轴对称图形单元测试卷及答案
数学八年级上册《轴对称》单元检测(含答案)
9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.
轴对称单元测试题及答案
轴对称单元测试题及答案一、选择题(每题2分,共20分)1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 中心线C. 垂直线D. 平行线3. 一个图形的轴对称图形与其本身是否完全重合?A. 是B. 否C. 有时是D. 不确定4. 轴对称图形的对称轴可以有多少条?A. 只有一条B. 至少一条C. 无数条D. 没有5. 下列哪个图形不是轴对称图形?A. 等边三角形B. 等腰梯形C. 矩形D. 正五边形二、填空题(每空1分,共10分)6. 轴对称图形的对称轴是________。
7. 如果一个图形关于点O对称,那么这个点O被称为该图形的________。
8. 一个轴对称图形的对称轴可以是一条________或多条________。
9. 轴对称图形的对称轴将图形分成两个完全________的部分。
10. 轴对称图形的对称轴是图形上所有点到________的距离相等的直线。
三、判断题(每题1分,共10分)11. 所有圆形都是轴对称图形。
()12. 轴对称图形的对称轴可以是曲线。
()13. 轴对称图形的对称轴一定经过图形的中心。
()14. 一个图形的轴对称图形与原图形是完全相同的。
()15. 轴对称图形的对称轴是唯一的。
()四、简答题(每题5分,共10分)16. 请解释什么是轴对称图形,并给出一个例子。
17. 描述如何确定一个图形是否是轴对称图形。
五、应用题(每题5分,共10分)18. 给定一个矩形,如果将其沿一条对角线折叠,这条对角线是否是该矩形的对称轴?为什么?19. 如果一个图形关于某条直线对称,那么这条直线上的所有点是否也是对称的?请解释。
六、解答题(每题5分,共10分)20. 给定一个等边三角形ABC,如果点A关于对称轴l对称到点A',求证点B和点C也关于对称轴l对称。
答案一、选择题1. A2. A3. A4. B5. D二、填空题6. 对称轴7. 对称中心8. 直线,直线9. 重合10. 对称轴三、判断题11. √12. ×13. ×14. √15. ×四、简答题16. 轴对称图形是指一个图形关于某条直线(对称轴)对称,这条直线将图形分成两个完全相同的部分。
人教版数学八年级上册《轴对称》单元检测卷带答案
《轴对称》单元测试
(时间:120分钟 满分:150分)
一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A 4个B.3个C.2个D.1个
故答案为两,一.
【点睛】考查轴对称和轴对称图形的概念,熟练掌握它们的概念,找到它们的区别与联系是解题的关键.
12.点 与点 关于______对称.
【答案】y轴
【解析】
【分析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接得到答案.
【详解】∵点A(−3,2),点B(3,2),
纵坐标相等,横坐标互为相反数,
【详解】如图:△ABC中,AB=AC,BD是边AC上的高.
∵ 且AB=AC,
∴
在Rt△BDC中,
∴
故答案为
【点睛】考查等腰三角形的性质,熟练掌握等腰三角形两个底角相等是解题的关键.
14.在等边三角形ABC中,点D在AB边上,点E在BC边上,且 连接AE、CD交于点P,则 ______.
【答案】
【解析】
解:将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,
由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,
∵∠ABE+∠EBF=∠C′BF+∠EBF=90°
∴∠ABE=∠C′BF
在△BAE和△BC′F中,
∴△BAE≌△BC′F(ASA),
13.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为____.
数学八年级上册《轴对称》单元检测题附答案
A.40°B.55°C.70°D.110°
[答案]C
[解析]
试题解析:∵m∥n,
∴
∵A B=B C,
∴
故选C.
点睛:平行线的性质:两直线平行,内错角相等.
5.如图,已知DE∥B C,A B=A C,∠1=125°,则∠C的度数是( )
一、选择题(共12小题,总分36分)
1.下列图案是轴对称图形的有 个.
A.1B.2C.3D.4
[答案]B
[解析]
试题分析:根据轴对称图形的概念(延某条直线对折,两部分能够完全重合)可知第一和第四个是轴对称图形.
故选B
考点:轴对称图形
2.点A(-2,5)关于x轴对称的点的坐标是( )
A.(2,5)B.(-2,-5)C.(2,-5)D.(5,-2)
(1)试判定△ODE的形状,并说明你的理由;
(2)线段B D、DE、EC三者有什么关系,写出你的判断过程.
25.如图所示,点O是等边三角形A B C内一点,∠AOB=110°,∠BOC=α,以OC为边作等边三角形OC D,连接A D.
(1)当α=150°时,试判断△AOD 形状,并说明理由;
(2)探究:当A为多少度时,△AOD是等腰三角形?
A. 31°B. 32°C. 59°D. 62°
11.如图,等边三角形A B C与互相平行的直线A,B相交,若∠1=25°,则∠2的大小为( )
A. 25°B. 35°C. 45°D. 55°
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
2020第二章《轴对称图形》单元测试(含答案)
第二章《轴对称图形》单元测试(满分100分,时间90分钟)一、选择题:(每题3分,共24分)1.若等腰三角形的一个角等于42°,则它的底角为 ( )A.42°B.69°C.69°或84°D.42°或69°2.到三角形三条边的距离都相等的点是这个三角形的 ( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C 也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A. 6 B.7 C.8D.98.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤二、填空题(每题3分,共24分)9.已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是时分.(按12小时制填写)11.已知等腰三角形的一个内角为70°,则它的顶角为度.12.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE的周长为cm.13.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.14.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.16.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.三、解答题(共52分)17.(本题6分)如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF18.(本题6分)如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.19.(本题8分)(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为.20.(本10分)某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?21.(本题10分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB 和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.(本题12分)(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?一、选择题:(每题3分,共24分)1.若等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°【答案】D2.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点【答案】D3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【答案】C.4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形【答案】C.5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且P A=PB,下列确定P 点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点【答案】B7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【答案】C8.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤【答案】D二、填空题(每题3分,共24分)9.已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).【答案】①,③10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是时分.(按12小时制填写)【答案】1:3011.已知等腰三角形的一个内角为70°,则它的顶角为度.【答案】40或7012.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE的周长为cm.【答案】1613.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.【答案】6014.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为.【答案】15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.【答案】816.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.【答案】∠AEF=115°三、解答题(共52分)17.(本题6分)如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF【答案】证明:如图,连接MF、ME,∵MF、ME分别为Rt△FBC是和Rt△EBC斜边上的中线,∴MF=ME=BC,在△MEF中,MF=ME,点N是EF的中点,∴MN⊥EF.18.(本题6分)如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.【答案】如图,作点A关于GH的对称点A′,连接AB′,交EF于点O,将白球A打到台边GH的点O处,反弹后能击中彩球B.19.(本题8分)(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为.【答案】(1)依题意,如下图所示:(2)∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴L△PMN=PM+PN+MN=P1M+MN+P2N=P1P2=5cm.故答案为:5cm20.