈⼝为)(t x ,最⼤允许⼈⼝为m x ,t 到t t ?+时间内⼈⼝数量与)(t x x m -成正⽐。
试建⽴模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进⾏⽐较。
1.8 ⼀昼夜有多少时刻互换长短针后仍表⽰⼀个时间?如何求出这些时间?1.9 你在⼗层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下⼏个楼层?1.10 居民的⽤⽔来⾃⼀个由远处⽔库供⽔的⽔塔,⽔库的⽔来⾃降⾬和流⼊的河流。
数学建模教程课后答案
表1-5
单 人 理论 取 qi2 取 qi2 取 qi2 取 qi2
位数 值 整
整
整
整
5 10-6 6 10-6 7 10-6 8 10-6
1 404 40.4 40 0.01 40 0.01 41 0.02 40 0.01
2 204 20.4 20 0.04 21 0.08 20 0.04 21 0.08 3 104 10.4 11 0.30 10 0.16 10 0.16 11 0.30 4 54 5.4 6 1.00 6 1.00 6 1.00 5 0.64 5 14 1.4 1 16.00 1 16.00 1 16.00 1 16.00 合 780 78 78 17.35 78 17.25 78 17.22 78 17.03
今证:n4不存在任何无重复安全过河 解.(反证法)设存在一个无重复安全过 河方案.该方案第一次跳到y轴前的状 态只能是(如图所示):(2,2)和(1,1), 且都是偶数步.若为(2,2) 则前一步必 是从(1,1)到(2,2)产生重复; 若为 (1,1),则前一步必来自y轴上的点都是 不可能的.
不难证明:“若不存在任何不重复安全 过河方案,则不存在任何安全过河方案”
该年生产总值为2004年的 e0.07520 =4.48倍.
解: 我们只须证明其等价命题:“若存 在一个安全过河方案,则必存在一个不重 复安全过河方案”. 事实上,从一个安全 过河方案中去掉一切产生重复的循环之后, 便得到一个不重复安全过河方案.
n=2时的安全过河方案(共5次)
y
(0,2)
(2,2)
(0,1)
(1,1) (2,1)
(0,0)
(2,0)
x
图 1-4
n1=987/6-n2-n3=84-54=30. 答案:锐,直,钝角三角形个数分别是30,0
第二十讲 数学建模(含解答)-
第二十讲 数学建模【趣题引路】某工厂生产某种产品,每件产品的出厂价为50元,其成本为25元.•因为在生产过程中,平均每生产一件产品有0.5m 3污水排出,为了净化环境,工厂设计两种方案对污水进行处理.方案1:工厂污水先净化处理后再排出,每处理1m 3•污水所有原材料费为2元,并且每月排污设备损耗费为30 000元;方案2:•工厂将污水排到污水厂统一处理,每处理1m 3污水需付14元排污费.问题:(1)设工厂每月生产x 件产品,每月利润为y 元,分别求出依方案1和方案2处理污水时y 与x 的函数关系式;(2)•设工厂每月生产量为6 000件产品时,你若作为厂长在不污染环境,又节约资金的前提下,•应选用哪种处理污水的方案?请通过计算加以说明. 解析 (1)设选用方案1,每月利润为y 1元,选用方案2,每月利润为y 2元,则: y 1=(50-25)x-2×0.5x-30 000=24x-30 000, y 2=(50-25)x-14×0.5x=18x. 故y 1=24x-30 000,y 2=18x;(2)当x=6000时,y 1=24×6000-30 000=114 000(元),y 2=18x=18×6000=108 •000(元). ∴y 1>y 2.答:我若作为厂长,应选方案1. 点评本例是生产经营决策问题,其难点在于建立相应的数学模型,构建函数关系式,•然后,通过问题中所给的条件判断,若不能判断,就要进行分类讨论.【知识延伸】例 某工厂有14m 长的旧墙一面,现在准备利用这面旧墙,建造平面图形为矩形,•面积为126m 2的厂房,工程条件为:①建1m 新墙的费用为a 元;②修1m 旧墙的费用为4a元;③拆去1m 旧墙,用所得材料建造1m 新墙的费用为2a元.经过讨论有两种方案:(Ⅰ)利用旧墙的一段xm(x<14)为矩形厂房一面的边长;(Ⅱ)•矩形厂房利用旧墙的一面边长为x(x ≥14).问:如何利用旧墙,即x 为多少米时,建墙费用最省?(Ⅰ)(Ⅱ)两种方案哪个更好?解析 设利用旧墙的一面矩形边长为xm,则矩形的另一边长为126xm . (Ⅰ)利用旧墙的一段xm(x<14)为矩形一面边长,则修旧墙费用为x ·4a元,•将剩余的旧墙拆得材料建新墙的费用为(14-x)·2a元,其余建新墙的费用为(2x+2126x -14)·a 元.故总费用为y=x ·4a +142x -·a+(2x+252x -14)·a=a(74x+252x-7)=7a(364x x +-1).(0<x<14)∴y ≥364x x -1]=35a.当且仅当364x x=,即x=12m 时,y min =35a(元); (Ⅱ)若利用旧墙的一面矩形边长为x ≥14,则修旧墙的费用为4a ·14=72a 元,建新墙的费用为(2x+252x-14)a 元. 故总费用为y=72a+(2x+252x-14)a=72a+2a(x+126x -7) (x ≥14).设14≤x 1<x 2,则x 1-x 2<0,x 1x 2>196. 则(x 1+1126x )-(x 2+2126x )=(x 1-x 2)(1-12126x x ) ∴函数y=x+126x在区间[14,+∞]上为增函数. 故当x=14时,y min =72a+2a(14+12614-7)=35.5a>35a.综上讨论可知,采用第(Ⅰ)方案,建墙总费用最省,为35a 元.点评解答选择方案应用题同处理其他应用题一样,重点要过好三关(1)事理关:•读懂题意,知道讲的是什么事情,要比较的对象是什么;(2)文理关:•把实际问题文字语言转化为数学的符号语言,然后用数学式子表达数学关系式;(3)数理关:在构建数学模型的过程中,要对数学知识有检索的能力,认定或构建相应的数学模型,•完成由实际问题向数学问题的转化.【好题妙解】佳题新题品味例 在一次人才招聘会上,有A 、B 两家公司分别开出他们的工资标准:A 公司允诺第一年月工资为1500元,以后每月工资比上一年工资增加230元;B 公司允诺第一个月工资为2000元,以后每月工资在上一年月工资基础上递增5%,设某人年初被A 、B 两家公司同时录取,试问 :(1)若该人打算在A 公司或B 公司连续工作n 年,则他第n 年的月工资收入各为多少? (2)如该人打算连续在一家公司工作10年,仅以工资收入来看,•该人去哪家公司较合算?解析 (1)此人在A、B公司第n年的月工资数分别为a n=1 500+230(n-1),b n=2 •000(1+5%)n-1.