从算术到代数(一)

合集下载

最新国家开放大学电大《数学思想与方法(本)》形考任务3试题及答案

最新国家开放大学电大《数学思想与方法(本)》形考任务3试题及答案

最新国家开放大学电大《数学思想与方法(本)》形考任务3试题及答案最新国家开放大学电大《数学思想与方法(本)》形考任务3试题及答案形考任务3题目1算术解题方法的基本思想是:首先要围绕所求的数量,收集和整理各种(),并依据问题的条件列出用()表示所求数量的算式,然后通过四则运算求得算式的结果。

选择一项: D.已知数据,已知数据题目2就数学发展的历史进程来看,从算术到代数、从常量数学到变量数学、从确定数学到随机数学等是数学思想方法的几次重要突破。

代数形成解决了具有复杂()的问题,变量数学创立刻划了()的事物与现象,随机数学出现揭示了()背后所蕴涵的规律。

选择一项: C.数量关系,运动与变化,随机现象题目3代数不但讨论正整数、正分数和零,而且讨论负数、虚数和复数。

其特点是用()来表示各种数。

选择一项: D.字母符号题目4代数学形成过程经历了漫长过程:()。

选择一项: B.文字代数,简写代数,符号代数题目5初等数学都是以()为其研究对象,运用这些可以有效地描述和解释相对稳定的事物和现象,对于运动变化的事物和现象,它们显然无能为力。

选择一项: A.不变的数量和固定的图形题目6变量数学产生的数学基础应该是(),标志是()。

选择一项: C.解析几何、微积分题目7从16世纪开始,自然科学研究的中心问题是运动,科学家们相信对各种运动过程和各种变化着的量之间的依赖关系的研究可以用数学来描述。

因此,作为运动着的量的一般性质及各个数量之间存在着相依而变的规律,科学家们引出了数学的一个基本概念()。

选择一项: B.函数题目8人们在社会实践活动常常遇到两类截然不同的现象,一类是确定性现象;另一类是随机现象。

随机现象并不是杂乱无章的现象,当同类现象大量出现时,从总体上却呈现出一种规律性。

于是,一种专门适用于分析随机现象的数学工具——()诞生了。

选择一项: C.概率理论与数理统计题目9第一次数学危机,是数学史上的一次重要事件,发生于大约公元前400年左右的古希腊时期,自()的发现起,到公元前370年左右,以()的定义出现为结束标志。

2023年从《方程》一课谈及“算术”走向“代数” 读《新课程小学数学教学实践研究》有感

2023年从《方程》一课谈及“算术”走向“代数”  读《新课程小学数学教学实践研究》有感

从(方程)一课谈及“算术〞走向“代数〞——读(新课程小学数学教学实践研究)有感近日,读了(新课程小学数学教学实践研究)第41——57页的内容,里面谈及方程思想,颇有感触,借我执教过的(方程)一课谈及从“算术〞走向“代数〞。

(方程)这节课是(义务教育课程标准实验教科书数学)四年级下册第七单元第七单元的内容。

新世纪小学数学教材依据“由浅入深、循序渐进、螺旋上升〞的教学原则,设置了“天平称物〞等三个问题情境,让学生经历从具体到抽象的过程,逐渐学会用方程表示简单情境中的等量关系。

作为数学思想之一的方程思想,其核心在于建模、化归。

在教学实施时,我先启发学生用自己的言语对事情进行描述,然后抽象成数学表达,最后用数学符号建立方程,这也正是建模的过程。

来看几个小片段:片段一:师:老师今天还带来了一些糖果,请认真瞧啦,我把这包糖果和一个50克的砝码放在天平左盘,在右盘放一个200克的砝码。

天平怎么样了?生:平衡了。

师:谁能找出其中的相等的数量关系?生:50克砝码的质量+糖果的质量=200克。

师:如果用一个式子表示这组相等的数量关系。

该怎样表示呢?请先独立思考,然后在练习本上写一写。

写好的同学可以小声地和同桌交流一下。

师:谁情愿第—个把你写的说给大家听?生1:200-50=150,150+50=200。

师:哦,你是先把糖果的质量算出来,再用一个式子表示相等关系对吗?有不同的表示方法吗?生2:χ+50=200。

〔板书:χ+50=200〕师:能向大家解释一下你写的式子吗?生:这袋糖果的质量我不了解,所以用χ表示,因为糖果的质量+50克砝码的质量是200克,所以我这样表示。

师:表达很完整!想到用χ表示我们不了解的数,好主意!不了解的数也就是“未知数〞。

〔板书:未知数〕未知数只能用χ表示吗?是的,未知数还可以用别的字母表示,但一般情况下,人们使用χ、Y、Z等字母代表未知数。

现在我们比拟一下两种表示方法,你认为那个式子更简单?生齐答:χ+50=200。

2数学思想方法的几次突破

2数学思想方法的几次突破

2数学思想方法的几次突破数学思想方法的几次突破就数学发展的历史进程来看,从算术到代数、从常量数学到变量数学、从确定性数学到随机性数学是数学思想方法的几次重要的突破。

第一节从算术到代数一、算术的局限性随着社会的发展,人类认识到算术在理论上的限制了其自身的发展,主要表现在他限制抽象的未知数参与运算,只允许具体的、已知的数进行运算,因而导致其在解决问题的方法上存在局限性。