(本10分)某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?【答案】:(1)如图1,连接AB,AB与l的交点P就是所求分支点M分支点开在此处,总线路最短;(2)如图2,作B点关于直线l的对称点B2,连接AB2交直线l于点M,此处即为分支点.21.(本题10分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.【答案】解:△OMN是等腰直角三角形.理由:连接OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°;在△OAN和OBM中,,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.22.(本题12分)(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?【答案】解:(1)如图,直线CD为过点P的一条垂线且垂足为P,则△OCD是等腰三角形.∵OP为∠AOB的角平分线∴∠AOP=∠BOP∵∠CPO=∠DPO=90°,OP=OP∴△COP≌△DOP(ASA)∴OC=OD∴△OCD是等腰三角形.(2)如图,过点O作∠AOB的角平分线OD,过点P作PD⊥OD于点D,延长交OA,OB于点M,N,则△OMN为等腰三角形.∵OD为∠AOB的角平分线∴∠AOD=∠BOD∵∠MPO=∠NPO=90°,OD=OD∴△MOD≌△NOD(ASA)∴OM=ON∴△OMN是等腰三角形.(3)应该可画3个.①过P作∠AOB中平分线的垂线,交OA,OB于M,N,则△OMN是等腰三角形.②过P作OA垂线,交OA,OB于E,F,在EA上作EG=OE,连FG,过P作FG平行线,交OA,OB于M,N,则△OMN是等腰三角形.③过P作OB垂线,交OA,OB于E,F,在FB上作FG=OF,连EG,过P作EG平行线,交OA,OB于M,N,则△OMN是等腰三角形.所以有三个这样的等腰三角形.- 11 -。
第二章 轴对称图形单元测试(含答案)
第二章轴对称图形单元测试一、选择题1.下列图形(含阴影部分)中,属于轴对称图形的有( )A.1个B.2个C.3个D.4个2.小亮在镜中看到身后墙上的时钟如下,则实际时间最接近8:00的是( )3.下列图形:①等腰三角形;②平行四边形;③等边三角形;④等腰梯形;⑤长方形.其中,一定是轴对称图形的有( )A.2个B.3个C.4个D.5个4.如图,AC=AD,BC=BD,则有( )A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB5.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A、B.下列结论中,不一定成立的是( )A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP6.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两个部分,则该等腰三角形的底边长为( )A.7 B.10 C.7或10 D.7或117.在梯形ABCD中,AD∥BC,AD=1,BC=4,∠C=70°,∠B=40°,则AB的长为( )A.2 B.3 C.4 D.58.如图,在等腰梯形ABCD中,AD∥BC,AC、BD相交于点O,有下列五个结论:①△AOB≌△DOC;②∠DAC=∠DCA;③梯形ABCD是轴对称图形;④∠DAB+∠DCB=180°;⑤AC=BD.其中,正确的个数是( )A.2 B.3 C.4 D.59.如图,已知△ABC,求作一点P,使点P到∠BAC两边的距离相等,且PA=PB.下列确定点P的方法正确的是( )A.P为∠BAC、∠ABC的平分线的交点B.P为∠BAC的平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点10.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列五个结论:①∠DEF=∠DFE;②AE=AF;③AD垂直平分EF;④EF垂直平分AD;⑤△ABD与△ACD的面积相等.其中,正确的个数是( )A.4 B.3 C.2 D.1二、填空题11.请同学们写出两个具有轴对称性的汉字:__________.12.(1)如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD= 2.2 cm,AC=3.7 cm,则点D到AB边的距离是__________cm.(2)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B的度数为__________.13.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.(1)若△AEF的周长为10 cm,则BC的长为__________cm.(2)若∠EAF=100°,则∠BAC__________.14.(1)如图①,在Rt△ABC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=__________.(2)如图②,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=__________.15.(1)若直角三角形斜边上的高和中线分别为10 cm、12 cm,则它的面积为__________cm2.(2)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为__________.16.(1)如图①,在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=4,BC=7,则梯形ABCD的周长是__________.(2)如图②,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,DE∥AC,DE交AB于点E,M为BE的中点,连接DM.在不添加任何辅助线和字母的情况下,图中的等腰三角形共有__________个.17. 如图,在Rt△ABC中,∠BAC=90°,AB=3,M为边BC上的点,连接AM.如果将△ABM 沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是__________.18.如图,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH,…,添加的钢管长度都与OE相等,则最多能添加这样的钢管__________根.三、解答题19.利用网格作图,(1)请你在图①中画出线段AB关于线段CD所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形;(3)请你先在图③的BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.20.如图,在AABC中,BD、CE是高,G、F分别是BC、DE的中点,连接GF,试判断GF与DE有何特殊的位置关系?请说明理由.21.如图,在△ABC中,AB=AC,BC=BD=ED=EA,求∠A的度数.22.如图,在梯形ABCD 中,AD ∥BC ,AB =DC =AD ,BC =AC ,求该梯形中各内角的度数.23.如图,在等腰△ABC 中,顶角的平分线BD 交AC 于点D ,AD =3,作△ABC 的高AE 交CB 的延长线于点E ,且AE 与BC 的长是方程组55101,10552x y m x y m +=-⎧⎨-=-⎩的解.已知()1205ABCm m S=≠,求△ABC 的周长.24.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.25.在梯形ABCD中,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿边AD向点D以1 cm/s的速度移动,点Q从点C开始沿边CB向点B以2 cm/s的速度移动,如果点P、Q分别从两点同时出发,多少秒后,梯形PBQD是等腰梯形?参考答案一、1.B 2. D3.C4.A5.D6.D7.B8.C9.B 10.B二、11.答案不唯一,如目、田12.(1)1.5 (2)70°或20°13.(1)10 (2)140°14.(1)20°(2)45°15.(1)120 (2)80°或20°16.(1)17 (2)3 17.2 18.8三、19.略20.GF⊥DE理由:连接GE、GD.因为BD是△ABC的高,所以∠BDC=90°.因为G是BC的中点,所以DG=12BC.同理,EG=12BC.所以DG=EG.又因为F是DE的中点,所以在△EGD中,GF⊥DE.21.设∠A=x.因为AE=ED,所以∠ADE=∠A=x.又∠BED为△AED的外角,所以∠BED=∠ADE+∠A=2x.因为BD=ED,所以∠DBE=∠DEB=2x.因为∠BDC为△ABD 的外角,所以∠BDC=∠EBD+∠A=3x.因为BD=BC,所以∠BDC=∠C=3x.因为AB=AC,所以∠ABC=∠C=3x.又因为△ABC的内角和为180°,所以22+3x+3x=180°.解得x=(1807) °,即∠A=(1807) °22.如图,设∠1=x.因为AB=AD,所以∠1=∠2=x.因为AD∥BC,所以∠2=∠3=x.所以∠ABC=∠1+∠3=2x.因为AD∥BC,AB=DC,所以∠ABC=∠DCB=2x,AC=BD.又因为BC=AC,所以BC=BD.所以∠4=∠BCD=2x.因ABCD的内角和为180°.所以x+2x+2x=180°,解得x=36°.所以∠ABC=∠DCB=72°.因为AD∥BC,所以∠ABC+∠BAD=180°,∠DCB+∠ADC=180°,所以∠BAD=∠ADC=108°23.55101,10552,x y mx y m+=-⎧⎨-=-⎩①②由①+②得,15x=15m-3.所以x=m-15.①×2-②得15y=15m,所以y=m.由125ABCmS =,得12xy=125m,即1 2·(m1-5)m=125m.因为m≠0,所以1112(m- )=255,解得m=5.此时x=4.8,y=5.⎧⎨⎩由于AB=BC>AE,所以BC=5,AE=4.8.又因为AB=BC,BD平分∠ABC,所以AD=DC=3,即AC=6.所以△ABC的周长为6+5 x 2=16。
第13章《轴对称》单元测试卷附答案
B.2 个
C.3 个
D.4 个
9.如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线交 AB 于点 D,垂足为 E,当 AB=10,∠B=30°时,△ACD 的 周长为( C )
A.12
B.14
C.15
D.16
10.如图,在平面直角坐标系中,O 为坐标原点,A(0, 3), B(-1,0),平行于 AB 的直线 l 交 y 轴于点 C,若直线 l 上存在 点 P,使得△PAB 是等边三角形,则点 C 的坐标为( C ) A.(1,0)或(-3,0) B.(0,1)或(0,- 3) C.(0,- 3)或(0,3 3) D.(- 3,0)或(3, 3)
第十三章《轴对称》单元测试卷
(时间100分钟,满分120分)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1.下列图案属于轴对称图形的是( A )
2.下列说法错误的是( C ) A.关于某直线成轴对称的两个图形一定能完全重合 B.线段是轴对称图形 C.全等的两个三角形一定关于某直线成轴对称 D.轴对称图形的对称轴至少有一条
解:(1)如图,△A1B1C1 为所作.
