2017高教社杯全国大学生数学建模竞赛题目A.B

合集下载

2017数学建模国赛题目

2017数学建模国赛题目

2017数学建模国赛题目(实用版)目录一、2017 年数学建模国赛简介二、2017 年数学建模国赛题目概述三、题目 A:基于无人机的森林防火系统四、题目 B:城市交通信号灯控制优化五、题目 C:无人机航拍图像处理及应用六、题目 D:新型城镇化背景下的乡村规划正文一、2017 年数学建模国赛简介2017 年数学建模国赛,即 2017 年全国大学生数学建模竞赛,是中国工业与应用数学学会主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

二、2017 年数学建模国赛题目概述2017 年数学建模国赛共有四个题目,分别是:基于无人机的森林防火系统、城市交通信号灯控制优化、无人机航拍图像处理及应用、新型城镇化背景下的乡村规划。

这四个题目分别涉及到林业、交通、航空、城乡规划等领域,旨在考查学生运用数学知识解决实际问题的能力。

三、题目 A:基于无人机的森林防火系统题目 A 要求参赛选手针对森林防火问题,建立无人机监测森林火情的数学模型,并结合实际数据,分析火情发生的可能性,为森林防火工作提供科学依据。

此题考查了学生对无人机技术、遥感技术、数据挖掘等领域的综合运用能力。

四、题目 B:城市交通信号灯控制优化题目 B 要求参赛选手针对城市交通信号灯控制问题,建立数学模型,分析交通流量、拥堵状况等数据,优化信号灯控制策略,提高道路通行能力。

此题考查了学生对交通工程、数据分析、优化算法等领域的综合运用能力。

五、题目 C:无人机航拍图像处理及应用题目 C 要求参赛选手针对无人机航拍图像处理问题,研究图像去噪、增强、拼接等技术,并结合实际场景,分析航拍图像在农业、地质、环保等领域的应用价值。

此题考查了学生对图像处理、计算机视觉、遥感技术等领域的综合运用能力。

全国大学生数学建模竞赛2017年D题巡检线路的排班及优秀论文精选

全国大学生数学建模竞赛2017年D题巡检线路的排班及优秀论文精选

2017年高教社杯全国大学生数学建模竞赛题目D题巡检线路的排班某化工厂有26个点需要进行巡检以保证正常生产,各个点的巡检周期、巡检耗时、两点之间的连通关系及行走所需时间在附件中给出。

每个点每次巡检需要一名工人,巡检工人的巡检起始地点在巡检调度中心(XJ0022),工人可以按固定时间上班,也可以错时上班,在调度中心得到巡检任务后开始巡检。

现需要建立模型来安排巡检人数和巡检路线,使得所有点都能按要求完成巡检,并且耗费的人力资源尽可能少,同时还应考虑每名工人在一时间段内(如一周或一月等)的工作量尽量平衡。

问题1.如果采用固定上班时间,不考虑巡检人员的休息时间,采用每天三班倒,每班工作8小时左右,每班需要多少人,巡检线路如何安排,并给出巡检人员的巡检线路和巡检的时间表。

问题2.如果巡检人员每巡检2小时左右需要休息一次,休息时间大约是5到10分钟,在中午12时和下午6时左右需要进餐一次,每次进餐时间为30分钟,仍采用每天三班倒,每班需要多少人,巡检线路如何安排,并给出巡检人员的巡检线路和巡检的时间表。

问题3.如果采用错时上班,重新讨论问题1和问题2,试分析错时上班是否更节省人力。

化工厂巡检路径规划与建模摘要本文主要研究化工厂巡检路径规划与排班问题。

为提高巡检效率,优化资源分配,需制定科学合理的巡检路径。

通过对化工厂巡检工作内容和特点分析,并制定相应的目标体系及约束条件,建立了最短路径的多目标规划模型,使用lingo和Excel求解,得到巡检人员最少的优化方案。

针对问题一:以每班需巡检人员尽可能少,工作量尽可能平衡为目标,以固时上班、无休息时间、每条线路周期不超过35min、每天三班制、每班8小时左右为约束,建立多目标规划模型,用图论法求解。

先考虑分区,以线路周期内包含尽可能多巡检点与最短路径为目标,将所给巡检点连通图分组,得到共5条巡检路线,最少需5名巡检人员,如路线:22-21-4-2-1-3-6-14-21(具体巡检路线见正文图6,巡检时间表见附录表1、2、3)。

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。

我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。

让我们一起到店铺一起学习吧!2017年高教社杯全国大学生数学建模竞赛题目A题 CT系统参数标定及成像CT(Computed T omography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。