这种局限性在很大程度上限制了其应用范围,从而促使了新的数学分支――代数的产生。

二、代数的产生算术的内容反映了物体集合数量关系,这些内容是在分析和概括大量实际经验的基础上加以抽象出来的,从而产生了纯粹形式上的算术。

符号化一方面推动了算术的发展,另一方面也为代数的产生奠定了基础。

代数讨论正整数、正分数和零,还讨论负数、虚数和复数。

其特点是用字母符号表示各种数,最初的研究的对象主要是代数式的运算和方程的求解。

代数解题的基本思想是:首先依据问题的条件组成内含移植术和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。

因此,代数是一门关于形式运算的学说。

代数学形成的三大阶段:文字代数阶段;简写代数阶段;符号代数阶段。

因此,代数是一门关于形式运算的学说。

代数学形成的三大阶段:文字代数阶段:即全部解法都用文字语言表达;简写代数阶段:即用简化的文字表达一些经常出现的量、关系和运算;符号代数阶段:即普遍使用抽象符号,这时采用的各种符号同它们的实际内容和思想几乎没有明显的联系。

三、代数学体系结构的形成17世纪初期,韦达和笛卡尔等人在数学中系统地引入了符号,人们才真正把代数理解为对文字计算的理论。

当时代数涉及的面非常广,不属于纯几何的内容都是它研究的对象,如级数、对数、解代数方程、解方程组以及解不定方程等。

伽罗瓦建立的理论称为伽罗瓦理论,给数学中的最古老的用尺规作图的可能性问题提供了一个判别方法。

从而引进了群和域等抽象代数的概念,使代数学的发展进入了抽象数学的阶段。

从算术思维到代数思维

从算术思维到代数思维

从算术思维到代数思维摘要:算术思维与代数思维之间的承接关系并非藉由经历足够的经验便可跨越,还必须经过思维结构的转化即质的改变,这个过渡也是学生学习代数时必须面对的困难。

笔者就如何启发儿童“符号代数”的意识,帮助他们积累“结构转换”的感性经验,加速从具体演算阶段到形式运算阶段的进展,为他们打开代数思维之门提出自己的看法。

关键词:算数;代数;思维中图分类号:g632 文献标识码:b 文章编号:1002-7661(2013)07-103-01一、多元化表征、建构符号意识“代数”,从字面看就有“以符号代表数”的意思。

学生的学习从具体情境到抽象概念,其思维必须经历从数字到符号的飞跃,因此符号意识的培养对发展小学生代数思维显得尤为重要,然而实际问题情境的复杂性和符号本身的抽象性为学生理解和应用代数符号带来了困难,因此我们一方面要帮助学生从一定程度上摆脱对问题情境的依赖,发现各类问题背后的数学结构,另一方面也要优化学生对符号的认识,帮助学生积累使用代数符号的经验。

换言之,我们可以通过对数学问题的多元表征,逐步发展学生的符号意识。

1、优化对符号的认识数学算式是数学沟通及思考最重要的媒介,而符号表征式的理解与使用更是代数的学习不可或缺的工具,符号化是学生跨入代数思维的第一步,而符号化绝不是学生的自然、直观的想法,因此要过渡到代数思维,首要进行的便是符号的理解与使用。

建立对等号的认识:算式和代数虽共享一些符号如+、-、×、÷、=,有些符号在算术与代数之间的意义并不同,这也使得学生在面对这些符号时,经常产生混淆。

我们在教学中,应针对不同认知层次的学生采用循环、螺旋的方式,引导学生把等号看作是相等和平衡的符号,是一种关系。

拓宽对符号的理解:四年级(下)进行”用字母表示数”的专题学习,字母符号表示数、表示数量关系、表示规律模式以及数学公式,帮助学生建立数感与符号意识。

五年级(上)对符号表征却只字未提,到五年级(下)学习方程,由于教材编排的跳跃性,教学时往往忽略“用字母表示数”作为数学的一种抽象表征方式的重要教学价值,造成了学生符号意识发展中的问题,大多数学生对符号的认识停留在一个未知的确定的数或者一个特定的记号,而没有把符号看作推广的数或者变量,对a+15这样的式子通常认为是一个“过程”,对一些运算律和公式也只是将其作为一种固定的模式记忆。

从算术思维到代数思维的转换初探-算术思维和代数思维的特点

从算术思维到代数思维的转换初探-算术思维和代数思维的特点

从算术思维到代数思维的转换初探算术思维和代数思维的特点一、算术思维和代数思维算术思维侧重于程序思维,强调的是利用数量计算求出答案的过程.这个过程具有情境性、特殊性和计算性的特点,甚至是直观的。