(2)写出△A1B1C1 各顶点 A1,B1,C1 的坐标:A1 (3,2)
,
B1
(4,-3)
,C1
(1,-1)
;
(3)直接写出△ABC 的面积= 6.5
.
21.如图,D 是等边△ABC 的边 AB 上的一动点,以 CD 为一 边向上作等边△EDC,连接 AE,找出图中的一组全等三角形, 并说明理由.
解:△CEB 是等边三角形.理由如下: ∵AB=BC,∠ABC=120°,BE⊥AC, ∴∠CBE=∠ABE=60°. 又 DE=DB,BE⊥AC,∴CB=CE, ∴△CEB 是等边三角形.
人教版八年级上册数学《轴对称》单元检测(附答案)
人教版数学八年级上学期《轴对称》单元测试满分120分时间100分钟一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.66.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是三角形;(2)补全下面证明过程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)参考答案一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.【解析】D【解答】A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°【解析】C【解答】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=90°,故选:C.3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【解析】B【解答】∵点A(﹣3,2)与点B关于x轴对称,∴点B的坐标是(﹣3,﹣2).故选:B.4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位【解析】A【解答】∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.6【解析】B【解答】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.6.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°【解析】B【解答】∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm【解析】D【解答】∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,故选:D.8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°【解析】D【解答】当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故选:D.9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根【解析】B【解答】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)【解析】D【解答】由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.【解析】y【解答】∵点(﹣3,2)与点(3,2)的横坐标互为相反数,纵坐标相同,∴点(﹣3,2)与点(3,2)关于y轴对称,故答案为y.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.【解析】50°【解答】∵AD∥BC,∠DAC=50°,∴∠C=∠DAC=50°,∵AB=AC,∴∠B=∠C=50°,故答案为:50°.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【解析】6【解答】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.【解析】18【解答】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.【解析】(2,0)【解答】如图,∵A(0,2)∴点A关于x轴的对称点A′(0,﹣2),∵B(4,2),连接A′B交x轴于点P, ∵AB=4,AB∥x轴,O是AA′中点,∴P是A′B的中点,∴OP是△A′AB的中位线,∴OP=12AB=2,若要使PA+PB最小,则点P的坐标为(2,0).故答案为(2,0).三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.解:(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x=18−y2=9−y2,x与y都是整数,∴y是2的倍数, ∴y=2时,x=8, y=4时,x=7,y=8,x=5.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB∴∠DOP=∠BOP∵DN∥EM∴∠DPO=∠BOP∴∠DOP=∠DPO∴OD=PD解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案为:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.解:(1)△ABC的面积为2×3−12×1×2−12×1×2−12×1×3=52;(2)如图所示,△A'B'C'即为所求.(3)点M在△A'B'C'内部的对应点M'的坐标为(x,﹣y).20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.解:(1)∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,OF=FC;∴EF=BE+FC;(2)由(1)证得BE=OE,OF=CF,∴△AEF的周长=AE+EF+AF=AE+EO+OF+AF=AE+BE+FC+AF=AB+AC,∵△ABC的周长比△AEF的周长大10,∴BC=AB+AC+BC﹣AB+AC=10.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF=60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)解:(1)①△BMN≌△CDM.理由如下:∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM∵CD=4(cm)∴BM=CD∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,∴3t=2×(10﹣3t)∴t=209(秒);Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,∴10﹣3t=2×3t∴t=109(秒).∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.。
轴对称经典测试题(含答案)
一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同请指出这个图形,并说明理由.答:这个图形是:(写出序号即可),理由是.3.等腰△ABC中,若∠A=30°,则∠B=________.4.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__ __.5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形.7.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.8.如图,△ABC中,AD垂直平分边BC,且△ABC的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何请用一句话表示:.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为B E CDAABC DBHFAECGO第8题图第9题图第10题图____________.13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为__ ___.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD沿对角线BD折叠,使点C恰好落在如图C1的位置,若∠DBC=30º,则∠ABC1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=____ ___.二、解答题(共68分)17.(5分)已知点M)5,3(ba-,N)32,9(ba+关于x轴对称,求a b的值.18.(5分)已知AB=AC,BD=DC,AE平分∠FAC,问:AE与AD是否垂直为什么19.(5分)如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC 于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.第14题图第15题图第16题图ABC DEF20.(5分)如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .22.(5分)如图,在ABC中,AB=AC,A=92,延长AB到D,使BD=BC,连结DC.求D的度数,ACD的度数.A23.(5分)有一本书折了其中一页的一角,如图:测得AD =30cm,BE =20cm ,∠BEG =60°,求折痕EF 的长.24.(8分)如图所示,在△ABC 中,CD 是AB 上的中线,且DA =DB =DC .(1)已知∠A =︒30,求∠ACB 的度数; (2)已知∠A =︒40,求∠ACB 的度数; (3)已知∠A =︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.26.(7分)已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.A DBCABOEFCAF27.(7分)等边△ABC 中,点P 在△ABC 内,点Q在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试说明你的结论.28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l 剪掉标有A 的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.轴对称单元测试答案(二)一、填空题ACBPQ1.2,3 2.④,不是轴对称图形3.75度或30度4.3 5.4 6.(1)(3)(6)是轴对称图形,(2)(4)(5)不是轴对称图形7.5 8.12 9.点O到BC两端的距离相等10.1511.正反写的4和6 12.4,6 13.353cm或5cm 14.2、4,2 15.30度16.130度二、解答题18.垂直19.BC=6cm 20.略21.略22.22度,66度23.20cm 24.(1)90度;(2)90度;(3)90度;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90度25.略26.略27.是等边三角形28.略-。
数学八年级上册《轴对称》单元测试题(带答案)
∵A B=A C,
∴
故选A.