其中n为正整数;(2)若该人在A公司连续工作10年,则他的工资收入总量为12(a1+a2+…+a10)=•304 200(芜).若该人在B公司连续工作10年,则他的工资收入总量为12(b1+b2+•…b10)=301 869(元).故该人应选择在A公司工作.点评最佳方案的选择问题充分体现了数学在生活中的无穷乐趣,•同时也从数学角度诠释了“知识就是力量”,“知识就是财富”的道理.中考真题欣赏例 (2002年长沙市)某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y之间有如下关系:x 3 5 9 11y 18 14 6 2(1)在所给的直角坐标系中:①根据提供的数据描出实数对(x,y)对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.(2)设经营此商品的日销售利润为P元,根据日销售规律:①试求出日销售利润p元与日销售单价x元之间的函数关系式,•并求出日销售单价x为多少元时,才能获得最大日销售利润?试问:日销售利润p是否存在最小值?若有,试求出,若无,试说明理由;②在给定的直角坐标系中,画出日销售利润p元与日销售单价x•元之间的函数图象,观察图象,写出x与p的取值范围.解析 (1)①准确描出四点位置.②猜测它是一次函数y=kx+b.由两点(3,18),(5,14)代入上式求得k=-2,b=24,则有y=-2x+24.(9,6),(11,2)代入同样满足,∴所求函数关系式为y=-2x+24.由实际意义知,所求函数关系式为y=-•2x+24(0≤x<12)和y=0(x≥12).(2)①p=xy-2y,即p=y(x-2)=(24-2x)(x-2)=-2x2+28x-48=-2(x-7)2+50.当x=7时,日销售利润最大值50元.当x>12时,此时无人购买,故此时利润p=0(x≥12).由实际意义知,当销售价x=0即亏完本卖出,此时利润p=-48,即为最小值;②据实际意义有:0≤x<2时,亏本卖出.当x=2或x=12时,利润p=0.当x>12时,即高价卖出,无人购买,p=0.故作出图象,图(20-2)由图象知,x≥0,-48≤p≤50.竞赛样题展示例 (1998年“祖冲之杯”初中数学邀请赛)某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理在市场上做了一番调查后发现,•若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个,•为获得每日最大利润,此商品售价应定为多少元?解析设商品每个售价x元,每日利润为y元,则当x>18时,y=[60-5(x-18)](x-10)=-5(x-20)2+500,即在商品提价时,提到20元时,y max=500元;当x<18时,y=[60+10(18-x)](x-10)=-10(x-17)2+490.即在商品降价时,降到17元时,y max=490元 .综上可得,此商品售价定为20元时,才能获得每日最大利润.点评本题首先应搞清题目的意思,设未知数,转化为函数问题,•因为售价的上升或下降,利润的情况是不一样的,故应分情况讨论.全能训练A级1.某移动通讯公司开设了两种通讯业务,“全球通”:使用者先缴50元月租费,•然后每通话1min,再付话费0.4元;“快捷通”:不缴月租费,每通话1min,付话费0.•6元(本题通话均指市内话话).若一个月内通话xmin,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种通讯费用相同?(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些?2.某旅行社有客房120间,每间房的日租金为50元,每天都客满.旅行社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则客房每天出租后会减少6间,不考虑其他因素,旅社将每间客房将日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金总收入增加多少元?3.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,那么经销这种商品原来的利润率是多少?A级(答案)1.(1)y1=0.4x+50,y2=0.6x;(2)令y1=y2,0.4x+50=0.6x,则x=250;故每一个月内通话250min,通讯费用相同.(3)全球通合算些.2.设每间房的日租金提高x个5元,日租金总收入为y,则y=(50+5x)(120-6x)即y=-30(x-5)2+6 750当x=5时,y max=6 750.∴日租金总收入多6 750-120×50=750(元)3.17%.B级1.某环形道路上顺时针排列着4所中学:A1,A2,A3,A4,它们顺次有彩电15台,8台,5台,12台.为使各校的彩电数相同,允许一些中学向相邻中学调出彩电.问怎样调配才能使调出的彩电台数最小?并求调出彩电的最小总台数.2.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器,彩电、冰箱共360台,且冰箱至少生产60台,•已知生产这些家电产品每问:,•最高产值是多少?B级(答案)1.设A1中学调给A2彩电x1台(若x1<0,则认为是A2,向A1调出│x1│台),A2中学调给A3彩电x2台,A3调给A4x3台,A4调给A1x4台.因为共有40台彩电,平均每校10台,•因此,15-x1+x4=10,8-x2+x1=10,5-x3+x2=10,12-x4+x3=10,得x4=x1-5,x1=x2+2,x2=x3+5,x3=x4-2,x3=(x1-5)-2=x1-7,x2=(x1-7)+5=x1-2.本题即求y=│x1│+│x2│+│x3│+│x4│=│x1│+│x1-2│+│x1-7│+│x1-5│的最小值,其中x1是满足-8≤x1≤15的整数.设x1=x,并考虑定义在-8≤x≤15•上的函数:y=│x│+│x-2│+│x-7│+│x-5│, 当2≤x≤5时,y取最小值10,即当x1=2,3,4,5时,│x1│+│x1-2│+│x1-7│+│x1-5│取到最小值10.从而调出彩电的最小台数为10,调配方案有如下4种:2.设3种家电数量分别为x,y,z台,则各自的工时数、产值数、工时总数、•产值总数如下表所示.家电名称空调彩电冰箱总数台数x y z x+y+z=360(z≥60)工时数12x13y14z12x+13y+14z=120产值(千元) 4x 3y 2z A=4x+3y+2z ∵工时总数=12x+13y+14z=112(6x+4y+3z)=14(x+y+z)+112(3x+y)=14×360+112(3x+y)=90+112(3x+y)总产值数A=4x+3y+2z=2(x+y+z)+(2x+y) =2×360+(2x+y)=720+(2x+y)由300,190(3)120,12720(2)720(3).x yx yA x y x y x+≤⎧⎫⎪⎪⎪⎪++=⎨⎬⎪⎪=++=++-⎪⎪⎩⎭⇒A=1 080-x≤1 050.当总产值A取到最大值1 050时, x=30,y=270,z=60.。