而代数思维的运算过程具有结构性,和算术运算不同的是其侧重将关系符号化,而且不具有直观性。

对于同一个问题,用代数思维和算术思维方式都能求得问题的解,虽然结果是一样的,但是运算和思维的逻辑是不一样的。

例如:盒子中的皮球与外面的6个皮球加起来共有23个,求盒子中一共有多少个皮球?可以列算数式23-6=()来解答,也可以用代数式6+X=23来解。

我所教的高年级学生中,大部分学生就选择了前一种解题方式来解答,从表达式中,直接展示出题目和答案之间的关系体现了算术思维;还有少部分学生是用后者的方法来解答的。

后一种方法则体现了代数思维,即对具体的情境问题进行分析并转化为方程式,成了一种纯粹的符号运算。

二、在代数学习中可能会遇到的困难从算术思维向代数思维转换的过程中,光有练习是不够的,最重要的是要经历一个质变的过程。

学生在小学阶段已经接触过一些代数思想,例如用“设未知量为X”建立方程的方法解数学应用题,当然,他们对“未知量X”含义的了解是非常肤浅的。

进入初中后,学生要学习比较系统的代数内容,学习中会产生许多困难。

在这个过程中,会遇到的困难有:第一,符号意义的不连续;字母代数是由常量数学到变量数学转变的开端。

通过有关数、式、方程等内容的学习,学生不但要掌握各种概念、运算法则,而且要学习各种代数变形的思想方法;第二,运算客体出现扩充;从运算的角度说,代数运算主要是一种形式化的符号变换,其抽象程度较高;第三,经常会出现程序逆向思维。

当前,学生对概念的发生发展过程、概念的内涵与外延的周密性,特别是对概念间的内在联系的认识水平普遍较低。

鉴于上述的三个方面的困难,如何从算术思维向代数思维过渡呢?三、从算术思维向代数思维的转换的教学策略1.从数字到符号的转换从数字向符号转变,通俗地讲,就是用符号代替数字,使解题的焦点转移。

六年级奥数_浓度问题讲义2331

六年级奥数_浓度问题讲义2331

六年级奥数 浓度问题讲义一、专题引导:什么是浓度呢?(以糖水为例,将糖溶于水中得到糖水,这里糖叫溶质,水叫溶剂,糖水叫溶液。

)三者之间关系:浓度= ×100%=×100% 二、典型例题例1、有浓度为30%的酒精溶液若干,添加了一定数量的水后稀释成浓度为24%的酒精溶液,如果再加入同样的水,那么酒精溶液的浓度变为多少? 思路导航:稀释问题是溶质的重量是不变量。

例2、有浓度为7%的盐水600克,要使盐水的浓度加大到10%,需要加盐多少克?思路导航:溶剂重理不变。

[练习]海水中盐的含量为5%,在40千克海水中,需加多少千克淡水才使海水中盐的含量为2%?例3、在浓度为50%的硫酸溶液100千克中,再加入多少千克浓度为5%的硫酸溶液,就可以配制成浓度为25%的硫酸溶液?思路导航:混合前两种溶液中所含溶质的重量、溶剂的重量、溶液的重量分别等于混合后溶液中所含溶质的重量、溶剂的重量、溶液的重量。

[练习]配制硫酸含量为20%的硫酸溶液1000克,需要用硫酸含量为18%和23%的硫酸溶液各多少克?溶质溶液溶质溶质+溶剂例4、从装满100克浓度为80%的盐水杯中倒出40克盐水,再用清水将杯加满;再倒出40克盐水,然后再用清水将杯加满,如此反复三次后,杯中盐水的浓度是多少?思路导航:反复三次后,杯中又已装满,即最后杯中盐水的重量仍为100克,由此;问题的关键是求出如此反复三次后还剩盐多少克?[练习]①有盐水若干升,加入一定量水后,盐水浓度降到3%,又加入同样多的水后,盐水浓度又降到2%,再加入同样多的水,此时浓度是多少呢?又问未加入水时盐水浓度是多少?②有含糖6%的糖水900克,要使其含糖量加大到10%,需加糖多少克?比和比例应用题例4、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是5 0:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?思路导航:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?例5、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。

从算术思维到代数思维——以《用字母表示数》教学为例

从算术思维到代数思维——以《用字母表示数》教学为例

教海探索还愿意给他卖命;从鸿门宴座次的安排可见项羽妄自尊大且行事高调;从项羽对樊哙的态度可见项羽虽爱惜勇士却敌我不分;他最后一败涂地,乌江自刎,也是意料之中。

从这些细节都直指项羽也许勇猛但却没有领导智慧,沽名钓誉,倒行逆施。

所以即便项羽在鸿门宴中杀了刘邦,也会有“李邦”、“张邦”、“某邦”等出现,来阻止他夺取天下。

同时,我们可以以此为契机,探讨“性格与人生”的关系,延伸课堂,深化内容。

如此实施阅读教学,有助于学生深入文本,破除刻板印象,引导学生从“大英雄”项羽被“狡猾小人”刘邦夺取天下的惋惜情绪中上升到理性思考,提升学生的思辨能力。

再如:必修二《最后的常春藤叶》中,在文本教学完后,我们可以探讨,假设贝尔曼知道自己冒雨为琼珊画叶子会付出生命的代价,是否还会义无反顾地去?有学生认为贝尔曼会去,他善良性格使然;但是也有学生认为他不会去,毕竟人都是趋利避害的。

关于这个问题,在阅读教学课上可以展开一场辩论赛。

学生“斗志满满”,会极尽所能去说服对方。

这就会促使他们大范围去收集资料,深入文本去找出支撑自己观点的细节,会认真组织语言去撰写辩论稿,这个过程将非常有助于提升思维的深刻性。

笔者认为,高中语文阅读教学要树立发展学生思维能力和提升学生思维品质的理念,在教学内容选择上可以采用以学生的问题为导向,设置主问题,有的放矢,提高学生思维系统性;在教学方法上,应该尊重学生的主体地位,适当采用“自主学习合作探究”的方式来深入探究,提高学生思维的深刻性;在教学成果反馈方面,要求学生读思结合,甚至要求学生读写结合,以文字形式呈现思维结果等。