[点睛]此题考查等腰三角形的性质及三角形的内角与外角等知识点的掌握情况.根据已知求得∠A=40°是正确解答本题的关键.
二、填空题
11.请写出两个具有轴对称性的汉字.
[答案]甲、由、中、田、日等(答案不唯一).
[解析]
[分析]
根据轴对称图形的概念,即可写出:甲,日,田等字.
6.已知M(0,2)关于x轴对称的点为N,线段MN的中点坐标是()
A.(0,﹣2)B.(0,0)C.(﹣2,0)D.(0,4)
[答案]B
[解析]
根据轴对称的性质,知线段MN的中点就是原点,即线段MN的中点坐标是(0,0).
故选B
7.在△A B C中,A B=A C,D为B C的中点,则下列结论:①∠B=∠C;②A D⊥B C;③∠B A C=2∠B A D;④A B,A C边上的中线的长相等.其中正确的结论有( )
故答案选:A.
[点睛]本题考查了用坐标表示轴对称的知识点,熟练掌握点关于x轴、y轴对称的点的坐标特点是解题的关键.
3.已知线段A B和点C,D,且C A=C B,D A=D B,那么直线C D是线段A B的( )
A. 垂线B. 平行线
C. 垂直平分线D. 过中点的直线
[答案]C
[解析]
[分析]
由已知C A=C B根据线段垂直平分线的性质的逆定理可得点C在A B的垂直平分线上,同理得点D的位置
[答案]D
[解析]
[分析]
此题中没有明确指出等边三角形的边长是等腰三角形的底边还是腰长,所以我们应该分两种情况进行分析.先求出等边三角形的边长,再分两种情况进行分析求解.
[详解]解:∵等边三角形周长为45Cm,
数学八年级上册《轴对称》单元测试题(附答案)
[答案]C
[解析]
[详解]试题解析:设A D=x,∵△A B C是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥A C于点E,EF⊥B C于点F,FG⊥A B,∴∠A DF=∠DEB=∠EFC=90°,∴BF=2x,∴B D=x,CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴A D=2AE=8x﹣24,∵A D+B D=A B,∴x+8x﹣24=12,∴x=4,∴B D=4.A D=A B-B D=12-4=8,故选C.
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A.(-5,2)B.(-5,-2)C.(5,2)D.(5,-2)
[答案]B
[解析]
[分析]
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出Q的对称点的坐标.
A. 3B. 4C. 8D. 9
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A. (-5,2)B. (-5,-2)C. (5,2)D. (5,-2)
8.如图,在锐角△A B C中,A B=4 ,∠B A C=45°,∠B A C的平分线交B C于点D,M、N分别是A D和A B上的动点,则BM+MN的最小值是()
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共28分)
1.下列交通标志是轴对称图形的是( )
A. B. C. D.
2.下面的图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
3.如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有( )
人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)
人教版八年级上册数学第13章《轴对称》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1、下列图形中一定是轴对称图形的是()A.B.C.D.2、点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是()A.a=1,b=﹣3 B.a=1,b=﹣1 C.a=5,b=﹣3 D.a=5,b=﹣13、如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°4、等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°5、等腰三角形的周长为15,其中一边长为3,则该等腰三角形的底边长为()A.3 B.4 C.5 D.66、如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数为()A.58°B.56°C.62°D.60°7、如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°8、如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.9、在△ABC中,AB=AC,OB=OC,点A到BC的距离是6,O到BC的距离是4,则AO为()A.2 B.10 C.2或10 D.无法测量10、如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)11、在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,再将点A′向上平移2个单位,得到点A″,则点A″的坐标是(1,4).12、一个等腰三角形一腰上的中线把这个三角形的周长分为12和30两部分,则这个等腰三角形的腰长为20.13、如图,等腰△ABC中,AB=AC,∠A=54°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是9°.14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为.15、如图,在平面直角坐标系xOy中,已知点A(6,2),B(0,1).在x轴上找一点P,使得PA+PB最小,则点P的坐标是(2,0),此时△PAB的面积是4.16、在Rt△ABC中,∠ACB=90°,∠CAB=36°,在直线AC或BC上取点M,使得△MAB为等腰三角形,符合条件的M点有8个.。
轴对称单元测试题(含答案--高质量)
(轴对称)一、选择题(每小题3%,共30%)1。
下面四组图形中,右边与左边成轴对称的是( )A. B 。
C 。
D 。
2。
下列图形中一定有4条对称轴的是( )A 。
长方形 B.正方形 C.等边三角形 D 。
等腰直角三角形 3。
下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个 C 。
4个 D.6个 4.如图1:射线BA,CA 相交于点A,连接BC ,已知AB=AC ,∠B=400, 则∠CAE 的度数为( )A 。
400 B.600 C 。
800 D.10005.等腰三角形是轴对称图形,它的对称轴有( )A 。
1条B 。
2条 C.3条 D.1条或3条 图1 6。
如图2:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=900,则∠B 的度数为( ) A 。
30B.20C 。
40D 。
25图27。
底和腰不等的等腰三角形中,它的角平分线、中线、高共有线段( ) A 。
9条 B 。
6条 C.7条 D.3条 8。
如图3:在△ABC 中,AB=AC,∠A=360,BD ,CE 分别平分∠ABC 和∠ACB,相交于点F ,则图中等腰三角形共有( ) A 。
7个 B 。
8个 C 。
6个 D 。
9个图39。
如图4:如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1000,则∠BCD 的度数为( ) A 。
700B.800C.600D.90010。
等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为( ) 图4BCAE B C A E DAB C D E FA BCDEmA.600B.1200C.600或1500D.600或1200二、填空题(每小题3%,共15%)11.从镜子中看到背后墙上电子钟的示意数为 ,这时的实际时间为______。
12。
在△ABC 中,AB=AC,AD ⊥BC 于D ,由以上两个条件 可得_________________.(写出一个结论即可)13.如图5:在△ABC 中, ∠A=900,BD 平分∠ABC,交AC于点D,已知AD=4。
数学八年级上册《轴对称》单元综合测试题(含答案)
[点睛]此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
12.如图所示,分别作出点P关于OA,OB的对称点P1、P2,连接P1,P2,分别交OA、OB于点M、N,若P1P2=5Cm,则△PMN的周长为______________.
