2016年高教社杯全国大学生数学建模竞赛题目请先阅读全国大学生

合集下载

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。

我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。

让我们一起到店铺一起学习吧!2017年高教社杯全国大学生数学建模竞赛题目A题 CT系统参数标定及成像CT(Computed T omography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。

一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。

X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。

对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。

CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。

请建立相应的数学模型和算法,解决以下问题:(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。

对应于该模板的接收信息见附件2。

请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。

(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。

利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。

另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。

2016年国赛题目

2016年国赛题目

2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

2016高教社杯全国大学生数学建模竞赛题目A题解题思路

2016高教社杯全国大学生数学建模竞赛题目A题解题思路

2016高教社杯全国大学生数学建模竞赛题目A题系泊系统的设计分析初稿,旨在交流,有各种做题思路,大家自由发挥!不保证正确,如有错误,欢迎指正!注意1:程序为最初稿,只是证明解的存在性,可以使用二分法、牛顿法等进行进一步求解!2:剩下的可以使用锚链线等更复杂的理论:请继续查阅文献,给文章加分3:此外可以化下面的流程图,解释求解程序,给文章加分4:剩下题目问题原则上是把问题做的更复杂,考虑更多的受力,请大家自行脑补。

5:第一天说了对系缆力的计算,目前主要有三种模型:悬链线模型(我们下面说的第三种静力学分析)、以多体动力学理论为基础的集中质量一弹簧模型(我们下面说的第二种,需要matlab做常微分方程数值解)以及细长杆模型(我们下面说的第一种,力学有限元分析))。

查阅参考文献《深海系泊系统动力特性研究进展》,请大家自行选择各类方法。

1. 某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

1. 某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

分析:为简化起见, 按平浮处理,风引起的水平力x F()()220.625,0.6252x F v S h r h h v θ'==⨯-浮力f F 为2f F g r h ρπ'=其中h '为正浮吃水深度。

则对浮标的方程有 1111011011sin ,cos sin ,cos x f x f F T F T G F T F G T θθθθ==+=-= (1)其中0G 为浮标自重,00G m g =,0m 为浮标的质量为1000kg 。

【2016年高教社杯全国大学生数学建模竞赛赛题】CUMCM2016-Problem-C-Chinese-version

【2016年高教社杯全国大学生数学建模竞赛赛题】CUMCM2016-Problem-C-Chinese-version

全国大学生数学建模竞赛真题试卷复习材料2016年高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
C题电池剩余放电时间预测
铅酸电池作为电源被广泛用于工业、军事、日常生活中。

在铅酸电池以恒定电流强度放电过程中,电压随放电时间单调下降,直到额定的最低保护电压(Um,本题中为9V)。

从充满电开始放电,电压随时间变化的关系称为放电曲线。

电池在当前负荷下还能供电多长时间(即以当前电流强度放电到Um的剩余放电时间)是使用中必须回答的问题。

电池通过较长时间使用或放置,充满电后的荷电状态会发生衰减。

问题1 附件1是同一生产批次电池出厂时以不同电流强度放电测试的完整放电曲线的采样数据。

请根据附件1用初等函数表示各放电曲线,并分别给出各放电曲线的平均相对误差(MRE,定义见附件1)。

如果在新电池使用中,分别以30A、40A、50A、60A和70A电流强度放电,测得电压都为9.8伏时,根据你获得的模型,电池的剩余放电时间分别是多少?
问题2 试建立以20A到100A之间任一恒定电流强度放电时的放电曲线的数学模型,并用MRE评估模型的精度。

用表格和图形给出电流强度为55A时的放电曲线。

问题3 附件2是同一电池在不同衰减状态下以同一电流强度从充满电开始放电的记录数据。

试预测附件2中电池衰减状态3的剩余放电时间。

2016年全国大学生数学建模竞赛题

2016年全国大学生数学建模竞赛题

2001高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)C题基金使用计划某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。