2024-2025年北师大版数学必修第一册8.1-3数学建模活动(一)(带答案)
§1走近数学建模§2数学建模的主要步骤§3数学建模活动的主要过程必备知识基础练知识点一建立数学模型1.生物学家认为,睡眠中的恒温动物依然会消耗体内能量,主要是为了保持体温.研究表明,消耗的能量E与通过心脏的血液量Q成正比;并且根据生物学常识知道,动物的体重与体积成正比.血流量Q是单位时间流过的血量,脉博率f是单位时间心跳的次数;还有一些生物学假设,例如,心脏每次收缩挤压出来的血量q与心脏大小成正比,动物心脏的大小与这个动物体积的大小成正比.下表给出一些动物体重与脉搏率对应的数据.系,讨论你模型中的假设,并用上表中的数据检验模型.知识点二数学建模的主要步骤2.超市卖某一品牌的卫生纸,这种卫生纸分“有芯”和“无芯”两种纸卷,如图,两种纸具有同样的材质和厚度,纸卷的高度和单价也一样,若预购买这种卫生纸,但不知道哪种纸卷更合算,如果没有带尺子,用什么办法可以确定合算的纸卷?为什么?知识点三数学建模的主要过程3.在意外发生的时候,建筑物内的人员是否能尽快的疏散撤离是人们普遍关心的有关人身安全保障的最大问题.根据学校情况,选一角度并提出问题,完成开题报告.关键能力综合练1.甲、乙两个快递员去送信,两人同时出发以同样的速度走遍所有的街道,甲从A点出发,乙从B点出发,最后都回到邮局(C点).如果要选择最短的线路,谁先回到邮局?2.国际象棋中马的行走方式为“日”字形的对角线,如图甲中虚线所示.问能否以一马的跳步完全覆盖图乙的“棋盘”,使接触每个方格恰好一次?(允许从任一方格出发)核心素养升级练1.在商场中,我们经常可以看到同一种商品会有多种大小不同的型号,其价格也各不相同.对比型号和价格,我们很容易发现:当商品的“量”增加时,价格也会增加;但是价格的增加与“量”的增加是不成比例的,也就是说你买的商品的“量”越多,商品的平均价格越低,有人认为这是商家的营销策略,买得越多越划算,这样顾客往往倾向于购买大包装的商品.大包装的商品真的是薄利多销吗?就这一问题通过调查、分析、研究,完成选题,开题报告.§1走近数学建模§2数学建模的主要步骤§3 数学建模活动的主要过程必备知识基础练1.解析:建模过程如下:(1)因为动物体温通过身体表面散发热量,表面积越大,散发的热量越多,保持体温需要的能量也就越大,所以动物体内消耗的能量E 与身体的表面积S 成正比,可以表示为E =p 1S .又因为动物体内消耗的能量E 与通过心脏的血流量Q 成正比,可以表示为E =p 2Q .因此得到Q =pS ,其中p 1,p 2和p 均为正的比例系数.另一方面,因为体积V 与体重W 成正比,可以表示为V =r 1W ;又因为表面积S 大约与体积V 的23次方成正比,可以表示为S =r 2V 23,因此得到S =rW 23 ,其中r 1,r 2,r 为正的比例系数.所以可以构建血流量与体重关系的数学模型Q =k 1W 23,其中k 1为正的比例系数.(2)根据脉搏率的定义f =Qq,再根据生物学假设q =cW (c 为正的比例系数),最后得到f=Q q =k 1W 23cW,也就是f =kW -13 ,其中k 为正的待定系数. 脉搏率与体重关系的数学模型说明,恒温动物体重越大,脉搏率越低;脉搏率与体重的13次方成反比,表中的数据基本上反映了这个反比例的关系.下图是以ln W 和ln f 为坐标的散点图.可以看出,数据取对数之后基本满足线性关系,因此得到体重和脉搏率的对数线性模型,可以把这个模型表达为ln f =ln k -ln W3.2.解析:合算就是纸的量多,因为纸卷的高度和单价一样,我们只要比较两种纸卷截面的面积,取较大的就合算,为此可以各取一个纸卷,令无芯纸卷截面的圆心压在有芯纸卷截面的芯(即小圆)上,如右图,然后看无芯纸卷截面上与有芯纸卷截面的芯相切的直径端点,若端点在有芯纸卷截面的大圆上,则两种纸卷的量相等;若在其内则买有芯纸卷合算;若在其外则买无芯纸卷合算.证明:设有芯纸卷截面的内、外半径分别为r ,R ,大圆内与小圆相切的弦长为d ,无芯纸卷截面的直径为D ,于是,(d2)2=R 2-r 2,当D =d 时,S 有芯=π(R 2-r 2)=π(d 2 )2=π(D 2 )2=S 无芯,当D >d 时,S 有芯=π(R 2-r 2)=π(d 2 )2<π(D 2 )2=S 无芯. 当D <d 时,S 有芯=π(R 2-r 2)=π(d2 )2>π(D2 )2=S 无芯. 3.解析: 要解决的问题在教学楼一楼有一排四间教室,学生可以沿教室外走廊一直走到尽头的出口,试分析学生撤离所用时间选题的原因及意义 建立数学模型给出最佳撤离方案,同时就教学楼设计给出合理化建议 建模问题的可行性分析教师可在教学楼内组织学生进行多次演习,只需测量几个简单的参数. 基本模型、解决问题的大体思路和步骤做出合理假设,列出有关的参数.队列中人与人之间的距离将为常数,记为d ,队列行进的速度也是常数v ,令第i 个教室中的人数为n i +1人,第i 个教室的门口到前一个教室的门口的距离为L i ,教室门的宽度为D .疏散时教室内第一个人到达教室门口所用的时间忽略不计.T 1,2=⎩⎪⎨⎪⎧(L 1+L 2+D +n 2d )/v ,(n 1+1)d ≤L 2+D ,[L 1+(n 1+n 2+1)d ]/v ,(n 1+1)d >L 2+D预期结果和结果呈现方式 建立一个来描述建筑物内人员疏散的最合适的模型,一份有求解过程的文字报告参考文献 《数学模型与数学建模》 北京师范大学数学科学学院其他说明关键能力综合练1.解析:由题图看出,只有A,C两个奇点,根据一笔画定理,甲从A出发,可以不重复地一次走完所有街道,而乙从B出发走完所有街道回到C点必须重复一段街道,故甲先回到邮局.2.解析:问题是要确定题图乙是否有一条哈密尔顿路.把图重画,使顶点的布置更清楚.删去次数为2的顶点a(棋盘的角)以及4个顶点b以获得两个回路(见图丙);以c与d分别标记此两回路的顶点.再把此两回路画成不相交的,见图丁.每个顶点b邻接于一顶点c与一顶点d.删去4个顶点b产生一个具有6个分支的图:两个不同的回路(分别以c与d为顶点)以及4个标号为a的顶点,于是可知原图中一条依次经过全部顶点的路线应是不存在的,即没有哈密尔顿路.所以,题图乙的棋盘不能像问题规定的那样为一马所跳遍.核心素养升级练1.