2013年秋苏科版八年级上第二章轴对称图形单元检测题及答案
苏科版八年级上册数学第二章 轴对称图形 含答案
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、有下列四种说法:①两个三角形全等,则它们成轴对称;②等腰三角形的对称轴是底边上的中线;③若点A、B关于直线MN对称,则AB垂直平分MN;④到角两边距离相等的点在这个角的平分线上.其中正确的说法有()A.0个B.1个C.2个D.3个2、如图,将矩形ABCD沿DE折叠,使A点落在BC边上F处,若∠EFB=70°,则∠AED=()A.80°B.75°C.70°D.65°3、小明同学测量了等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出正确的那组是( )A.13,12,8B.4,8,5C.13,5,12D.12,8,104、如图,在中,的平分线与的外角平分线交于点,连接,则的值是()A.1B.C.D.5、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.3∠A=2∠1﹣∠2B.2∠A=2(∠1﹣∠2)C.2∠A=∠1﹣∠2 D.∠A=∠1﹣∠26、2022年冬奥会将在北京举行,以下历届冬奥会会徽是轴对称图形的是( )A. B. C. D.7、下列图案中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.8、下列图形中,有无数条对称轴的是()A.长方形B.正方形C.圆D.等腰三角形9、下列图形中既是中心对称图形,又是轴对称图形的是()A.等边三角形B.等腰三角形C.平行四边形D.线段10、小敏尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B 点落在AD边上的点F处,折痕为AE(如图②); 再沿过D点的直线折叠, 使得 C 点落在DA边上的点N处, E点落在AE边上的点M处,折痕为 DG(如图).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD的长与宽的比值为( )A.2B.3C.D.11、如图,△ABC与△ADC关于AC所在的直线对称,∠BCA=35°,∠B=80°,则∠DAC的度数为()A.55°B.65°C.75°D.85°12、如图,将△ABC沿直线DE折叠后,使得点B与点A重合,已知AC=4cm,△ADC的周长为15cm,则BC的长为()A.8cmB.11cmC.13cmD.19cm13、等腰三角形腰上的高与底边的夹角等于()A.底角B.底角的一半C.顶角D.顶角的一半14、下列说法:①等腰三角形的两底角相等;②角的对称轴是它的角平分线;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④全等三角形的对应边上的高相等;⑤在直角三角形中,如果有一条直角边长等于斜边长的一半.那么这条直角边所对的角等于30°.以上结论正确的个数()A.1个B.2个C.3个D.4个15、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(共10题,共计30分)16、如图,在菱形ABCD中,tan∠A=,M,N分别在AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为________.17、如图,在△ABC中,∠A=35°,∠B=90°,线段AC的垂直平分线MN与AB 交于点D,与AC交于点E,则∠BCD=________度.18、在△ABC中,AB=AC,点D在BC边上,连接AD,若AD=BD,且△ADC为等腰三角形,则∠BAC的度数为________.19、如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.20、如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为________.21、如图所示,等边△ABC的边长为2,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于M,交AC于N,连接MN,形成一个△AMN,则△AMN的周长为________.22、如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为________.23、等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为________.24、如图,已知直线y=﹣x+1分别交x轴、y轴于点A、B,M是x轴正半轴上一动点,并以每秒1个单位的速度从O点向x轴正方向运动,过点M作x轴的垂线l,与抛物线y=x2﹣x﹣2交于点P,与直线AB交于点Q,连结BP,经过t秒时,△PBQ是以BQ为腰的等腰三角形,则t的值是________.25、如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、证明“三个角都相等的三角形是等边三角形”28、如图,△ABC中,AB=AC,∠A=50°,DE是腰的垂直平分线.求∠DBC的度数.29、如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.30、如图,点B、C、D在同一直线上,AB=AD=CD,∠C=36°.求∠BAD的度数.参考答案一、单选题(共15题,共计45分)1、A2、A3、D4、C5、C6、C7、C8、C9、D10、C11、B12、B13、D14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
初中数学苏科版八年级上册第2章 轴对称图形2.5 等腰三角形的轴对称性-章节测试习题(8)
章节测试题1.【题文】如图,AD是等边三角形ABC的中线,E是AB上的点,且AE=AD,求∠EDB的度数.【答案】15°【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得又由根据等边对等角与三角形内角和定理,即可求得的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠BAC=60°=30°,∴∠ADB=90°.∵AE=AD.∴∠ADE=∠AED==75°.∴∠EDB=∠ADB-∠ADE==15°.2.【题文】如图,等边三角形的边长为4,点是边上一动点(不与点重合),以为边在的下方作等边三角形,连接.(1)在运动的过程中,与有何数量关系?请说明理由.(2)当时,求的度数.【答案】(1) ,理由见解析;(2) .【分析】(1)AE=CD,证明△ABE≌△CBD,即可解决问题.(2)证明AE⊥BC;证明∠BDC=∠AEB,即可解决问题.【解答】解:(1)AE=CD;理由如下:∵△ABC和△BDE等边三角形∴AB=BC,BE=BD,∠ABC=∠EBD=60°;在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵BE=2,BC=4∴E为BC的中点;又∵等边三角形△ABC,∴AE⊥BC,由(1)知△ABE≌△CBD,∴∠BDC=∠AEB=90°.3.【题文】如图点D、E分别在等边ΔABC边BC、CA上,且CD=AE,联结AD、BE.(1)求证:BE=AD;(2)延长DA交BE于F,求∠BFD的度数.【答案】(1)证明见解析;(2)60°【分析】(1)根据等边三角形的性质可以得到∠BAC=∠ACB=60°,AC=AB,则∠EAB=∠ACD,根据SAS即可证得△ABE≌△CAD,然后根据全等三角形的对应边相等,即可证得:AD=BE.(2)易证∠AFE=∠ACD,从而∠BFA=∠ACB=60°.【解答】解:证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=AB,∴∠EAB=∠ACD=120°,∵在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE.(2)如图,∵△ABE≌△CAD∴∠E=∠D∵∠EAF=∠DAC∴∠BFD=∠E+∠EAF=∠D+∠DAC=60°4.【题文】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】详见解析.【分析】要证△ADE为等边三角形,可以先证它为等腰三角形,再证该等腰三角形的一个内角为60°. 综合分析已知条件可知,可以利用△ABD和△ACE全等证明AD=AE. 根据已知条件和等边三角形的性质,不难证明∠B=∠ACE,进而利用SAS 证明△ABD和△ACE全等. 利用全等三角形的性质可以得到△ADE是等腰三角形. 利用全等三角形的性质,通过相关角之间的和差关系,不难证明∠DAE=∠BAC=60°,从而证明△ADE为等边三角形.【解答】证明:∵△ABC为等边三角形,∴∠B=∠ACB=∠BAC=60°,AB=AC.∵∠ACB=60°,∴∠ACD=180°-∠ACB=180°-60°=120°,∵CE平分∠ACD,∴.∴∠B=∠ACE.∵在△ABD和△ACE中,,∴△ABD≌△ACE (SAS),∴AD=AE,∠BAD=∠CAE.∵∠BAD=∠CAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAC=∠DAE=60°.∵∠DAE=60°,AD=AE,∴△ADE为等边三角形.5.【题文】如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.【答案】(1)=;(2)AE=BD.【分析】(1)△BCE中可证,∠BCE=30°,又EB=EC,则∠D=∠ECB=30°,所以△BCE 是等腰三角形,结合AE=BE即可;(2)过E作EF∥BC交AC于F,用AAS证明△DEB≌△ECF.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,AB=AC=BC.∵E为AB的中点,所以∠BCE=30°.∵ED=EC,∴∠D=∠BCE=30°,∴∠BED=30°,∴∠D=∠BED,∴BD=BE,∴BD=AE.(2)当点E为AB上任意一点时,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°.∴△AEF是等边三角形.∴AE=EF=AF.∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,∴∠D=∠ECD.∴∠BED=∠ECF.在△DEB和△ECF中,∴△DEB≌△ECF(AAS).∴BD=EF=AE,即AE=BD.6.【题文】如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由。
苏科版八年级数学上册 第二章 轴对称图形 单元测试(含答案)
第二章轴对称图形单元测试一、选择题1.今年实施的新交规让人们的出行更具安全性,以下交通标志中不是是轴对称图形的是()A. B. C. D.2.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )A. 6B. 8C. 10D. 123.下列语句中,正确的有( )①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.⑤角平分线上任意一点到角的两边的线段长相等.A. 1个B. 2个C. 3个D. 4个4.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为( )A. 1B. 2C. 3D. 45.下列图形中对称轴只有两条的是()A. 圆B. 等边三角形C. 矩形D. 等腰梯形6.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A. B. C. D.7.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是( )A. B. C. D.8.下列图形不是轴对称图形的是( )第2页,共7页A. B. C. D.9.若∠AOB=45∘,P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1,P2,连接OP1,OP2,则下列结论正确的是( )A. OP1⊥OP2B. OP1=OP2C. OP1≠OP2D. OP1⊥OP2且OP1=OP210.四边形ABCD中,∠BAD=130∘,∠B=∠D=90∘,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为( )A. 80∘B. 90∘C. 100∘D. 130∘二、填空题11.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.则sin∠BAG=______ .12.轴对称是指______ 个图形的位置关系,轴对称图形是指______ 个具有特殊形状的图形.13.黑体汉字中的“中”,“田”,“日”等都是轴对称图形,请至少再写出两个具有这种特征的汉字:______ .14.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长______ cm.15.如图,在五边形ABCDE中,∠BAE=120∘,∠B=∠E=90∘,AB=BC=1,AE=DE=2,在BC,DE上分别找一点M,N,使△AMN的周长最小,则△AMN的最小周长为______ .三、解答题16.操作题:如图,在3×3网格中,已知线段AB、CD,以格点为端点画一条线段,使它与AB、CD组成轴对称图形.(画出所有可能)17.如图,是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.18.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.第4页,共7页19.已知:如图,∠AOB内有一点P,作点P关于直线OA的对称点P1,再作点P关于直线OB的对称点P2.试探索∠POP2与∠AOB的大小关系并说明理由.20.如图,草原上,一牧童在A处放马,牧童家在B处,A、B处距河岸的距离AC,BD的长分别为500m和700m,且CD=500m,天黑前牧童从A点将马牵到河边去饮水后,再赶回家,牧童将马牵到河边什么地方饮水,才能使走过的路程最短?牧童最少要走多少m?参考答案1. D2. A3. B4. D5. C6. D7. A8. D9. D10. C11. √101012. 两;一13. “木”,“古”14. 515. 2√716. 解:如图所示:17. 解:所补画的图形如下所示:18. 解:如下图所示:(答案不唯一).19. 解:∵点P关于直线OA的对称点P1,点P关于直线OB的对称点P2,∴∠1=∠2,∠3=∠4,第6页,共7页∴∠P1OP2=∠1+∠2+∠3+∠4=2(∠2+∠3)=2∠AOB.20. 解:作A点关于河岸的对称点A′,连接BA′交河岸与P,则PB+PA=PB+PA′=BA′最短,故牧童应将马赶到河边的P地点.作DB′=CA′,且DB′⊥CD,∵DB′=CA′,DB′⊥CD,BB′//A′A,∴四边形A′B′BA是矩形,,在Rt△BB′A′中,连接A′B′,则BB′=BD+DB′=1200,BA′=√12002+5002=1300(m).故牧童至少要走1300米.。
苏科版八年级上册第二章《轴对称图形》(难题)单元测试(含答案)
