初二数学《二次根式》竞赛培优精选题 含解析
二次根式—2024全国初中数学重点高中自招竞赛试题精选精编
二次根式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)4+15+4-15=.【答案】10【分析】本题考查二次根式的运算,将式子进行平方,运用完全平方公式展开后化简,即可解答.【详解】∵4+15+4-152=4+152+24+15⋅4-15+4-152=4+15+216-15+4-15=8+2=10,又4+15>0,4-15>0∴4+15+4-15=10.故答案为:10.2(2024·全国·九年级竞赛)已知x为实数,则x-2+4-x的最大值为.【答案】2【分析】本题考查二次根式有意义的条件和配方法,掌握被开方数为非负数和配方法是解题关键.先确定x的取值范围,然后利用配方法分析其最值.【详解】解:由题意可得x-2≥04-x≥0,解得2≤x≤4,令y=x-2+4-x y≥0,则y2=x-2+4-x2=x-2+2x-24-x+4-x=2+2-x2+6x-8=2+2-x-32+1∵0≤-x-32+1≤1∴y2的最大值为4,∴y的最大值为2,即x-2+4-x的最大值为2.故答案为:2.3(2024·全国·八年级竞赛)定义一种新的运算“@”:x@y=ax+by,其中a、b为常数,且使得等式a-2-8-4a+a b=12恒成立,那么2@3=.【答案】1【分析】本题考查了二次根式的意义,幂的运算,求代数式的值,正确理解二次根式的意义是解答本题的关键.先根据二次根式的意义列出不等式组并求解,得到a=2,再代入方程求出b的值,从而得到x@y=2x -y,依此即可求得答案.【详解】根据题意得a-2≥08-4a≥0 ,∴a≥2 a≤2 ,∴a=2,将a=2代入a-2-8-4a+a b=12得0-0+2b=12,解得b=-1,∴x@y=2x-y,∴2@3=2×2-3=1.故答案为:1.4(2024·全国·八年级竞赛)计算:2+520172-52017=.【答案】-1【分析】本题主要考查了分式混合运算,平方差公式和积的乘方运算,解题的关键是熟练掌握运算法则,准确计算.根据相关的运算法则进行计算即可.【详解】解:2+520172-52017=2+52-52017=4-52017=-12017=-1.故答案为:-1.5(2024·全国·八年级竞赛)若不等式x+4+x-1≥a-x-2-2对任意实数x都成立,则a的最大值为.【答案】8【分析】本题考查了绝对值不等式的解法,根据题设借助绝对值的几何意义得x+4+x-2有最小值为6,又由x-1≥0得出当x=1时,x+4+x-2+x-1的最小值为6,然后由不等式恒成立即可求解.【详解】解:x+4+x-1≥a-x-2-2,∴x+4+x-2+x-1≥a-2当-4≤x≤2时,x+4+x-2有最小值为6,∵x-1≥0,∴当x=1时,x+4+x-2+x-1的最小值为6,∴6≥a-2,∴解得a≤8,∴a的最大值为8,故答案为:8.6(2024·全国·八年级竞赛)计算12×1327+75+313-48-24-3232=.【答案】12【分析】本题考查了二次根式的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,解题的关键是掌握运算法则.【详解】解:原式=23×13×33+53+3×33-43-26-3×632=23×33-6=12.7(2024·全国·八年级竞赛)计算:2009×2010×2011×2012+1-2009=.【答案】2010【分析】本题考查整式的混合运算、二次根式的性质,设参数计算是解答的关键.设a=2009,利用整式的混合运算法则和二次根式的性质是解答的关键.【详解】解:记a=2009,则原式=a a+1+1-aa+3a+2=a a+3+1-aa+2a+1=a2+3a+1-aa2+3a+2=a2+3a2+2a2+3a+1-a=a2+3a+12-a=a2+3a+1-a=a+12=a+1=2010,故答案为:2010.8(2024·全国·八年级竞赛)化简:-(x+1)2=.【答案】0【分析】本题考查了二次根式有意义的条件,由被开方数为非负数得到-x+12≤0,可确2≥0,即x+1定x+12=0,进而求解,掌握二次根式有意义的条件是解题的关键.【详解】解:由题意可得,-(x+1)2≥0,∴x+12≤0∴(x+1)2=0,∴-x+12=0=0,故答案为:0.9(2024·全国·八年级竞赛)已知实数x满足20122-4024x+x2+x-2013=x,则x-20122=.【答案】2013【分析】本题考查了二次根式有意义的条件,二次根式的性质,熟练掌握各知识点是解答本题的关键.先根据二次根式有意义的条件求出x的取值范围,再根据二次根式的性质化简得x-2013=2012,然后两边平方即可求解.【详解】解:∵x-2013≥0,∴x≥2013,∴x>2012.∵20122-4024x+x2+x-2013=x,∴2012-x2+x-2013=x,∴2012-x+x-2013=x,∴x-2012+x-2013=x,∴x-2013=2012,即x-2013=20122,故x-20122=2013.故答案为:2013.10(2024·全国·八年级竞赛)计算:1+20092+2009220102-12010=.【答案】2009【分析】本题考查了完全平方公式和二次根式化简,熟练巧用完全平方公式是解本题的关键;首先化简为完全平方公式形式,然后根据二次根式开方即可解答.【详解】解:1+20092+20092 20102-12010=1+2010-12+20092 20102-12010=1+20102-2×2010+1+2009220102-1 2010=20102-2×2010+2+200920102-12010=20102-2×2010-1+200920102-12010=20102-2×2009+200920102-12010=2010-200920102-12010=2010-20092010-1 2010=2009.故答案为:2009.11(2024·全国·八年级竞赛)5+26+5-26=.【答案】23【分析】本题考查二次根式的化简,熟练利用完全平方公式化简二次根式是解本题的关键.把原式化为3+22+3-22,再利用二次根式的性质化简即可.【详解】解:5+26+5-26=3+22+3-22=3+2+3-2=23,故答案为:23.12(2024·全国·八年级竞赛)计算:(π+999)0-12+-3+8+(-1)3+(2+1)23-22=.【答案】22-3+1【分析】本题主要考查了二次根式的运算,先将二次根式化简,再根据二次根式的运算法则计算即可.【详解】原式=1-23+3+22-1+(3+22)(3-22)=22-3+(9-8)=22-3+1.故答案为:22-3+1.13(2024·全国·九年级竞赛)已知正整数a、b满足等式a+b=369,则a-b=.【答案】123或-123【分析】本题考查了二次根式的加减运算,掌握二次根式的运算法则是解题的关键.先把369化成最简二次根式,再把满足正整数a、b的所有值列举出来代入计算即可.【详解】解:∵369=341,正整数a、b满足等式a+b=369,∴a=41,b=241,即a=41,b=164,或a=241,b=41,即a=164,b=41,∴a-b=41-164=-123或a-b=164-41=123,故答案为:123或-123.14(2024·全国·七年级竞赛)计算:1-2=.+2-3+⋅⋅⋅+2016-2017+3-4【答案】2017-1/-1+2017【分析】本题主要考查了二次根式混合运算,解题的关键是根据绝对值的意义,去掉绝对值,然后根据二次根式加减运算法则进行计算即可.【详解】解:1-2+⋯+2016-2017+3-4+2-3=2-1+3-2+4-3+⋯+2017-2016=2017-1.故答案为:2017-1.15(2024·全国·九年级竞赛)计算:9+18-27=.【答案】3+32-33【分析】本题考查二次根式的加减运算,理解二次根式的性质,准确化简各数是解题关键.直接根据二次根式的性质化简即可.【详解】解:9+18-27=3+32-33故答案为:3+32-33.16(2024·全国·八年级竞赛)若实数a满足a-8+a-2015=a,则a=.【答案】2079【分析】本题考查二次根式有意义的条件、绝对值的化简、算术平方根,熟知二次根式有意义的条件是解答的关键.先求得a≥2015,则a-8=a-8,进而得到a-2015=8,然后求解即可.【详解】解:依题意得a-2015≥0,则a≥2015,∴a-8=a-8,∴原式化为a-8+a-2015=a,即a-2015=8,得a-2015=64,∴a=2079.故答案为:2079.17(2024·全国·八年级竞赛)已知-2<x<3,则x2-6x+9-x2+4x+4化简为.【答案】1-2x【分析】先判断出x-3<0,x+2>0,再根据二次根式的性质化简原式即可.此题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键.【详解】解:∵-2<x<3,∴x-3<0,x+2>0,∴x2-6x+9-x2+4x+4=x-32-x+22=x-3-x+2=3-x-x-2=1-2x故答案为:1-2x二、单选题18(2021·全国·九年级竞赛)设n,k为正整数,A1=(n+3)(n-1)+4,A2=(n+5)A1+4,A3= (n+7)A2+4,A4=(n+9)A3+4,⋯,A k=(n+2k+1)A k-1+4,⋯,已知A100=2005,则n的值为( ).A.1806B.2005C.3612D.4100【答案】A【详解】A1=[(n+1)+2][(n+1)-2]+4=(n+1)2-22+4=(n+1)2=n+1,A2=[(n+3)+2][(n+3)-2]+4=(n+3)2-22+4=(n+3)2=n+3,A3=[(n+5)+2][(n+5)-2]+4=(n+5)2-22+4=(n+5)2=n+5,同理A4=n+7,A5=n+9,⋯,A100=n+2×100-1=n+199=2005⇒n=2005-199=1806.故选:A.19(2011·湖北黄冈·九年级竞赛)设a、b是整数,方程x2+ax+b=0的一根是4-23,则a2+b2 ab的值为()A.2B.0C.-2D.-1【答案】C【分析】先化简4-23,再代入方程x2+ax+b=0并整理,根据题意列出二元一次方程组并求解求得a 和b的值,再代入计算即可.【详解】解:4-23=32-23+1==3-12=3-1.∵方程x2+ax+b=0的一根是4-23,∴4-232+4-23a+b=0.∴3-12+3-1a+b=0.∴a-23+4-a+b=0.∵a、b是整数,∴a-2=0,4-a+b=0.解得a=2, b=-2.∴a2+b2ab =22+-222×-2=-2.故选:C.【点睛】本题考查二次根式的化简,一元二次方程的解,二元一次方程组的应用,正确构造二元一次方程组是解题关键.20(2024·全国·八年级竞赛)若二次根式x-2在实数范围内没有意义,则x的取值范围是() A.x<2 B.x≤2 C.x>2 D.x≥2【答案】A【分析】此题主要考查了二次根式有意义的条件,根据二次根式没有意义的条件可得x-2<0,再解不等式即可,关键是掌握二次根式中的被开方数是非负数.【详解】解:二次根式x -2在实数范围内没有意义,∴x -2<0,解得:x <2故选:AD .21(2024·全国·八年级竞赛)已知13-7的整数部分是m ,小数部分是n ,则m m +7n +mn 的值为()A.10B.7C.6D.4【答案】A【分析】本题考查了无理数的估算,分母有理化,代数式求值,先根据无理数的估算求出m ,n 的值,再代入进行求解即可.【详解】解:13-7=3+73+7 3-7=3+72,∵4<7<9,∴2<7<3,∴2.5<3+72<3,∴m =2,n =3+72-2,∴m m +7n +mn =22+7×3+72-2+2×3+72-2 =10,故选:A .22(2024·全国·九年级竞赛)若1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,则ab的值为()A.18B.8C.2D.92【答案】B【分析】本题考查了根与系数的关系.先整理成一般式,利用根与系数的关系分另求得b 和a 的值,再代入求解即可.【详解】解:方程a (x -b )2=7整理得ax 2-2abx +ab 2-7=0,∵1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,∴1+72+1-72=1=--2ab a =2b ,∴b =12,1+72⋅1-72=-32=ab 2-7a ,∴-32=12 2-7a ,∴a =4,∴a b=412=8.故选:B .23(2024·全国·八年级竞赛)已知75m 是整数,则满足条件的最小正整数m =( ).A.5B.0C.3D.75【答案】C【分析】此题考查了无理数与有理数的联系,根据二次根式的定义进行解答,解题的关键是正确理解75m 什么情况下为正整数.【详解】解:∵75m =52×3m ,∴3m 是一个平方数,∴正整数m 最小是3,故选:C .24(2021·全国·九年级竞赛)已知实数a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,则bb a+aa b的值为()A.23 B.-23C.-2D.-13【答案】B【分析】由题意可得a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,根据根与系数的关系可得a +1+b +1=-3,a +1 b +1 =-3,整理可得a +b =-5,ab =1,即得a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,然后把所求的式子变形后整体代入即可求解.【详解】解:∵a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,∴a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,∴a +1+b +1=-3,a +1 b +1 =-3,整理,得a +b =-5,ab =1,∴a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,∴b b a +aa b =-b a ab -a b ab =-b a -a b =-a 2+b 2ab=-23;故选:B .【点睛】本题考查了一元二次方程根与系数的关系,二次根式的化简求值,由题意得出a +b =-5,ab =1,是解题的关键.三、解答题25(2024·全国·八年级竞赛)若m 满足关系式2x +3y +4x +5y -m =x -2012+y +2012-x -y ,求m 的值.【答案】4024【分析】本题考查了非负数的性质以及二次根式有意义的条件,得到x +y =2012是关键.根据二次根式的性质:被开方数是非负数求得2x +3y +4x +5y -m =0,然后根据非负数的性质得到关于x 和y 的方程组,然后结合x +y =2012即可求得m 的值.【详解】解:由x -2012+y ≥02012-x -y ≥0 可得x +y =2012,∴x +y =20122x +3y =04x +5y -m =0∴m =4x +5y =2x +y +2x +3y =402426(2024·全国·八年级竞赛)设等腰三角形的腰为a ,底边为b ,底边上的高为h .(1)如果a =6+3,b =6+43,求h ;(2)如果b =46+2,h =26-1,求a .【答案】(1)32;(2)52.【分析】此题考查了等腰三角形的基本性质,学会在等腰三角形中构造直角三角形从而应用勾股定理来求解.(1)知道等腰三角形、底边利用等腰三角形高的特殊性质可构成直角三角形,再应用勾股定理求解h 值;(2)知道等腰三角底边和高,同理在等腰三角形中构造直角三角形,利用勾股定理来求a 值.【详解】(1)解:在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴6+3 2=146+43 2+h 2,∴36+123+3=1436+483+48 +h 2,∴39+123=9+123+12+h 2,∴h 2=18,∴h =18=32.(2)解:同理在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴a 2=12×46+22+26-1 2∴a 2=26+1 2+26-1 2∴a 2=50,∴a =52.27(2024·全国·八年级竞赛)先化简,再求值:(2x -1)2-(3x +2)(3x -2)+(5x -4)(x +2),其中x =2.