解析:要解决的问题到商场买牙膏,从划算的角度讲,同一品牌的牙膏我们是买小包装的好,还是大包装的好呢?解决问题的方法同一品牌的牙膏形状是相似的,通过比例建立价格与质量的函数关系相关问题分析及其假设我们设商品的价格为y(元),质量为x(g),看能否找出y与x的函数关系式:y=f(x).为了方便叙述,我们引入“∝”这一符号,当y与x成比例,即y=kx(k为常数)时,记作y∝x建模求解的主要过程设商品的成本为P(元),一般来说,商品价格=商品成本×(1+利润率),所以有y∝P.而商品的成本主要分为生产成本和包装成本两部分,分别设为P1和P2,即有y∝(P1+P2).商品的生产成本P1与商品的质量x成比例,即P1∝x;而商品的包装成本P2与商品的表面积S成比例,即P2∝S,将x =120代入,得y =21.57,与实际价格21.60元相差0.03;再将x =180代入,得y =28.77,与实际价格28.30元相差0.47元.因此,我们推导出来的函数表达式还是比较准确的. 这一步得到单位质量价格y ′=0.0225+0.7756x-13,由几何画板做出y ′-x 的关系图为可以看出随牙膏质量的增加,单位质量价格的减小量在减少,因此不能盲目的认为越大的包装越便宜全组共同制定研究计划商讨确定数学模型。
数学建模课后习题答案
第一章 课后习题6.利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。
解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为:)()0(mg M x =由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程M x x dtdx=-=)0(,λ (1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。
由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程:0)0(,=-=y y x dtdyμλ (2) 方程(1)可转换为:tMe t x λ-=)(带入方程(2)可得:)()(t t e e M t y λμμλλ----=将01386=λ和1155.0=μ带入以上两方程,得:t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t针对孩子求解,得:严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解:严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987=课后习题7.对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。
解:已知血液透析法是自身排除率的6倍,所以639.06==μut e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---=1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dtdzt 解得:()2,274.112275693.01386.0≥+=--t e e t z t t用matlab 画图:图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。
(完整版)数学建模复习内容带习题答案
考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。
一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。
(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。
A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。
(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3) 结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000 fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。
《数学建模》习题及参考答案 第一章 建立数学模型
第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学建模课程及答案
《数学建模课程》练习题一一、填空题一、填空题1.1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为长问题的马尔萨斯模型应为 。
2.2. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 。
3. 3. 某服装店经营的某种服装平均每天卖出某服装店经营的某种服装平均每天卖出110件,进货一次的手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 。
4. 4. 一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是 .5.5.设开始时的人口数为设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若允许的最大人口数为m x ,人口增长率由sx r x r -=)(表示,则人口增长问题的罗捷斯蒂克模型为表示,则人口增长问题的罗捷斯蒂克模型为 . 6. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:将和下列因素有关:(1)参加展览会的人数n ; (2)气温T 超过C10; (3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为由此建立的冰淇淋销量的比例模型应为 . 7、若银行的年利率是x %,则需要则需要 时间,存入的钱才可翻番存入的钱才可翻番.. 若每个小长方形街路的路的8. . 如图是一个邮路,邮递员从邮局如图是一个邮路,邮递员从邮局A 出发走遍所有长方形街路后再返回邮局出发走遍所有长方形街路后再返回邮局.. 边长横向均为1km ,纵向均为2km ,则他至少要走,则他至少要走 km.. A9. 设某种新产品的社会需求量为无限,开始时的生产量为100件,且设产品生产的增长率控制在0.1,t 时刻产品量为)(t x ,则)(t x = . 10. 商店以10元/件的进价购进衬衫,若衬衫的需求量模型是802,Q p p =-是销售单价(元(元//件),为获得最大利润,商店的出售价是,为获得最大利润,商店的出售价是 . 二、分析判断题二、分析判断题1.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个)个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。