一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。

X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。

对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。

CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。

请建立相应的数学模型和算法,解决以下问题:(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。

对应于该模板的接收信息见附件2。

请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。

(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。

利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。

另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。

2017全国大学生数学建模竞赛---D题解析

2017全国大学生数学建模竞赛---D题解析

班倒,每班工作8小时左右,每班需 要多少人,巡检线路如何安排,并 给出巡检人员的巡检线路和巡检的 时间表。
大约是 5 到 10 分钟,在中午12 时和下午 6 时左右需要进餐一 次,每次进餐时间为 30 分钟, 仍采用每天三班倒,每班需要
问题3. 如果采用错时上班,重新讨论 问题 1 和问题 2,试分析错时上 班是否更节省人力。
2017全国大学生数学建模竞赛---D题解析
巡检线路的排班——2017年D题讲评
• 题目 • 问题分析及问题1的求解 • 问题2的求解 • 问题3的求解 • 阅卷情况简述
题目 —— 巡检线路的排班
1. 题目 —— 巡检线路的排班
表1 Excel表中的基本信息
某化工厂有 26 个点需要进行巡检以保证正常生
2.2 问题1的求解
现知道每个班需要5名工人,所 以需要将巡视点划分成5个区域,每 个区域最多包含6个点,最少也要有4 个点,其目的是保证每个区域的工作 量(巡视时间)尽量平衡。
由于题目要求,每位工人均从22 号点开始巡视,因此,距22号点较近 的点则多安排一些,而距22号较远的
问题分析 —— 问题1的求解
从上述计算过程来看,实际上, 并不需要精确求解TSP,只需近似计 算,估计出一个下界即可。
例如,可以采用手工计算,也可 以采用某些启发式算法,如最近领域 法、最近插入法、最远插入法、最便 宜插入法、任意插入法和交换两边改 进方法等。
如果不打算自己手工编程,可以 使用现成的软件,例如,R软件中的 TSP函数(见[2])就可以很好地解决 这些问题,提供不同的参数,选择你 喜欢的算法。

问题分析 —— 问题1的求解
每一组都找出相应TSP的结果, 具体分组和相应的TSP图形如图4 所示。 这种分组方式是为了满足题目的要 求: • 在规定的巡视时间间隔内完成巡视 ; • 每位工人的工作量尽量平衡,巡视 时间即不能过长,也不能过短。

D2全国大学生数学建模竞赛2017年D题巡检线路的排班及优秀论文精选

D2全国大学生数学建模竞赛2017年D题巡检线路的排班及优秀论文精选

2017年高教社杯全国大学生数学建模竞赛题目D题巡检线路的排班某化工厂有26个点需要进行巡检以保证正常生产,各个点的巡检周期、巡检耗时、两点之间的连通关系及行走所需时间在附件中给出。

每个点每次巡检需要一名工人,巡检工人的巡检起始地点在巡检调度中心(XJ0022),工人可以按固定时间上班,也可以错时上班,在调度中心得到巡检任务后开始巡检。

现需要建立模型来安排巡检人数和巡检路线,使得所有点都能按要求完成巡检,并且耗费的人力资源尽可能少,同时还应考虑每名工人在一时间段内(如一周或一月等)的工作量尽量平衡。

问题1.如果采用固定上班时间,不考虑巡检人员的休息时间,采用每天三班倒,每班工作8小时左右,每班需要多少人,巡检线路如何安排,并给出巡检人员的巡检线路和巡检的时间表。

问题2.如果巡检人员每巡检2小时左右需要休息一次,休息时间大约是5到10分钟,在中午12时和下午6时左右需要进餐一次,每次进餐时间为30分钟,仍采用每天三班倒,每班需要多少人,巡检线路如何安排,并给出巡检人员的巡检线路和巡检的时间表。

问题3.如果采用错时上班,重新讨论问题1和问题2,试分析错时上班是否更节省人力。

研究巡检路线的排班状况及优化问题摘要在确保某工厂能正常运行的情况下,以减少人力资源为目的,让工人生产力得到充分发挥且每名工人的工作量尽可能均衡,确定巡检人员数量,制定恰当的工作时间表和工作路线图。

针对问题一:以时间最短为目标函数建立多目标优化模型,采用0-1规划进行建立,先利用excel对附件的数据进行处理,借助lingo软件运行,结合人工对数据的整理,得出要完成该任务每班需要5个工人巡检较为理想,该5个工人具体巡检时间(见表6-1至表6-5)和巡检路线(如图6-2至图6-6)。

针对问题二:在问题一的基础上满足巡检工人2小时左右休息一次,因固定上班时间,三班倒,则假设三个班在固定时间进餐,不考虑进餐时间,以时间最少为目标函数,增加约束条件,建立0-1规划,利用lingo软件运行以及对数据的整理,得到每班需要6个工人巡检较为理想,其巡检时间(见表6-7至表6-12)和巡检路线(如图6-9至图6-14)。