【答案】2x -3,22-3【分析】本题考查平方差公式、完全平方公式及多项式乘多项式、整式的加减,熟练掌握并灵活运用它们是本题的关键.分别利用完全平方和、平方差公式、多项式乘多项式的法则、整式加减的运算法则计算即可.【详解】解:原式=4x 2-4x +1-9x 2+4+5x 2+6x -8,=2x -3当x =2时,原式=2x -3=22-3.28(2024·全国·八年级竞赛)已知:y =3x -15+15-3x +4,求2x +y 2-2x +y 2x -y ÷2y -12y 的值.【答案】12【分析】先根据二次根式有意义的条件得出x =5,进而得出y =4,再化简求值,代入即可得出答案.【详解】解:由3x -15≥0,15-3x ≥0,∴x =5,∴y =4,∴2x +y 2-2x +y 2x -y ÷2y -12y =2x +y 2x +y -2x +y ÷2y -12y=2x+y-12y=2x+12y=12.29(2024·全国·八年级竞赛)已知a=4-15,求:(1)a-1a;(2)a5-6a4-16a3+7a2+23a-42008.【答案】(1)-6(2)1【分析】本题考查完全平方公式,无理数的估算:(1)先根据完全平方公式变形得出a+1a =8,求出a-1a2=6,再估算出0<4-15<1,即0<a<1,最后求出答案即可;(2)将式子变形,再将a2-8a+1=0代入,进而可得出答案.【详解】(1)解:a=4-15,∴a-42=15,∴a2-8a+1=0.∴a+1a=8,∴a-1a2=a+1a-2=8-2=6,∵3<15<4,∴-4<-15<-3,∴0<4-15<1,即0<a<1,∴a-1a<0,∴a-1a=-6.(2)解:∵a5-6a4-16a3+7a2+23a-4=a3a2-8a+1+2a2a2-8a+1-a a2-8a+1 -3a2-8a+1-1=0+0-0-0-1=-1,∴a5-6a4-16a3+7a2+23a-42008=-12008=1.30(2024·全国·八年级竞赛)已知△ABC的三边长分别为a,b,c,且满足a-2+b2-10b+25=0.(1)求△ABC第三边c的取值范围;(2)求△ABC的周长l的取值范围;(3)若△ABC为等腰三角形,你能求出△ABC的周长吗?【答案】(1)3<c<7(2)10<l<14(3)12【分析】本题考查二次根式的非负性,等腰三角形的定义,三角形的三边关系:(1)先根据非负性得出∴a=2,b=5,再根据三角形第三边的取值范围即可得出答案;(2)根据周长三边之和,即可得出答案;(3)当c=2时,可知不能构成三角形,当c=5时,求出三边之和即可.【详解】(1)解:a-2+(b-5)2=0,∴a=2,b=5,∵b-a<c<a+b,∴3<c<7.(2)l=a+b+c=7+c,∴10<l<14.(3)c=2时,三边长(2,2,5)不能构成三角形,舍去.∴c=5,l=2+5+5=12.11。
2023年八年级数学期末专题培优训练(二次根式)【含答案】
2023年八年级数学期末专题培优训练(二次根式)一、选择题(每题2分,共16分)1可化简成 ( )A .一2B .4C .2D 2.下列计算中正确的是()A .B +=3=C .D =3=-3.下列式子一定是二次根式的是 ()A B C D .4.下列各组二次根式中,是同类二次根式的是 ()A B C D .5.下列根式中,是最简二次根式的是 ()A B c D6有意义,那么的取值范围是 ( )x A .≥0 B .≠1C .>0D .≥0且≠1x x x x x7.已知1≤的结果是 ( )a 2- A .B .C .3D . 123a -23a +8.如图所示,将一张边长为8的正方形纸片ABCD 折叠,使点D 落在BC 的中点E 处,点A 落在点F 处,折痕为MN ,则线段MN 的长为 ( )A .10B .C .D .二、填空题(每题2分,共22分)9.函数中,的取值范围是 .y =x10是同类二次根式的是 .11.若=.y =12.已知:△ABC 中,,,则△ABC 的面积等于 .13 .+=14.如果,那么的取值范围是 .1a +=a15.若最简二次根式.x -x =16.若整数满足条件,则的值是 .m 1m =+m 17.实数=a 2-.18,则.0==19.已知为有理数分别表示,a b 、m 、n 7-24amn bn +=则= .2a b +三、解答题(共54分)20.计算:(每题4分,共8分)(1) 293(3)π-⨯+-(2) 2-+÷+21.化简:(每题4分,共12分)(1) ≥3((b 0)>x +0)(3)化简.40,0)a b 〉〉22.(本题6分)已知是正整数,且满足,求的平方根.x 41y x =+-x y +23.(本题6分)先化简,再求值,其中22()a b ab b a a a--÷-1a =+24.(本题6分)若实数在数轴上的位置如图所示,且,a b c 、、a b =化简.a a ++25.(本题8分)已知是△ABC 的三边,化简:a b c 、、.3a b c -+++26.(本题8分)阅读下列材料,然后回答问题:这样的式子,其实我们还可以将其进一步化简:.1=-1(1)(2)+⋅⋅⋅+27.(本题8分)现有一组有规律排列的数:1、-11、-1、……其中,1、- 1这六个数按此规律重复出现.问:(1)第50个数是什么数?(2)把从第1个数开始的前2015个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?参考答案一、1.C 2.B 3.C 4.A 5.C 6.D 7.A 8.B二、9.>3 10 11.12.13.一14.≤1 15.2 x 72a16.0 17.1 18. 19.4三、20.(1)4(2)521.(1) (2) (3)-- 22.∵Y 要有意义,∴2一≥0且一1≠0,∴≤2且≠l ,又∵是正整数,x x x x x∴=2,∴.当=2时,,,∴的平方根为.x 4y =6x y +=x y +23·原式,当,时,原式1a b=-1a =1b =24.由图得:,又,∴;原式0,0a b <>a b =0,0,0a b c a c +=-><=2a o c a c -+---2a c a c c =--++=2fff :一口一c+口+2c—f .25.∵a 、b 、C 是△ABC 的三边,∴,,.0a b c --<0a b c -+>0a b c +->∴原式=23a b c a b c a b c----+++-22233364a b c a b c a b c b c=-++-+-++-=-26.(1)方法一:原式=方法二:原式=(2)1-27.(1)∵50682÷= ∴第50个数是-1(2)∵2015÷6=335……5,(1(1)+-++=∴从第1个数开始的前2015(3)∵((2222221(1)12+-++++=,52012434÷= 且()222114+-+=∴ 43×6+3=261,即共有261个数的平方相加。
八年级初二数学 数学二次根式的专项培优练习题(附解析
八年级初二数学 数学二次根式的专项培优练习题(附解析一、选择题1.下列计算正确的是( ) A .=1212⨯B .4-3=1C .63=2÷D .8=2±2.若2a <,化简()223a --=( )A .5a -B .5a -C .1a -D .1a --3.下列计算结果正确的是( )A .2+5=7B .3223-=C .2510⨯=D .25105= 4.下列二次根式中,最简二次根式是( ) A . 1.5B .13C .10D .275.下列各式中,运算正确的是( )A .32222-=B .8383-=-C .2323+=D .()222-=-6.下列式子中,是二次根式的是( ) A .2B .32C .xD .x 7.估计()123323+⨯的值应在 ( ) A .4和5之间 B .5和6之间C .6和7之间D .7和8之间8.在函数y=2x +中,自变量x 的取值范围是( ) A .x≥-2且x≠3 B .x≤2且x≠3 C .x≠3 D .x≤-29.下列运算正确的是( ) A .32-=﹣6 B .31182-=-C .4=±2D .25×32=510 10.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x11.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a12.如果实数x ,y 满足23x y xyy =-,那么点(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上二、填空题13.已知a ,b 是正整数,且满足15152()a b+是整数,则这样的有序数对(a ,b )共有____对. 14.已知a =﹣73+,则代数式a 3+5a 2﹣4a ﹣6的值为_____. 15.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.16222a a ++的最小值是______.17.已知1<x <2,171x x +=-11x x --_____.18.已知x ,y 为实数,y 22991x x -+-+求5x +6y 的值________.19.2m 1-1343m --mn =________. 20.2a ·8a (a ≥0)的结果是_________.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a a a =,)21211=a a 2121互为有理化因式.(1)231的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3233333==⨯, ()()25353521538215415535353++++====--+2323-+进行分母有理化.(3)利用所需知识判断:若a =,2b =a b ,的关系是 . (4)直接写结果:)1= .【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出; (2)原式分子分母同时乘以分母的有理化因式(2,化简即可; (3)将a =(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可. 【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a ===,2b =-, ∴a 和b 互为相反数;(4))1++⨯=)11⨯=)11=20201- =2019, 故原式的值为2019. 【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算:10099+【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算 【详解】10099++=2100992-++++=991224-+-++-=1- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。
八年级初二数学 数学二次根式的专项培优易错试卷练习题附解析
八年级初二数学数学二次根式的专项培优易错试卷练习题附解析一、选择题1.已知实数a在数轴上的位置如图所示,则化简2 ||(-1)a a+的结果为()A.1 B .﹣1 C.1﹣2a D.2a﹣12.下列各式计算正确的是()A.6232126()ba b a ba---⋅=B.(3xy)2÷(xy)=3xyC.23a a a+=D.2x•3x5=6x63.如图直线a,b都与直线m垂直,垂足分别为M、N,MN=1,等腰直角△ABC的斜边,AB在直线m上,AB=2,且点B位于点M处,将等腰直角△ABC沿直线m向右平移,直到点A与点N重合为止,记点B平移平移的距离为x,等腰直角△ABC的边位于直线a,b之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.4.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()12325672310A .210B .41C .52D .51 5.若a ab +有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 6.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( ) A .1999 B .2000 C .2001 D .不能确定 7.下列运算中错误的是( )A 235=B 236=C 822÷=D .2 (3)3-=8.下列运算正确的是( )A 235=B .(228-=C 112222=D ()21313-=9.下列各组二次根式中,能合并的一组是( )A 1a +1a -B 3和13C 2a b 2abD 31810.下列各式计算正确的是( ) A .233= B ()255-=± C 523=D .3223=11.下列各式中,一定是二次根式的是( )A 1-B 4xC 24a -D 2a 12.12+63的值应在( )A .1和2之间B .3和4之间C .4和5之间D .5和6之间二、填空题13.2215x 19x 2+-=2219x 215x -+=________.14.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.15.甲容器中装有浓度为a 的果汁40kg ,乙容器中装有浓度为b 的果汁90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.化简二次根式2a 1a a+-的结果是_____. 17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.18.化简:3222=_____.19.观察分析下列数据:0,36,-3,231532的规律得到第10个数据应是__________.20.4x -x 的取值范围是_____三、解答题 21.阅读下面问题:阅读理解:2221(21)(21)==++-1; 323232(32)(32)-==++-2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9.【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.【详解】(1(2(3+98+,(+98+,++99-,=10-1,=9.【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值(3)已知abc =1,求111a b c ab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可. 【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+- =()()()()3113a a a a -++-+- =22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ;(3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++, ∴原式=1111a ab ab a ab a ab a ++++++++=11 a ab ab a++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.23.像2)=1=a(a≥0)、﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)<【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+(3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.24.)÷)(a ≠b ). 【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-25.计算(1+(2+- (3÷(4)( 【答案】(1)234)7. 【分析】 (1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+22=+=;(2==;(3÷=2b=;(4)((22=-=7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.26.