数学建模习题及答案课后习题
数学建模习题及答案课后习题第⼀部分课后习题1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在B宿舍,432⼈住在C宿舍。
学⽣们要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩数部分较⼤者。
(2)节中的Q值⽅法。
(3)d’Hondt⽅法:将A,B,C各宿舍的⼈数⽤正整数n=1,2,3,…相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种⽅法的道理吗。
如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法再分配名额。
将3种⽅法两次分配的结果列表⽐较。
(4)你能提出其他的⽅法吗。
⽤你的⽅法分配上⾯的名额。
2.在超市购物时你注意到⼤包装商品⽐⼩包装商品便宜这种现象了吗。
⽐如洁银⽛膏50g装的每⽀元,120g装的元,⼆者单位重量的价格⽐是:1。
试⽤⽐例⽅法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由⽣产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正⽐,有的与表⾯积成正⽐,还有与w⽆关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越⼤c越⼩,但是随着w的增加c减少的程度变⼩。
解释实际意义是什么。
3.⼀垂钓俱乐部⿎励垂钓者将调上的鱼放⽣,打算按照放⽣的鱼的重量给予奖励,俱乐部只准备了⼀把软尺⽤于测量,请你设计按照测量的长度估计鱼的重量的⽅法。
假定鱼池中只有⼀种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼⾝的最⼤周长):⾝长(cm)重量76548211627374821389652454(g)胸围(cm)先⽤机理分析建⽴模型,再⽤数据确定参数4.⽤宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹⾓应多⼤(如图)。
若知道管道长度,需⽤多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
数学建模习题及答案课后习题
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)2.1节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
5. 用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。
数学建模方法与分析部分习题解答第三版
数学建模方法与分析部分习题解答第三版P38题22(a)第一步:提出问题变量:x1=蓝鲸的数量x2=长须鲸的数量r1=蓝鲸种群的内禀增长率r2=长须鲸种群的内禀增长率K1=蓝鲸的最大可生存的种群数量K2=长须鲸的最大可生存的种群数量a1=竞争对蓝鲸的影响a2=竞争对长须鲸的影响t=时间(年)Q=鲸鱼总数假设: dx1dt=r1*x1(1-x1/K1)-a1*x1*x2 dx2dt=r2*x2(1-x2/K2)-a2*x1*x2x1>=0x2>=0dx1dt>=0dx2dt>=0Q=x1+x2目标:求在满足约束条件下Q的最大值第二步:建立模型五步法和有约束的最优化模型第三步:推导模型公式设目标函数为y=f(x1, x2)=x1+x2约束条件为dx1dt=r1*x1(1-x1/K1)-a1*x1*x2>=0dx2dt=r2*x2(1-x2/K2)-a2*x1*x2>=0x1>=0x2>=0即求解y满足以上条件的最大值第四部:求解模型由y=f(x1, x2)=x1+x2得▽f=(1, 1)由g1=0.05*x1*(1-x1/150000)-10^(-8)*x1*x2g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2得▽g1(x1, x2)=(1/20 - x2/100000000 - x1/1500000, -x1/100000000)▽g2(x1, x2)=(-x2/100000000, 2/25 - x2/2500000 - x1/100000000) 设λ1, λ2为拉格朗日乘子,则在极值点满足▽f=λ1*▽g1+λ2*▽g2带入解得Matlab求解clc;clear;syms x1x2w vg1=0.05*x1*(1-x1/150000)-10^(-8)*x1*x2g11=diff(g1,x1)g12=diff(g1,x2)g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2g21=diff(g2,x1)g22=diff(g2,x2)s=solve(w*g11+v*g21-1,w*g12+v*g22-1,g1,g2)λ1= -20.6522λ2= -12.3567x1=138210x2=393090因此y=f(x1, x2)=x1+x2=531300第五步:回答问题由五步法和有约束的最优化模型解得当满足种群数量是可行的可持续条件时,鲸鱼总数最大的种群数量为531300,此时蓝鲸数量为138210,长须鲸数量为393090.2(b)考虑最优种群数量x1, x2对内禀增长率r1的灵敏性在模型中将此参量设为变量则有y=f(x1, x2)=x1+x2得▽f=(1, 1)此时g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2▽f=λ1*▽g1+λ2*▽g2解得λ1= -475/(500*r1 - 2)λ2=-(2000*r1 - 3)/(157*r1)x1=(6000000000*r1 - 24000000)/(40000*r1 - 3)x2=(157*********r1)/(40000*r1 - 3)则计算出dx1/dr1=6000000000/(40000*r1-3)-(40000*(6000000000*r1-24000000))/(40000 *r1 - 