苏科版八年级上册第二章《轴对称图形》(难题)单元测试一、选择题1.如图,A,B,C三幢居民楼的位置成三角形,现决定在三幢楼之间修建一个禁毒宣传栏,使宣传栏到三个小区的距离相等,则宣传栏应建在()A.AC,BC两边中线的交点处B. AC,BC两边高线的交点处C. AC,BC两边垂直平分线的交点处D. ∠A,∠B两内角平分线的交点处2.如图所示的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A. 2个B. 3个C. 4个D. 5个3.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>bB. b>a>cC. c>b>aD. b>c>a4.如图,等腰△ABC的底边长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A. 6B. 18C. 7D. 95.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°6.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=()A. 115°B. 130°C. 135°D. 150°7.如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A. 138∘B. 114∘C. 102∘D. 100∘8.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG//AD交BC于F,交AB于G,下列结论:①GA=GP②S△PAC:S△PAB=AC:AB③BP垂直平分CE④FP=FC其中正确的判断有()A.只有①②B. 只有③④C. 只有①③④D. ①②③④二、填空题9.把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__________°.10.如图,已知在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC.则∠A=__________.11.△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是_____.12.已知等腰三角形的周长为10,从底边上的一个顶点引腰的中线,分三角形的周长为两部分,其中一部分比另一部分长2,则腰长_________.13.如图,把△ABC分别沿AB边和AC边翻折得到△ABE和△ADC,BE的延长线与DC的延长线交于点F,若∠BCA:∠ABC:∠BAC=28:5:3,则∠EFC的度数为_____.14.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是_________________.15.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接ED,则图中等腰三角形共有____个16.如图,在ΔABC中,AB=6,∠CAB=15°,M、N分别是直线AC、AB上的动点,则BM+MN的最小值是______________.三、解答题17.如图,和均为等腰直角三角形,AB=AC,AD=AE,,连结BD、EC交于点P.(1)求证:≌;(2)试判断线段BD、EC的关系,并且加以证明;(3)连结PA,求的度数.18.如图,点M、N分别是∠AOB两点OA、OB上的点.(1)尺规作图:在∠AOB内作一点P,使得点P到∠AOB两边OA、OB的距离相等,且满足PM=PN(保留作图痕迹).(2)在(1)的条件下,若∠AOB=40°,求∠MPN的度数.19.已知:如图,▵ABC中,∠ABC=45∘,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;BF;(2)求证:CE=12(3)CE与BG的大小关系如何?试证明你的结论.20.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于______A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.21.如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:______;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.22.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数;(2)如果把第(1)题中“AB=AC”条件删去,其余条件不变,那么∠DAE的度数改变吗?试证明;(3)如果把(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,试探究∠DAE与∠BAC的数量关系式,试证明.答案和解析1.C解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则宣传栏应建在AC,BC两边垂直平分线的交点处.2.B解:在网格中作出与△ABC成轴对称的格点三角形如下图所示:∴在此网格中与△ABC成对称的格点三角形一共有3个.3.D解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=12AC=12×4=2,DE⊥AC,∵∠ACB=90°,∴DE//BC,∴a=DE=12BC=12×3=32;第二次折叠如图2,折痕为MN,由折叠得:BN=NC=12BC=12×3=32,MN⊥BC,∵∠ACB=90°,∴MN//AC,∴b=MN=12AC=12×4=2;第三次折叠如图3,折痕为GH,由勾股定理得:AB =√32+42=5, 由折叠得:AG =BG =12AB =12×5=52,GH ⊥AB ,∴∠AGH =90°,∵∠A =∠A ,∠AGH =∠ACB ,∴△ACB∽△AGH , ∴AC AG =BC GH, ∴452=3GH , ∴GH =158,即c =158.∵2>158>32, ∴b >c >a .4. D解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC ,∴S △ABC =12BC ⋅AD =12×6×AD =18,解得AD =6,∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值, ∴△CDM 的周长最短=(CM +MD)+CD =AD +12BC =6+12×6=6+3=9.5. B解:∵点A ,C 分别在线段BE ,BD 的中垂线上,∴AE =AB ,BC =DC .∵∠A =58°,∠C =100°, ∴∠ABE =180°−58°2=61°,∠CBD =180°−100°2=40°.∵∠EBD =36°,∴∠ABC =∠ABE +∠EBD +∠CBD =61°+36°+40°=137°,∴∠ADC =360°−∠A −∠C −∠ABC =360°−58°−100°−137°=65°. 故答案为:65°.6.A解:∵∠1+∠2=130°,∴∠AMN+∠DNM=360°−130°2=115°.∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°,∴∠B+∠C=∠AMN+∠DNM=115°.7.C解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,∴∠DCM=12∠ACD,∠DBM=12∠ABC,∴∠M=∠DCM−∠DBM =12(∠ACD−∠ABC)=12∠A=24°,由折叠可得,∠N=∠M=24°,又∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠CBQ=12∠CBN,∠BCQ=12∠BCN,∴△BCQ中,∠Q=180°−(∠CBQ+∠BCQ) =180°−12(∠CBN+∠BCN)=180°−12×(180°−∠N)=90°+12∠N=102°.8.D解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG//AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一);④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP =∠BCP ,又PG//AD ,∴∠FPC =∠DCP ,∴FP =FC .故①②③④都正确.9. 35解:∵沿OC 折叠,B 和B′重合,∴△BOC≌△B′OC ,∴∠BOC =∠B′OC ,∵∠AOB′=110°,∴∠BOB′=180°−110°=70°, ∴∠B′OC =12×70°=35°,10. (1807)°解:∵AB =AC ,AP =PQ =QC =BC , ∴ABC =∠ACB ,∠A =∠AQP ,∠QPC =∠QCP ,∠BQC =∠B , 设∠A =x°,则∠AQP =x°,∴∠BQC =∠ACQ +∠A ,∴∠BQC =3x°,∴∠B =3x°,∵∠A +∠ABC +∠ACB =180°,∴x°+3x°+3x°=180°, 解得:x =1807.∴∠A =(1807)°.11. 6解:∵AD 平分∠BAC ,CD ⊥AC ,∴D 点到AB 的距离等于CD 长度2. 所以△ABD 面积=12×6×2=6.12. 4或83解:设腰长为x ,底长为y ,当腰比底长时有 {x −y =22x +y =10 解得{x =4y =2; 当底比腰长时有{y −x =22x +y =10解得{x=83y=143.∵0<2<4+4=8,0<143<83+83=163∴这两种情况都能构成三角形.13.30°解:在△ABC中,∵∠BCA:∠ABC:∠BAC=28:5:3,∴设∠BCA为28x,∠ABC为5x,∠BAC为3x,则28x+5x+3x=180°,解得:x=5°,则∠BCA=140°,∠ABC=25°,∠BAC=15°,由折叠的性质可得:∠D=25°,∠DAE=3∠BAC=45°,∠BEA=140°,在△AOD中,∠AOD=180°−∠DAE−∠D=110°,∴∠EOF=∠AOD=110°,∴∠EFC=∠BEA−∠EOF=140°−110°=30°.14.4解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴AP+BP的值最小值为4.15.5解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形;∠ABC=∠ACB=1800−3602=72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∠ABD=∠A=36º,∴△ABD是等腰三角形;∴∠BDC=180º−36º−72º=72º=∠C,∴△BDC是等腰三角形,∴BD=BC,∵BE=BC,∴BE=BD,∴△BDE是等腰三角形,∴∠ADE=∠BED−∠A=72º−36º=36º=∠A,∴△AED是等腰三角形;16.3解:作B关于AC的对称点E,过E作EN⊥AB于N,交AC于M,连接AE,BM,则此时BM+MN的值最小,∵B关于AC的对称点为E,∴AE=AB=6,BM=EM,∠EAC=∠CAB=15°,∴∠EAB=30°,BM+MN=EM+MN=EN,在Rt△ENA中,∠ENA=90°,∠EAB=30°,AE=6,∴EN=12AE=3,BM+MN=EN=3,17.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS);(2)解:BD=EC,BD⊥EC,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠ABD+∠4=90°,∠4=∠5,∴∠ACE+∠5=90°,∴∠BPC=90°,∴BD⊥EC;(3)解:作AM⊥BD于M,AN⊥EC于N,∵△ABD≌△ACE,∴S△ABD=S△ACE,又∵BD=EC,∴AM=AN,∵AM⊥BD,AN⊥EC,∴PA平分∠BPE,又∵BD⊥EC,∴∠BPE=90°,∴∠APB=45°.18.解:(1)如图所示;(2)过P作PC⊥OA,PD⊥OB,垂足分别为C,D,则∠PCO=∠PDB=90°,由(1)知,OP是∠AOB的平分线,∴PC=PD,由题可知PM=PN,∴△PCM≌△PDN(HL),∴∠CPM=∠DPN,∴∠MPN=∠MPD+∠CPN=∠MPD+∠DPN=∠CPD,∵∠CPD=360°−∠AOB−∠PCO−∠PDO=140°∴∠MPN=140°.19.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵{∠DBF=∠DCA BD=CD∠BDF=∠ADC,∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中{∠ABE=∠CBE BE=BE∠BEA=∠BEC,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=12AC.又由(1),知BF=AC,∴CE=12AC=12BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=12∠ABC=12×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=√2CE,∴BG>CE.20.解:(1)C;(2)220°;(3)∠1+∠2=180°+∠A;(4)∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF,∴∠1=180°−2∠AFE,∠2=180°−2∠AEF,∴∠1+∠2=360°−2(∠AFE+∠AEF),又∵∠AFE+∠AEF=180°−∠A,∴∠1+∠2=360°−2(180°−∠A)=2∠A.解:(1):∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°−(∠A+∠B)=360°−90°=270°.∴∠1+∠2等于270°.故选C;(2)∠1+∠2=180°+40°=220°,故答案是220°;(3)∠1+∠2与∠A 的关系是:∠1+∠2=180°+∠A ;21. (1)120°;(2)解:FE 与FD 之间的数量关系为:DF =EF . 理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG 和△CFD 中, {CG =CD ∠DCF =∠GCF CF =CF ,∴△CFG≌△CFD(SAS),∴DF =GF .∵∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线, ∴∠FAC =12∠BAC ,∠FCA =12∠ACB ,且∠EAF =∠GAF , ∴∠FAC +∠FCA =(∠BAC +∠ACB)=12(180°−∠B)=60°, ∴∠AFC =120°,∴∠CFD =60°=∠CFG ,∴∠AFG =60°,又∵∠AFE =∠CFD =60°,∴∠AFE =∠AFG ,在△AFG 和△AFE 中, {∠AFE =∠AFG AF =AF ∠EAF =∠GAF ,∴△AFG≌△AFE(ASA),∴EF =GF ,∴DF =EF ;(3)结论:AC =AE +CD .理由:如图3,在AC 上截取AG =AE ,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA =∠GFA . 又由题可知,∠FAC =12∠BAC ,∠FCA =12∠ACB ,∴∠FAC+∠FCA=12(∠BAC+∠ACB)=12(180°−∠B)=60°,∴∠AFC=180°−(∠FAC+∠FCA)=120°,∴∠EFA=∠GFA=180°−120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°−60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°−(∠FAC+∠ACF)=120°故答案为120°;22.解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=12∠ACB=22.5°,在△ABE中,∠BAE=180°−∠B−∠E=112.5°,∴∠DAE=∠BAE−∠BAD=112.5°−67.5°=45度;(2)不改变.设∠CAE=x,∵CA=CE,∴∠E=∠CAE=x,∴∠ACB=∠CAE+∠E=2x,在△ABC中,∠BAC=90°,∴∠B=90°−∠ACB=90°−2x,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=x+45°,在△ABE中,∠BAE=180°−∠B−∠E,=180°−(90°−2x)−x=90°+x,∴∠DAE=∠BAE−∠BAD,=(90°+x)−(x+45°)=45°;(3)∠DAE=12∠BAC.理由:设∠CAE=x,∠BAD=y,则∠B=180°−2y,∠E=∠CAE=x,∴∠BAE=180°−∠B−∠E=2y−x,∴∠DAE=∠BAE−∠BAD=2y−x−y=y−x,∠BAC=∠BAE−∠CAE=2y−x−x=2y−2x,∴∠DAE=12∠BAC.。