通过以上策略,以期望在阅读教学过程中有意识地提升学生思维的系统性、深刻性、灵敏性、独创性和辩证性。

参考文献[1]陈剑峰.真问题:语文高效课堂的基石——以《孔乙己》教学为例[J].语文知识,2014(4).[2]李光明.思维发展与提升导向下的高中语文研究性阅读教学探究[D].黄冈师范学院,2019.[3]姚婧.批判性阅读教学的实施策略[J].语文教学通讯(D刊),2018(7).[4]余映潮.我对阅读教学“主问题”的研究与实践[D].中学语文教学,2007(9).[5]中华人民共和国教育部.普通高中语文课程标准(2017年版)[S].北京:人民教育出版社,2018.(作者单位:浙江省杭州市萧山区第六高级中学)从算术思维到代数思维——以《用字母表示数》教学为例■陈雨《用字母表示数》是苏教版小学数学五年级上册第八单元的内容,是数学四大学习领域之一——“数与代数”的一个重要内容,是学生学习代数的基础。

专题03 从算术到代数(含答案)

专题03 从算术到代数(含答案)

专题03从算术到代数阅读与思考算术与代数是数学中两门不同的分科,它们之间联系紧密,代数是在算术中“数”和“运算”的基础上发展起来的.用字母表示数是代数的一个重要特征,也是代数与算术的最显著的区别.在数学发展史上,从确定的数过渡到用字母表示数经历了一个漫长的过程,是数学发展史上的一个飞跃.用字母表示数有如下特点:1.任意性即字母可以表示任意的数.2.限制性即虽然字母表示任意的数,但字母的取值必须使代数式或实际问题有意义.3.确定性即在用字母表示的数中,如果字母取定某值,那么代数式的值也随之确定.4.抽象性即与具体的数值相比,用字母表示数具有更抽象的意义.例题与求解【例1】研究下列算式,你会发现什么规律:1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…请将你找到的规律用代数式表示出来:___________________________________(山东菏泽地区中考试题)解题思路:观察给定的几个简单的、特殊的算式,寻找数字间的联系,发现一般规律,然后用代数式表示.【例2】下列四个数中可以写成100个连续自然数之和的是()A.1627384950B. 2345678910C. 3579111300D. 4692581470(江苏省竞赛试题)解题思路:设自然数从a+1开始,这100个连续自然数的和为(a+1)+(a+2)+…+(a+100)=100a+5050,从揭示和的特征入手.【例3】设A=221212222323223434+…+221003100410031004+221004100510041005,求A的整数部分.(北京市竞赛试题)解题思路:从分析A 中第n 项22(1)(1)n n n n 的特征入手.【例4】现有a 根长度相同的火柴棒,按如图①摆放时可摆成m 个正方形,按如图②摆放时可摆成2n 个正方形.(1)用含n 的代数式表示m ;(2)当这a 根火柴棒还能摆成如图③所示的形状时,求a 的最小值.(浙江省竞赛试题)解题思路:由图①中有m 个正方形、图②中有2n 个正方形,可设图③中有3p 个正方形,无论怎样摆放,火柴棒的总数相同,可建立含m ,n ,p 的等式.【例5】 化简个个个n n n 9199999999+⨯. (江苏省竞赛试题)解题思路:先考察n =1,2,3时的简单情形,然后作出猜想,这样,化简的目标更明确.【例6】观察按下列规律排成的一列数:11,12,21,13,22,31,14,23,32,41,15,24,33,42,51,16,…,(*) (1)在(*)中,从左起第m 个数记为F (m )= 22001时,求m 的值和这m 个数的积.(2)在(*)中,未经约分且分母为2的数记为c ,它后面的一个数记为d ,是否存在这样的两个数c 和d ,使cd =2001000,如果存在,求出c 和d ;如果不存在,请说明理由.解题思路:解答此题,需先找到数列的规律,该数列可分组为(11),(12,21),(13,22,31),(14,23,32,41),(15,24,33,42,51),….能力训练A级1.已知等式:2+23=22×23,3+38=32×38,4+415=42×415,…,,10 +ab=102×ab(a,b均为正整数),则a+b=___________________.(湖北省武汉市竞赛试题)2.下面每个图案都是若干个棋子围成的正方形图案,它的每边(包括顶点)都有n(n≥2)个棋子,每个图案棋子总数为s,按此规律推断s与n之间的关系是______________.n=2 n=3 n=4s=4 s=8 s=12(山东省青岛市中考试题)3.规定任意两个实数对(a,b)和(c,d),当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊗”:(a,b)⊗(c,d)=(ac-bd,ad+bc).若(1,2)⊗(p,q)=(5,0),则p+q=________.(浙江省湖州市数学竞赛试题)4.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖______块,第n个图形中需要黑色瓷砖______块(含n代数式表示).(广东省中考试题)-=5.如果a是一个三位数,现在把1放在它的右边得到一个四位数是()A.1000a+1B. 100a+1C. 10a+1D. a+1(重庆市竞赛试题)6.