3)^2dx2/dr1=157********/(40000*r1-3)-(628000000000000*r1)/(40000*r1 - 3)^2 在点x1=138210, x2=393090, r1=0.05, 有S(x1, r1)=dx1/dr1*r1/x1=236210*0.05/138210=0.0855S(x2, r1)=dx1/dr1*r1/x2=11810*0.05/393090=- 0.00152 (c)考虑最优种群数量x1, x2对环境承受力K1, K2灵敏性在模型中将此参量设为变量则有y=f(x1, x2)=x1+x2得▽f=(1, 1)此时g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2▽f=λ1*▽g1+λ2*▽g2解得λ1= -475/23λ2=-(20*K1 - 100000000)/(K1 - 8000000)x1= - (92000000*K1)/(K 1– 100000000)x2= (5000000*K1 - 40000000000000)/(K1 - 100000000)则计算出dx1/dK1=(92000000*k1)/(k1- 100000000)^2 - 92000000/(k1 - 100000000)dx2/dK1=5000000/(k1-100000000)-(5000000*k1 - 40000000000000)/(k 1- 100000000)^2在点x1=138210, x2=393090, K1=150000, 有S(x1, K1)= dx1/dK1*K1/x1= 0.9228*150000/138210=1.0015 S(x2, K1)= dx2/dK1*K1/x2= -0.0461*150000/393090= -0.01762(d)考虑最优种群数量x1, x2对竞争强度a灵敏性在模型中将此参量设为变量则有y=f(x1, x2)=x1+x2得▽f=(1, 1)由g2=0.08*x2*(1-x2/400000)-a*x1*x2▽f=λ1*▽g1+λ2*▽g2解得λ1= -(100000000*a - 20)/(8000000*a - 1)λ2= -(75000000*a - 25)/(3750000*a - 2)x1= (1200000000000*a - 150000)/(15000000000000*a^2 - 1) x2=(750000000000*a - 400000)/(15000000000000*a^2 - 1)则计算出dx1/da=1200000000000/(15000000000000*a^2-1)-(30000000000000*a *(1200000000000*a-150000))/(15000000000000*a^2 - 1)^2dx2/da=750000000000/(15000000000000*a^2-1)-(30000000000000*a* (750000000000*a - 400000))/(15000000000000*a^2 - 1)^2在点x1=138210, x2=393090, a=10^(-8), 有S(x1, a)=dx1/da*a/x1= -0.0840S(x2, a)=dx2/da*a/x2=-0.0161当出现某一种群灭绝时,a=0,此时以上解出的种群数量不是最优解,此时最优解为X1max=150000, X2max=400000。
(完整版)数学建模复习内容带习题答案
考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。
一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。
(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。
A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。
(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3)结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。
2023高中数学数学建模与应用复习 题集附答案
2023高中数学数学建模与应用复习题集附答案2023高中数学数学建模与应用复习题集附答案本文为高中数学数学建模与应用复习题集,涵盖了相关题目及其解答。
以下是题目与解答的具体内容:一、单选题1. 已知函数$f(x)=\frac{1}{2}x^2+3x+2$,则$f(-3)=$A. 4B. 5C. 6D. 7解答:将$x=-3$代入函数$f(x)$,得到:$$f(-3)=\frac{1}{2}(-3)^2+3(-3)+2=7$$因此,答案为D. 7。
2. 设数列$\{a_n\}$的通项公式为$a_n=n^2-3n+5$,则$a_5=$A. 11B. 14D. 25解答:将$n=5$代入数列通项公式,得到:$$a_5=5^2-3\times5+5=11$$因此,答案为A. 11。
二、多选题1. 函数$f(x)$在区间$(a,b)$上连续,则必定在该区间上必存在一点$c$,使得$f(c)$等于下列哪些值?A. $f(a)$B. $f(b)$C. $\frac{f(a)+f(b)}{2}$D. $f(\frac{a+b}{2})$解答:根据连续函数的性质,若函数$f(x)$在区间$(a,b)$上连续,则必定在该区间上存在介于最大值和最小值之间的所有值。
因此,答案为A、B、C、D。
2. 以下哪些数对应的立方根是有理数?A. 2C. 8D. 27解答:立方根是有理数的条件是原数是一个整数的立方。
根据选项,只有8是另一个整数的立方,因此答案为C. 8。
三、填空题1. 若正方形的面积为16平方米,则它的边长是\_\_\_米。
解答:设该正方形的边长为$x$,根据题意可得:$$x^2=16$$解得$x=4$,因此答案为4米。
2. 已知函数$f(x)$的定义域为$[-1, 1]$,则$f(-1)=$\_\_\_。
解答:将$x=-1$代入函数$f(x)$,得到:$$f(-1)=-1$$因此,答案为-1。
四、解答题1. 某校有男生和女生各500人,其中30%的男生和20%的女生是学习数学建模的,那么同时学习数学建模的学生有多少人?解答:男生学习数学建模的人数为$0.3\times500=150$人,女生学习数学建模的人数为$0.2\times500=100$人,因此,同时学习数学建模的学生共有150+100=250人。
数学建模习题及答案课后习题