2017年高教杯数学建模b题

2017年高教杯数学建模b题

题目:2017年高教杯数学建模B题文章:一、引言在2017年的高教杯数学建模竞赛中,B题一直备受关注。

它涉及了许多实际问题和数学模型,挑战了参赛者的数学建模能力。

本文将从不同的角度来深入探讨这一题目,并以此为例,分析数学建模的深度和广度。

二、问题概述2017年高教杯数学建模B题主要涉及了城市停车管理和交通流量控制的问题。

参赛者需要结合实际数据和条件,建立合适的数学模型,以解决停车位分配和交通流量控制的优化问题。

这一问题涉及了概率统计、优化算法和运筹学等多个学科的知识,要求参赛者综合运用数学知识来解决实际问题。

三、深度和广度的探讨1. 从简到繁的探讨我们可以从简单的停车位分配问题入手,讨论如何根据停车需求和停车位分布情况,来实现最优的停车位分配方案。

逐步引入交通流量控制和路网优化问题,探讨如何通过交通信号灯的调配和道路建设来优化城市的交通流量。

2. 由浅入深的探讨我们可以先讨论停车位分配和交通信号灯的简单模型,再逐步引入实际的交通流量数据和城市规划条件,来建立更为复杂的数学模型。

在此过程中,参赛者需要考虑到多个变量和约束条件,涉及到多种数学方法和算法的综合运用。

四、主题的总结和回顾通过对2017年高教杯数学建模B题的深度和广度探讨,我们可以发现数学建模的重要性和复杂性。

在解决实际问题时,我们需要考虑到问题的多方面因素,并建立合适的数学模型来描述和求解这些问题。

我们也能够体会到数学建模在促进社会发展和解决实际问题中所起到的关键作用。

五、个人观点和理解个人而言,我认为数学建模是一项富有挑战性但又充满乐趣的活动。

通过参与数学建模竞赛,我学会了将数学知识与实际问题相结合,培养了自己解决实际问题的能力。

我也意识到数学建模需要综合运用多种数学方法和算法,需要有扎实的数学基础和灵活的思维能力。

六、总结通过对2017年高教杯数学建模B题的讨论,我们不仅能够了解到这一题目所涉及的实际问题和数学模型,也能够体会到数学建模的深度和广度。

2017全国大学生数学建模比赛a题国一优秀论文doc

2017全国大学生数学建模比赛a题国一优秀论文doc

2017全国大学生数学建模比赛a题国一优秀论文.doc2017全国大学生数学建模比赛a题国一优秀论文.doc制动器试验台的控制方法分析摘要汽车制动性能的检测是机动车安全技术检验的重要内容之一,制动器的设计也成为车辆设计中重要的环节,在车辆设计阶段需要在制动试验台上对路试制动情况进行模拟,本文主要对制动试验台上的一系列问题进行了研究。

对问题1,我们利用能量守恒定律,把车辆平动时具有的动能等效地转化为试验台上飞轮和主轴等机构转动时具有的转动动能,以此求得等效的转动惯量为。

对问题2,根据刚体转动知识建立了飞轮转动的积分模型,求得3个飞轮的转动惯量,进而可以组合成8种机械惯量。

由电动机补偿惯量的范围及问题1等效的转动惯量,可以计算出需要电动机补偿的惯量为,或,考虑节能时,取补偿惯量为。

对问题3,由机械动力学知识建立刚体转动的微分模型,可以得到电动机驱动电流依赖于可观测量(主轴的扭矩)的数学模型表达式为,代入已知数据可以计算出驱动电流为。

对问题4,通过固定机械惯量与路试时的转动惯量进行比较,确定电惯量的补偿量,进而确立了混合惯量模拟方法,建立微分方程模型,求出主轴扭矩为恒定值,又对实验的数据与理论值进行比较,用隔项逐差法分析了相对误差的大小分别为,可以得知该控制方法是切实可行的。

对问题5,我们可以根据自动控制原理建立单闭环反馈系统,通过传感器检测出主轴的扭矩,通过线性关系建立差分模型,可依据前一时间段观测到的瞬时扭矩,求出前段时间的电流值,并可预测出本时段驱动电流的值。

将能量误差等效为预测电流值与理论值的相对误差,利用问题4的数据,分析处理得到的相对误差为,此控制方法比较合理。

对问题6,我们分析了上个模型在实际模拟时要受到转速的影响,可在模型5的系统上再加上一个转速反馈,建立双闭环反馈系统,反应了转速与扭矩的关系(常数),可预测出下段时间的电流。