苏科版八年级数学上册第二章 轴对称图形 单元测试(含答案)
初中数学苏科版八年级上册第二章轴对称图形单元测试一、单选题1.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()。
A. B. C.D.2.如图,ΔABC中,∠A=70∘,点E、F在AB、AC上,沿EF向内折叠ΔAEF,得ΔDEF,则图中∠1+∠2的和等于()A.70∘B.90∘C.120∘D.140∘3.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是()A. B. C.D.4.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当∠AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°5.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP∠OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则∠ODQ的面积是()A.3B.4C.5D.66.如图,在∠ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则∠BMN的周长是()A.36B.24C.18D.167.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形8.如图,在△ABC中AB=AC,BC=4,面积是20,AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段上一动点,则△CDM周长的最小值为().A.6B.8C.10D.129.如图在∠ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO 的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①∠ABD∠∠CBD;②AC∠BD;③四边形ABCDAC•BD,其中正确的结论有()的面积= 12A.①②B.①③C.②③D.①③②二、填空题11.已知等腰三角形的其中两边长为6cm和8cm,则这个三角形的周长为________cm.12.等腰三角形的顶角是50°,则它一腰上的高与底边的夹角为________.13.若等腰三角形一腰上的高与腰长之比为1:2,则该等腰三角形顶角的度数为________。
苏科版八年级上册数学第二章 轴对称图形含答案(满分必备)
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、下列命题是真命题的是().A.有两条边、一个角相等的两个三角形全等。
B.等腰三角形的对称轴是底边上的中线。
C.全等三角形对应边上的中线相等。
D.有一个角是60°的三角形是等边三角形。
2、如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°3、有一张平行四边形纸片ABCD,已知,按如图所示的方法折叠两次,则的度数等于()A.55°B.50°C.45°D.40°4、到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条垂直平分线的交点5、在下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6、如图,在△ABC中,AB>AC,分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=7,AC=5,则△ACD的周长为()A.2B.12C.17D.197、剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A. B. C. D.8、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长9、如图,C、D在以线段AB为直径的⊙O上,若CA=CD,且∠ACD=40°,则∠CAB=()A.10°B.20°C.30°D.40°10、已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B 为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是()A.12cm 2B.24cm 2C.36cm 2D.48cm 211、如图,AB∥CD,AB=AC,∠1=40°,则∠ACE的度数为()A.80°B.100°C.120°D.160°12、如图,把一矩形纸片OABC放入平面直角坐标系xoy中,使OA,OC分别落在x轴、y轴上,现将纸片OABC沿OB折叠,折叠后点A落在点A'的位置,若OA=1,OB=2,则点A'的坐标为()A. B. C.() D.()13、将AD与BC两边平行的纸条ABCD按如图所示折叠,则∠1的度数为()A.72°B.45°C.56°D.60°14、如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A.1个B.2个C.3个D.4个15、如图,等边的边长为3,点D在边上,,线段在边上运动,,有下列结论:① 与可能相等;② 与可能相似;③四边形面积的最大值为;④四边形周长的最小值为.其中,正确结论的序号为()A.①④B.②④C.①③D.②③二、填空题(共10题,共计30分)16、某同学从平面镜里看到镜子对面的电子钟的示数如图所示,这时的实际时间是________.17、如图,在△ABC中,已知∠B=∠C,则可判定AB=AC的依据是________;18、如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为________.19、在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则折痕CE的长为________.20、已知点在直线上,点在直线上,与关于y轴对称.则和的交点坐标为________.21、如图,矩形纸片ABCD,AD=2AB=4,点F在线段AD上,将△ABF沿BF向下翻折,点A的对应点E落在线段BC上,点M,N分别是线段AD与线段BC上的点,将四边形CDMN沿MN向上翻折,点C恰好落在线段BF的中点C'处,则线段MN的长为________.22、如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.23、如图,△ABC中,已知AB=5,AC=4,AD平分∠BAC交BC于D,DE⊥AC交AC于点E,若DE=2,则△ABC的面积为________.24、如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=________.25、把一张长方形纸条按如图方式折叠,若∠1=40°,则∠2的度数是________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,在长方形ABCD中,已知AB=8cm,BC=10cm,将AD沿AF折叠,使点D落在BC上的点E处.求BE及CF的长.28、作图题:(要求保留作图痕迹,不写作法)(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);(2)连结BE,若AC=10,AB=6,求△ABE的周长.29、如图,在中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.30、如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,求证:BC =3AD.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、D5、A6、B7、D8、A9、B10、B11、B12、B13、C14、C15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、。
苏科版数学八年级上第二单元《轴对称图形》单元考试(含答案解析)
苏科版数学八年级上第二单元《轴对称图形》单元考试一.选择题(共8小题)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=106°,则∠C的度数()A.40°B.37°C.36D.32°3.如图,已知四边形ABCD中,∠B=98°,∠D=62°,点E、F分别在边BC、CD上.将△CEF沿EF翻折得到△GEF,若GE∥AB,GF∥AD,则∠C的度数为()A.80°B.90°C.100°D.110°4.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.25.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm6.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.157.如图,在△ABC中,AB=AC,∠A=38°,AB的垂直平分线MN交AC于点D,则∠DBC的度数为()A.33°B.38°C.43°D.48°8.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=28,DE=4,AB=8,则AC长是()A.8B.7C.6D.5二.填空题(共9小题)9.在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有种.10.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.题号一二三四五总分第分11.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF =AB;②∠BAF=∠CAF;③S四边形ADFE=AF×DE;④∠BDF+∠FEC=2∠BAC,正确的是(填序号)12.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.13.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=.14.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=21,则DE=.15.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE=30°,EC=3,则EF=.16.若等腰三角形的一边是6,另一边是3,则此等腰三角形的周长是.17.如图,△ABC中,AB=AC,∠A=40°,DE垂直平分AC交AB于E,则∠BCE=三.解答题(共10小题)18.已知如下图,求作△ABC关于对称轴l的轴对称图形△A′B′C′.19.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.20.如图,在△ABC 中,AB =AC ,作AB 边的垂直平分线交直线BC 于M ,交AB 于点N.(1)如图(1),若∠A =40°,则∠NMB =度;(2)如图(2),若∠A =70°,则∠NMB =度;(3)如图(3),若∠A =120,则∠NMB =度;(4)由(1)(2)(3)问,你能发现∠NMB 与∠A 有什么关系?写出猜想,并证明.21.如图所示,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、AC 延长线于点F 、E .求证:DF ∥AC .证明:∵AD 平分∠BAC ∴∠=∠(角平分线的定义)∵EF 垂直平分AD ∴=(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD =∠ADF ()∴∠DAC =∠ADF (等量代换)∴DF ∥AC ()22.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 平分∠DCB 交AB 于点E .(1)求证:∠AEC =∠ACE ;(2)若∠AEC =2∠B ,AD =2,求AB的长.23.在△ABC 中,AD 是BC 边上的高,CE 是AB 边上的中线,且∠B =2∠BCE ,求证:DC =BE.24.等腰△ABC 中,AB =AC ,CE 为△ABC 的外角∠ACD 的平分线,∠ACB =2∠D ,BF ⊥AD .(1)求证:BF ∥CE ;(2)若∠BAC =40°,求∠ABF的度数.25.已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)当∠OAB=40°时,∠ACB=度;(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.26.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN的度数.(用含α的代数式表示)27.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A 、是轴对称图形,不合题意;B 、不是轴对称图形,符合题意;C 、是轴对称图形,不合题意;D 、是轴对称图形,不合题意;故选:B .【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.2.【分析】连接AO 、BO .