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)2.1节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:1 2 3 4 5 …A 235 117.5 78.3 58.75 …B 333 166.5 111 83.25 …C 432 216 144 108 86.4将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支 1.50元,120g装的 3.00元,二者单位重量的价格比是 1.2:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):身长(cm)36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 重量(g)765 482 1162 737 482 1389 652 454 胸围(cm)24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6 先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角应多大(如图)。
数学建模实验答案__数学规划模型二.
实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102(1) (LP)在模型窗口中输入以下线性规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3≥ 0并求解模型。
★(1) 给出输入模型和求解结果(见[101]):(2) (IP)在模型窗口中输入以下整数规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3均为非负整数并求解模型。
LINGO函数@gin见提示。
★(2) 给出输入模型和求解结果(见[102]模型、结果):2.(求解)原油采购与加工(非线性规划NLP ,LP 且IP )p104~107模型:已知 ⎪⎩⎪⎨⎧≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(x x x x x xx c注:当500 ≤ x ≤ 1000时,c (x ) = 10 × 500 + 8( x – 500 ) = (10 – 8 ) × 500 + 8x112112221112212211112112122211122122max 4.8() 5.6()()500100015000.50.6,,,,0z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥2.1解法1(NLP )p104~106将模型变换为以下的非线性规划模型:1121122212311122122111121121222123122312311122122max4.8()5.6()(1086)50010000.50.6(500)0(500)00,,500,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥LINGO 软件设置:局部最优解,全局最优解,见提示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模习题答案数学建模部分课后习题解答中国地质大学 能源学院 华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解: 模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。
为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。
因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。
首先,引入合适的变量来表示椅子位置的挪动。
生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。
然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。
于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。
把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置。
为此,在平面上建立直角坐标系来解决问题。
设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。
椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。
其次,把椅脚是否着地用数学形式表示出来。
当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。
由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。
由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。
因此,只需引入两个距离函数即可。
考虑到长方形ABCD 是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 和B,D 对换了。
因此,记A ,B 两脚与地面竖直距离之和为)(θf ,C,D 两脚之和为)(θg ,其中[]πθ,0∈,使得)()(00θθg f =成立。
模型求解如果0)0()0(==g f ,那么结论成立。
如果)0(与)0(g f 不同时为零,不妨设.0)0(,0)0(=>g f 这时,将长方形ABCD 绕点O 逆时针旋转角度π后,点A,B 分别于与C ,D 互换,但长方形ABCD 在地面上所处的位置不变,由此可知,f (π)=g (0),g (π)=f (0).而由f (0)>0,g (0)=0,得g (π)>0,f (π)=0。
令h (θ)=f(θ)-g (θ),由f(θ)和g(θ)的连续性知h(θ)也是连续函数。
又0)()()(,0)0()0()0(<-=>-=πππg f h g f h ,根据连续函数介值定理,必存在),,0(0πθ∈使得)()(即,0)(000θθθg f h ==;又因为0)()(所以,0)()(0000===•θθθθg f g f 。
于是,椅子的四只脚同时着地,放稳了。
模型讨论用函数的观点来解决问题,引入合适的函数是关键.本模型的巧妙之处就在于用变量θ表示椅子的位置,用θ的两个函数表示椅子四只脚与地面的竖直距离.运用这个模型,不但可以确信椅子能在不平的地面上放稳,而且可以指导我们如何通过旋转将地面上放不稳的椅子放稳.2. 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。