当前银行存款及各期国库券的利率见下表。

假设国库券每年至少发行一次,发行时间不定。

取款政策参考银行的现行政策。

校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。

校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。

请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券。

3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多摘要:运用基金M分成n份(M1,M2,…,Mn),M1存一年,M2存2年,…,Mn存n 年.这样,对前面的(n-1)年,第i年终时M1到期,将Mi及其利息均取出来作为当年的奖金发放;而第n年,则用除去M元所剩下的钱作为第n年的奖金发放的基本思想,解决了基金的最佳使用方案问题.关键词:超限归纳法;排除定理;仓恩定理1问题重述某校基金会有一笔数额为M元的基金,欲将其存入银行或购买国库券.当前银行存款及各期国库券的利率见表1.假设国库券每年至少发行一次,发行时间不定.取款政策参考银行的现行政策.表1 存款年利率表校基金会计在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额.校基金会希望获得最佳的基金使用计划,以提高每年的奖金额.需帮助校基金会在如下情况下设计基金使用方案,并对M=5 000万元,n=10年给出具体结果:①只存款不购国库券;②可存款也可购国库券.③学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多20%.2模型的分析、假设与建立2.1模型假设①每年发放的奖金额相同;②取款按现行银行政策;③不考虑通货膨胀及国家政策对利息结算的影响;④基金在年初到位,学校当年奖金在下一年年初发放;⑤国库券若提前支取,则按满年限的同期银行利率结算,且需交纳一定数额的手续费;⑥到期国库券回收资金不能用于购买当年发行的国库券.2.2符号约定K——发放的奖金数;ri——存i年的年利率,(i=1/2,1,2,3,5);Mi——支付第i年奖金,第1年开始所存的数额(i=1,2,…,10);U——半年活期的年利率;2.3模型的建立和求解2.3.1情况一:只存款不购国库券(1)分析令:支付各年奖金和本金存款方案———Mij (i =1,…,10,i ;j 属于N ). 将各方案ij M 看成元素,构成集合A则ij M 属于A1,210;I =所以A 按I 取值分10行根据仓恩定理:分行集中,任何一单行有上界,则必包含一个极大元素。

【免费阅读】2016全国大学生数学建模竞赛A题题目及参考答案

【免费阅读】2016全国大学生数学建模竞赛A题题目及参考答案

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题 城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS 记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?分分工会舒服的规划法规f x c f 是否撒的发生的发生fx c f 是否撒的发生的发生f x c f 是否撒的发生的发生fx c f 是否撒的发生的发生fx c f 是否撒的发生的发生f x c f 是否撒的发生的阿斯顿发斯蒂芬斯蒂芬题 目 A 题 城市表层土壤重金属污染分析摘 要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(CUMCM)是面向全国各高校学生的大型数学建模类比赛。