计算下列各式:(1;(2【答案】(12;(2)【分析】先根据二次根式的性质化简,再合并同类二次根式即可.【详解】=-(1)原式22=;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).27.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题.【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数,∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【详解】解:(1)原式=1(233⨯⨯-⨯=-⨯=3⎫⨯⎪⎪⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.29.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+点睛:考查分式的混合运算,掌握运算顺序是解题的关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A .【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小2.D解析:D【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果.【详解】 A. 2321526()b a b a b a ---⋅=,故选项A 错误; B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误;D. 2x •3x 5=6x 6,正确.故选:D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.D解析:D【解析】【分析】根据等腰直角△ABC 被直线a 和b 所截的图形分为三种情况讨论:①当0≤x ≤1时,y 是BM +BD ;②当1<x ≤2时,y 是CP +CQ +MN ;当2<x ≤3时,y =AN +AF ,分别用x 表示出这三种情况下y 的函数式,然后对照选项进行选择.【详解】①当0≤x ≤1时,如图1所示.此时BM =x ,则DM =x ,在Rt △BMD 中,利用勾股定理得BD x ,所以等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y =BM +BD )x ,是一次函数,当x =1时,B 点到达N 点,y +1;②当1<x≤2时,如图2所示,△CPQ是直角三角形,此时y=CP+CQ+MN=2+1.即当1<x≤2时,y的值不变是2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF=2(3﹣x),y=AN+AF=(﹣1﹣2)x+3+32,是一次函数,当x=3时,y=0.综上所述只有D答案符合要求.故选:D.【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y与x 的函数式.4.B解析:B【解析】【分析】由图形可知,第n()1 1232n nn+ +++=【详解】由图形可知,第n 行最后一个数为()11232n n n ++++=, ∴第8行最后一个数为89362⨯==6, 则第9行从左至右第5个数是36541+=, 故选B .【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n 行最后一个数为()12n n +.5.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab >0,解得a >0,b >0,因此可知A (a ,b )在第一象限.故选A6.B解析:B【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B. 点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.7.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】2323236=⨯= 828242÷÷===,故此项正确,不符合要求;D. 2 (3)3-=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A错误;选项B,(2428-=⨯=,选项B正确;选项C124==,选项C错误;选项D1,选项D错误.综上,符合题意的只有选项B.故选B.【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.9.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A、是最简二次根式,被开方数不同,不是同类二次根式;B3是同类二次根式;CD故选B.【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.10.A解析:A【分析】根据二次根式的性质和运算法则逐一计算可得.【详解】A、23=此选项计算正确,符合题意;B、5=此选项计算错误,不符合题意;C-不是同类二次根式,不能合并,此选项计算错误,不符合题意;D、-=故选:A.【点睛】本题主要考查了利用二次根式的性质化简以及二次根式的加减运算,准确利用二次根式的性质计算是解题的关键.11.D解析:D【分析】根据二次根式的意义,如果一定是二次根式,则不论字母取何值,被开方数一定是非负数,逐一判断即可得.【详解】解:A,不是二次根式;B x<0时无意义,不一定是二次根式;C在-2<a<2时,无意义,不一定是二次根式;D a2≥0,一定是二次根式;故选:D.【点睛】本题主要考查二次根式的定义,一般地,a≥0)的式子叫做二次根式.12.B解析:B【分析】原式利用多项式除以单项式法则计算,估算确定出范围即可.【详解】=∵1<2<4,∴1<2,即3<<4,则原式的值应在3和4之间.故选:B.【点睛】本题考查了二次根式的混合运算,以及无理数的估算,解题的关键是熟练掌握运算法则进行解题.二、填空题13.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.14.(1)a2=,a3=2,a4=2;(2)an=(n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,AC===.同理:AE=2,EH=2,解析:(1)a2,a3=2,a4=;(2)a n n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,ACAE=2,EH=,…,即a2a3=2,a4=(2)an n为正整数).15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m即可.【详解】解:根据题意,甲容器中纯果汁含量为akg,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利=,求出m即可.【详解】,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,,=,整理得,-6b=5ma-5mb,∴(a-b)=5m(a-b),.∴m=5故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.16.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为17.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为18.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.19.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4. 故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级初二数学 数学二次根式的专项培优练习题(附解析
一、选择题1.下列式子中,属于最简二次根式的是()A.9B.13C.20D.72.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.(8﹣3cm2B.(4﹣3cm2C.(16﹣3cm2D.(﹣3)cm232的倒数是()A2B.22C.2-D.22-4.下列各式是二次根式的是()A3B1-C35D4π-5.已知:x3,y31,求x2﹣y2的值()A.1 B.2 C3D.36.设a3535+-b633633+-21b a-的值为()A621+B621+C621D621 7.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.013323)=5;④如果点P(3-2n,1)到两坐标轴的距离相等,那么n=1,其中假命题的有()A.1个B.2个C.3个D.4个8.以下运算错误的是()A3535⨯=B.2222⨯=C169+169D2342a b ab b=a>0)9.使式子212 4xx+-x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x>﹣2,且x≠2D.x≥﹣2,且x≠210.x ≥3是下列哪个二次根式有意义的条件( ) A .3x +B .13x - C .13x + D .3x -二、填空题11.已知2216422x x ---=,则22164x x -+-=________.12.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.13.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.14.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 15.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.=_______.18.mn =________.19.n 为________.20.能合并成一项,则a =______.三、解答题21.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,故答案为5=256;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.27.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据直角二次根式满足的两个条件进行判断即可. 【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;3=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D 正确. 故选D . 【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.2.D解析:D 【分析】根据正方形的面积求出边长AB =4cm ,BC =()cm ,利用四边形ABCD 的面积减去两个阴影的面积即可列式求出答案. 【详解】∵两张正方形纸片的面积分别为16cm 2和12cm 2,4cm=cm,∴AB=4cm,BC=(+4)cm,∴空白部分的面积=()×4﹣12﹣16,=﹣12﹣16,=(﹣)cm2,故选:D.【点睛】此题考查正方形的性质,二次根式的化简,二次根式的混合计算,正确理解图形中空白面积的计算方法是解题的关键.3.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】,;2故选:B.【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 4.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.5.D解析:D【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可.【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-==故选:D .【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.6.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a ,∴b ,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.7.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.8.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x-40≠,2x∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.10.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A 、x+3≥0,解得:x≥-3,故此选项错误;B 、x-3>0,解得:x >3,故此选项错误;C 、x+3>0,解得:x >-3,故此选项错误;D 、x-3≥0,解得:x≥3,故此选项正确,故选D .【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.二、填空题11.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.12.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).13.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.14.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.15.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<< ∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.16.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为17.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.18.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.19.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初二数学竞赛题_二次根式含答案)
二次根式1.31231131144++-++的值是()(A )1(B )-1(C )2(D )-22、已知82121=+-x x ,则xx 12+= 3.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223y xy x y xy x +--+的值是()(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是()(A)11991-;(B)11991--;(C)1991)1(n -;(D)11991)1(--n .5.若01132=+-x x ,则44-+x x 的个位数字是()(A)1(B)3(C)5(D)7.6.若0≠x ,则xx x x 44211+-++的最大值是__________. 7.13333)919294(3-+-可以化简成() (A))12(333+(B))12(333-(C)123-(D)123+8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为() (A )a a +-11(B )11+-a a (C )21a -(D )12-a 9.当219941+=x 时,多项式20013)199419974(--x x 的值为() (A )1;(B )-1;(C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足n m a -=-242,则这样的n m a ,,的取值()(A )有一组;(B )有两组;(C )多于二组;(D )不存在12。