一组按规律排列的多项式:a+b,a2—b3,a3+b5,a4—b7,…,其中第十个式子是()A. a10+b19B. a10-b19C. a10-b17D. a10-b21(四川省眉山市竞赛试题)7.有三组数x1,x2,x3;y1,y2,y3;z1,z2,z3,它们的平均数分别是a,b,c,那么x1+y1-z1,x2+y2-z2,x3+y3-z3的平均数是()A.3a b c B. 3a b cC. a +b -cD. 3(a +b -c ) (希望杯邀请赛试题)8.为了绿化环境,美化城市,在某居民小区铺设了正方形和圆形两块草坪,如果两块草坪的周长相同,那么它们的面积S 1、S 2的大小关系是( )(东方航空杯竞赛试题)A . S 1>S 2B .S l <S 2C .S 1=S 2D .无法比较9.一个圆形纸板,根据以下操作把它剪成若干个扇形面:第一次将圆纸等分为4个扇形面;第二次将上次得到的一个扇形面再等分成4个小扇形;以后按第二次剪裁法进行下去.(1)请通过操作,猜想将第3、第4次,…,第n 次剪裁后扇形面的总个数填入下表;(2)请你推断,能否按上述操作剪裁出33个扇形面?为什么?(山东省济南市中考试题)10.某玩具工厂有四个车间,某周是质量检查周,现每个都原a (a >0)个成品,且每个每天都生产b (b >0)个成品,质检科派出若干名检验员星期一、星期二检验其中两个原的和这两天生产的所成品,然后,星期三至星期五检验另两个原的和本生产的所成品,假定每个检验员每天检验的成品数相同. (1)这若干名检验员1天检验多少个成品(用含a 、b 的代数式表示); (2)试求出用b 表示a 的关系式; (3)若1名质检员1天能检验54b 个成品,则质检科至少要派出多少名检验员? (广东省广州市中考试题)B 级1. 你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成(10·n +5)(n 为自然数),即求(10·n +5)2的值(n 为自然数),分析n =1,n =2,n =3,…这些简单情况,从中探索其规律,并归纳猜想出结论(在下面的空格内填上你的探索结果). (1)通过计算,探索规律.152=225可写成100×1×(1+1)+25; 252=625可写成100×2×(2+1)+25; 352=1225可写成100×3×(3+1)+25; 452=2025可写成100×4×(4+1)+25; ...752=5625可写成______; 852=7225可写成______;(2)从第(1)题的结果,归纳猜想得(10n +5)2=______; (3)根据上面的归纳猜想,请算出19952=______.(福建省三明市中考试题)2.已知12+22+32+…+n 2=16n (n +1)(2n +1),计算: (1)112+122+…+192=_____________________; (2)22+42+…+502=__________________. 3.已知n 是正整数,a n =1×2×3×4×…×n ,则13a a +24a a +…+20102012a a +20112013a a =_______________. (“希望杯”邀请赛训练题)4.已知17个连续整数的和是306,那么,紧接着这17个数后面的那17个整数的和为__________.(重庆市竞赛试题)5.A ,B 两地相距S 千米,甲、乙的速度分别为a 千米/时、b 千米/时(a >b ),甲、乙都从A 地到B地去开会,如果甲比乙先出发1小时,那么乙比甲晚到B 地的小时数是( )(1)s a b (1)s a (1)s a b (1)sa6.某商店经销一批衬衣,进价为每件m 元,零售价比高a %,后因市场的变化,该店把零售价调整原来零售价的b %出售,那么调价后的零售价是( )A .m (1+a %)(1-b %)元B .m a %(1-b %)元C .m (1+a %)b %元D .m (1+a %b %)元(山东省竞赛试题)7.如果用a 名同学在b 小时内共搬运c 块砖,那么个以同样速度所需要的数是( )A .22c a bB .2c abC .2abcD .22a b c(“希望杯”邀请赛试题)8.甲、乙两班的人数相等,各有一些同学参加课外天文小组,其中甲班参加天文小组的人数是乙班未参加人数的13,乙班参加天文小组的人数是甲班未参加人数的15.问甲班未参加的人数是乙班未参加人数的几分之几?9.将自然数1,2,3,…,21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.(重庆市竞赛试题)10.有四个互不相同的正整数,从中任取两个数组成一组,并在同一组中用较大的数减去较小的数, 再将各组所得的数相加,其和恰好等于18.若这四个数的乘积是23100,求这四个数.(天津市竞赛试题)专题03 从算术到代数例1 2(2)1(1)n n n ++=+ 例2 A例3 原式=1111111112(1)2()2()2()2()223341003100410041005+-++-++-+++-++-=121004(1)1005⨯+-故其整数部分为2008 例4 设图③中含有3p 个正方形.