由题意EA =EB =EO ,推出∠AOB =90°,∠OAB +∠OBA =90°,由DO =DA ,FO =FB ,推出∠DAO =∠DOA ,∠FOB =∠FBO ,推出∠CDO =2∠DAO ,∠CFO =2∠FBO ,由∠CDO +∠CFO =106°,推出2∠DAO +2∠FBO =106°,推出∠DAO +∠FBO =53°,由此即可解决问题.【解答】解:如图,连接AO 、BO .由题意EA =EB =EO ,∴∠AOB =90°,∠OAB +∠OBA =90°,∵DO =DA ,FO =FB ,∴∠DAO =∠DOA ,∠FOB =∠FBO ,∴∠CDO =2∠DAO ,∠CFO =2∠FBO ,∵∠CDO +∠CFO =106°,∴2∠DAO +2∠FBO =106°,∴∠DAO +∠FBO =53°,∴∠CAB +∠CBA =∠DAO +∠OAB +∠OBA +∠FBO =143°,∴∠C =180°﹣(∠CAB +∠CBA )=180°﹣143°=37°,故选:B.【点评】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识,学会把条件转化的思想.3.【分析】依据平行线的性质,即可得到∠CEG =∠B =98°,∠CFG =∠D =62°,再根据四边形内角和进行计算即可.【解答】解:∵GE ∥AB ,GF ∥AD ,∴∠CEG =∠B =98°,∠CFG =∠D =62°,由折叠可得,∠C =∠G ,∴四边形CEGF 中,∠C =(360°﹣98°﹣62°)=100°,故选:C .【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n 的最小值为3,故选:C .【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.5.【分析】先求出CD 的长,过点D 作DE ⊥AB 于点E ,根据角平分线上的点到角的两边的距离相等的性质可得DE =CD ,从而得解.【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BC =12cm ,BD =8cm ,∴CD =BC ﹣BD =12﹣8=4cm ,∵∠C =90°,AD 平分∠CAB ,∴DE =CD =4cm ,即点D 到直线AB 的距离是4cm .故选:B .【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.6.【分析】直接利用线段垂直平分线的性质得出AE =BE ,进而得出答案.【解答】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE =BE ,∵AC =8,BC =5,∴△BEC 的周长是:BE +EC +BC =AE +EC +BC =AC +BC =13.故选:B .【点评】此题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.7.【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD =BD ,根据等边对等角的性质,可得∠ABD =∠A ,然后求∠DBC 的度数即可.【解答】解:∵AB =AC ,∠A =38°,∴∠ABC =(180°﹣∠A )=(180°﹣38°)=71°,∵MN 垂直平分线AB ,∴AD =BD ,∴∠ABD =∠A =38°,∴∠DBC =∠ABC ﹣∠ABD =71°﹣38°=33°.故选:A .【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.8.【分析】首先由角平分线的性质可知DF =DE =4,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【解答】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,∴28=×8×4+×AC ×4,∴AC =6.故选:C .【点评】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.二.填空题(共9小题)9.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有等腰三角形、矩形、菱形、正方形、正六边形、圆6种.故答案为:6.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.10.【分析】由D 为BC 中点知BD =3,再由折叠性质得ND =NA ,从而根据△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD 可得答案.【解答】解:∵D 为BC 的中点,且BC =6,∴BD =BC =3,由折叠性质知NA =ND ,则△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD =3+9=12,故答案为:12.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【分析】根据翻折变换的性质可得AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,根据平行线的性质和等腰三角形三线合一的性质判断只有AB =AC 时①②正确;根据对角线互相垂直的四边形的面积等于对角线乘积的一半可得S 四边形ADFE =AF •DE ,判断出③正确;根据翻折的性质和平角的定义表示出∠ADE 和∠AED ,然后利用三角形的内角和定理列式整理即可得到∠BDF +∠FEC =2∠BAC ,判断出④正确.【解答】解:∵△ABC 沿DE 折叠点A 与BC 边的中点F 重合,∴AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,只有AB =AC 时,∠BAF =∠CAF =∠AFE ,EF ∥AB ,故①②错误;∵AF ⊥DE ,∴S 四边形ADFE =AF •DE ,故③正确;由翻折的性质得,∠ADE =(180°﹣∠BDF),∠AED =(180°﹣∠FEC),在△ADE中,∠ADE+∠AED+∠BAC=180°,∴(180°﹣∠BDF)+(180°﹣∠FEC)+∠BAC=180°,整理得,∠BDF+∠FEC=2∠BAC,故④正确.综上所述,正确的是③④共2个.故答案为:③④.【点评】本题考查了翻折变换的性质,主要利用了平行线判定,等腰三角形三线合一的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.12.【分析】根据轴对称图形的定义求解可得.【解答】解:如图所示,共有4种涂黑的方法,故答案为:4.【点评】本题主要考查的是利用轴对称的性质设计图案,掌握轴对称图形的性质是解题的关键.13.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【解答】解:过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为:4.【点评】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.14.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积公式列式计算即可得解.【解答】解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,∴S△ABC=AB•DE +BC•DF =×6DE +×8DE=21,即3DE+4DE=21,解得DE=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.15.【分析】作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.【解答】解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=6,故答案为:6.【点评】本题考查了角平分线的性质,解题的关键是根据角平分线的性质求得EG的长,难度不大.16.【分析】根据等腰三角形的两腰相等,分①6是腰长,②3是腰长,两种情况讨论求解即可.【解答】解:①6是腰长,能够组成三角形,周长=6+6+3=15,②3是腰长,∵3+3=6,∴3、3、6不能组成三角形,∴三角形的周长为15.故答案为:15.【点评】本题考查了等腰三角形的性质,注意要分情况讨论并利用三角形的三边关系判断是否能够组成三角形,然后再求解.17.【分析】根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=40°,再由∠A=40°,AB=AC,根据三角形内角和定理可求∠ACB的度数,即可解答.【解答】解:∵DE垂直平分AC,∠A=40°,∴AE=CE,∴∠ACE=∠A=40°,∵∠A=40°,AB=AC,∴∠ACB=70°,∴∠BCE=∠ACB﹣∠ACE=70°﹣40°=30°.故∠BCE的度数是30°.故答案为:30°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,熟记性质是解题的关键.三.解答题(共10小题)18.【分析】分别作出点B与点C关于直线l的对称点,然后连接AB′,AC′,B′C′.即可得到△ABC关于对称轴l的轴对称图形△A′B′C′.【解答】解:【点评】作一个图形的对称图形就是作各个顶点关于对称轴的对称点,把作对称图形的问题可以转化为作点的对称点的问题.19.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称变换,正确把握定义是解题关键.20.【分析】(1)利用等腰三角形的性质求出∠B,再利用三角形内角和定理解决问题即可.(2)(3)(4)方法类似.【解答】解:(1)如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB =(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(3)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.【点评】本题考查线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】根据角平分线的定义,线段垂直平分线的性质,等边对等角解决问题即可.【解答】证明:∵AD平分∠BAC∴∠BAD=∠DAC(角平分线的定义)∵EF垂直平分AD∴FD=FA(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD=∠ADF(等边对等角)∴∠DAC=∠ADF(等量代换)∴DF∥AC(内错角相等两直线平行).故答案为:BAD,DAC,FD,FA,等边对等角,内错角相等两直线平行.【点评】本题考查线段的垂直平分线的性质,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)依据∠ACB=90°,CD⊥AB,即可得到∠ACD=∠B,再根据CE平分∠BCD,可得∠BCE=∠DCE,进而得出∠AEC=∠ACE;(2)依据∠ACD=∠BCE=∠DCE,∠ACB=90°,即可得到∠ACD=30°,进而得出Rt△ACD中,AC=2AD =4,Rt△ABC中,AB=2AC=8.【解答】解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=4,∴Rt△ABC中,AB=2AC=8.【点评】本题主要考查了三角形内角和定理以及角平分线的定义,解题时注意:三角形内角和是180°.23.【分析】连接DE.想办法证明∠BCE=∠DEC即可解决问题.【解答】证明:连接DE.∵AD是BC边上的高,CE是AB边上的中线,∴∠ADB=90°,AE=BE,∴BE=AE=DE,∴∠EBD=∠BDE,∵∠B=2∠BCE,∴∠BDE=2∠BCE,∵∠BDE=∠BCE+∠DEC,∴∠BCE=∠DEC,∴BE=DC.【点评】本题考查等腰三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【分析】(1)根据三角形外角的性质可得∠DAC=∠D,可得CA=CD,再根据等腰三角形的性质和平行线的判定即可求解;(2)根据等腰三角形的性质可求∠ACB,再根据三角形外角的性质可得∠CAD,再根据三角形内角和为180°即可求解.【解答】(1)证明:∵∠ACB=2∠D,∴∠DAC=∠D,∴CA=CD,∵CE为△ABC的外角∠ACD的平分线,∴CE⊥AD,∵BF⊥AD,∴BF∥CE;(2)解:∵∠BAC=40°,∴∠ACB=70°,∴∠DAC=35°,∴∠ABF=180°﹣90°﹣(40°+35°)=15°.【点评】考查了等腰三角形的性质,平行线的判定,三角形外角的性质,关键是得到CA=CD.25.【分析】(1)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论;(2)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论.【解答】解:(1)∵∠XOY=90°,∠OAB=40°,∴∠ABY=130°,∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB=20°,∠EBA =∠YBA=65°,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=45°,故答案为:45;(2)∠ACB的大小不变化.理由:∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB,∠EBA =∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB =∠YBA ﹣∠OAB=(∠YBA﹣∠OAB),∵∠YBA﹣∠OAB=90°,∴∠C =×90°=45°,即:∠ACB的大小不发生变化.【点评】此题主要考查了角平分线定理,三角形的外角的性质,解本题的关键是得出∠YBA﹣∠OAB=90°.26.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE =∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.27.【分析】(1)先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;(2)利用等腰三角形的性质和三角形的内角和即可得出结论;(3)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.【点评】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.第13页(共13页)。
苏科版八年级上册数学第二章 轴对称图形 含答案(各地真题)