15+=m ,那么m m 1+的整数部分是________。
13.计算的值是( ).(A)1(B)5(C)(D)514.a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是()(A )1999(B )2000(C )2001(D )不能确定15.已知a=2-1,b=22-6,c=6-2,那么a ,b ,c 的大小关系是()(A)a<b<c (B)b<a<c (C)c<b<a (D)c<a<b 16.232217122-+-等于()A.542- B.421- C.5D.117.满足等式2003200320032003x y xy x y xy +--+=的正整数对()x y ,的个数是()A.1B.2C.3D.4 计算111112233420032004++++++++=. 19.已知x 为非零实数,且1212x x a -+=,则21x x+=______________。
八年级数学二次根式培优专题
《二次根式》培优习题训练 【知识要点】1.二次根式的定义:形如的式子叫二次根式,其中 叫被开方数,只有当是一个非负数时,才有意义.2. ()()a aa 20=≥.3. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系.(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数.(3)a 2和()a 2的运算结果都是非负的.4、性质:(1)非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.(2).()()a aa 20=≥性质既可正用,也可反用, 反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式:a a a =≥()()20(3) a a a a a a 200==≥-<⎧⎨⎩||()()注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.5、(1)最简二次根式:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.(2)同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。
6、(1)分母有理化:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们 的积不含有二次根式,就说这两个代数式互为有理化因式。
有 理化因式确定方法如下:①单项二次根式:a =来确定,如:,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a +与a -,,分别互为有理化因式。
(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式 7、二次根式的运算:(1)二次根式的乘法法则:两个因式的算术平方根的积, 等于这两个因式积的算术平方根。
初二数学竞赛题-二次根式(含答案)
初二数学竞赛题-二次根式(含答案)二次根式1.31231131144++-++的值是( )(A )1(B )-1(C )2(D )-2 2、已知82121=+-xx,则xx 12+=3.设等式ya a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223y xy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么nx x )1(2+-,的值是( )(A)11991-;(B)11991--; (C)1991)1(n-;(D)11991)1(--n.5.若01132=+-x x ,则44-+x x 的个位数字是( )(A)1(B)3(C)5(D)7.6.若≠x ,则xx x x 44211+-++的最大值是__________. 7.13333)919294(3-+-可以化简成( )(A))12(333+ (B))12(333- (C)123-(D)123+8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为( )(A )a a +-11 (B )11+-a a (C )21a - (D )12-a9.当219941+=x 时,多项式20013)199419974(--x x的值为( )(A )1; (B )-1; (C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足nm a -=-242,则这样的n m a ,,的取值( )(A )有一组; (B )有两组; (C )多于二组; (D )不存在12。
15+=m ,那么m m 1+的整数部分是________。
初二数学二次根式竞赛习题及答案
二次根式竞赛习题1.31231131144++-++的值是( )(A )1(B )-1(C )2(D )-2 2、已知82121=+-xx,则xx 12+=3.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是( )(A)11991-;(B)11991--; (C)1991)1(n -;(D)11991)1(--n . 5.若01132=+-x x ,则44-+x x 的个位数字是( )(A)1(B)3(C)5(D)7.6.若0≠x ,则xx x x 44211+-++的最大值是__________.7.13333)919294(3-+-可以化简成( ) (A))12(333+ (B))12(333- (C)123- (D)123+ 8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为( )(A )a a +-11 (B )11+-a a (C )21a - (D )12-a 9.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足n m a -=-242,则这样的n m a ,,的取值( ) (A )有一组; (B )有两组; (C )多于二组; (D )不存在 12。
15+=m ,那么mm 1+的整数部分是________。
八年级初二数学 数学二次根式的专项培优练习题(及答案
一、选择题1.已知x 1x 2,则x₁²+x₂²等于( ) A .8B .9C .10D .112.下列方程中,有实数根的方程是( ) A0= B10= C2=D1=.3.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xy C=D .2x •3x 5=6x 64.) A .-3 B .3或-3C .9D .35.当4x =-的值为( )A .1 BC .2D .36.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限7.下列各式计算正确的是( )AB. C.D8.的下列说法中错误的是( ) A12的算术平方根 B.34<< C不能化简D是无理数9.下列二次根式中,最简二次根式是( ) ABCD10.与根式- ) A.B.x -C.D二、填空题11.若mm 3﹣m 2﹣2017m +2015=_____.12.已知x=3+1,y=3-1,则x 2+xy +y 2=_____. 13.已知()2117932x x x y ---+-=-,则2x ﹣18y 2=_____.14.已知()230m m --≤,若整数a 满足52m a +=,则a =__________. 15.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.16.已知函数1x f xx,那么21f _____.17.化简二次根式2a 1a+-_____. 18.(623÷=________________ .19.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 20.若a 、b 都是有理数,且2222480a ab b a -+++=ab .三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a a a =,)21211=a a 2121互为有理化因式.(1)231的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3233333==⨯, ()()25353521538215415535353++++====--+323+进行分母有理化. (3)利用所需知识判断:若25a =+,25b =a b ,的关系是 . (4)直接写结果:)20201213220202019=+++ .【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227 -==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:=== 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.23.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.24.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==2(2)-=22=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.一样的式子,其实我25.====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式=122n++++=12.考点:分母有理化.26.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.27.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.28.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.2.C解析:C 【分析】k =的形式,再根据二次根式成立的条件逐个进行判断即可. 【详解】 解:A 、x 2+4=0,此时方程无解,故本选项错误; B10=,1-, ∵算术平方根是非负数, ∴此时方程无解,故本选项错误; C2=, ∴x+1=4, ∴x=3, 故本选项正确;D1=, ∴x-3≥0且3-x≥0, 解得:x=3,代入得:0+0=1,此时不成立,故本选项错误; 故选:C . 【点睛】本题考查了二次根式的意义,能根据二次根式成立的条件进行判断是解此题的关键.3.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.D解析:D 【分析】根据二次根式的性质进行计算即可. 【详解】|3|3=. 故选:D . 【点睛】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩.5.A解析:A 【分析】根据分式的运算法则以及二次根式的性质即可求出答案. 【详解】 解:原式2223232323x x x x112323x x将4x =代入得,原式1142342322 11 131331133331131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.6.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A7.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;3==,故正确.故选D.8.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A12的算术平方根,故该项正确;B、34<<,故该项正确;C、1223=,故该项不正确;D、∵1223=,∴12是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.9.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A、原式=;B、是最简二次根式,不能化简;C、原式=;D、原式=.考点:最简二次根式10.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x是负数,所以1x--xx x--=-故选:D.【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x的符号是负号,这是解题的难点.二、填空题11.4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可. 【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可.m,m∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.12.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.13.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,|7﹣x =3y ﹣2,﹣x +7+x ﹣9=3y ﹣2,=3y ,∴x ﹣11=9y 2,则2x ﹣18y 2=2x ﹣2(x ﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.14.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.15.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()a a c b c b =a a c b c b =-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号.16.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时, .【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x =,代入原函数即可解答. 【详解】 因为函数1x f xx , 所以当1x =时, 211()2221f x . 【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 17.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==. 故答案为.解析:【解析】根据二次根式的性质,可知a ≠0,-(a+1)≥0,因此可知a≤-1,因此可知= 故答案为18.【解析】=,故答案为.解析:【解析】÷====-, 故答案为19.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.20.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
八年级初二数学 数学二次根式的专项培优练习题(含答案