(1) 由3152m n +=+,得513n m +=(2) 由315273,a m n p =+=+=+得325177m n p --==,因,,m n p 均是正整数, 所以当17,10m n ==时,7,p =此时317152a =⨯+=例5解法1:1n = 时,29919811910010⨯+=+==; 2n =时, 49999199(1001)991999900991991000010⨯+=-⨯+=-+==,猜想:2999999199910n n n n ⨯+=个个个个, 计算过程类似于2n =29999991999(101)9991999999000999199910n n n n n n n n n n n ⨯+=-⨯+=-+=个个个个个个个个个解法2: 1n =时,2991999109(999)1091010101010⨯+=⨯++=⨯++=⨯+=⨯=2n =时, 49999199999910099(999999)1009910010010010010⨯+=⨯++=⨯++=⨯+=⨯=猜想: 原式210n = 验证如下: 9999991999999999100099999999999910n n n n n n n n n n n ⨯+=⨯++=⨯++个个个个个个个个个个299910101010n n n n n =⨯=⨯=个反思结论必为一个数的平方形式, 不妨设999n a =个,得另一种解法解法3: 原式22222(1)a 21(1)(10)10n n a a a a a =+++=++=+==例6 (1)(※) 可分组为112123123412345(),(,),(,,),(,,,),(,,,,),,121321432154321可知各组数的个数依次为1,2,3,.按其规律22001应在第2002组1232002(,,,,)2002200120001中, 该组前面共有123420012003001+++++=个数. 故当2()2001F m =时,200300122003003m =+=. 又因各组的数积为1, 故这2003003个数的积为121200220012003001⨯=(2) 依题意,c 为每组倒数第2个数,d 为每组最后一个数,设它们在第n 组, 别1,,21n n c d -==(1)20010002n n -∴=.即(1)400200020012000n n -==⨯,2001,n ∴= 得20011200022c -==,20011d =A 级1. 100 提示:21010a ab b+=⨯ 中, 根据规律可得210,10199,a b ==-=故1099109a b +=+= 2. 4(1)(2)s n n =-≥3.1- 提示: 根据题中定义的运算可列代数式25,20p q q p -=+=,可得1,2,p q ==- 故1p q +=-4. 10 31n +5. C6. B7. B8. B9.(1) 10 13 31n + (2) 不能, 33不符合31n + 10. (1) 2a b +或2(5)3a b +或32b + (2) 由2(2)2(5)23a b a b ++=,得4a b = (3)2(2)47.5825a b b +÷=≈B 级1. (1) 1007(71)25,1008(81)25⨯⨯++⨯⨯++(2) 100(1)25n n ⨯++ (3) 3980025 2. (1) 2085(2) 22100 提示: 原式2224(1225)=⨯+++3. 20114026提示: 由1234n a n =⨯⨯⨯⨯⨯可得,原式111112334452011201220122013=+++++⨯⨯⨯⨯⨯ 111111112011233420122013220134026=-+-++-=-=4. 595 提示: 设17个连续整数为,1,,16,m m m ++且(1)(16)306m m m +++++=,它后面紧接的17个连续自然数应为17,18,19,,33m m m m ++++,可得它们之和为5955. D6. C7. D 提示: 每一名同学每小时所搬砖头为cab块,c 名同学按此速度每小时所搬砖头为2c ab 块.8.用a ,b 分别表示甲、乙两班参加天文小组的人数,m ,n 分别表示甲、乙两班未参加天文小组的人数,由a +m =b +n 得m -b =n -a ,又a =13n ,b =15m ,故m -15m =n -13n ,56m n =.9.证明:设任意分法将圆周上的每相邻三个数分为一组,他们三个数的和分别为a 1,a 2,a 3,a 4,a 5,a 6,a 7(均为自然数),且a 1+a 2+a 3+a 4+a 5+a 6+a 7=()211212312⨯+=①.假设a 1,a 2,a 3,a 4,a 5,a 6,a 7中没一个数都小于33,则有a 1+a 2+a 3+a 4+a 5+a 6+a 7<231.与①矛盾,所以a 1,a 2,a 3,a 4,a 5,a 6,a 7中至少有一个不小于33,即一定有相邻的三个数,它们的和不小于33. 10.设四个不同整数为a 1,a 2,a 3,a 4(a 1>a 2>a 3>a 4),则(a 1-a 2)+(a 1-a 3)+(a 1-a 4)+(a 2-a 3)+(a 2-a 4)+(a 3-a 4)=18,即3(a 1-a 4)+(a 2-a 3)=18.又因3(a 1-a 4),18均为3的倍数,故a 2-a 3也是3的倍数,a 2-a 3<a 1-a 4,则a 2-a 3=3,a 1-a 4=5,a 1-a 2=1,a 3-a 4=1,又a 1a 2a 3a 4=23100=2×2×3×5×5×7×11.从而可得a 1=15,a 2=14,a 3=11,a 4=10.。