在众多赛题中,B题以其复杂的实际问题背景和深入的应用数学知识引起了广泛关注。

本文旨在针对B题的解题过程进行详细分析,并做出相应的总结。

二、题目概述B题主要描述了一个实际生活中遇到的问题:基于网络平台的交通流量预测。

题目要求参赛者根据历史交通流量数据,分析交通流量的变化规律,并建立数学模型进行预测。

三、解题分析1. 数据收集与预处理首先,我们需要收集相关的历史交通流量数据。

这些数据可能包括时间、地点、交通流量等信息。

收集到的原始数据需要进行清洗和预处理,例如去除异常值、缺失值等,以获得更为准确的数据。

2. 建立数学模型根据数据的特点和问题需求,我们选择合适的数学模型进行建模。

考虑到交通流量与时间的关系较为密切,我们可以选择时间序列分析模型,如ARIMA模型等。

此外,考虑到不同地点之间的交通流量可能存在相互影响,我们还可以引入空间相关性分析,如空间自回归模型等。

3. 模型优化与验证建立数学模型后,我们需要对模型进行优化和验证。

这包括调整模型的参数、对模型进行诊断分析等。

我们可以通过对比模型的预测值与实际值,计算误差指标(如均方误差、平均绝对误差等)来评估模型的性能。

同时,我们还可以使用交叉验证等方法来验证模型的稳定性。

4. 模型应用与结果展示最后,我们将建立的数学模型应用于实际问题中,对未来的交通流量进行预测。

我们将预测结果以图表等形式进行展示,方便评委和观众理解。

同时,我们还可以对结果进行解释和讨论,说明模型的优点和局限性。

四、总结通过本文总结:经过详细的分析与探讨,针对2016年全国大学生数学建模竞赛B题,我们采取了有效的解决策略。

从数据收集与预处理到模型建立与优化,每一步都紧密联系实际,充分考虑了交通流量数据的特性和问题需求。

在建模过程中,我们选择了合适的时间序列分析模型和空间相关性分析模型,旨在捕捉交通流量的变化规律。

高教社杯全国大学生数学建模竞赛题目 穿越沙漠

高教社杯全国大学生数学建模竞赛题目 穿越沙漠

高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B 题 穿越沙漠考虑如下的小游戏:玩家凭借一张地图,利用初始资金购买一定数量的水和食物(包括食品和其他日常用品),从起点出发,在沙漠中行走。

途中会遇到不同的天气,也可在矿山、村庄补充资金或资源,目标是在规定时间内到达终点,并保留尽可能多的资金。

游戏的基本规则如下:(1)以天为基本时间单位,游戏的开始时间为第0天,玩家位于起点。

玩家必须在截止日期或之前到达终点,到达终点后该玩家的游戏结束。

(2)穿越沙漠需水和食物两种资源,它们的最小计量单位均为箱。

每天玩家拥有的水和食物质量之和不能超过负重上限。

若未到达终点而水或食物已耗尽,视为游戏失败。

(3)每天的天气为“晴朗”、“高温”、“沙暴”三种状况之一,沙漠中所有区域的天气相同。

(4)每天玩家可从地图中的某个区域到达与之相邻的另一个区域,也可在原地停留。

沙暴日必须在原地停留。

(5)玩家在原地停留一天消耗的资源数量称为基础消耗量,行走一天消耗的资源数量为基础消耗量的2倍。

(6)玩家第0天可在起点处用初始资金以基准价格购买水和食物。

玩家可在起点停留或回到起点,但不能多次在起点购买资源。

玩家到达终点后可退回剩余的水和食物,每箱退回价格为基准价格的一半。

(7)玩家在矿山停留时,可通过挖矿获得资金,挖矿一天获得的资金量称为基础收益。

如果挖矿,消耗的资源数量为基础消耗量的3倍;如果不挖矿,消耗的资源数量为基础消耗量。

到达矿山当天不能挖矿。

沙暴日也可挖矿。

(8)玩家经过或在村庄停留时可用剩余的初始资金或挖矿获得的资金随时购买水和食物,每箱价格为基准价格的2倍。

请根据游戏的不同设定,建立数学模型,解决以下问题。

1. 假设只有一名玩家,在整个游戏时段内每天天气状况事先全部已知,试给出一般情况下玩家的最优策略。

求解附件中的“第一关”和“第二关”,并将相应结果分别填入Result.xlsx 。

2016全国大学生数学建模A题

2016全国大学生数学建模A题

2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度错误!未找到引用源。

,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

2016年高教社杯全国大学生数学建模竞赛题目 .doc

2016年高教社杯全国大学生数学建模竞赛题目 .doc

2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

2016年全国大学生数学建模竞赛A题

2016年全国大学生数学建模竞赛A题

2016年全国大学生数学建模竞赛A题2016年高教社杯全国大学生数学建模竞赛题目 ,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外00kg。

钢桶上接第4节钢径30cm的密封圆柱形钢桶内,设备和钢桶总质量为1 管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1 某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2 在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