一、选择题1.下列运算中,正确的是 ( ) A .3 B .×=6 C .3D .2.下列式子中,属于最简二次根式的是( ) ABCD3.若01x <<=( ). A .2xB .2x-C .2x -D .2x4.下列计算结果正确的是( ) AB.3= C=D=5.下列等式正确的是( ) A7=-B3=C.5D.=6.下列各式中,运算正确的是( ) A=﹣2B+C4D .=27.下列运算中,正确的是( )A=3 B .=-1 CD .38.当4x =-的值为( )A .1BC .2D .39.设0a >,0b >=的值是( ) A .2B .14C .12D .315810.在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >3C .x ≥3D .x ≤3二、填空题11.计算(π-3)02-211(223)-4--22--()的结果为_____. 12.实数a 、b 满足22a -4a 436-12a a 10-b 4-b-2+++=+,则22a b +的最大值为_________.13.若()()22223310x y x y +++-+=,则222516x y +=______.14.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行13 154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).15.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.16.计算:652015·652016=________. 17.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫=⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________. 18.化简(32)(322)+-的结果为_________.19.如果0xy >,化简2xy -__________.20.代数式4x -有意义,则x 的取值范围是_____.三、解答题21.计算:1123124231372831+--+÷⨯-.【答案】533121- 【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】1123124231372831+--+÷⨯-=481323(31)32(32)37228++--+⨯⨯⨯ =46233132337++--+ =533121-. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2007)=2013.23.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.24.计算:(1)+(2(33+-【答案】(1)2) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33 +-=5+9-24=14-24=-10.【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.25.计算:(1)12⎛⎫⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)12⎛⎫⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.26.一样的式子,其实我3====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式=122n ++++=12. 考点:分母有理化.27.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)a ===12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2 【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断.【详解】A、A选项错误;B、×=12,所以B选项错误;C、3,所以C选项正确;D、,不能合并,所以D选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.2.D解析:D【分析】根据直角二次根式满足的两个条件进行判断即可.【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A错误;=被开方数中含分母,不是最简二次根式,故选项B错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C错误;是最简二次根式,故选项D正确.故选D.【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.3.D解析:D【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解.【详解】解:∵0<x<1,∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11x x x x+-- =11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.4.C解析:C 【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可. 【详解】A 不能合并,故A 选项错误;B .-=B 选项错误;C =D==D 选项错误, 故选C . 【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.5.B解析:B 【分析】根据二次根式的性质求出每个式子的值,再得出选项即可. 【详解】解:AB 3=,故本选项符合题意;C 、5=-,故本选项不符合题意;D 、=-,故本选项不符合题意; 故选:B .【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.6.C解析:C【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】A、原式=2,故该选项错误;B=,故该选项错误;C4,故该选项正确;D故选:C.【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.7.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】=+=,此项错误A314==,此项错误B、2===⨯=,此项错误C2428=,此项正确D、3故选:D.【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.8.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x 将4x =代入得, 原式11423423 221113133113 133131131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.9.C解析:C【分析】=变形后可分解为:)=0,从而根据a >0,b >0可得出a 和b的关系,代入即可得出答案.【详解】由题意得:a=+15b ,∴+)=0,=,a =25b , 12. 故选C .【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a 和b 的关系是关键.10.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题11.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)p p a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣4×2﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.12.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出的最大值.【详解】解析:【分析】10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.【详解】10-b 4-b-2=+,1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 13.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.14.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.15.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为16.【解析】原式=.故答案为.【解析】原式=20152015=17.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.18.1【分析】根据平方差公式进行计算即可.【详解】原式=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键.解析:1【分析】根据平方差公式进行计算即可.【详解】原式=(223981-=-=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键. 19.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.20.x >4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x ﹣4>0,解得,x >4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
第1讲:二次根式的运算培优竞赛题
第一讲 二次根式及化简一、典例解析例1(1)下列二次根式a 45、30、213、240b 、54、中最简二次根式是 。
(2)已知y=42-x +24x -,+3,则x y = .(3)(华师一中招生)把(a-b)a b -1根号外的因式移到根号内结果为( )A .b a -B .a b -C . -a b - D. -b a -变式训练:1.(2010广东湛江)下列二次根式是最简二次根式的是( ) A .21B .4C .12+a D. -y x 22.(2010.湖北荆门)计算1-x +x -1= 。
3.代数式a a 1-化简为( )A .a -B . -a -C .a D. -a例2.若x +y +z +3=2﹙x +1+y +1-z ﹚,求﹙x +y +z ﹚y-x 的值。
变式训练:4.(2010.荆门)若a,b 为实数,且满足︳a -2︳+2b -=0,则b -a 的值为( )A .2B . 0C .-2 D. 以上都不对5.已知△ABC 的三边a,b,c 满足a 2+b +︳1-c -2︳=10a +24-b -22,则△ABC 为()A .等腰三角形B . 等边三角形C .直角三角形 D. .等腰直角三角形例3.已知n -17是整数,求自然数n 的值。
变式训练:6.(2010.湖北孝感)使n 12是整数的最小整数n= 。
7.(2010.自贡)已知n 是一个正整数,n 135是 整数,则n 的最小值是( )A . 3B . 5C . 15 D. 25例4.(2010.全国初中数学联赛)若实数a,b,c 满足2a +3︳b ︳=6,4a -9︳b ︳=6c, C 可能取的最大值为﹙ ﹚A . 0B . 1C . 2 D. 3变式训练:8.(武汉竞赛)已知实数a 满足|2006-a|+2007-a =a,那么a -20062的值是( )A . 2005B . 2006C .2007 D. 20089.((华师一中招生)已知实数满足c b a +++)6)(2008(2-+b a +|10-2b =2|,则代数式 ab +bc 的值为 。
专题42 二次根式 初中数学学科素养能力培优竞赛试题精选专练含解析卷
专题42 二次根式一、二次根式的性质与化简【学霸笔记】1. 二次根式的性质(1;(2.2. 二次根式运算法则(1;(2【典例】如果式子√(x −1)2+|x ﹣2|化简的结果为2x ﹣3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >0【解答】解:∵√(x −1)2+|x ﹣2|=|x ﹣1|+|x ﹣2|,又∵化简的结果为2x ﹣3,∴{x −1≥0x −2≥0, 解得x ≥2.故选:B .【巩固】实数a 、b 满足√a 2−2a +1+√25−10a +a 2=10﹣|b +4|﹣|b ﹣2|,则a 2+b 2的最大值为 .二、二次根式分母有理化【典例】已知x =√3+√2√3−√2,y =√3−√2√3+√2,则x y +y x = .【解答】解:把x 、y 进行分母有理化可得:x =√3+√2√3−√2=√3+√2)(√3+√2)(√3−√2)(√3+√2)=5+2√6, y =√3−√2√3+√2=√3−√2)(√3−√2)(√3−√2)(√3+√2)=5﹣2√6, ∴x y +y x =x 2+y 2xy =√6)2√6)2(5+2√6)(5−2√6)=98.故答案为:98.【巩固】已知x=√2020−√2019,则x6﹣2√2019x5﹣x4+x3﹣2√2020x2+2x−√2020的值为()A.0B.1C.√2019D.√2020三、二次根式中的整数和小数部分应用【典例】已知√5+2的整数部分为a,小数部分为b,求a2−4b2a2+4ab+4b2的值.【解答】解:∵4<5<9,∴2<√5<3,∴4<√5+2<5,∴a=4,b=√5−2;∴a2−4b2a2+4ab+4b2 =(a−2b)(a+2b)(a+2b)2=a−2ba+2b=4−2√5+44+2√5−4=45√5−1.【巩固】设a为√3+√5√3−√5的小数部分,b为√6+3√3√6−3√32 b −1a=.巩固练习1.若实数a,b,c满足等式2√a+3|b|=6,4√a−9|b|=6c,则c可能取的最大值为()A.0B.1C.2D.32√3+2√2−√3−2√2)A.√2B.−√2C.2D.﹣23.如果实数x,y满足(√x2+1+x)(√y2+1+y)=1,那么x+y值为()A.0B.﹣1C.1D.24.小明在解方程√24−x−√8−x=2时采用了下面的方法:由(√24−x−√8−x)(√24−x+√8−x)=(√24−x)2−(√8−x)2=(24﹣x)﹣(8﹣x)=16,又有√24−x−√8−x=2,可得√24−x+√8−x=8,将这两式相加可得{√24−x=5√8−x=3,将√24−x=5两边平方可解得x=﹣1,经检验x=﹣1是原方程的解.请你学习小明的方法,解决下列问题:(1)已知√22−a2−√10−a2=3√2,则√22−a2+√10−a2的值为.(2)解方程√4x2+6x−5+√4x2−2x−5=4x,得方程的解为.5.已知整数x、y满足:1<x<y<100,且x√y+y√x−√2009x−√2009y+√2009xy=2009则:√x+y+10=.6.已知x=b−√b2−4122(b>21),则x2﹣bx+103=.7.已知x=3+2√2,求:x2+1x2+6x+6x+7的值.8.计算:(1)2√5(4√20−3√45+2√5);(2)√3−1+√27−(√3−π)0+3﹣2(3)若a=√5+1,b=√5−1,求a2b+ab2的值.(4)已知a、b、c在数轴上的对应点如图所示,化简:√a2−|a+b|+√(c−a)2+|b+c|9.已知x﹣y=6,√x2−xy+√xy−y2=9,求√x2−xy−√xy−y2的值.10.若m满足关系√3x+5y−2−m+√2x+3y−m=√x−199+y⋅√199−x−y,试求m的值.11.已知x =√n+1−√n√n+1+√n y =√n+1+√n√n+1−√n (n 为自然数),问:是否存在自然数n ,使代数式19x 2+36xy +19y 2的值为1998?若存在,求出n ;若不存在,请说明理由.专题42 二次根式一、二次根式的性质与化简【学霸笔记】1. 二次根式的性质(1;(2.2. 二次根式运算法则(1;(2【典例】如果式子√(x −1)2+|x ﹣2|化简的结果为2x ﹣3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >0【解答】解:∵√(x −1)2+|x ﹣2|=|x ﹣1|+|x ﹣2|,又∵化简的结果为2x ﹣3,∴{x −1≥0x −2≥0, 解得x ≥2.故选:B .【巩固】实数a 、b 满足√a 2−2a +1+√25−10a +a 2=10﹣|b +4|﹣|b ﹣2|,则a 2+b 2的最大值为 .