2013年秋苏科版八年级上第二章轴对称图形单元检测题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 轴对称图形
一、选择题
1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个
2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个
A .1个
B .2个
C .3个
D .4个
3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角
形;
C .等边三角形
D .等腰直角三角形. 4.如图:等边三角形ABC 中,BD =C
E ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55°
C .60°
D .75°
5. 下列关于等腰三角形的性质叙述错误的是( ) A .等腰三角形两底角相等
B .等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合
C .等腰三角形是中心对称图形
D .等腰三角形是轴对称图形
6.已知点P 在线段AB 的垂直平分线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定
7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对
8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,
PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3
C .2
D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5
C .PQ <5
D .PQ≤5
10.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题
A
O P A
E
C B D
11.线段轴是对称图形,它有_______条对称轴.
12.等腰△ABC中,若∠A=30°,则∠B=________.
13.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.
14.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.
15.如图,在△ABC中,∠ABC=∠ACB=72°,BD、CE分别是∠ABC和∠A CB的平分线,它们的交点为F,则图中等腰三角形有___________个.
16.(2012•梧州)如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC= °___________.
17.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,
则∠BAC=____________.
18.△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=115°,则∠EAF=___________.
三.解答题
19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.
20.如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.
O B
21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF
的长.
22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,
① 若△BCD 的周长为8,求BC 的长;
② 若BC=4,求△BCD 的周长.
23.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问 △APQ
是什么形状的三角形?试说明你的结论.
A
24.如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.
(1)判断△ABC的形状,并说明理由;
(2)保持图1中△ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;
(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明.
参考答案
第一章轴对称图形
1.A 2.B 3.C 4.C 5.C 6.D 7.C 8.C 9.B 10.C
11.2 12.30°、75°、120°13.4 14.5 15.8 16.69 17.72°18.50°19.提示:作CD的垂直平分线和∠AOB的平分线,两线的交点即为所作的点P;
20.提示:在CD上取一点E使D E=BD,连结AE;
21.EF=20㎝;22.①BC=3,②9;
23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.
24.(1)△ABC是等腰直角三角形.理由如下:
在△ADC与△BEC中,AD=BE,∠D=∠E=90°,DC=EC,
∴△ADC≌△BEC(SAS),
∴AC=BC,∠DCA=∠ECB.
∵AB=2AD=DE,DC=CE,
∴AD=DC,
∴∠DCA=45°,
∴∠ECB=45°,
∴∠ACB=180°-∠DCA-∠ECB=90°.
∴△ABC是等腰直角三角形.
(2)DE=AD+BE.理由如下:
在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE(AAS),
∴AD=CE,DC=EB.
∴DC-CE=BE-AD,
即DE=AD+BE.
(3)DE=BE-AD.理由如下:
在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE(AAS),
∴AD=CE,DC=EB.
∴DC-CE=BE-AD,
即DE=BE-AD.