[答案]5
A -4031B. -1C. 1D. 4031
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 90°B. 95°C. 105°D. 110°
∴A=2016,B=-2015,
∴A+B=2016-2015=1,
故选C.
[点睛]此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 4B. 5C. 6D. 7
[答案]C
[解析]
试题分析:根据对称图形的性质可得:PM= M,PN= N,
则△PMN的周长=PM+MN+PN= M+MN+ N= =6.
考点:对称的性质
7.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△A DH中( )
[详解]解:关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,
七年级数学下册《生活中的轴对称》单元测试卷(附答案解析)
七年级数学下册《生活中的轴对称》单元测试卷(附答案解析)一、选择题(共10小题,每小题3分,共30分)1.下列图形:其中轴对称图形的个数是( )A.4B.3C.2D.12.如图,△ABC与△DEF关于直线MN成轴对称,则下列结论中不一定成立的是( )A.AB=DEB.∠B=∠EC.AB∥DFD.线段AD被MN垂直平分3.如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB等于( )A.40°B.30°C.20°D.150°4.如图,直线DE,DF分别是线段AB,BC的垂直平分线,连接DA,DC,则( )A.∠A=∠CB.∠B=∠ADCC.DA=DCD.DE=DF5.下列各点中,到∠AOB两边距离相等的是( )A.点PB.点QC.点MD.点N6.如图,点P是∠AOC的平分线上一点,PD⊥OA,垂足为点D,且PD=2,点M是射线OC上一动点,则PM的最小值为( )A.1B.1.5C.2D.2.57.如图,在△ABC中,AB=AC,BE=CD,BD=CF,若∠EDF=48°,则∠A的度数为( )A.48°B.64°C.68°D.84°8.如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )A.60°B.70°C.80°D.90°9.如图所示,将一张长方形纸片斜折过去,使顶点A落在A'处,BC为折痕,然后再把BE折过去,使之与BA'重合,折痕为BD,若∠ABC=62°,则∠EBD的度数为( )A.31°B.28°C.62°D.56°10.把一张正方形纸片按图①、图②所示的方式对折两次后,再挖去一个三角形小孔(如图③),则展开后的图形是( )A B C D二、填空题(共6小题,每小题3分,共18分)11.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形.其中一定是轴对称图形的有个.12.如图,正方形ABCD的边长为4,则图中阴影部分的面积为.13.如图,在△ABC中,直线DE是线段AC的垂直平分线,AE=2,△ABD的周长为10,则△ABC的周长为.BC的长为半径作弧,两弧相交于点14.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,大于12M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.15.如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为.16.如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F分别为BC和CD上的动点,连接AE,AF和EF.当△AEF的周长最小时,∠EAF的度数为.三、解答题(共5小题,共52分)17.(10分)如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于M,连接BM. (1)求证:△APB≌△CEB;(2)求∠PME的度数.18.(10分)如图,在由边长为1个单位长度的小正方形组成的6×8的网格中,给出了格点△ABC(顶点为网格线的交点),l是过网格线的一条直线.(1)求△ABC的面积;(2)作△ABC关于直线l对称的△A'B'C';(3)在边BC上找一点D,连接AD,使得∠BAD=∠ABD.(保留作图痕迹)19.(10分)如图,在△ABC中,以点B为圆心,BA的长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,求∠DAC的度数.20.(10分)如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上运动,PD始终保持与PA相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.判断DE与PD的位置关系,并说明理由.21.(12分)如图,BD是△ABC的角平分线,AB=AC.(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数.参考答案与解析1.B 第1个图形在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图形在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图形找不到对称轴,不是轴对称图形,不符合题意;第4个图形在竖直方向有一条对称轴,是轴对称图形,符合题意.因此轴对称图形的个数是3.故选B.2.C 由题意得,AB=DE,∠B=∠E,线段AD被MN垂直平分,故A、B、D中的结论一定成立,AB与DF不一定平行,故C中的结论不一定成立.故选C.3.C 如图,过点E作EF∥CD,则∠CEF=∠DCE=40°,∵△ACE为等边三角形,∴∠AEC=60°,∴∠AEF=∠AEC-∠CEF=20°,∵AB∥CD,∴AB∥EF,∴∠EAB=∠AEF=20°.故选C.4.C 如图,连接BD,∵直线DE,DF分别是线段AB,BC的垂直平分线,∴DA=DB,DB=DC,∴DA=DC,故选C.5.B 由题图可知,点Q在∠AOB的平分线上,∴点Q到∠AOB两边距离相等,故选B.6.C 过P点作PH⊥OC于H,如图,∵点P是∠AOC的平分线上一点,PD⊥OA,PH⊥OC,∴PH=PD=2,∵点M是射线OC上一动点,∴PM的最小值为2.故选C.7.D ∵在△ABC中,AB=AC,∴∠B=∠C.又∵BE=CD,BD=CF,∴△BDE≌△CFD,∴∠BED=∠CDF,∵∠BED+∠BDE+∠B=180°,∠CDF+∠BDE+∠EDF=180°, ∴∠B=∠EDF=48°,∴∠B=∠C=48°,∴∠A=180°-∠B-∠C=84°,故选D.8.B 过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=40°,(180°-∠BAC)=70°,∴∠ACB=12∴∠1+∠2=70°.故选B.9.B 根据折叠得出∠ABC=∠A'BC,∠EBD=∠E'BD,∵∠ABC+∠A'BC+∠EBD+∠E'BD=180°,∴∠ABC+∠EBD=90°,∵∠ABC=62°,∴∠EBD=28°.故选B.10.C 将题图③中的图形展开后得到的是选项C中的图形.故选C.11.4解析角,等边三角形,线段,等腰三角形一定是轴对称图形,故答案为4.12.8解析易知阴影部分的面积等于正方形ABCD的面积的一半,×4×4=8.