【解答】解:∵√a 2−2a +1+√25−10a +a 2=10﹣|b +4|﹣|b ﹣2|,∴|a ﹣1|+|a ﹣5|=10﹣|b +4|﹣|b ﹣2|,∴|a ﹣1|+|a ﹣5|+|b +4|+|b ﹣2|=10,∵|a ﹣1|+|a ﹣5|≥4,|b +4|+|b ﹣2|≥6,∴|a ﹣1|+|a ﹣5|=4,|b +4|+|b ﹣2|=6,∴1≤a≤5,﹣4≤b≤2,∴a2+b2的最大值为:52+(﹣4)2=41.故答案为:41.二、二次根式分母有理化【典例】已知x=√3+√2√3−√2,y=√3−√2√3+√2,则xy+yx=.【解答】解:把x、y进行分母有理化可得:x=√3+√2√3−√2=(√3+√2)(√3+√2)(√3−√2)(√3+√2)=5+2√6,y=√3−√2√3+√2=√3−√2)(√3−√2)(√3−√2)(√3+√2)=5﹣2√6,∴xy +yx=x2+y2xy=√6)2√6)2(5+2√6)(5−2√6)=98.故答案为:98.【巩固】已知x=√2020−√2019,则x6﹣2√2019x5﹣x4+x3﹣2√2020x2+2x−√2020的值为()A.0B.1C.√2019D.√2020【解答】解:∵x=√2020−√2019=√2020+√2019,∴x6﹣2√2019x5﹣x4+x3﹣2√2020x2+2x−√2020=x5(x﹣2√2019)﹣x4+x2(x﹣2√2020)+2x−√2020=x5(√2020+√2019−2√2019)﹣x4+x2(√2020+√2019−2√2020)+2x−√2020=x5(√2020−√2019)﹣x4+x2(√2019−√2020)+2x−√2020=x4[x(√2020−√2019)﹣1]+x2(√2019−√2020)+2x−√2020=0+x(√2020+√2019)(√2019−√2020)+2x−√2020=﹣x+2x−√2020=x−√2020=√2019.故选:C.三、二次根式中的整数和小数部分应用【典例】已知√5+2的整数部分为a,小数部分为b,求a2−4b2a2+4ab+4b2的值.【解答】解:∵4<5<9,∴2<√5<3,∴4<√5+2<5,∴a=4,b=√5−2;∴a2−4b2a2+4ab+4b2 =(a−2b)(a+2b)(a+2b)2=a−2ba+2b=4−2√5+44+2√5−4=45√5−1.【巩固】设a为√3+√5√3−√5的小数部分,b为√6+3√3√6−3√32 b −1a=.【解答】解:∵√3+√5−√3−√5=√6+2√52−√6−2√52=√5+1√2√5−1√2=√2,∴a的小数部分=√2−1;∵√6+3√3−√6−3√3=√12+6√32−√12−6√32=√3+3√23−√3√2=√6,∴b的小数部分=√6−2,∴2b −1a=√6−2−√2−1=√6+2−√2−1=√6−√2+1.故答案为:√6−√2+1.巩固练习1.若实数a,b,c满足等式2√a+3|b|=6,4√a−9|b|=6c,则c可能取的最大值为()A.0B.1C.2D.3【解答】解:由两个已知等式可得,√a=35(c+3),|b|=25(2−c),而|b|≥0,所以c≤2.当c =2时,可得a =9,b =0,满足已知等式.所以c 可能取的最大值为2.故选:C .2.化简√3+2√2√17+12√2−√3−2√2√17−12√2的结果是( ) A .√2 B .−√2C .2D .﹣2 【解答】解:3+2√2=(√2+1)2,3−2√2=(√2−1)2;17+12√2=(3+2√2)2,17−12√2=(3−2√2)2,因此,原式=√3+2√2√3−2√2=√2+1√2−1=−2. 故选:D .3.如果实数x ,y 满足(√x 2+1+x )(√y 2+1+y )=1,那么x +y 值为( )A .0B .﹣1C .1D .2 【解答】解:∵(√x 2+1+x )(√x 2+1−x )=x 2+1﹣x 2=1,(√y 2+1+y )(√y 2+1−y )=y 2+1﹣y 2=1又∵(√x 2+1+x )(√y 2+1+y )=1,∴{√x 2+1−x =√y 2+1+y①√y 2+1−y =√x 2+1+x②, ①+②得:﹣x ﹣y =x +y ,∴2(x +y )=0,∴x +y =0.故选:A .4.小明在解方程√24−x −√8−x =2时采用了下面的方法:由(√24−x −√8−x)(√24−x +√8−x)=(√24−x)2−(√8−x)2=(24﹣x )﹣(8﹣x )=16,又有√24−x −√8−x =2,可得√24−x +√8−x =8,将这两式相加可得{√24−x =5√8−x =3,将√24−x =5两边平方可解得x =﹣1,经检验x =﹣1是原方程的解. 请你学习小明的方法,解决下列问题: (1)已知√22−a 2−√10−a 2=3√2,则√22−a 2+√10−a 2的值为 .(2)解方程√4x 2+6x −5+√4x 2−2x −5=4x ,得方程的解为 .【解答】解:(1)(√22−a 2+√10−a 2)(√22−a 2−√10−a 2)=22﹣a 2﹣(10﹣a 2)=12,∵√22−a 2−√10−a 2=3√2,∴√22−a 2+√10−a 2=2√2,故答案为:2√2;(2)(√4x 2+6x −5+√4x 2−2x −5)(√4x 2+6x −5−√4x 2−2x −5)=(4x 2+6x ﹣5)﹣(4x 2﹣2x ﹣5)=8x ,∵√4x 2+6x −5+√4x 2−2x −5=4x ,∴√4x 2+6x −5−√4x 2−2x −5=2,将这两式相加可得√4x 2+6x −5=2x +1,解得x =3,经检验,x =3是原方程的解.∴原方程的解为:x =3,故答案为:x =3.5.已知整数x 、y 满足:1<x <y <100,且x √y +y √x −√2009x −√2009y +√2009xy =2009 则:√x +y +10= .【解答】解:∵x √y +y √x −√2009x −√2009y +√2009xy =2009 ∴√xy (√x +√y )−√2009(√x +√y )+√2009xy −√20092=0 (√x +√y +√2009)(√xy −√2009)=0∵1<x <y <100∴√xy −√2009=0∴xy =2009=7×7×41=49×41∵整数x 、y 满足:1<x <y <100∴x =41,y =49∴√x +y +10=√41+49+10=√100=10. 故本题答案为:10.6.已知x =b−√b 2−4122(b >21),则x 2﹣bx +103= . 【解答】解:将x =b−√b 2−4122代入x 2﹣bx +103, x 2﹣bx +103=(b−√b 2−4122)2﹣b •b−√b 2−4122+103 =b 2−2b √b 2−412+b 2−4124−b 2−2b √b 2−412+b 2−4124=0,故答案为0.7.已知x=3+2√2,求:x2+1x2+6x+6x+7的值.【解答】解:原式=x2+2+1x2+6(x+1x)+5=(x+1x)2+6(x+1x)+5=(x+1x+1)(x+1x+5),∵x=3+2√2,∴1x =3+2√2=3﹣2√2,∴x+1x=3+2√2+3﹣2√2=6.∴原式=(6+1)×(6+5)=77.8.计算:(1)2√5(4√20−3√45+2√5);(2)√3−1+√27−(√3−π)0+3﹣2(3)若a=√5+1,b=√5−1,求a2b+ab2的值.(4)已知a、b、c在数轴上的对应点如图所示,化简:√a2−|a+b|+√(c−a)2+|b+c|【解答】解:(1)原式=2√5(8√5−9√5+2√5)=2√5×√5=10;(2)原式=√3+1+3√3−1+1 9=4√3+1 9;(3)∵a=√5+1,b=√5−1,∴a+b=2√5,ab=4,∴a2b+ab2=ab(a+b)=4×2√5=8√5;(4)由图可知:a<0,a+b<0,c﹣a>0,b+c<0.∴√a2−|a+b|+√(c−a)2+|b+c|=﹣a+a+b+c﹣a﹣b﹣c=﹣a.9.已知x﹣y=6,√x2−xy+√xy−y2=9,求√x2−xy−√xy−y2的值.【解答】解:∵x ﹣y =6,∴(√x +√y)(√x −√y)=6,∴√x +√y =√x−√y , ∵√x 2−xy +√xy −y 2=√x •√x −y +√y •√x −y=√x −y (√x +√y )=9, ∴√6√x−√y =9, 即√x −√y =6√69, ∴√x 2−xy −√xy −y 2=√x −y (√x −√y )=√6×6√69 =4.10.若m 满足关系√3x +5y −2−m +√2x +3y −m =√x −199+y ⋅√199−x −y ,试求m 的值.【解答】解:根据题意得:{x −199+y ≥0199−x −y ≥0, 则x +y ﹣199=0,即√3x +5y −2−m +√2x +3y −m =0,则{x +y −199=03x +5y −2−m =02x +3y −m =0,解得{x =396y =−197m =201.故m =201.11.已知x =√n+1−√n √n+1+√n y =√n+1+√n√n+1−√n (n 为自然数),问:是否存在自然数n ,使代数式19x 2+36xy +19y 2的值为1 998?若存在,求出n ;若不存在,请说明理由. 【解答】解:不存在.∵x +y =√n+1−√n√n+1+√n √n+1+√n√n+1−√n =(√n +1−√n)2+(√n +1+√n)2=n +1﹣2√n(n +1)+n +n +1+n +2√n(n +1)=4n +2.xy =√n+1−√n√n+1+√n •√n+1+√n=1.假设存在n使代数式19x2+36xy+19y2的值为1998.即19x2+36xy+19y2=1998.19x2+19y2=1962,(x2+y2)=1962 19.(x+y)2=196219+3819=200019.x+y=√200019=20√9519.由已知条件,得x+y=2(2n+1).∵n为自然数,∴2(2n+1)为偶数,∴x+y=20√9519不为整数.∴不存在这样的自然数n.。
人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)
第16章《二次根式》单元培优测试卷、选择题工.下列各式成立的是正=a D J(-3)〜=3A.7H F=-2【1题答案】【答案】D【解析】【分析】根据二次根式的性质化简即可.【详解】A.J(_2)2 =2,故本选项错误;B.(") =4,故本选项错误;C.J后=同,故本选项错误;D.J(-3『=3,故本选项正确.故选D.【点睛】本题考查了二次根式的基本性质:①〃K); V^>()(双重非负性).②(&)2%(生0)(任何一个非负数都可以写成一个数的平方的形式).③日=a(。
加)(算术平方根的意义).2.下列二次根式中,是最简二次根式的是()2B.耳【2题答案】【答案】A【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】A.且是最简二次根式,故此选项正确;2D ・ 阮二xH ,故此选项错误•故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.3 .若二次根式:7有意义,则x 的取值范围是()A. x> —B. —C. —D. xW5 5 5 5【3题答案】【答案】B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x- 1>0,解得,[,故选人【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键. 4.如图,从一个大正方形中裁去面积为30cm2和48 cm2的两个小正方形,则余下部分的面积为()A. 78 cm 2B. + \/30) cm 2C. 12M cm 2 【4题答案】【答案】P【解析】 【分析】根据两小正方形的面积求出大正方形的边长及面积,然后减去两个小正方形的面积,即可求出阴影 c.D. 24M cm 2故此选项错误;部分的面积进而得出答案.【详解】解:从一个大正方形中裁去面积为300层和48cm2的两个小正方形,大正方形的边长是同+ A =同+ ,留下部分(即阴影部分)的面积是:2(46 +而)-30-48 = 24V10(c/722)故选:D.【点睛】此题主要考查了二次根式的应用,正确求出大正方形的面积是关键.5.已知百砺是正整数,则满足条件的最大负整数m为()A. -10B. -40C. -90D. -160 【5题答案】【答案】A【解析】【详解】依题意可得,T0m>0且是完全平方数,因此可求得mVO,所以满足条件的m的值为TO.故选A.6.已知X=g + 1, —则/+个+)2的值为( )A 4 B. 6 C. 8 D. 1() 【6题答案】【答案】P【解析】【分析】根据f +盯+),2=(工2+2个,+,2)_孙=。
初二数学《二次根式》竞赛培优精选题(含解析)
二次根式竞赛培优题(含解析)一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.39940002.计算:=()A.B.C.D.3.的结果是()A.B.C.D.4.的值是()A.B.C.1D.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为.7.化简=.8.化简.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为.10.方程的解是x=11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=.12.计算:=(其中a>0)13.的值为.14.已知:对于正整数n,有,若某个正整数k满足,则k=.15.若n为整数,且是自然数,则n=.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为.17.若u、v满足v=,则u2﹣uv+v2=.18.已知a为实数,且与都是整数,则a的值是.19.使得++=1的一组正整数(a,b,c)为:.20.计算﹣20062的结果是.21.设=.22.若,,则x6+y6的值是.23.当时,的值为.24.已知,,则k=.25.当1≤x≤2时,经化简等于.26.计算=.27.已知x=,那么+1的值是.28.化简:,得到.29.=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).二次根式竞赛培优题(含解析)参考答案与试题解析一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.3994000【分析】设1998=a,把被开方数变形后,利用多项式的乘法法则计算后,加上a2再减去a2,前三项结合提取a2,剩下的三项利用完全平方公式化简,接着三项合并后提取2a,整体再利用完全平方公式化简,从而得到被开方数为一个数的完全平方,利用化简公式=|a|及a大于0即可得到最后结果.【解答】解:设1998=a,则1997×1998×1999×2000+1=(a﹣1)a(a+1)(a+2)+1=a4+2a3+a2﹣a2﹣a2﹣2a+1=a2(a+1)2﹣2a(a+1)+1=[a(a+1)﹣1]2,所以==1998×1999﹣1=3994001.故选:A.【点评】此题考查了二次根式的化简求值,考查了换元的思想,本题的技巧性比较强,要求学生熟练掌握完全平方公式的结构特点,同时注意利用凑项的方法构造满足公式的特征,以及注意二次根式的化简公式=|a|的运用.2.计算:=()A.B.C.D.【分析】根据每个加数的特点,推出一般规律为,将所得式子化简,分别取n=1,2,3,…,40,寻找抵消规律,得出结论.【解答】解:∵=()=()=()=(﹣)∴分别取n=1,2,3, (40)原式=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)=.故选:B.【点评】本题考查了二次根式的化简求值,观察式子的特点,得出一般规律,将一般规律化简代值,再观察抵消规律是解题的关键.3.的结果是()A.B.C.D.【分析】把每个加数分母有理化,然后通分计算即可.【解答】解:=()=.故选:D.【点评】主要考查二次根式的分母有理化.主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.4.的值是()A.B.C.1D.【分析】认真观察式子的特点,总结规律,可发现,,,据此作答.【解答】解:由题意可知第k项是∴原式=(++=1﹣=1﹣=.故选:B.【点评】此题考查二次根式的化简求值,关键是审清题意,找准规律答题.