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、下列四个图案中,不是轴对称图形的是().A. B. C. D.2、如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①AE=CE;②S△ABC =AB•AC;③S△ABE=2S△AOE;④OE=BC,成立的个数有()A.1个B.2个C.3个D.43、下列图形中轴对称图形的个数有()A.4个B.3个C.2个D.1个4、如图是一个由几个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.主视图和俯视图B.俯视图C.俯视图和左视图D.主视图5、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6、如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点7、等腰三角形有两条边的长分别为4和9,则该三角形的周长是()A.17或22B.13或22C.17D.228、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9、如图,在△ABC中,AD是中线,DE⊥BC交AB于E,AH∥DE交BC于H,且∠DAH=∠CAH,连接CE交AD于F,交AH于G.下列结论:①△AEF∽△CEA;②FH ∥AC;③若CE⊥AB,则tan∠BAC=2;④若四边形AEDG是菱形,则∠ACB=60°.其中正确的是()A.①②③B.②③④C.①②D.①②③④10、如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6 cm,则∠AOB的度数是()A.15B.30C.45D.6011、若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70°B.40°C.70°或40°D.70°或55°12、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个结论,你发现的结论是()A.2∠A=∠1-∠2B.3∠A=2(∠1-∠2)C.3∠A=2∠1-∠2D.∠A=∠1-∠213、如图,在△ABE中,AE的垂直平分线MN交BE于点C,∠E=30°,且AB=CE,则∠BAE的度数是()A.80°B.85°C.90°D.105°14、等腰三角形底边长10 cm,腰长为13,则此三角形的面积为( )A.40B.50C.60D.7015、如图,在△ABC中,点O是∠ABC的平分线与线段BC的垂直平分线的交点,则下列结论不一定成立的是()A.OB=OCB.OD=OFC.BD=DCD.OA=OB=OC二、填空题(共10题,共计30分)16、如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC 的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是________°.17、如图,已知等边三角形ABC的高为7cm,P为△ABC内一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F.则PD+PE+PF=________.18、已知等边△ABC的高为6,在这个三角形所在的平面内有一点P,若点P到直线AB的距离是1,点P到直线AC的距离是3,则点P到直线BC的距离可能是________.19、如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q 分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).当t为________ 时,以B,P,Q三点为顶点的三角形是等腰三角形?20、如图所示,在中,,,将绕点顺时针旋转至,使得点恰好落在上,则旋转角度为________.(注:等腰三角形的两底角相等)21、在中,AB=AC,,则 :∠B=________。
秋苏科版八年级上2.3设计轴对称图案同步练习含答案
第二章 2.3 设计轴对称图案一.选择题(共5小题)1.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个2.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个3.)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.4.如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有()A.4种B.5种C.6种D.7种5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个B.3个C.4个D.5个二.填空题(共8小题)6.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.7.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.8.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有______个.9.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:______(填字母).10.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有______种.11.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到______个.12.下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为______次.13.请在下列2×2的方格中,各画出一个三角形,要求所画三角形是图中的三角形经过轴对称变换得到的图形,且所画的三角形的顶点与方格中的小正方形的顶点重合,并将所画的三角形涂上阴影.(注:所画的三角形不能重复)三.解答题(共5小题)14.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,每个网格中画有一个平行四边形,请分别在图1、图2中各画一条线段,各图均满足以下要求:(1)线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);(2)将平行四边形分割成两个图形,图1、图2中的分法各不相同,但都要求其中一个是轴对称图形.15.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.16.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)17.如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.18.画图或作图:(1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有______个.(2)如图2,点A、B是直线l同侧的两个点,在直线l上可以找到一个点P,使得PA+PB 最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l看不清了.请你帮助小玉补全图形,作出直线l.(尺规作图,保留痕迹,不要求写作法)参考答案一.选择题(共5小题)1.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念求解.【解答】解:如图所示,有4个位置使之成为轴对称图形.故选C.【点评】此题考查的是利用轴对称设计图案,解答此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.2.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个【分析】根据轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:符合题意的有3个三角形.故选:B.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.3.下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形可得答案.【解答】解:如图所示:故选:A.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念.4.如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有()A.4种B.5种C.6种D.7种【分析】根据轴对称的定义,及题意要求画出所有图案后即可得出答案.【解答】解:得到的不同图案有:,共6种.故选C.【点评】本题考查了学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个B.3个C.4个D.5个【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【解答】解:分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形.故选C.【点评】此题考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,注意不要漏解.二.填空题(共8小题)6.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形进行画图即可.【解答】解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△BCD、△FBE、△HCE,△AFG,共5个.故答案为:5.【点评】本题考查轴对称图形的定义,以及利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.8.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有4个.【分析】直接利用轴对称图形的性质结合题意得出答案.【解答】解:如图所示:都是符合题意的图形.故答案为:4.【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.9.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:c,h,k,m(填字母).【分析】直接利用轴对称图形的性质分析得出即可.【解答】解:如图所示:现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:c,h,k,m(填字母).故答案为:c,h,k,m.【点评】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的性质得出是解题关键.10.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有4种.【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故答案为:4.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.11.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到2个.【分析】利用轴对称图形的性质,分别得出符合题意的图形即可.【解答】解:如图所示:符合题意有2个点.故答案为:2.【点评】本题考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.12.下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为7次.【分析】根据题意画出图形,然后即可作出判断.【解答】解:根据图形可得总共反射了7次.故答案为7.【点评】本题考查轴对称的知识,难度不大,注意画出图形会使问题比较简单直观.13.请在下列2×2的方格中,各画出一个三角形,要求所画三角形是图中的三角形经过轴对称变换得到的图形,且所画的三角形的顶点与方格中的小正方形的顶点重合,并将所画的三角形涂上阴影.(注:所画的三角形不能重复)【分析】可分别选择不同的直线当对称轴,得到相关图形即可.【解答】解:所设计图案如下所示:【点评】本题考查利用轴对称设计图案,注意掌握轴对称的特点,选择不同的直线当对称轴是解决本题的突破点.三.解答题(共5小题)14.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,每个网格中画有一个平行四边形,请分别在图1、图2中各画一条线段,各图均满足以下要求:(1)线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);(2)将平行四边形分割成两个图形,图1、图2中的分法各不相同,但都要求其中一个是轴对称图形.【分析】根据勾股定理可得平行四边形的一边长为5,根据网格可得另一边长为6,因此可以截出一个等腰三角形,也可截出一个菱形.【解答】解:如图1所示:△ABC是等腰三角形,是轴对称图形;如图2所示:四边形ABCD是菱形,是轴对称图形.【点评】此题主要考查了利用轴对称设计图案,关键是正确掌握轴对称图形的定义:一个图形沿一条直线折叠,直线两旁的部分能完全重合.15.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.【分析】要补成轴对称图形,关键是找出对称轴,不同的对称轴有不同的轴对称图形,所以此题首先要找出对称轴,再思考怎么画轴对称图形.【解答】解:.【点评】做这类题的关键是找对称轴.而且这是一道开放题,答案不唯一.16.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)【分析】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】解:(1)答案不唯一,例如,所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等等.只要写出两个即可.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如,同时具备特征①、②的部分图案如图:【点评】此题主要考查了利用轴对称设计图案,正确把握图形的特征是解题关键.17.如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.【分析】可以利用轴对称设计一个图案,再利用平移设计一个图案即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,利用平移设计图案,关键是正确理解题目要求.18.画图或作图:(1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有3个.(2)如图2,点A、B是直线l同侧的两个点,在直线l上可以找到一个点P,使得PA+PB 最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l看不清了.请你帮助小玉补全图形,作出直线l.(尺规作图,保留痕迹,不要求写作法)【分析】(1)根据轴对称图形的定义:沿着一直线折叠后直线两旁的部分能完全重合进行添图.(2)首先画出A、B所在直线的交点P,再延长AP使AP=CP,然后再作AC的垂直平分线即可得到l.【解答】解:(1)如图:,共3个,故答案为:3;(4)如图所示:.【点评】此题主要考查了利用轴对称图形设计图案,关键是掌握对称轴是对称点连线的垂直平分线.。
苏科版八年级上册数学第二章 轴对称图形含答案(完整版)