代数学发展历程

代数学发展历程

代数学发展历程在宽广的数学领域范围内,代数学只是其中的一个分支,一个部分.“代数学”这个名称,在我国是1859年正式开始使用的.那么什么是代数?代数学又是如何发展的呢?1847年,英国人伟烈亚力来到上海,他用中文写了一本《数学启蒙》,在序中说:“有代数、微分诸书在,余将续梓之.”这是第一次使用代数这个词来作为数学分科的名称.李善兰是我国清代数学家.1859年和伟烈亚力合译英国棣么甘(Augustus De Morgan)的“Elements of Algebra”正式定名为《代数学》.这是我国第一本代数学书,代数的名称就是这样来的.代数是对字母、字母表达式进行运算或变换的学问.在初等数学中字母代表数,在近代数学中字母可以代表更广泛的对象,如向量、张量、矩阵、变换等.代数的发展大致分为三个时期.第一个时期从九世纪的花拉子米始,到十六世纪止.这个时期人们把代数看成为对字母进行运算,关于字母公式的变换以及关于代数方程式的学问.这些就是目前中学代数的内容.第二个时期从十六世纪开始到十九世纪,这时意大利数学家解出了三次方程和四次方程.由此人们开始研究更高次的代数方程.代数的中心问题逐渐变为代数方程式的理论了.十九世纪谢尔的两卷本的代数问世,在这部书中代数被定义为方程式论.这在当时是个创举.在第二个时期内,行列式与矩阵的理论,二次型与变换的理论,特别是不变量的理论等代数工具也发展起来了.在这个时期内群论及不变量的理论的发展对几何学的发展起了重大影响.第三个时期从上世纪末到本世纪.这时在力学,物理以及数学本身越来越频繁地研究到一些对象,对这些对象也要考虑加法、减法,有时要考虑乘法和除法.这些对象中有矩阵、张量、旋量、超复数等.这样人们就不得不考虑某种更一般的集合,在这种集合中有某种运算,并满足一定的运算法则.这就是说,我们不得不考虑某种代数系统.这样一来,代数的目的是研究各种代数系统.这就是公理化,或抽象化的代数.说它是抽象的,是因为所考虑的代数系统是用字母表示的.说它是公理化的,是因为它只遵从作为它的基础的那些公理.有趣的是这样的代数系统无论就数学本身而言,或就它的应用而言都具有巨大意义.以下我是通过初等代数,高等代数以及抽象代数三个阶段的发展来研究代数学领域的发展的.1.初等代数初等代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科.初等代数是更古老的算术的推广和发展.在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数.代数是由算术演变来的,这是毫无疑问的.代数和算术的主要区别,就在于前者引入未知量,根据问题的条件列出方程,然后解方程求出未知量的值.至于什么年代产生的代数学这门学科,就很不容易说清楚了.比如,如果你认为“代数学”是指解这类用符号表示的方程的技巧,那么,这种“代数学”是在十六世纪才发展起来的.如果我们对代数符号不是要求象现在这样简练,那么代数学可以上溯到更早的年代.大约在公元前2000年,巴比伦算术已经演化成为一种高度发展的用文字叙述的代数学.从载有数字表的文件中,可以获得巴比伦人的数系和数字运算方面的许多知识.他们既能用相当于代入一般公式的方法,又能用配方法来解二次方程,还讨论了某些三次方程和双二次(四次)方程.已经发现一块书板,它给出的数表不仅包括从1到30的整数的平方和立方,还包括了这个范围的整数组合.公元前2500年左右,埃及的草片文书(Ahmes)中有求一个未知量问题的解法,这个问题大体上相当于今日的一元一次方程.不过用的方法纯粹是算术的,并且在埃及人心目中这并不成其为一门独特的学科——解方程.公元200—1200年时期,印度人也在代数上获得一些进展.他们用缩写文字和一些记号来描述运算.印度人认识到二次方程有两个根,而且包括负根和无理根.在不定方程方面印度人超过了Diaphanous,印度人要求出所有整数解,而Diaphanous则只得出一个有理的解.印度人也研究了不定二次方程.他们解出了(其中不是平方数)这种类型的方程,并可看出这种类型对处理很重要.西方人将公元前三世纪古希腊数学家Diaphanous看作是代数学的鼻祖.而在中国,用文字来表达的代数问题出现得就更早了.“代数”作为一个数学专有名词,代表一门数学分支在我国正式使用,最早是在1859年.那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》.当然,代数的内容和方法,我国古代早就产生了,比如成书于公元一世纪初的《九章算术》中就有方程问题.在《九章》方程章中,经刘徽注给方程予以最早的定义:“程,课程也.群物总杂,各列有数,总言其实.令每行为率,二物者再程,三物者三程,皆如物数程之,并列为行,帮谓之方程”.这里的“群物总杂,各列有数,总言其实”是说每一行(相当于今称的方程式)的系数、未知数和常数项(此叫“实”)的组成方法.令每行为率(就是列出几个等式),二物者再乘(两个未知数,列两个等式或程式),三物三乘(三个未知数列三个等式或程式),如物数程之(就是有几个未知数,就列出几个等式或程式),用算筹并列成一方形,所以叫做方程.在方程的定义里,“程”就是“课”,而“课”的本义是试验,考核.正是在试验与考核的意义上,“程”与“课”是相通的.由“课”将数学应用题转化为盈亏类问题,而由“程”把问题布列为“方程”.这种问题模式化的思想和方法是一脉相承的.当然,在这里方程的定义是狭隘的,仅指线性方程组,但《九章》实际上还涉及到二次方程,而且已能用“带从开方术”(“从”读“纵”)求出方程的正根.共步骤相当于“配方法”.《九章》关于多元一次方程组的解法,是将其“所出率”用算筹摆成一个方阵,然后应用“遍乘,通约,齐同”三种基本演算,达到“消元”为目的.《九章》称解方程组的过程为“直除”,即现代的消元法.《九章》方程解法有方程术和正负术,刘徽注又添了新方程术,反映了我国古代方程理论发展的不同阶段.这些解法经刘徽注释,把它们作为比率理论的应用和发展,从而获得了统一的理论基础.初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上.它的研究方法是高度计算性的.要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程.所以初等代数的一个重要内容就是代数式.由于事物中的数量关系的不同,大体上初等代数形成了整式,分式和根式这三大类代数式.代数式是数的化身,因而在代数中它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算.通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算.在初等代数的产生和发展的过程中,通过解方程的研究也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零.这是初等代数的又一重要内容,就是数的概念的扩充.有了有理数,初等代数能解决的问题就大大地扩充了.但是,有些方程在有理数范围内仍然没有解.于是,数的概念再一次扩充到了实数,进而又进一步扩充到了复数.那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了.这就是代数里的一个著名的定理——代数基本定理.