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6【分析】找到1000<5×x2<2000中符合x的整数值即可得出答案.【解答】解:由题意得:与=20,是同类二次根的被开方数一定为5,由此及题意可:1000<5×x2<2000,x可取15、16、17、18、19,共5个.故选:C.【点评】本题考查同类二次根式的知识,有一定难度,关键是根据同类二次根式的形式得出的同类二次根式应该满足.二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为3998000.【分析】由等式可知=x1,=x2,…解得x1=x2=x3=…=x1999=2,由此代入求得数值即可.【解答】解:∵,∴=x1,=x2,…∴x1=x2=x3=…=x1999=2,∴x1+2x2+3x3+…+1999x1999=2×(1+2+3+ (1999)=2×(1999+1)×1999÷2=3998000.故答案为:3998000.【点评】此题考查二次根式的化简求值,解答此题的关键是找出对应关系,求出x1、x2、x3、…、x1999的值.7.化简=2011.【分析】先根据平方差公式和二次根式的性质得到=,然后根据同样的方法由内到外依次化简即可得到答案.【解答】解:∵=,∴原式=======2011.故答案为2011.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了平方差公式.8.化简后2.【分析】由于===﹣1,其他根式也可以进行同样的化简,然后合并同类二次根式即可求解.【解答】解:=﹣1+﹣++++++=3﹣1=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,解题的关键是利用完全平方公式化简二次根式从而达到化简题目的目的.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为10.【分析】利用不等式≤,结合S1+S2+S3+…+S n >10,解不等式即可.【解答】解:∵S i表示第i个三角形的面积,由不等式≤n,得≤n=n,而S1+S2+S3+…+S n=,S1+S2+S3+…+S n>10,∴n>10,即n2(n+1)>800,n为正整数,n的最小值为9.但n=9时,代入S1+S2+S3+…+S n<10,不符合题意,故n=10.【点评】本题考查了二次根式的运用.利用均值不等式和不等式的传递性解题.10.方程的解是x=2011【分析】将各分式中的分母有理化,再通分,注意观察抵消规律.【解答】解:原方程化为:+++…+=,通分得=,解得x=2011.故答案为:2011.【点评】本题考查了二次根式的化简在解方程中的运用.关键是将各分式的分母有理化,寻找抵消规律.11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=﹣.【分析】首先将M式中各个分式进行分母有理化,再求出N式的值,代入代数式求值即可解答.【解答】解:将M分母有理化可得M=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1.N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994=(1﹣2)+(3﹣4)+(5﹣6)+┉+(1993﹣1994)=﹣1×997=﹣997,∴==﹣.故答案为﹣.【点评】本题主要考查分母有理化的方法,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.12.计算:=4(其中a>0)【分析】仔细观察会发现有以下规律:第1项加上第8项等于1,第2项加上第7项等于1,依此类推最后求得的结果4.【解答】解:第一项与最后一项相加得:+,=+,=,=1,同理可得:第二项与倒数第二项的和也是1;第三项与倒数第三项的和也是1;所以原式=1+1+1+1=4.故应填:4.【点评】本题考查了二次根式的加减运算,同时也考查了学生的逻辑思维能力,是一道不错的规律型问题.13.的值为1998999.5.【分析】本题涉及数字大且数字之间有联系,可用换元法解题,设k=2000,将所求算式转化为关于k的算式,将被开方数配成完全平方式,开平方,再将k的值代入即可.【解答】解:设k=2000,原式=====,当k=2000时,原式=1998999.5.故本题答案为:1998999.5.【点评】本题考查了二次根式的化简求值,当算式数字较大,并且数字之间有联系时,用换元法解题,可使运算简便.14.已知:对于正整数n,有,若某个正整数k满足,则k=8.【分析】读懂规律,按所得规律把左边所有的加数写成的形式,把互为相反数的项结合,可使运算简便.【解答】解:∵,∴+,即1﹣,∴,解得k=8.故答案为:8.【点评】解答此题的关键是读懂题意,总结规律答题.15.若n为整数,且是自然数,则n=﹣14或﹣7或﹣2或5.【分析】设=p,再把等式两边同时乘以4,利用平方差公式把等式左边化为两个因式积的形式,列出关于p、n的方程组,求出n 的值即可.【解答】解:∵设=p(P为非负整数),则n2+9n+30=p2,∴4n2+36n+120=4p2,∴(2n+9)2+39=4p2,∴(2p+2n+9)(2p﹣2n﹣9)=39,∴或或或,解得或或或,∴n=﹣14或﹣7或﹣2或5.故答案为:﹣14或﹣7或﹣2或5.【点评】本题考查的是二次根式的性质与化简,先根据题意把原式化为两个因式积的形式是解答此题的关键.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为2012.5.【分析】根据新定理得f()=,f()=,则f()+f()=1;f()=,f()=,则f()+f()=1,由此得到f()+f()=1(n≥2的整数),所以原式=+.【解答】解:f()=,∵f()==,f()=,则f()+f()=1,f()==,f()==,则f()+f()=1,∴f()+f()=1,∴=+=2012.5.故答案为2012.5.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.也考查了阅读理解能力.17.若u、v满足v=,则u2﹣uv+v2=.【分析】根号里面的式子大于等于0,从而可得≥0,﹣≥0,从而能得出u和v的值,继而可得出答案.【解答】解:由题意得:≥0,﹣≥0,从而=0,2u﹣v=0,u=v,又v=,∴u=,∴u2﹣uv+v2=.故答案为.【点评】本题考查二次根式有意义的条件,注意掌握根号里面的式子大于等于0这个知识点比较关键.18.已知a为实数,且与都是整数,则a的值是或.【分析】由是正整数可得,a是含﹣2的代数式;再由是整数,可得化简后为﹣2的代数式分母有理化后,是1或﹣1,据此确定a的值.【解答】解:∵是正整数,∴a是含﹣2的代数式;∵是整数,∴化简后为﹣2的代数式分母有理化后,是1或﹣1,∴a=或.故答案为:或.【点评】此题主要考查二次根式的混合运算,要熟练掌握合并同类二次根式和分母有理化.19.使得++=1的一组正整数(a,b,c)为:答案不唯一;如(288,8,8),(48,24,8).【分析】由于三个复合二次根式的和为1,则它们的被开方数为完全平方数,设任意一个复合二次根式的被开方数为()2(x,y为正整数,x>y),然后通过正整数的含义,得到x,y为两个相邻正整数,即每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后是﹣1,则第二个复合二次根式化简后必为﹣,第三个复合二次根式化简后必为,最后求的a,b,c的值.【解答】解:因为几个复合二次根式的和为1,则每个复合二次根式的被开方数一定为完全平方数.设==x+y﹣2,(x,y为正整数,x>y),所以有=x+y,﹣=﹣2.∴a+1=(x+y)2,a=4xy,∴(x﹣y)2=1,即x﹣y=1.则每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后为﹣1,而要消掉,则第二个复合二次根式化简后必为﹣,要消掉,则第三个复合二次根式化简后必为.最后正好为﹣=1.所以=(﹣1)2=3﹣=3﹣,则a=8,同理得b=24,c=48.故得到一组正整数(a,b,c)为:8,24,48.故答案为8,24,48.【点评】本题考查了二次根式的性质和二次根式的化简:.20.计算﹣20062的结果是2005.【分析】先把“2005×2006×2007×2008+1=(20052+3×2005+1)2”化为完全平方的形式,再开平方,然后再来求值.【解答】解:∵2005×2006×2007×2008+1=2005×(2005+3)×(2005+1)(2005+2)+1=(20052+3×2005)×(20052+3×2005+2)+1=(20052+3×2005)2+2(20052+3×2005)+1=(20052+3×2005+1)2∴=20052+3×2005+1;∴﹣20062=20052+3×2005+1﹣20062=(2005+2006)(2005﹣2006)+3×2005+1=2005;故答案为:2005.【点评】本题主要考查了二次根式的化简求值.解答此题的难点是化“2005×2006×2007×2008+1”为完全平方的形式,并开平方,然后再利用平方差公式求出20052﹣20062=(2005+2006)(2005﹣2006)的值.21.设=.【分析】把已知条件的左边相乘得,这样出现了所求代数式,设=z,代入变形所得的等式,逐步变形,消去x、y,即可求得z.【解答】解:据条件式令=z,则(1)式化为:z+xy+=9,即有9﹣z=xy+,平方得,81﹣18z+z2=x2y2+(x2+1)(y2+4)+2xy(2),又由z2==x2(y2+4)+y2(x2+1)+2xy,代入(2)得,81﹣18z=4,所以.即=,故答案为:.【点评】此题考查二次根式的化简求值,难度较大,多次利用已知条件求解.22.若,,则x6+y6的值是40.【分析】根据题意可求出x2+y2,x2﹣y2,利用平方差公式可求得x4﹣y4,(x2﹣y2)(x4﹣y4)=x6+y6﹣x2y4﹣y2x4,由此可得答案.【解答】解:由题意得:x2+y2=2++2﹣=4,x2﹣y2=2+﹣(2﹣)=2,x4﹣y4=(x2+y2)(x2﹣y2)=8,又(x2﹣y2)(x4﹣y4)=x6+y6+x2y4+y2x4,∴可得:x6+y6=32﹣x2y2(x2+y2)=32+2×4=40.故答案为:40.【点评】本题考查二次根式的乘除法运算,有一定难度,关键是熟练运用平方差及完全平方公式.23.当时,的值为.【分析】利用完全平方公式对代数式化简再把代入化简的结果计算即可.【解答】解:原式=﹣,∵,∴=2005,∴x<,∴原式=﹣+x,=x,当时,原式=.故答案为.【点评】本题考查的是二次根式的化简求值和二次根式的性质=a(a≥0)的应用.24.已知,,则k=﹣1.【分析】先从等式右边进行分母有理化,即原式=﹣2,然后依次循环即可求k的值.【解答】解:由原式可知=+2﹣4=﹣2,∴4+=+2,依此类推得:=+2,∴k=﹣1.故答案为﹣1.【点评】本题考查了分母有理化的知识,解题时可从等式右边进行分母有理化,那样会简便些.25.当1≤x≤2时,经化简等于2.【分析】先配成完全平方式,再根据二次根式的性质化简计算即可.【解答】解:∵1≤x≤2,∴=+=+1+1﹣=2.故答案为:2.【点评】考查了二次根式的性质,解题的关键是将根号内的式子配成完全平方式.26.计算=2010.【分析】因为=,=,=,…,可发现=1+=1+1﹣,=1+=1+﹣…,依此类推再把1+1﹣,1+﹣…相加可得问题答案.【解答】解:原式=++++…+,=1+1﹣+1+﹣+1+﹣+1+﹣…+1+﹣,=2010+(1﹣+﹣+﹣…+﹣),=2010+(1﹣),=2010.【点评】本题考查了二次根式的化简,在化简中注意有关数列的规律.27.已知x=,那么+1的值是2.【分析】先根据分母有理化得到x=﹣1,所以x+1=,然后将代数式化为含有(x+1)2的形式,把x+1的值代入求出代数式的值.【解答】解:∵x==﹣1,∴x+1=.原式=(3x3+10x2+5x+4)=[(3x3+6x2+3x)+3x2+(x2+2x+1)+3]=[3x(x+1)2+3x2+(x+1)2+3]=[3x•2+3x2+2+3]=[(3x2+6x+3)+2]=[3(x+1)2+2]=(3×2+2)=2.故答案是:2.【点评】本题考查的是二次根式的化简求值,先根据分母有理化把x的值化简,得到x+1=,再把代数式化成含有x+1的形式,然后代入代数式可以求出代数式的值.28.化简:,得到1.【分析】将被开方数的分子、分母提公因式,约分,再开平方,约分即可.【解答】解:原式=()1004=()1004()1004=1.【点评】本题考查了二次根式的化简求值,关键是将被开方数的分子、分母提公因式,约分.29.=﹣3.【分析】因为=,代入并通分计算即可.【解答】解:原式===﹣1﹣1﹣1=﹣3.故答案为:﹣3.【点评】此题考查二次根式的混合运算,关键是求=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).【分析】(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.(2)分别将各二次根式配方可得出答案.(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.(4)设=a,=b,=c,从而可将原式化简,继而可得出答案.【解答】解:(1)设n=1999,则原式===n2+3n+1,故原式=20002+1999;(2)原式=+++++++=﹣1+﹣+﹣+﹣+﹣+﹣+﹣+﹣,=﹣1,=3﹣1,=2;(3)原式=,=,=+,=﹣;(4)设=a,=b,=c,则原式=++,=,=0.【点评】本题考查了二次根式的混合运算,难度较大,注意换元法及完全平方知识的运用.。
(完整版)初二数学竞赛题-二次根式(含答案)
二次根式1.31231131144++-++的值是( )(A )1(B )-1(C )2(D )-2 2、已知82121=+-xx,则xx 12+=3.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是( )(A)11991-;(B)11991--; (C)1991)1(n -;(D)11991)1(--n .5.若01132=+-x x ,则44-+xx 的个位数字是( )(A)1(B)3(C)5(D)7.6.若0≠x ,则xx x x 44211+-++的最大值是__________.7.13333)919294(3-+-可以化简成( ) (A))12(333+ (B))12(333- (C)123- (D)123+ 8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为( )(A )a a +-11 (B )11+-a a (C )21a - (D )12-a 9.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足n m a -=-242,则这样的n m a ,,的取值( ) (A )有一组; (B )有两组; (C )多于二组; (D )不存在 12。
15+=m ,那么mm 1+的整数部分是________。
13.计算的值是( ) . (A) 1 (B) 5 (C)(D) 514.a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( )(A )1999(B )2000(C )2001(D )不能确定15.已知a=2-1,b=22-6,c=6-2,那么a ,b ,c 的大小关系是( ) (A) a<b<c(B) b<a<c(C) c<b<a(D)c<a<b16.232217122--等于( )A.542- B.421 C.5 D.1 17.满足等式2003200320032003x y xy x y xy 的正整数对()x y ,的个数是( )A.1 B.2 C.3 D.4 计算12233420032004+++++L .19.已知x 为非零实数,且1212x xa -+=,则 21x x +=______________。
((完整版))《二次根式》培优试题及答案,推荐文档
10.方程 2 (x-1)=x+1 的解是____________.【提示】把方程整理成 ax=b 的形式后,a、b 分
别是多少? 2 1, 2 1.【答案】x=3+2 2 .