【最新】2016高教社杯全国大学生数学建模竞赛B题

【最新】2016高教社杯全国大学生数学建模竞赛B题

车道被占用对城市道路通行能力的影响摘要车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

对于问题一,本文提高结果的精准度,结合两种方法进行研究,且两种方法的结果十分吻合。

由于实际通行能力是建立在基本通行能力和可能通行能力之上的,所以在求解实际通行能力之前,需要算出基本通行能力和可能通行能力,针对问题一创建了一张流程图,并借助软件加以拟合。

对实际通行能力计算,得出实际通行能力的变化过程,根据GREENSHIELD K-V线性算法得出道路越堵,车速越慢,则实际通行能力就越差,反之就会较好。

对于问题二,因为所占的车道不同,并且给的条件中有说明左转车流比例和右转车流比例不同,那只需验证两者是否存在显著性差异,运用配对样本t检验的方法就是要先满足这一方法的两个前提条件,首先必须验证是否满足正态分布,经过SPSS软件的验证可以得出符合正态分布。

然后再进行配对,从配对的结果中可以看出存在显著性差异,再结合左右转的车流量比例,更加可以看出存在显著性差异。

对于问题三,主要是对所推出来的回归方程的判断和分析因变量和各因子之间的关系,在本问中要先求出排队长度,排队长度是根据堵塞密度,进出车辆数之间的差值来求解,再根据最小二乘法来判断所假设的这一模型是否符合多元线性回归关系,本问中得出符合多元线性回归关系。

再在排队长度和最小二乘法的基础之上,运用SPSS软件,在进行结果分析时得出实际通行能力对于排队长度没有影响,所以可以剔除,而事故持续时间和上游车流量对排队长度都有明显的影响,然后得出他们的相关系数,求出最后的相关方程式。

对于问题四,题目中给出了事故发生点到上游路口的距离为140米,并且上游车流量为1500pcu/h,结合视频1中多次出现的120米这一个顶点,推算出120米内大概最大的堵塞车流量,然后按比例分配推算出140米的最大堵塞车流量,视频1中的可以通过加权平均来求出平均的实际通行能力,则事故持续时间就是要靠140米的最大堵塞车流量和平均实际通行能力来计算,最后得出事故持续时间为2.37min。

高教社杯全国大学生数学建模竞赛题目

高教社杯全国大学生数学建模竞赛题目

高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
题 机器人避障问题
图是一个×的平面场景图,在原点(, )点处有一个机器人,它只能在该平面场景范围内活动。

图中有个不同形状的区域是机器人不能与之发生碰撞的障碍物,
点与障碍物的距离至少超过个单位)。

规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为个单位。

为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。

机器人直线行走的最大速度为50=v 个单位秒。

机器人转弯时,最大转弯速度为21.0100e
1)(ρρ-+==v v v ,其中ρ是转弯半径。

如果超过该速度,机器人将发生侧 翻,无法完成行走。

请建立机器人从区域中一点到达另一点的避障最短路径和最短时间路径的数学模型。

对场景图中个点(, ),(, ),(, ),(, ),具体计算:
() 机器人从(, )出发,→、→、→和→→→→的最短路径。

() 机器人从 (, )出发,到达的最短时间路径。

注:要给出路径中每段直线段或圆弧的起点和终点坐标、圆弧的圆心坐标以及机器人行走的总距离和总时间。

图×平面场景图。

2016全国大学生数学建模竞赛获奖名单

2016全国大学生数学建模竞赛获奖名单

2016高教社杯全国大学生数学建模竞赛获奖名单(初稿)(异议期:2016年11月7日-2016年11月20日)
本科组高教社杯获得者:张滕翔、夏智康、郑安琪(东南大学)
专科组高教社杯获得者:吴伟龙、杨婷、段玲(湖南化工职业技术学院)
本科组MATLAB创新奖获得者:王毅然、纪昀红、张伟(中国人民大学)
专科组MATLAB创新奖获得者:刘苏生、祝王缘、王柏熙(海军蚌埠士官学校)
[注]以下每一获奖等级内,按赛区顺序排列(同一赛区内,按学校笔画顺序排列)。