所以阴影部分的面积为12故答案是8.13.14解析∵直线DE是线段AC的垂直平分线,AE=2,∴AC=2AE=4,AD=DC,∵AB+BD+AD=10,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=10+4=14.故答案为14.14.105°解析由题意可得MN垂直平分BC,则DC=BD,∴∠DCB=∠DBC=25°,∴∠CDB=180°-25°-25°=130°,∴∠CDA=180°-130°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°-50°-25°=105°.15.108°或72°解析∵AB=AC,∴∠B=∠C=36°.①当AD=AE时,∠ADE=∠AED=36°,∵∠AED=∠C,与∠AED>∠C矛盾,∴此时不符合题意;②当DA=DE时,∠DAE=∠DEA=1×(180°-36°)=72°,2∵∠BAC=180°-36°-36°=108°,∴∠BAD=108°-72°=36°,∴∠BDA=180°-36°-36°=108°;③当EA=ED时,∠ADE=∠DAE=36°,∴∠BAD=108°-36°=72°,∴∠BDA=180°-72°-36°=72°.综上所述,当△ADE是等腰三角形时,∠BDA的度数是108°或72°.16.100°解析如图,作A关于BC和CD的对称点A',A″,连接A'A″,交BC于E,交CD于F,则A'A″的长度即为△AEF 的周长的最小值.∵∠DAB=140°,∴∠AA'E +∠A ″=180°-140°=40°, ∵∠EA'A =∠EAA',∠FAD =∠A ″, ∴∠EAA'+∠A ″AF =40°, ∴∠EAF =140°-40°=100°.17.解析 (1)在等边△ABC 和等边△BPE 中, ∠ABC =∠PBE =60°,AB =BC ,PB =BE , 在△APB 与△CEB 中,{AB =CB,∠ABP =∠CBE,BP =BE,∴△APB ≌△CEB. (2)∵△APB ≌△CEB , ∴∠APB =∠CEB , ∵△BPE 是等边三角形, ∴∠BEP =∠BPE =60°,∴∠MEP +∠MPE =∠MEP +∠BEC +∠BPE =∠BEP +∠BPE =120°, ∴∠PME =180°-(∠MEP +∠MPE )=60°. 18.解析 (1)△ABC 的面积=12×4×5=10. (2)如图,△A'B'C'即为所求. (3)如图,点D 即为所求.19.解析 ∵∠B =40°,∠C =36°, ∴∠BAC =180°-∠B -∠C =104°, 由题意可得BA =BD ,∴∠BAD =∠BDA =(180°-∠B )÷2=70°, ∴∠DAC =∠BAC -∠BAD =34°. 20.解析 DE ⊥DP. 理由:∵PD =PA , ∴∠A =∠PDA ,∵直线EF 是线段BD 的垂直平分线, ∴EB =ED ,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°-90°=90°,∴DE⊥DP.21.解析(1)∠A=90°.证明如下:如图,在BC上截取BE=BA,连接DE.∵BC=AB+AD,∴CE=AD,∵BD是△ABC的角平分线,∴∠ABD=∠EBD,又∵AB=BE,BD=BD,∴△ABD≌△EBD,∴AD=DE=CE,∠A=∠DEB,∴∠C=∠EDC,∵∠DEC+∠C+∠EDC=180°,∠DEC+∠DEB=180°, ∴∠A=∠DEB=∠C+∠EDC=2∠C,∵AB=AC,∴∠C=∠ABC,∵∠A+∠ABC+∠C=180°,∴4∠C=180°,∴∠C=45°,∴∠A=2∠C=90°.(2)如图,在BC上截取CF=CD,连接DF.∵BC=BA+CD,∴BF=BA,又∵∠ABD=∠FBD,BD=BD,∴△ABD≌△FBD,∴∠A=∠DFB,∵CD=CF,∴∠CDF=∠CFD,∴∠C+2∠DFC=180°①,易知∠A+∠DFC=180°②,②×2-①可得2∠A-∠C=180°③, ∵AB=AC,∴∠ABC=∠C,∴∠A+2∠C=180°④,③×2+④可得5∠A=540°,∴∠A=108°.第11 页共11 页。
人教版数学八年级上册《轴对称》单元综合测试(含答案)
A.4B.6C.8D.10
【答案】C
【解析】
【分析】
根据 点在 的垂直平分线上得到AB=BD,所以∠D=∠BAD,所以∠ABC=30°,在△ABC中求出BD.
【详解】∠D=15°,B点在AD的垂直平分线上,则△ABD是等腰三角形,AB=BD,∠DAB=15°,∠ABC=30°.由于∠ACD=90°,则∠CAB=60°.AC=4,则AB=8.所以BD=8.
18.等腰三角形一腰上 高与另一腰的夹角为30度,则它的底角的度数为____
19.已知 、 ,点 在 轴上,若 是等腰三角形,则满足这样条件的 有________个.
三、解答题(共5小题,共58分)
20.如图,在等边三角形 中, 是 的中点,延长 到点 ,使 , .
求 的长;
(2) 吗?为什么?
21.如图,点 是等边 内一点, , .将 绕点 逆时针旋转 得 ,连接 .
8.下列说法错误的是()
A. 关于某直线对称的两个图形一定能够重合
B. 长方形是轴对称图形
C. 两个全等的三角形一定关于某直线对称
D. 轴对称图形的对称轴至少有一条
9.若等腰三角形的顶角为 ,则它一腰上的高与底边的夹角等于()
A. B. C. D.
10.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是()
故选A
【点睛】本题考察轴对称图形的对称点的相关知识点,要牢固掌握对称轴相关性质,合理的与题目相结合.
8.下列说法错误的是()
A.关于某直线对称的两个图形一定能够重合
B.长方形是轴对称图形
C.两个全等的三角形一定关于某直线对称
D.轴对称图形的对称轴至少有一条
数学八年级上册《轴对称》单元测试卷含答案
8.如图,已知Rt△A B C中,∠A C B=90°,C D是高,∠A=30°,B D=2Cm,则A B的长是( )
A. 4B. 6C. 8D. 10
9.如图,若 是等边三角形, , 是 的平分线,延长 到 ,使 ,则
A. 7B. 8C. 9D. 10
10.如图,在等边三角形A B C中,中线A D,BE交于F,则图中共有等腰三角形( )
∴△FA B,△FDE,△A DE,△B DE是等腰三角形,
∵∠ED C=∠C=60°,
∴△A B C,△D CE是等边三角形,
则图中共有等腰三角形共有6个.
故选D.
点睛:本题考查了等边三角形的性质,记住等边三角形也属于等腰三角形.
11.等腰△A B C中,A B=A C,一边上的中线B D将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()
∵以B为圆心,B C长为半径画弧,∴BE=B D=B C.∴∠B D C=∠A C B=75°.
∴∠C B D .∴∠D BE=75° 30°=45°.
∴∠BED=∠B DE= .
故选C.
考点: 1.等腰三角形的性质;2.三角形内角和定理.
8.如图,已知Rt△A B C中,∠A C B=90°,C D是高,∠A=30°,B D=2Cm,则A B的长是()
A.45B.52.5C.67.5D.75
[答案]用三角形内角和定理求出∠A B C的度数,再利用等腰三角形的性质和三角形内角和定理求出∠D B C=30°,然后即可求出∠B DE的度数:
∵A B=A C,∴∠A B C=∠A C B.
∵∠A=30°,∴∠A B C=∠A C B= .