【解】原式=
÷
a b
ab( a b)( a b)
a b a 2 a ab b ab b2 a 2 b2
=
÷
a b
ab( a b)( a b)
=
ab
·
ab( a
b)( a
b)
=-
a
b.
a b
ab(a b)
【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值:(每小题 7 分,共 14 分)
x x2 a2 ( x2 a2 x)
x x2 a2 ( x2 a2 x) x x2 a2 ( x2 a2 x)
1
1
= .当 x=1- 2 时,原式=
=-1- 2 .【点评】本题如果将前两个“分式”分拆成两个
x
1 2
“分式”之差,那么化简会更简便.即原式=
x
- 2x x2 a2 +
1 1 1 a2 ab 1
=- +
=
.
b2 ab a2b2
a2b2
b ab
a
b
ab
26.( a +
)÷(
+
-
)(a≠b).
a b
ab b ab a ab
【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.
a ab b ab a a ( a b) b b( a b) (a b)(a b)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以
=
=1998×1999﹣1
=3994001.
故选:A.
第 5页(共 26页)
【点评】此题考查了二次根式的化简求值,考查了换元的思想,本题 的技巧性比较强,要求学生熟练掌握完全平方公式的结构特点,同 时注意利用凑项的方法构造满足公式的特征,以及注意二次根式的 化简公式 =|a|的运用.
2.计算:
11 . 设 M= +
+
6+┉+1993﹣1994,则
+┉+ =﹣ .
, N=1 ﹣ 2+3 ﹣ 4+5 ﹣
【分析】首先将 M 式中各个分式进行分母有理化,再求出 N 式的值, 代入代数式求值即可解答.
【解答】解:将 M 分母有理化可得 M=( ﹣1)+( ﹣ )+( ﹣ )+…+( ﹣ )= ﹣1.
所以一般二次根式的有理化因式是符合平方差公式的特点的式子.
4.
A.
B.
的值是( )
C.1
D.
【分析】认真观察式子的特点,总结规律,可发现
,
,
,据此作答.
【解答】解:由题意可知第 k 项是
∴原式=(
+
+
=1﹣ =1﹣ = .
故选:B.
【点评】此题考查二次根式的化简求值,关键是审清题意,找准规律
答题.
第 7页(共 26页)
定要先化简再代入求值.也考查了阅读理解能力.
17.若 u、v 满足 v=
,则 u2﹣uv+v2=
.
【分析】根号里面的式子大于等于 0,从而可得 从而能得出 u 和 v 的值,继而可得出答案.
【解答】解:由题意得: ≥0,﹣ ≥0, 从而 =0,2u﹣v=0,u= v, 又 v= , ∴u= , ∴u2﹣uv+v2= .
递性解题.
10.方程
的解是 x= 2011
【分析】将各分式中的分母有理化,再通分,注意观察抵消规律.
【解答】解:原方程化为: + + +…+
=,
通分得 = ,
解得 x=2011. 故答案为:2011. 【点评】本题考查了二次根式的化简在解方程中的运用.关键是将各
第 11页(共 26页)
分式的分母有理化,寻找抵消规律.
若 S1+S2+S3+…+Sn>10,则 n 的最小值为
.
10.方程
的解是 x=
11 . 设 M= +
+
6+┉+1993﹣1994,则
+┉+
=
.
, N=1 ﹣ 2+3 ﹣ 4+5 ﹣
12.计算:
=
(其中 a>0)
13.
的值为
.
14.已知:对于正整数 n,有 满足
,若某个正整数 k
,则 k=
.
15.若 n 为整数,且
把互为相反数的项结合,可使运算简便. 【解答】解:∵
∴
+
,
即 1﹣
,
∴
,
解得 k=8. 故答案为:8. 【点评】解答此题的关键是读懂题意,总结规律答题.
的形式, ,
15.若 n 为整数,且
是自然数,则 n= ﹣14 或﹣7 或﹣2 或 5 .
【分析】设
=p,再把等式两边同时乘以 4,利用平方差公式把
第 14页(共 26页)
等式左边化为两个因式积的形式,列出关于 p、n 的方程组,求出 n
的值即可.
【解答】解:∵设
=p(P 为非负整数),则 n2+9n+30=p2,
∴4n2+36n+120=4p2,
∴(2n+9)2+39=4p2,
∴(2p+2n+9)(2p﹣2n﹣9)=39,
∴
或
或
或
,
解得 或 或 或 ,
N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994=(1﹣2)+(3﹣4)+(5﹣6)+┉+ (1993﹣1994)=﹣1×997=﹣997,
∴ = =﹣ . 故答案为﹣ .
【点评】本题主要考查分母有理化的方法,正确选择两个二次根式, 使它们的积符合平方差公式是解答问题的关键.
12.计算:
= 4 (其中 a>0)
二次根式竞赛培优题(含解析)
一.选择题(共 5 小题)
1.计算:
=( )
A.3994001
2.计算:
B.3994002
C.3994003
D.3994000
=( )
A.
B.
3.
C.
D.
的结果是( )
A.
B.
4.
C.
D.
的值是( )
A.
B.
C.1
D.
5.在
这 1000 个二次根式中,与 是同类二
次根式的个数共有( )
方公式化简,接着三项合并后提取 2a,整体再利用完全平方公式化 简,从而得到被开方数为一个数的完全平方,利用化简公式 =|a|
及 a 大于 0 即可得到最后结果.
【解答】解:设 1998=a,
则 1997×1998×1999×2000+1
=(a﹣1)a(a+1)(a+2)+1 =a4+2a3+a2﹣a2﹣a2﹣2a+1 =a2(a+1)2﹣2a(a+1)+1 =[a(a+1)﹣1]2,
A.
B.
=( )
C.
D.
【分析】根据每个加数的特点,推出一般规律为
,
将所得式子化简,分别取 n=1,2,3,…,40,寻找抵消规律,得
出结论. 【解答】解:∵
=(
பைடு நூலகம்
)
=(
)
=( =(
) ﹣)
∴分别取 n=1,2,3,…,40 得 原式= [(1﹣ )+( ﹣ )+( ﹣ )+…+( ﹣ )] = (1﹣ )= .
第 16页(共 26页)
≥0,﹣
≥0,
故答案为 . 【点评】本题考查二次根式有意义的条件,注意掌握根号里面的式子
大于等于 0 这个知识点比较关键.
18.已知 a 为实数,且 与 都是整数,则 a 的值是
或
.
【分析】由 是正整数可得,a 是含﹣2 的代数式;再由 是整 数,可得化简后为﹣2 的代数式 分母有理化后,是 1 或﹣1,据此
【分析】仔细观察会发现有以下规律:第 1 项加上第 8 项等于 1,第 2 项加上第 7 项等于 1,依此类推最后求得的结果 4.
【解答】解:第一项与最后一项相加得:
+
,
第 12页(共 26页)
=
+
,
=
,
=1, 同理可得:第二项与倒数第二项的和也是 1;第三项与倒数第三项的和
也是 1; 所以原式=1+1+1+1=4. 故应填:4. 【点评】本题考查了二次根式的加减运算,同时也考查了学生的逻辑
故选:B. 【点评】本题考查了二次根式的化简求值,观察式子的特点,得出一
般规律,将一般规律化简代值,再观察抵消规律是解题的关键.
第 6页(共 26页)
3.
A.
B.
的结果是( )
C.
D.
【分析】把每个加数分母有理化,然后通分计算即可. 【解答】解:
=(
)
=
.
故选:D.
【点评】主要考查二次根式的分母有理化.主要利用了平方差公式,
思维能力,是一道不错的规律型问题.
13.
的值为 1998999.5 .
【分析】本题涉及数字大且数字之间有联系,可用换元法解题,设 k=2000,将所求算式转化为关于 k 的算式,将被开方数配成完全平 方式,开平方,再将 k 的值代入即可.
【解答】解:设 k=2000, 原式= =
=
=
第 13页(共 26页)
是自然数,则 n=
.
16.如果
,并且 表示为 时的值,即
,
第 2页(共 26页)
表示当
时的值,即
,那么
的值为
.
17.若 u、v 满足 v=
,则 u2﹣uv+v2=
.
18.已知 a 为实数,且 与 都是整数,则 a 的值是
.
19 . 使 得
+
+
=1 的一组正整数(a,b,c)
为:
.
20.计算
﹣20062 的结果是
.
21.设
=
.
22.若
,
,则 x6+y6 的值是
.
23.当
时,
的值为
.
24.已知,
,则 k=
.
第 3页(共 26页)
25.当 1≤x≤2 时,经化简 26.计算
等于
.
=
.
27.已知 x= ,那么
+1 的值是
.
28.化简:
,得到
.
29.
三.解答题(共 1 小题)
30.计算:
(1)
;
(2)
(3)
;
(4)
.
=
.
;
第 4页(共 26页)
二次根式竞赛培优题(含解析)
参考答案与试题解析
一.选择题(共 5 小题) 1.计算:
A.3994001 B.3994002
=( ) C.3994003 D.3994000