本科组一等奖(共294名)
本科组二等奖(共1621名)
曹小
专科组一等奖(共60名)。

2016年全国大学生数学建模B题官方答案提示

2016年全国大学生数学建模B题官方答案提示

2016高教社杯全国大学生数学建模竞赛B题评阅要点本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅本题要求通过建立数学模型,讨论小区开放对周边道路通行的影响,并根据研究结果向城市规划和交通管理部门提出小区开放的合理化建议。

本题目主要考察学生在复杂环境因素下,针对小区开放的实际情况,建立合理简化的交通流模型。

第1问评价小区开放对车辆通行的影响的指标体系一般应包括以下三类指标:高效性、安全性和稳健性。

如何合理地选取评价指标,以及如何度量指标值,是本问的主要考察点。

评价指标可以有各种定义方式,依据其合理性与可计算性判断其价值。

第2问本问要求建立交通流模型研究小区开放对周边道路通行的影响,重点考虑因素有交通流量及流量分配、车辆的行驶规则、小区开放规则等。

尤其需要注意小区开放对道路通行的特殊影响因素,例如,小区道路与主路形成的交叉路口一般无交通信号设置,主路与小区内部道路的车速不同,小区内部车辆进出等。

未考虑这类特殊影响的交通模型,对本问题的价值不大。

第3问根据小区开放对周边道路通行的影响不同,小区应分类型讨论,主要分类因素有小区的大小、居住人口的密集度、进出小区路口的数量等,另外,周边道路上车流量的分布状况也会影响小区开放的效果。

评判时应注意,本问是否根据第二问所建立的模型进行计算,是否根据第一问的指标体系进行效果评价。

第4问本问主要考察:1.论文的合理化建议是否来自于模型计算结果;2.合理化建议是否充实。

参考文献:李向朋,城市交通拥堵对策一封闭型小区交通开放研究,长沙理工大学硕士论文,2014王爽,微观交通仿真及分析技术在交通影响评价中的应用研究,吉林大学硕士论文,2005 芦欣,城市区域交通微循环系统优化研究,北京建筑大学硕士论文,2015李健华,住宅小区的交通影响分析,华南理工大学硕士论文,2005王浩苏,基于多目标决策的城市交通微循环系统功能优化研究,西南交通大学硕士论文,2014 张海明,城市居住片区交通微循环系统研究,西安建筑科技大学硕士论文,2011钟媚,基干可持续发展的城市交通微循环路网优化研究,西南交通大学硕士论文,2013李文权等,无信号交叉口主车流服从移位负指数分不下支路多车型混合车流的通行能力,系统工程理论与实践,2001袁绍欣等,无信号交叉口车流通行状况的混杂Petri网模型,中国公路学报,2010.蔡军,城市路网结构体系研究,同济大学博士论文,2005。