由问题4求出扭矩和转速的相对误差的倒数的比重等效为预测的电流、的权重,对其加权求和后计算出与其理论值的相对误差为,此系统的控制方法较问题5更加合理一些。

全国数学建模竞赛题目A,B

全国数学建模竞赛题目A,B

2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力地影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低地现象.因为城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道地通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.车道被占用地情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力地影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据.视频1<附件1)和视频2<附件2)中地两个交通事故处于同一路段地同一横断面,且完全占用两条车道.请研究以下问题:1.根据视频1<附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力地变化过程.根据问题1所得结论,结合视频2<附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响地差异.构建数学模型,分析视频1<附件1)中交通事故所影响地路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间地关系.假如视频1<附件1)中地交通事故所处横断面距离上游路口变为140M,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离.请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口.附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车地交通流量,且换算成标准车当量数.附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2地数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试卷专题页面:试卷下载地址:2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片地拼接复原破碎文件地拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要地应用.传统上,拼接复原工作需由人工完成,准确率较高,但效率很低.特别是当碎片数量巨大,人工拼接很难在短时间内完成任务.随着计算机技术地发展,人们试图开发碎纸片地自动拼接技术,以提高拼接复原效率.请讨论以下问题:1. 对于给定地来自同一页印刷文字文件地碎纸机破碎纸片<仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出地中、英文各一页文件地碎片数据进行拼接复原.如果复原过程需要人工干预,请写出干预方式及干预地时间节点.复原结果以图片形式及表格形式表达<见【结果表达格式说明】).2. 对于碎纸机既纵切又横切地情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出地中、英文各一页文件地碎片数据进行拼接复原.如果复原过程需要人工干预,请写出干预方式及干预地时间节点.复原结果表达要求同上.3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件地碎纸片拼接复原问题需要解决.附件5给出地是一页英文印刷文字双面打印文件地碎片数据.请尝试设计相应地碎纸片拼接复原模型与算法,并就附件5地碎片数据给出拼接复原结果,结果表达要求同上.【数据文件说明】(1)每一附件为同一页纸地碎片数据.(2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片.(3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片.附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面.该附件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片地两面分别对应文件000a、000b.【结果表达格式说明】复原图片放入附录中,表格表达格式如下:(1)附件1、附件2地结果:将碎片序号按复原后顺序填入1×19地表格;(2)附件3、附件4地结果:将碎片序号按复原后顺序填入11×19地表格;(3)附件5地结果:将碎片序号按复原后顺序填入两个11×19地表格;(4)不能确定复原位置地碎片,可不填入上述表格,单独列表.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

布放点的海水速度最大可达到1.5m/s、风速最大可达到36m/s。

请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

说明近海风荷载可通过近似公式F=0.625×Sv2(N)计算,其中S为物体在风向法平面的投影面积(m2),v为风速(m/s)。

近海水流力可通过近似公式F=374×Sv2(N)计算,其中S为物体在水流速度法平面的投影面积(m2),v为水流速度(m/s)。

2016高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题小区开放对道路通行的影响2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。

除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。

一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。

小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。

也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。

还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。

城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题:1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。

2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。

3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。

请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。

4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

全国大学生数学建模竞赛论文格式规范(全国大学生数学建模竞赛组委会,2016年修订稿)为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。

一、纸质版论文格式规范第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。

第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。

第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

摘要专用页必须单独一页,且篇幅不能超过一页。

第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。

第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。

赛题中提供的数据不要放在附录。

如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。

论文附录必须打印装订在论文纸质版中。

如果确实没有需要以附录形式提供的信息,论文可以没有附录。

第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。

第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。

第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。

在不违反本规范的前提下,各赛区可以对论文增加其他要求。

二、电子版论文格式规范第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。

除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为PDF或者Word格式之一(建议使用PDF格式),不要压缩,文件大小不要超过20MB。

第十一条,支撑材料(不超过20MB)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。

所有支撑材料使用WinRAR软件压缩在一个文件中(后缀为RAR);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。

支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。

如果确实没有需要提供的支撑材料,可以不提供支撑材料。

三、本规范的实施与解释第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。

第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。

说明:(1)本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。

(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。

(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。

评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。

赛区评阅编号(由赛区组委会填写):2016年高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或资料(包括网上资料),必须按照规定的参考文献的表述方式列出,并在正文引用处予以标注。

在网上交流和下载他人的论文是严重违规违纪行为。

我们以中国大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号(从A/B/C/D中选择一项填写):我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):(指导教师签名意味着对参赛队的行为和论文的真实性负责)日期:年月日(请勿改动此页内容和格式。

此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。

以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。

)赛区评阅编号(由赛区组委会填写):2016年高教社杯全国大学生数学建模竞赛编号专用页送全国评阅统一编号(赛区组委会填写):全国评阅随机编号(全国组委会填写):(请勿改动此页内容和格式。

此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。

注意电子版论文中不得出现此页。

)。

相关文档
最新文档