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、下列图形中,是轴对称图形的是()A. B. C. D.2、如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°3、如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A. cm 2B. cm 2C. cm 2D. cm 24、如图,矩形纸片中,,.点E、G分别在,上,将、分别沿、翻折,点A的对称点为点F,点D的对称点为点H,当E、F、H、C四点在同一直线上时,连接,则线段长为()A. B. C. D.5、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.6、如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36B.24C.18D.167、如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,若BC=18,DE=8,则△BCE的面积等于()A.36B.54C.63D.728、如图,在△ABC中,∠B=45°,∠D=64°,AC=BC,则∠E的度数是()A.45°B.26°C.36°D.64°9、下列四个图形中,既是轴对称图形,又是中心对称图形的是 ( )A.①②B.①③C.②③D.①②③10、如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.5 5°D.3 5°11、如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )A. BC> PC+ APB. BC< PC+ APC. BC= PC+ APD. BC≥ PC+ AP12、如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S= .其中正△FGC确结论的个数是()A.2个B.3个C.4个D.5个13、下列手机软件图标中,是轴对称图形的是()A. B. C. D.14、下列食品标识中,既是轴对称图形又是中心对称图形的是()A. 绿色饮品B. 绿色食品C. 有机食品D. 速冻食品15、如图,将矩形纸片ABCD折叠,使点A落在BC上的点F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.两个全等的直角三角形构成正方形D.轴对称图形是正方形二、填空题(共10题,共计30分)16、如图,在边长为4的正方形中,是边的中点,将沿对折至,延长交于点,连接,则的长为________.17、如图,在矩形中,,,点为的中点,将沿折叠,使点落在矩形内点处,连接,则的长为________.18、如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于________度.19、如图,在四边形中,,,,,点和点分别是和的中点,连接,,,若,则的面积是________.20、如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=________m.(结果保留根号)21、已知等边三角形ABC的边长为8,P是BC边上一点,连接AP,若AP=7,则BP的长为________.22、如图所示,在等边三角形ABC中,剪去∠A,∠C后,∠1+∠2+∠3+∠4=________.23、小明在镜子中看到的时钟的指针如图所示,那么此时时间为________.24、如图,在Rt△ABC中,∠ACB=90°,DE是AB的中垂线,分别交AB,AC于点D,E.已知AB=10,AC=8,则△BCE的周长是________.25、如图,己知是的垂直平分线,的周长为,,则的周长为________.三、解答题(共5题,共计25分)26、已知ABC中∠BAC=140°, AB、AC的垂直平分线分别交BC于E、F,AEF 的周长为10㎝,求BC的长度和∠EAF的度数.27、如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.求证:AB=AC28、判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.29、请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.30、如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)参考答案一、单选题(共15题,共计45分)1、B2、B3、C5、D6、B7、D8、B9、B10、C11、C12、D13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、。
八年级上册数学单元测试卷-第二章 轴对称图形-苏科版(含答案)
八年级上册数学单元测试卷-第二章轴对称图形-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE2、如图,∠MON=90°,已知△ABC中,AC=BC=13,AB=10,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为()A.5B.7C.12D.3、在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF 翻折,点B落在CD边上的点E处,折痕AF交BC下边于点F;②把△ADH翻折,点D落在AE边上的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则的值是( )A. B. C. D.4、如图,AD是△ABC的角平分线,DE⊥AB,AB=6cm,DE=4cm,S△ABC=30cm2,则AC的长为( )A.10cmB.9cmC.4.5cmD.3cm5、若等腰三角形的周长是,其中一边长为,则腰长是()A. B. C. 或 D.无法确定6、直线与坐标轴交于、两点,点在坐标轴上,为等腰三角形,则满足条件的点最多有()个A.8;B.4;C.5;D.7.7、下列说法正确的是()A.角是轴对称图形,它的平分线就是它的对称轴B.等腰三角形的内角平分线,中线和高三线合一C.直角三角形不是轴对称图形D.等边三角形有三条对称轴8、如图,在Rt△ABC中,∠C=90°,直线DE是斜边AB的垂直平分线交AC于D .若AC=8,BC=6,则△DBC的周长为()A.12B.14C.16D.无法计算9、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.10、如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD =110°,则∠ACB的度数为( )A.40°B.35°C.60°D.70°11、已知等腰三角形的一个外角等于100°,则它的顶角是( )A.80°B.20°C.80°或20°D.不能确定12、如图,在△ABC中,AB=AC=6,点D在边AC上,AD的中垂线交BC于点E.若∠AED=∠B,CE=3BE,则CD等于()A. B.2 C. D.313、大自然中存在很多对称现象,下列植物叶子的图案中不是轴对称图形的是()A. B. C. D.14、如图,△ABC中,AB=AC,BD=CE,BF=CD,若∠A=50°,则∠EDF的度数是()A.75°B.70°C.65°D.60°15、将一个正方形和两个正三角形按如图摆放,则∠1+∠2+∠3=( )A.360°B.180°C.270°D.150°二、填空题(共10题,共计30分)16、若等腰三角形的一个内角为,则它的底角的度数为________.17、在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是________18、如图,在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为________.19、腰长为5,高为4的等腰三角形的底边长为________.20、如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB延AE折叠到AF,延长EF交DC于G,连接AG,现在有如下结论:①∠EAG = 45°;②CG=CF;③FC∥AG;④S△GFC=14.4。
苏科版八年级上第二章《轴对称图形》全章提优练习(含答案)【14份】
苏科版八年级上第二章《轴对称图形》全章提优练习(含答案)第1课时轴对称与轴对称图形1.下列图形中,对称轴的数量小于3的是( )n 且n为整数).如图,请你2.已知各边相等,各角也相等的多边形叫做正多边形,也称为正n边形(这里3(1)边形有条对称轴(2)当n越来越大时,正多边形接近于,该图形有条对称轴.3.小明学习了轴对称知识后,忽然想起了参加数学兴趣小组时老师布置的一道题,当时小明没做出来,题目是这样的:有一组数据排列成方阵,如图.试用简便方法计算这组数据的和.小明想:不考虑每个数据的大小,只考虑每个数据的位置,这个图形是个轴对称图形,能不能用轴对称思想来解决这个问题呢?小明顺着这个思路很快解决了这个题目,请你写出他的解题过程.第2课时 轴对称的性质(1)1.如图,把一张长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B '处,若240∠=︒,则1∠的度数为( )A. 115°B. 120°C. 130°D. 140°2.如图,点P 关于,OA OB 的对称点分别是12,P P ,12PP 分别交,OA OB 于点,D C ,12P P =16 cm ,则PCD ∆的周长为 cm.3.如图,O 为ABC ∆内部一点, 132OB =.(1)分别画出点O 关于直线,AB BC 的对称点,P Q ;(2)请指出当ABC ∠的度数为多少时,PQ =7,并说明理由;(3)请判断当ABC ∠的度数不是(2)中的度数时,PQ 的长度是小于7还是大于7,并说明你的判断的理由.第3课时 轴对称的性质(2)1.如图,点,A B 在方格纸的格点位置上,若要再找一个格点C ,使它们所构成的三角形为轴对称图形,则这样的格点C 在图中共有( )A. 4个B. 6个C. 8个D. 10个2.如图,在2×2的正方形网格纸中,有一个以格点为顶点的ABC ∆.请你找出网格纸中所有与ABC ∆成轴对称且也以格点为顶点的三角形,这样的不角形共有 个.3.如图,在由边长为1的正方形组成的6×5方格中,点,A B 都在格点上.(1)在给定的方格中将线段AB 平移到CD ,使得四边形ABDC 是长方形,且点,C D 都落在格点上.画出四边形ABDC ,并叙述线段AB 的平移过程.(2)在方格中画出ACD ∆关于直线AD 对称的AED ∆.(3)求五边形AEBDC 的面积.第4课时 轴对称的性质—习题课7.如图,线段AB 在直线l 的一侧,请在直线l 上找一点P ,使PAB ∆的周长最短.画出图形,保留画图痕迹,不写画法.2.如图,在直线l 上找一点Q ,使得,QA QB 与直线l 的夹角相等.画出图形,保留画图痕迹,不写画法.3. (1)如图①, P 是AOB ∠内一点,在,OA OB 上分别找点,C D ,使得PCD ∆的周长最短.画出图形,保留画图痕迹,不写画法.(2)如图②, ,P Q 是AOB ∠内的两点,在,OA OB 上分别找点,C D ,使得以,,,P Q C D 为顶点的四边形的周长最短.画出图形,保留画图痕迹,不写画法.第5课时 设计轴对称图案1.在一次数学活动课上,小颖将一个四边形纸片依次按如图①②所示的方式对折,然后按图③中的虚线裁剪成图④样式,将纸片展开铺平,所得到的图形是( )2.在4×4的方格中,有五个同样大小的正方形按如图所示的方式摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.3.在3×3的正方形网格图中,有格点三角形ABC 和格点三角形DEF ,且ABC ∆和DEF ∆ 关于某条直线成轴对称,请在如图①~⑥所示的网格中画出六个这样的DEF ∆.(每种方案均不相同)第6课时 线段、角的轴对称性(1)1.如图,在ABC ∆中,AC 的垂直平分线分别交,AC BC 于点,,E D EC = 4 , ABC ∆的周长为23,则ABD ∆的周长为( )A. 13B. 15C. 17D. 192.如图,在ABC ∆中,AB 的垂直平分线分别交,AB BC 于点,,D E AC 的垂直平分线分别交,AC BC 于点,F G .若AEG ∆的周长为2018,则线段BC 的长为 .3.如图,在ABC ∆中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点,F D 为线段CE 的中点,且18,72CAD ACB ∠=︒∠=︒.求证: BE AC =.第7课时 线段、角的轴对称性(2)1.设P 是ABC ∆内一点,满足PA PB PC ==,则P 是ABC ∆ ( )A.三条内角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点2.如图,在ABC ∆中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若EDC ∆的周长为24, ABC ∆与四边形AEDC 的周长之差为12,则线段DE 的长为 .3.在ABC ∆中,,AB AC O =为平面上一点,且OB OC =.点A 到BC 的距离为8,点O 到BC 的距离为3.求AO 的长.第8课时 线段、角的轴对称性(3)1.如图,ABC ∆的面积为6,AC =3,现将ABC ∆沿AB 所在直线翻折,使点C 落在直线AD 上的点C '处,P 为直线AD 上的一点,则线段BP 的长不可能是( )A. 3B. 4C. 5. 5D. 102.如图,//,,AB CD BP CP 分别平分,,ABC DCB AD ∠∠过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离为 .3.如图,MN 为ABC ∆的边AC 的垂直平分线,过点M 作ABC ∆另外两边,AB BC 所在直线的垂线,垂足分别为,D E ,且AD CE =,作射线BM .求证: BM 平分ABC ∠.第9课时 线段、角的轴对称性(4)1.如图,,ABC EAC ∠∠的平分线,BP AP 交于点P ,过点P 作,PM BE PN BF ⊥⊥,垂足分别为,M N .下列结论:①CP 平分ACF ∠;②180ABC APC ∠+∠=︒;③AM CN AC +=;④2BAC BPC ∠=∠.其中正确的是( )A. ①②③B. ①③④C. ②③④D.①③2.如图,AD 是ABC ∆的角平分线,,DE DF 分别是ABD ∆和ACD ∆的高,连接EF ,交AD 于点O .下列结论:①DE DF =;②OA OD =;③AD EF ⊥;④AE DF AF DE +=+; ⑤AD 垂直平分EF .其中一定正确的是 .(填序号)3.如图.在ABC ∆中,AB AC >,边BC 的垂直平分线DE 交ABC ∆的外角BAM ∠的平分线于点D ,垂足为,E DF AB ⊥,垂足为F .求证: BF AC AF =+.第10课时 等腰三角形的轴对称性(1)1.如图,在ABC ∆中,55,30B C ∠=︒∠=︒,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 65°B. 60°C. 55°D. 45°2.