问人、狗、鸡、米怎样过河?模型假设人带着猫、鸡、米过河,从左岸到右岸,船除了需要人划之外,只能载猫、鸡、米三者之一,人不在场时猫要吃鸡,鸡要吃米。
试设计一个安全过河方案,使渡河次数尽量地少。
符号说明1X :代表人的状态,人在该左岸或船上取值为1,否则为0;2X :代表猫的状态,猫在该左岸或船上取值为1,否则为0; 3X :代表鸡的状态,鸡在该左岸或船上取值为1,否则为0; 4X :代表米的状态,米在该左岸或船上取值为1,否则为0:;),,,(4321X X X X S k =:状态向量,代表时刻K 左岸的状态; ),,,(4321X X X X D k =:决策向量,代表时刻K 船上的状态; 模型建立限制条件:⎩⎨⎧≠+≠+⇒=22043321X X X X X初始状态:)0,0,0,0(),1,1,1,1(00==D S 模型求解根据乘法原理,四维向量),,,(4321X X X X 共有1624=种情况根据限制条件可以排除)1,1,0,0)(1,0,1,0)(1,1,1,0(三种情况,其余13种情况可以归入两个集合进行分配,易知可行决策集仅有五个元素{})0,0,,0,0(),0,0,0,1(),1,0,0,1(),0,1,0,1(),0,1,1,1(=D ,状态集有8个元素,将其进行分配,共有两种运送方案:方案一:人先带鸡过河,然和人再回左岸,把米带过右岸,人再把鸡运回左岸,人再把猫带过右岸,最后人回来把鸡带去右岸(状态见表1);方案二:人先带鸡过河,然后人再回左岸,把猫带过右岸,人再把鸡运回左岸,人再把米带过右岸,最后人回来把鸡带去右岸(状态见表2);目标:确定有效状态集合,使得在有限步内左岸状态由)0,0,0,0()1,1,1,1(→3. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者. (2)2.1节中的Q 值方法.(3)d ’Hondt 方法: 将各宿舍的人数用正整数,2,1=n Λ,3相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A ,B ,C 行有横线的数分别为2,3,5,这就是3个宿舍分配席位.你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额.将3种方法两次分配的结果列表比较.(4)你能提出其他的方法吗.用你的方法分配上面的名额. 解:先考虑N=10的分配方案,∑=====313211000,432,333,235i i p p p p方法一(按比例分配)4,33.3,35.2332211======N p q N p q N p q 分配结果为:4,3,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4,3,3321===n n n 第10个席位:计算Q 值为92407543333,920417322352221=⨯==⨯=Q Q 933125443223=⨯=QQ3最大,第10个席位应给C.分配结果为5,3,2321===n n n方法三(d ’Hondt 方法)原理:记pi 和ni 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍),i i n p 是每席位代表的人数,取i n =3,2,1…,从而得到的ii n p 中选较大者,可使对所有的i ,iin p 尽量接近。
所以此方法的分配结果为:5,3,2321===n n n再考虑15=N 的分配方案,类似地可得名额分配结果。
现将3中方法两次分配额结果列表如下:4. 一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用与测量,请你设计按照测量的长度估计鱼的重量的方法。
假设鱼池中只有一种鲈鱼,并且得到了8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析,再用数据确定参数。
模型分析本题为了知道鱼的重量,用估计法来通过估计鱼的长度而确定鱼的重量,这种方法只能针对同一种体形相似鱼,但是一般而言世界上没有两种完全相同的东西,所以对于同一种类的鱼也有可能肥瘦不一。
所以在此,我们应该先不妨假设同一种鱼它的整体形状是相似的,密度也大体上是相同的。
模型假设(1) 设鱼的重量为ω; (2) 鱼的身长记为l ;模型的构成与求解因为我们前面假设了鱼的整体形状是相似的,密度也相同,所以鱼的重量ω与身长l 的立方成正比,为这两者之间的比例系数。
即131,k k νω=为比例系数。
不过常钓得较肥的垂钓者不一定认可上面的模型,因为它对肥鱼和瘦鱼同等看待,如果只假定鱼的截面是相似的,则横截面积与鱼身最大周长的平方成正比,于是222,k l d k =ω为比例系数。
利用题中给的数据,估计模型中的系数可得:,0322.0,0146.021==k k 将实际数据与模型结果比较如下表:通过机理分析,基本上满意5.生物学家认为,对于休息状态的热血动物消耗的能量主要用于维持体温,能量与从心脏到全身的血流量成正比,而体温主要通过身体表面散失,建立一个动物体重与心率之间关系的模型,并用下面的数据加以检验。
解:动物消耗的能量P 主要用于维持体温,而体内热量通过表面积S 散失,记动物体重为ω,则P S P αω,3/2-∝∝正比于血流量Q ,而qr Q =,其中q 是动物每次心跳泵出的血流量,r 为心率。
合理地假设q 与ω成正比,于是r q ω∝,综上可得3/13/1或,-=∝ωωk r r 。
由所给数据估计得310897.20⨯=k ,将实际数据与模型结果比较如下表:6. 速度为v 的风吹在迎风面积s 为的风车上,空气密度是ρ。
用量纲分析方法确定风车获得的功率P 与v ,s ,ρ的关系。
解: 模型分析设0),,,(的关系为,,,=ρνρνs P f s P ,其量纲表达式为:,][,][,][,][32132---====ML L s LT T ML P ρν这里T M L ,,是基本量纲模型求解量纲矩阵为:)()()()(001310013212ρνs P T LM A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=齐次线性方程组⎪⎩⎪⎨⎧--=+=-++=021414321300322y y y y y y y y它的基本解为)1,1,3,1(-=y 由量纲i P 定理得1131131,ρλνρνπs P s P ==-,其中λ是无量纲常数7. 雨速的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数。