2016年“高教社杯”全国大学生数学建模竞赛题目

2016年“高教社杯”全国大学生数学建模竞赛题目
说明近海风荷载可通过近似公式 F=0.625×Sv2(N)计算,其中,S 为物体 在 风 向 法 平 面 的 投 影 面 积(m2),v 为风速(m/s)。近海水流力可通过近似公式 F=374×Sv2(N)计 算,其 中,S 为 物 体 在 水 流 速 度法平面的投影面积(m2),v 为水流速度(m/s)。
注 :长 度 是 指 每 节 链 环 的 长 度 。
· 23 ·
·竞赛论坛·
2016 年 “高 教 社 杯 ”全 国 大 学 生 数 学 建 模 竞 赛 题 目
2016 ,国务院发布《关 于 进 一 步 加 强 城 市 规 划 建 设 管 理 工 作 的 若 干 意 见 》,其 中 第 16 条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区 和 单 位 大 院 要 逐 步 开 放 等 意 见, 引起了广泛的关注和讨论。
系 泊 系 统 的 设 计 问 题 就 是 确 定 锚 链 的 型 号 、长 度 和 重 物 球 的 质 量 ,使 得 浮 标 的 吃 水 深 度 和 游 动 区 域 及钢桶的倾斜角度尽可能小。
问 题 1 某 型 传 输 节 点 选 用II型 电 焊 锚 链22.05m,选 用 的 重 物 球 的 质 量 为1 200kg。 现 将 该 型 传 输节点布放在水深18m、海床 平 坦、海 水 密 度 为 1.025×103 kg/m3 的 海 域。 若 海 水 静 止,分 别 计 算 海 面 风 速 为 12 m/s和 24 m/s时 钢 桶 和 各 节 钢 管 的 倾 斜 角 度 、锚 链 形 状 、浮 标 的 吃 水 深 度 和 游 动 区 域 。
城 市 规 划 和 交 通 管 理 部 门 希 望 你 们 建 立 数 学 模 型 ,就 小 区 开 放 对 周 边 道 路 通 行 的 影 响 进 行 研 究 ,为 科 学 决 策 提 供 定 量 依 据 ,为 此 ,请 你 们 尝 试 解 决 以 下 问 题 :

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题是一道涉及复杂系统建模与优化的题目,要求参赛者分析某地区农产品流通系统的问题,建立相应的数学模型并解决实际管理决策问题。

本文旨在深入探讨此题目的解题思路、方法和总结,以供参考。

二、题目背景及问题分析本题主要涉及农产品流通系统的管理与优化问题。

背景中提供了详细的农产品销售和物流数据,要求我们通过建立数学模型,分析现有问题并提出解决方案。

问题主要涉及以下几个方面:1. 农产品流通系统的现状分析;2. 农产品销售和物流过程中的瓶颈与问题;3. 优化农产品流通系统的策略与方法。

三、解题思路与方法针对上述问题,我们首先进行了系统的分析,然后提出了以下解题思路与方法:1. 现状分析:通过收集和分析农产品销售和物流数据,了解现有系统的运作情况,找出瓶颈和问题。

2. 建立数学模型:根据问题特点,选择合适的数学模型进行建模。

在本题中,我们选择了网络流模型、线性规划模型等。

3. 问题诊断:运用建立的数学模型对问题进行诊断,找出关键因素和影响程度。

4. 优化策略:根据诊断结果,提出优化策略和方法,包括改进物流网络、优化价格策略等。

5. 实施与评估:将优化策略付诸实施,并定期进行评估,根据评估结果进行调整和优化。

四、具体实施步骤1. 数据收集与整理:收集农产品销售和物流数据,进行整理和清洗。

2. 建立数学模型:根据问题特点,选择合适的数学模型进行建模。

在本题中,我们建立了网络流模型和线性规划模型。

3. 问题诊断与瓶颈分析:运用建立的数学模型对问题进行诊断,找出关键因素和瓶颈。

通过分析数据,我们发现物流网络中的某些环节存在瓶颈,导致农产品流通效率低下。

4. 提出优化策略:针对诊断结果,我们提出了一系列优化策略和方法。

包括改进物流网络结构、优化价格策略、引入先进的仓储和运输技术等。

5. 实施与评估:将优化策略付诸实施,并定期进行评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题系泊系统的设计
近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)
系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标
的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

布放点的海水速度最大可达到1.5m/s、风速最大可达到36m/s。

请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

说明近海风荷载可通过近似公式F=0.625×Sv2(N)计算,其中S为物体在风向法平面的投影面积(m2),v为风速(m/s)。

近海水流力可通过近似公式F=374×Sv2(N)计算,其中S为物体在水流速度法平面的投影面积(m2),v为水流速度(m/s)。

相关文档
最新文档