八年级上册数学《轴对称》单元综合检测(附答案)
A.1B.2C.3D.4
12. 如图,过边长为1的等边△A B C的边A B上一点P,作PE⊥A C于E,Q为B C延长线上一点,当PA=CQ时,连PQ交A C边于D,则DE的长为()
故选C.
4.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()
A.1号袋B.2号袋C.3号袋D.4号袋
[答案]B
[解析]
[分析]
根据轴对称的性质画出图形即可得出正确选项.
[详解]解:根据轴对称的性质可知,台球走过的路径为:
(1)请用尺规作图法作出B C的垂直平分线DE,垂足为D,交A C于点E,(保留作图痕迹,不写作法);
(2)请用尺规作图法作出∠C 角平分线CF,交A B于点F,(保留作图痕迹,不写作法);
(3)请用尺规作图法在B C上找出一点P,使△PEF的周长最小.(保留作图痕迹,不写作法).
四、解答题:
20.已知点A(2A-B,5+A),B(2B-1,-A+B).
∴∠NMC=15°+15°=30°,
∴BM所在的直线是△C DM的角平分线,
又∵CM=DM,
∴BM所在的直线垂直平分C D;
(4)根据(2)同理可求∠D A B=105°,∠B C D=75°,
∴∠D A B+∠A B C=180°,
∴A D∥B C,
24.如图点O是等边 内一点, ,∠A C D=∠B CO,OC=C D,
《第十三章 轴对称》单元测试卷含答案(共6套)
《第十三章轴对称》单元测试卷(一)时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列瑜伽动作中,可以看成轴对称图形的是( )2.已知等腰三角形的一边长为6,一个内角为60°,则它的周长是( ) A.12 B.15 C.18 D.203.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为( )A.40海里 B.60海里C.70海里 D.80海里4.如图,在△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是( )A.DE=DC B.AD=DBC.AD=BC D.BC=AE5.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A.30° B.36°C .54° D.72°6.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ) A .(-2,1) B .(-1,1) C .(1,-2) D .(-1,-2)7.如图,△ABC 是等边三角形,AB =6,BD 是∠ABC 的平分线,延长BC 到E ,使CE =CD ,则BE 的长为( ) A .7 B .8 C .9 D .108.如图,∠A =80°,点O 是AB ,AC 垂直平分线的交点,则∠BCO 的度数是( ) A .40° B.30° C.20° D.10°9.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4……若∠A =70°,则∠A n-1A nB n -1的度数为( )A.70°2nB.70°2n +1C.70°2n -1D.70°2n +210.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A.3条 B.5条 C.7条 D.8条二、填空题(每小题3分,共24分)11.一个正五边形的对称轴共有________条.12.如图,等边△ABC中,AD为高,若AB=6,则CD的长度为________.13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为________.14.如图,树AB垂直于地面,为测树高,小明在C处测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,则计算出树的高度是________米.15.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.16.如图,小明上午在理发店理发时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时时间是__________.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为________.18.如图,在△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P.若∠BAC=84°,则∠BDC的度数为________.三、解答题(共66分)19.(7分)如图,已知AB=AC,AE平分∠BAC的外角,那么AE∥BC吗?为什么?20.(8分)如图,在△ABC中,∠C=∠ABC,BE⊥AC于点E,D为AB上一点,△BDE 是正三角形.求∠C的度数.21.(9分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴对称的图形△A1B1C1;(3)写出点A1,B1,C1的坐标.22.(10分)如图,从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).23.(10分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC 于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14cm,AC=6cm,求DC长.24.(10分)如图,△ABC是等边三角形,点D是直线BC上一点,以AD为一边向右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变,请求出其大小;若变化,请说明理由.25.(12分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边向下侧作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边向下侧作等边△CBD,连接DA并延长,交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?参考答案与解析1.A 2.C 3.D 4.C 5.B 6.B 7.C8.D 解析:如图,连接OA,OB.∵∠BAC=80°,∴∠ABC+∠ACB=100°.∵O 是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴OB=OC,∠OAB=∠OBA,∠OCA =∠OAC ,∴∠OBA +∠OCA =80°,∴∠OBC +∠OCB =100°-80°=20°.∴∠BCO =∠CBO =10°,故选D.9.C 解析:在△ABA 1中,∠A =70°,AB =A 1B ,∴∠BA 1A =70°.∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠B 1A 2A 1=∠BA 1A 2=35°.同理可得∠B 2A 3A 2=∠B 1A 2A 12=17.5°=70°22,∠B 3A 4A 3=12×17.5°=70°23,∴∠A n -1A n B n -1=70°2n -1.故选C. 10.C 解析:分别以AB ,AC 为腰的等腰三角形有4个,如图①所示,分别为△ABD ,△ABE ,△ABF ,△ACG ,∴满足条件的直线有4条;分别以AB ,AC ,BC 为底的等腰三角形有3个,如图②所示,分别为△ABH ,△ACM ,△BCN ,∴满足条件的直线有3条.综上可知满足条件的直线共有7条,故选C.11.5 12.3 13.-10 14.10 15.13 16.10:4517.21° 解析:∵AB =AC ,∠A =32°,∴∠ABC =∠ACB =74°.依题意可知BC =EC ,∴∠BEC =∠EBC =53°,∴∠ABE =∠ABC -∠EBC =74°-53°=21°. 18.96° 解析:如图,过点D 作DE ⊥AB 交AB 的延长线于点E ,DF ⊥AC 于点F .∵AD 是∠BAC 的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.19.解:AE ∥BC .(1分)理由如下:∵AB =AC ,∴∠B =∠C .由三角形外角的性质得∠DAC =∠B +∠C =2∠B .(4分)∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE ,∴AE ∥BC .(7分)20.解:∵△BDE 是正三角形,∴∠DBE =60°.(2分)∵BE ⊥AC ,∴∠BEA =90°,∴∠A =90°-60°=30°.(4分)∵∠ABC +∠C +∠A =180°,∠C =∠ABC ,∴∠C =180°-30°2=75°.(8分)21.解:(1)依题意,S △ABC =12×5×3=152.(3分)(2)△A 1B 1C 1如图所示.(6分)(3)A 1(1,5),B 1(1,0),C 1(4,3).(9分)22.解:选择的条件是:①∠B =∠C ;②∠BAD =∠CDA (或①③,①④,②③).(2分)证明:在△BAD 和△CDA 中,∵⎩⎨⎧∠B =∠C ,∠BAD =∠CDA ,AD =DA ,∴△BAD ≌△CDA (AAS),∴∠ADB =∠DAC ,(8分)∴AE =DE ,∴△AED 为等腰三角形.(10分)23.解:(1)∵AD ⊥BE ,BD =DE ,EF 垂直平分AC ,∴AB =AE =EC ,∴∠AED =∠B ,∠C =∠CAE .∵∠BAE =40°,∴∠AED =180°-∠BAE 2=70°,(3分)∴∠C =12∠AED =35°.(5分)(2)∵△ABC 的周长为14cm ,AC =6cm ,∴AB +BE +EC =8cm ,(8分)即2DE +2EC =8cm ,∴DC =DE +EC =4cm.