如图,在ABC ∆中,D 为AB 上一点,E 为BC 上一点,且,50AC CD BD BE A ===∠=︒,则CDE ∠的度数为 .3.如图,在ACB ∆中,90ACB ∠=︒, ,D E 为斜边AB 上的两点,且,BD BC AE AC ==,求DCE ∠的度数.第11课时 等腰三角形的轴对称性(1)—习题课1.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的底角的度数为( )A. 30°B. 75°C. 15°或30°D. 75°或15°2.如图,在ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,在边AC 所在的直线上找一点P ,使ABP ∆是等腰三角形,此时APB ∠的度数为 .3.在ABC ∆中,,AB AC AB =的垂直平分线DE 与AC 所在的直线相交所成的锐角为40°,求B ∠的度数.第12课时 等腰三角形的轴对称性(2)1.如图,在ABC ∆中,,36,,AB AC A BD CE =∠=︒分别是,ABC ACB ∠∠的平分线,且相交于点F ,则图中的等腰三角形有( )A. 5个B. 6个C. 7个D. 8个2.在ABC ∆中,50A ∠=︒,当B ∠的度数为 时,ABC ∆为等腰三角形.3.如图①,在ABC ∆中,,,AB AC ABC ACB =∠∠的平分线交于点O ,过点O 作//EF BC 交,AB AC 于点,E F .(1)图中有几个等腰三角形?猜想EF 与,BE CF 之间有怎样的数量关系,并说明理由.(2)如图②,若AB AC ≠,其他条件不变,则图中还有等腰三角形吗?如果有,分别写出来;另外在(1)中EF 与,BE CF 之间的数量关系还存在吗?(3)如图③,若在ABC ∆中, ABC ∠的平分线BO 与ABC ∆的外角平分线交于点O ,过点O 作//OE BC 交AB 于点E 、交AC 于点F .这时图中还有等腰三角形吗?EF 与,BE CF 之间的数量关系又如何?并说明你的理由.第13课时 等腰三角形的轴对称性(2)—习题课1.如图,120AOB ∠=︒,OP 平分AOB ∠,且OP =2.若点,M N 分别在,OA OB 上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A. 1个B. 2个C. 3个D. 3个以上2.如图,在等边三角形ABC 中,,,AE CD AD BE =相交于点,P BQ AD ⊥于点Q ,则线段,BP PQ 的数量关系为 .3.如图,C 为线段AB 上一点,ACM ∆,CBN ∆是等边三角形.,AN BM 相交于点,,O AN CM 交于点P , ,BM CN 交于点Q ,连接PQ .(1)求证: AN MB =;(2)求AOB ∠的度数;(3)求证: //PQ AB .第14课时 等腰三角形的轴对称性(3)1.如图,在ABC ∆中,,BE AC CF AB ⊥⊥ ,垂足分别为,E F .若M 是BC 的中点,则图中等腰三角形有( )A. 1个B. 3个C. 4个D. 5个2.如图,在四边形ABCD 中,90BCD BAD ∠=∠=︒ , ,AC BD 相交于点,,E G H 分别是,AC BD 的中点.如果80BEC ∠=︒,那么GHE ∠的度数为 .3.如图,在Rt ABC ∆中,90ACB ∠=︒,点D 在边AC 上(不与点,A C 重合), DE AB ⊥于点E ,连接,BD F 为BD 的中点.试猜想A ∠与CEF ∠的关系并证明.第2章 轴对称图形第1课时 轴对称与轴对称图形1.D2. 3 4 5 6 7 8(1) n(2)圆 无数3. 从方阵的数据看出,正方形的一条对角线上的数据都是10.若把这条对角线所在的直线作为对称轴,把这个方阵对折,对称轴两侧重合的小正方形内的数据之和都是10,相加后如图所示,这样方阵中的所有数据之和为1010100⨯=第2课时 轴对称的性质(1)1.A2. 163. (1)如图,过点O 画OH AB ⊥,垂足为H ,在垂线段OH 的延长线上取一点P ,使得PH OH =P ,此时点P 就是点O 关于直线AB 的对称点,同理画出点Q .(2)当90ABC ∠=︒时,7PQ =理由:如图,连接BP 、BQ∵点O 、P 关于直线AB 对称∴直线AB 垂直平分OP∴90BHO BHP ∠=∠=︒,PH OH =∵BH BH =∴BHO BHP ∆≅∆ ∴132OB PB ==,OBH PBH ∠=∠ 同理132OB QB ==,OBC QBC ∠=∠∴1133722PB QB +=+= 若7PQ =,则PB QB PQ +=,此时P 、B 、Q 三点共线∴180PBQ ∠=︒ ∴1902ABC OBH OBC PBQ ∠=∠+∠=∠=︒ (3)当90ABC ∠≠︒时,7PQ <理由:∵90ABC ∠≠︒∴P 、B 、Q 三点不在同一直线上,此时构成PBQ ∆∴PB BQ PQ +>.由(2),得7PB BQ +=∴7PQ <第3课时 轴对称的性质(2)1.D2. 53.(1)如图,将线段AB 先向右平移1个单位长,再向上平移2个单位长度,得线段CD (平移过程不唯一).(2)如图,画点C 关于直线AD 的对称点E ,连接AE 、DE ,则AED ∆即为所求. ( 3)1152(35)21322ACD AEBDC AEBD S S S ∆=+=⨯⨯+⨯+⨯=五边形梯形第4课时 轴对称的性质—习题课1. 由干线段AB 的长度是固定的,要使PAB ∆的周长最短,只要PA PB +最短即可.如图,过点A 作它关于直线l 的对称点'A ,连接'A B 交直线l 于点P ,连接PA 、PB ,此时PAB ∆就是周长最短的三角形,∴点P 即为所求.2.如图,过点A 作它关干直线l 的对称点'A ,连接'A B 交直线l 于点Q .连接QA 、QB ,此时AQH BQD ∠=∠,∴点Q 即为所求.3. (1)如图①,过点P 分别作关于射线OA 、OB 的对称点1P 、2P ,连接12P P ,分别交OA 、OB 于点C 、D ,连接PC 、PD 、CD ,此时PCD ∆的周长最短,∴点C 、D 和PCD ∆即为所求.(2)如图②.过点P 、Q 分别作射线OA 、OB 的对称点1P 、1Q ,连接11PQ ,分别交OA 、OB 于点C 、D ,连接PC 、PQ 、QD 、CD ,此时四边形PCDQ 的周长最短,∴点C 、D 和四边形PCDQ 即为所求.第5课时 设计轴对称图案1.A2. 133.要使DEF ∆和ABC ∆于某条直线成轴对称,关键是确定适当的对称轴.再根据轴对称的性质画出符合条件的图案,可以以33⨯的正方形网格图的对称轴为对称轴画出所求的DEF ∆,有四个不同位置的三角形;也可以以ABC ∆的边AC 、BC 的中点连线所在的直线为对称轴画出所求的DEF ∆,有一个三角形;还可以把过ABC ∆的顶点C 与边AB 平行的直线作为对称轴画出所求的DEF ∆,也有一个三角形.如图①~⑥中的DEF ∆即为所求第6课时 线段、角的轴对称性(1)1.B2. 20183. 连接AE ,∵EF 是AB 的垂直平分线∴AE BE =∵在ADC ∆中.,18CAD ∠=︒,72ACB ∠=︒∴18090ADC CAD ACB ∠=︒-∠-∠=︒即AD EC ⊥∵D 为线段CE 的中点∴ED CD =∴AD 垂直平分EC∴AE AC =∴BE AC =第7课时 线段、角的轴对称性(2)1.D2. 63.∵AB AC =∴点A 在线段BC 的垂直平分线上∵OB OC =∴点O 也在线段BC 的垂直平分线上∴AO 所在的直线即为线段BC 的垂直平分线.设直线AO 与BC 交于点M .由题意,得8,3AM OM ==如图①.当点A 、O 在BC 的同侧时,835AO AM OM =-=-=;如图②,当点A 、O 在BC 的异侧时,8311AO AM OM =+=+=第8课时 线段、角的轴对称性(3)1.A2. 43.连接MA 、MC∵点M 在AC 的垂直平分线上∴MA MC =∵,MD AB ME BC ⊥⊥∴90ADM CEM ∠=∠=︒在Rt MAD ∆和Rt MCE ∆中MA MC AD CE=⎧⎨=⎩ ∴Rt MAD Rt MCE ∆≅∆∴点M 在ABC ∠的平分线上,即BM 平分ABC ∠.第9课时 线段、角的轴对称性(4)1.B2. ①③④⑤3.如图.在ABC ∆中,AB AC >,边的垂直平分线DE 交ABC ∆的外角BAM ∠的平分线于点D ,垂足为,E DF AB ⊥,垂足为F .求证: BF AC AF =+.3.过点D 作DN MC ⊥,垂足为N ,连接DB 、DC .∵DN MC ⊥,DF AB ⊥∴90AND AFD ∠=∠=︒∵AD 平分BAM ∠∴NAD FAD ∠=∠在DNA ∆和DNA ∆中,AND AFD NAD FAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DNA DFA ∆≅∆∴,AN AF DN DF ==∵DE 是边BC 的垂直平分线 ∴DB DC =∵DN MC ⊥,DF AB ⊥ ∴90DNC DFB ∠=∠=︒在Rt DFB ∆和Rt DNC ∆中DB DC DF DN =⎧⎨=⎩∴Rt DFB Rt DNC ∆≅∆∴BF CN =∵CN AC AN AC AF =+=+∴BF AC AF =+第10课时 等腰三角形的轴对称性(1)1.A2. 52.5°3.设,BDC x AEC y ∠=∠=∵BD BC =∴BDC BCD x ∠=∠=∵BDC ∆的内角和为180°∴1802B x ∠=︒-同理可求1802A y ∠=︒-∵在ACB ∆中,90ACB ∠=︒∴90A B ∠+∠=︒即1802180290x y ︒-+︒-=︒整理,得135x y +=︒∵DEC ∆的内角和为180°第11课时 等腰三角形的轴对称性(1)—习题课1.D2. 15°或30°或75°或120°3.分三种情况讨论:①当顶角BAC ∠为锐角时,如图①.∵DE 垂直平分AB∴90ADE ∠=︒∵40AED ∠=︒∴在Rt ADE ∆中,904050A ∠=︒-︒=︒∵AB AC = ∴1(18050)652B C ∠=∠=︒-︒=︒ ②当顶角BAC ∠为直角时,BA AC ⊥,此时//DE AC ,不合题意,舍去.③当顶角BAC ∠为钝角时,如图②.∵DE 垂直平分AB∴90ADE ∠=︒∵40AED ∠=︒∴在Rt ADE ∆中,50BAE ∠=︒∵BAE B C ∠=∠+∠∴50B C ∠+∠==︒∵AB AC = ∴150252B C ∠=∠=⨯︒=︒ 综上所述,B ∠的度数为65︒或25︒第12课时 等腰三角形的轴对称性(2)1.D2. 50°或80°或65°2.在ABC ∆中,50A ∠=︒,当B ∠的度数为 时,ABC ∆为等腰三角形.3. (1)图中有5个等腰三角形:ABC ∆、AEF ∆、OBC ∆、EBO ∆、FOC ∆EF 与BE 、CF 之间的数量关系是EF BE CF =+理由:∵BO 平分ABC ∠∴EBO OBC ∠=∠∵//EF BC∴EOB OBC ∠=∠∴EBO EOB ∠=∠∴BE OE =同理可证CF OF =∴EF OE OF BE CF =+=+(2)若AB AC ≠,则图中仍旧存在2个等腰三角形:EBO ∆和FOC ∆,EF 与BE 、CF 之间的数量关系是EF BE CF =+仍旧存在.(3)图中存在等腰三角形EBO ∆和FOC ∆,EF 与BE 、CF 之间的数量关系是EF BE CF =- 理由:∵BO 平分ABC ∠∴EBO OBC ∠=∠∵//EF BC∴EOB OBC ∠=∠∴EBO EOB ∠=∠∴BE OE =同理可证CF OF =∴EF OE OF BE CF =-=-第13课时 等腰三角形的轴对称性(2)—习题课1.D2.2BP PQ =3. (1)如图,∵ACM ∆,CBN ∆都是等边三角形∴6160∠=∠=︒,,AC CM CN BC ==∵180ACB ∠=︒∴360∠=︒,120ACN MCB ∠=∠=︒在ACN ∆和MCB ∆中AC MC ACN MCB CN CB =⎧⎪∠=∠⎨⎪=⎩∴ACN MCB ∆≅∆∴AN MB =(2)如图,由(1),知ACN MCB ∆≅∆∴54∠=∠∵OQN ∆与CQB ∆的内角和均为180°,且OQN CQB ∠=∠∴160NOQ ∠=∠=︒∵180AOB NOQ ∠+∠=︒∴120AOB ∠=︒(3)如图,∵160∠=︒,360∠=︒∴31∠=∠在PCN ∆和QCB ∆中3154CN CB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴PCN QCB ∆≅∆∴PC QC =又360∠=︒∴PCQ ∆为等边三角形∴260∠=︒∴21∠=∠∴//PQ AB第14课时 等腰三角形的轴对称性(3)1.D2. 10°3. A CEF ∠=∠ 证明:,EBF x CBF y ∠=∠=∵在Rt ABC ∆中,90ACB ∠=︒∴1809090A x y x y ∠=︒-︒--=︒--∵90ACB ∠=︒,F 为BD 的中点 ∴12CF BD BF == ∴FCB FBC y ∠=∠=∴2DFC FCB FBC y ∠=∠+∠=∵DE AB ⊥,F 为BD 的中点 ∴12EF BD BF == ∴FEB FBE x ∠=∠=∴2DFE FEB FBE x ∠=∠+∠=∴22EFC DFE DFC x y ∠=∠+∠=+ 又∵12CF BD =,12EF BD = ∴CF EF =∴CEF ECF ∠=∠∵CEF ∆的内角和为180° ∴11(180)(18022)9022CEF EFC x y x y ∠=︒-∠=︒--=︒-- ∴A CEF ∠=∠。
苏科新版八年级上册数学《第2章 轴对称图形》单元测试卷【含答案】