(10分) 24.解:(1)∠BAD =∠CAE .(2分)(2)∠DCE =60°,不发生变化.(3分)理由如下:∵△ABC 和△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD =120°,∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .(6分)在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS),∴∠ACE =∠B =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°.(10分)25.解:(1)△OBC ≌△ABD .(1分)证明:∵△AOB ,△CBD 都是等边三角形,∴OB =AB ,CB =DB ,∠ABO =∠DBC =60°,∴∠OBC =∠ABD .(3分)在△OBC 和△ABD中,⎩⎨⎧OB =AB ,∠OBC =∠ABD ,CB =DB ,∴△OBC ≌△ABD (SAS).(5分)(2)由(1)知△OBC ≌△ABD ,∴∠BOC =∠BAD =60°.又∵∠OAB =60°,∴∠OAE =180°-60°-60°=60°,∴∠EAC =120°,∠OEA =30°,∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰.(8分)∵在Rt△AOE 中,OA =1,∠OEA =30°,∴AE =2,(9分)∴AC =AE =2,∴OC =1+2=3,∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.(12分)《第十三章 轴对称》单元测试卷(二)一、选择题(每小题4分,共24分)1.下列图形中不是轴对称图形的是 ……… ( )A B C D2.在下列说法中,正确的是……… ( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形;B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形;C .等腰三角形是关于底边中线成轴对称的图形;D .一条线段是关于经过该线段中点的直线成轴对称的图形3.在平面直角坐标系中,点P (2,-3)关于Y 轴的对称点在… ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4. 等腰三角形的一个外角为110°,则它的底角是………()A、70°B、50°或70°C、40°或70°D、40°5. 点M(-5,3)关于直线x=1的对称点的坐标是………()A.(-5,-3) B.(6,-3) C.(5,3) D.(6,3)6.如图,在△ABC中,DE是AC的垂直平分线,AB=12cm,BC=10cm,则△BCD的周长为()A.22 cm B.16cm C.26cm D.25cm二、填空题(每小题4分,共40分)1. 若三角形是轴对称图形,且有一个角是60°,则这个三角形是三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称图形单元测试卷
及答案
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
《轴对称图形》单元测试卷 一、选择题:(本题共10小题,每小题3分,共30分)
1. (201
2.宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是……( )
2.小明的墙上挂着一个电子表,对面的墙上挂着一面镜子,小明看到镜子中的表的时间如图
所示,那么实际的时间是…………………………………………………………( ) A .12:51; B .15:21; C .21:15; D .21:51;
3.(2013钦州)等腰三角形的一个角是80°,则它顶角的度数是……………………( )
A .80°
B .80°或20°
C .80°或50°
D .20°
4.(2014秋博野县期末)△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,∠A=40°,则∠BOC=……………………………………………………………………( )
A . 110°
B . 120°
C . 130°
D . 140°
5.(2009攀枝花)如图所示,在等边△ABC 中,点D 、E 分别在边BC 、AB 上,且BD=AE ,AD 与CE 交于点F ,则∠DFC 的度数为…………………………………………………( )
A .60°
B .45°
C .40°
D .30°
6.(2013葫芦岛)如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B=………………………………………………( )
A .60°
B .70°
C .80°
D .90°
7.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交
AC 于N ,若BM+CN=9,则线段MN 的长为………………………………………( )
A .6
B .7
C .8
D .9
A. B. C. D.
第5题图 第2题图
第6题图 第7题图
8.在如图所示的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点).在这张5×5的方格纸中,找出格点C ,使AC=BC ,则满足条件的格点C 有…………( ) A .5个; B .4个; C .3个; D .2个;
9.(2013枣庄)如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为……………………………………………………( )
A .20
B .12
C .14
D .13
10. 如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为……………………………………( )
A .130°
B .120°
C .110°
D .100°
二、填空题:(本题共8小题,每小题3分,共24分)
11.若()2
120a b -+-=,则以a 、b 为边长的等腰三角形的周长为 .
12.等腰三角形中有一个角是50°,它的一腰上的高与底边的夹角为 .
13.如图,△ABC 中,AB+AC=6cm ,BC 的垂直平分线l 与AC 相交于点D ,则△ABD 的周长为 ________cm .
14.如图,∠AOE=∠BOE=15°,EF ∥OB ,EC ⊥OB ,若EC=1,则EF= .
15.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是 .
16.(2014秋安阳县校级期末)如图,∠MON 内有一点P ,P 点关于OM 的轴对称点是G ,P
点关于ON 的轴对称点是H ,GH 分别交OM 、ON 于A 、B 点,若∠MON=35°,则∠GOH= .
17.如图,在等腰三角形ABC 中,AB=AC ,点D 为AC 上一点,且AD=BD=BC ,则等腰三角形ABC 的顶角度数为 .
第14题第8题图 第9题图 第10题图 第13题图 第15题图
18.如图,△ABC 中,AB=AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC= °.
三、解答题:(本大题共10大题,满分76分)
19.(本题满分7分)
已知,如图,AB=AC ,∠DBC=∠DCB ,求证:AD 平分∠BAC.
20. (本题满分7分)如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连接AC ,CF .求证:CA 是∠DCF 的平分线.
21. (本题满分6分)如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路OA 、OB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论)
22. (本题满分7分)(2012乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).
(1)在图中作出△ABC 关于直线l 对称的
111A B C ; (要求:A 与1A ,B 与1B ,C 与1C 相对应)
(2)在(1)问的结果下,连接1BB ,1CC ,
求四边形11BB C C 的面积.
23.(本题满分7分)
已知:如图,△DAC 、△EBC 均是等边三角形,点
A 、C 、
B 在
同一条直线上,且AE 、BD 分别与CD 、CE 交于点M 、N .求证:
(1)AE=DB ;
(2)△CMN 为等边三角形.
24. (本题满分7分)
如图,在△ABC 中,∠C=90°,DE 垂直平分斜边AB ,分别交AB ,BC 于点D ,E.若∠CAE=∠B+30°,求∠AEB 的度数.
25.(本题满分8分)
如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且DB=DC,求证:EB=FC.
26. (本题满分8分)
在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.
27. (本题满分10分)
如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:CD=BF;
(2)求证:AD⊥CF;
(3)连接AF,试判断△ACF的形状.
28. (本题满分9分)
如图,△ABC中,∠ACB=90°,AC=BC=6,M点在边AC上,且CM=2,过M点作AC的垂线交AB边于E点,动点P从点A出发沿AC边向M点运动,速度为每秒1个单位,当动点P到达M点时,运动停止,连接EP、EC,在此过程中.
(1)当t为何值时,△EPC的面积为10
(2)将△EPC沿CP翻折后,点E的对应点为F点,当t为何值时,PF∥EC。