苏科新版八年级上册数学《第2章轴对称图形》单元测试卷一.选择题1.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=4cm,则点D到AB的距离DE是( )A.5cm B.4cm C.3cm D.2cm2.若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或123.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )A.2条B.3条C.4条D.5条4.下列判断错误的是( )A.等腰三角形是轴对称图形B.有两条边相等的三角形是等腰三角形C.等腰三角形的两个底角相等D.等腰三角形的角平分线、中线、高互相重合5.△ABC是等边三角形,D,E,F为各边中点,则图中共有正三角形( )A.2个B.3个C.4个D.5个6.在△ABC中,∠A=90°,∠C=30°,AB=4,则BC等于( )A.2B.C.D.87.如图,在△ABC中,AB=5,BC=6,AC的垂直平分线分别交BC、AC于点D、E,则△ABD的周长为( )A.8B.11C.16D.178.如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为( )A.3B.4C.5D.69.如图,在△ABC中,AB=AC,AD平分∠BAC,E为AC的中点,DE=3,则AB等于( )A.4B.5C.5.5D.610.一艘轮船由海平面上A地出发向南偏西40°的方向行驶100海里到达B地,再由B 地向北偏西20°的方向行驶100海里到达C地,则A,C两地相距( )A.100海里B.80海里C.60海里D.40海里二.填空题11.如果一个等腰三角形的两边长分别为4cm和9cm,则此等腰三角形的周长 cm.12.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A 运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是 秒.13.已知等边三角形的边长是2,则这个三角形的面积是 .(保留准确值)14.右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为 .15.在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若AB=5,AC=4,那么△AEF的周长为 .16.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=10,则DF等于 .17.如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则△DEF的面积为 .18.下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有 (填序号).19.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB= cm.20.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB= .三.解答题21.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30°,求证:△ABC是等边三角形.22.如图,AD是等边△ABC的中线,AE=AD,求∠EDC的度数.23.已知:如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA,PE⊥OB,垂足分别为D、E,点F是OC上的另一点,连接DF,EF.求证:DF=EF.24.如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.25.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.26.如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.27.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:BE=CE(要求:不用三角形全等的方法)参考答案与试题解析一.选择题1.解:∵∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴DE=CD,∵CD=4cm,∴点D到AB的距离DE是4cm.故选:B.2.解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.3.解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.4.解:A、等腰三角形是轴对称图形,正确;B、两条边相等的三角形叫做等腰三角形,正确;C、等腰三角形的两腰相等,两个底角相等,正确;D、等腰三角形顶角的角平分线与底边上的中线、底边上的高线互相重合,故本选项错误;故选:D.5.因为△ABC为等边三角形,所以AB=BC=AC,又因为D,E,F为各边中点,所以AE=EB=BF=FC=CD=DA;又因为DE,DF,EF分别为中位线,所以DE=BC,EF=AC,DF=AB,即DE=EF=DF.所以AE=EB=BF=FC=CD=DA=DE=EF=FD.所以此图中所有的三角形均为等边三角形.因此应选择5个,故选:D.6.解:根据含30度角的直角三角形的性质可知:BC=2AB=8.故选:D.7.解:∵DE是线段AC的垂直平分线,∴DA=DC,∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=11,故选:B.8.解:∵在等边△ABC中,D是AB的中点,AB=8,∴AD=4,AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故选:C.9.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=AC=3,∴AB=AC=6,故选:D.10.解:如图所示:连接AC.∵点B在点A的南偏西40°方向,点C在点B的北偏西20°方向,∴∠CBA=60°.又∵BC=BA,∴△ABC为等边三角形.∴AC=BC=AB=100海里.故选:A.二.填空题11.解:当腰长为4cm时,则三边分别为4cm,4cm,9cm,因为4+4<9,所以不能构成直角三角形;当腰长为9cm时,三边长分别为4cm,9cm,9cm,符合三角形三边关系,此时其周长=4+9+9=22cm.故答案为22.12.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.13.解:如图,过点A作AD⊥BC于点D,∵等边三角形的边长是2,∴BD=BC=×2=1,在Rt△ABD中,AD==,所以,三角形的面积=×2×=.故答案为:.14.解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.15.解:由∠ABC与∠ACB的平分线相交于点O,得∠EBO=∠OBC,∠FCO=∠OCB.由EF∥BC,得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠EBO,∠FOC=∠FCO,∴EO=BE,OF=FC.C△AEF=AE+EF+AF=AE+BE+AF+CF=AB+AC=9.故答案为:9.16.解:过D作DM⊥AC,∵∠DAE=∠ADE=15°,∴∠DEC=30°,AE=DE,∵AE=10,∴DE=10,∴DM=5,∵DE∥AB,∴∠BAD=∠ADE=15°,∴∠BAD=∠DAC,∵DF⊥AB,DM⊥AC,∴DF=DM=5.故答案为:5.17.解:∵AD是△ABC的角平分线,∠ACB=90°,DE⊥AB,∴∠CAD=∠EAD,DE=CD,AE=AC=2,∵AD的垂直平分线交AB于点F,∴AF=DF,∴∠ADF=∠EAD,∴∠ADF=∠CAD,∴AC∥DE,∴∠BDE=∠C=90°,∴△BDF、△BED是等腰直角三角形,设DE=x,则EF=BE=x,BD=DF=2﹣x,在Rt△BED中,DE2+BE2=BD2,∴x2+x2=(2﹣x)2,解得x1=﹣2﹣2(负值舍去),x2=﹣2+2,∴△DEF的面积为(﹣2+2)×(﹣2+2)÷2=6﹣4.故答案为:6﹣4.18.解:①有两个角等于60°的三角形是等边三角形.②有一个角等于60°的等腰三角形是等边三角形.③三个角都相等的三角形是等边三角形④三边都相等的三角形是等边三角形,故答案为①②③④.19.解:在△ABD和△ACD中,∴△ABD≌△ACD.∴∠BAD=∠CAD.又∵AB=AC,∴BE=EC=3cm.∴BC=6cm.∵AB=AC,∠ABC=60°,∴△ABC为等边三角形.∴AB=6cm.故答案为:6.20.解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.三.解答题21.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).∵∠BDE=30°,DE⊥AB,∴∠B=60°,∴△ABC是等边三角形.22.解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.23.证明:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL),∴OD=OE,∵OC是∠AOB的平分线,∴∠DOF=∠EOF,在△ODF和△OEF中,,∴△ODF≌△OEF(SAS),∴DF=EF.24.解:∵ED是线段BC的垂直平分线,∴BE=CE,∴BE+AE=CE+AE=AC=9cm,∵△ABE的周长为16cm,∴AB=16﹣(BE+AE)=16﹣9=7cm.25.解:(1)根据等腰三角形的定义判断,△ABC等腰直角三角形;∵BE为角平分线,而AE⊥AB,ED⊥CE,故AE=DE,故△ADE均为等腰三角形;∵BE=BE,∠ABE=∠DEB,∴△ABE≌△DBE(SAS),∴AB=BD,∴△ABD和△ADE均为等腰三角形;∵∠C=45°,ED⊥DC,∴△EDC也符合题意,综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;(2)AD与BE垂直.证明:∵△ABE≌△DBE(SAS),∴BA=BD,EA=EC,∴BE垂直平分相等AD,即AD⊥BE.(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE,在Rt△ABE和Rt△DBE中∴Rt△ABE≌Rt△DBE(HL),∴AB=BD,又△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°,又ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC,即AB+AE=BD+DC=BC=10.26.证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,27.证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,BD=CD,∴BE=CE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 轴对称图形
一、选择题
1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个
2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个
A .1个
B .2个
C .3个
D .4个
3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角
形;
C .等边三角形
D .等腰直角三角形. 4.如图:等边三角形ABC 中,BD =C
E ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55°
C .60°
D .75°
5. 下列关于等腰三角形的性质叙述错误的是( ) A .等腰三角形两底角相等
B .等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合
C .等腰三角形是中心对称图形
D .等腰三角形是轴对称图形
6.已知点P 在线段AB 的垂直平分线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定
7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对
8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,
PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3
C .2
D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5
C .PQ <5
D .PQ≤5
10.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题
A
O P A
E
C B D
11.线段轴是对称图形,它有_______条对称轴.
12.等腰△ABC中,若∠A=30°,则∠B=________.
13.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.
14.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.
15.如图,在△ABC中,∠ABC=∠ACB=72°,BD、CE分别是∠ABC和∠A CB的平分线,它们的交点为F,则图中等腰三角形有___________个.
16.(2012•梧州)如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC= °___________.
17.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,
则∠BAC=____________.
18.△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=115°,则∠EAF=___________.
三.解答题
19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.
20.如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.
O B
21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF
的长.
22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,
① 若△BCD 的周长为8,求BC 的长;
② 若BC=4,求△BCD 的周长.
23.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问 △APQ
是什么形状的三角形?试说明你的结论.
A
24.如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.
(1)判断△ABC的形状,并说明理由;
(2)保持图1中△ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;
(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明.
参考答案
第一章轴对称图形
1.A 2.B 3.C 4.C 5.C 6.D 7.C 8.C 9.B 10.C
11.2 12.30°、75°、120°13.4 14.5 15.8 16.69 17.72°18.50°19.提示:作CD的垂直平分线和∠AOB的平分线,两线的交点即为所作的点P;
20.提示:在CD上取一点E使D E=BD,连结AE;
21.EF=20㎝;22.①BC=3,②9;
23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.
24.(1)△ABC是等腰直角三角形.理由如下:
在△ADC与△BEC中,AD=BE,∠D=∠E=90°,DC=EC,
∴△ADC≌△BEC(SAS),
∴AC=BC,∠DCA=∠ECB.
∵AB=2AD=DE,DC=CE,
∴AD=DC,
∴∠DCA=45°,
∴∠ECB=45°,
∴∠ACB=180°-∠DCA-∠ECB=90°.
∴△ABC是等腰直角三角形.
(2)DE=AD+BE.理由如下:
在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE(AAS),
∴AD=CE,DC=EB.
∴DC-CE=BE-AD,
即DE=AD+BE.
(3)DE=BE-AD.理由如下:
在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE(AAS),
∴AD=CE,DC=EB.
∴DC-CE=BE-AD,
即DE=BE-AD.。