这个定理简单地说就是n个方程有n个根.1742年12月15日,瑞士数学家欧拉曾在一封信中明确地做了陈述.后来另一个数学家德国的高斯在1799年给出了严格的证明.把上面分析过了的内容综合起来,组成初等代数的基本内容就是:三种数——有理数、无理数、复数.三种式——整式、分式、根式.中心内容是方程——整式方程、分式方程、根式方程和方程组.初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同.比如严格地说,数的概念,排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的…….这些都只是历史上形成的一种编排方法.初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解.代数运算的特点是只进行有限次的运算.全部初等代数总起来有十条规则.这是学习初等代数需要理解并掌握的要点.这十条规则是:五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;幂的乘方等于底数不变指数相乘;积的乘方等于乘方的积.初等代数学进一步向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程.这时候,代数学已由初等代数向着高等代数的方向发展了.2.高等代数初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组.沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组(也叫线性方程组)的同时还研究次数更高的一元方程组.发展到这个阶段,就叫做高等代数.高等代数是代数学发展到高级阶段的总称,它包括许多分支.现在大学里开设的高等代数一般包括两部分:线性代数、多项式代数.高等代数在初等代数的基础上研究对象进一步扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等.这些量具有和数相类似的运算特点,不过研究的方法和运算的方法都更加繁复.集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些规则的集合.向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有了很大的不同.古典代数学(即初等代数学)的中心课题是解方程问题.就方程本身而言,它是向两个方向发展的.一个方向是一元高次方程,另一个方向是多元一次方程组与多元高次联立方程组.前者发展成为后来的方程论(或多项式论)的研究,方程论的扩展便是高等代数学.到了十九世纪,还诱发了近世代数的出现.后者的发展形成了线性代数学,它的中心内容是行列式与线性方程组,矩阵及线性空间和线性变换的理论等.多项式是一类最常见,最简单的函数,它的应用非常广泛.多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论.研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法.多项式代数所研究的内容,包括整除性理论,因式分解理论等.这些大体上和中学代数里的内容类似.多项式的整除性质对于解代数方程是很有用的.解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解.我们知道一次方程叫线性方程,讨论线性方程的代数就叫做线性代数.线性代数学的兴起与发展是随着十七、十八世纪生产和科学技术的发展与要求而发展的.在线性代数中最重要的内容是行列式和矩阵.早在十七世纪和十八世纪初,行列式在解方程中就得到了发展.在线性方程组中,由于碰到方程的个数与未知量个数相等,所以就提出行列式这个词.行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述.此外,1750年瑞士克莱姆(C ramer,1704--1752)的“克莱姆法则”也出现,但没有把行列式作为一个单独理论加以研究和阐述.欧洲第一个提出行列式概念的是德国的数学家莱布尼茨.1772年法国数学家范德蒙(Vandermonde,1735--1796)首先把行列式作为专门理论独立于线性方程组之外进行研究.故人们称他是行列式理论的奠基者.德国数学家雅可比于1841年发表了《论行列式的形式与性质》一文标志着行列式的系统理论的建立.行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具.行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数.因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论.矩阵概念和行列式一样是从解线性方程组中产生的.矩阵概念最早也出现在我国的《九章算术》方程章里.该书所说的“方程”实际是“矩阵”,所说的“方程术”的中心内容是对“方程”(即矩阵)施行“遍乘”与“直除”两种运算.在欧洲,由于有行列式的成果作为基础,1850年前后,矩阵的理论发展是非常迅速的.“矩阵”这个词是西勒维斯特(J.J.Sylvester,1814--1897)在1850年首先提出并使用的.他在碰到线性方程组的方程的个数与未知量个数不等,无法运用行列式概念时提出这个词的.1855年凯莱也引出了矩阵概念.他在文章中介绍他发现这一概念的思想时说:“我决不是通过四元数而获得矩阵概念的,它或是直接从行列式的概念而来,或是作为一个表达方程组的方便的方法而来的.”矩阵也是由数排成行和列的数表,行数和列数可以相等也可以不等.矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法.利用矩阵这个工具可以把线性方程组中的系数组成向量空间中的向量,这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以彻底地解决.矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都有十分广泛的应用.1879年,德国数学家弗罗尼乌斯(Frobenius)引入矩阵秩的概念,英国数学家史密斯(H.J.S Smith,1826--1883)引入增广矩阵的概念,证明了n 个未知数m个方程的方程组相容的充分必要条件是其增广矩阵与非增广矩阵的秩相等.在行列式的理论和矩阵理论与应用发展的同时,线性空间以及与之相联系的线性变换的理论也蓬蓬勃勃地发展起来.由于采用向量的概念,可以使得解析几何特别地简单和清楚.向量可以相加,也可以相乘,并且满足如下运算规律:1.2.存在着“零元素”0,使得对任意x,3.对于任意元素x,存在着一个逆元素-x,使得4.5.6.7.8.这里x、y、z是线性空间里的元素,而1、、、是数.如果向量由它的坐标(即它在坐标轴上的射影)给出,那么在向量上进行的加法运算和数乘运算就相应着由它的坐标所组成的行(或列)上同名的运算.这样一来,由三个数组成的行或列就宜于几何上地解释作三维空间中的向量,同时在“行”(或“列”)上进行的运算就解释作为空间中向量上所进行的相应的运算,使得由三个数所组成行(或列)的代数在形式上与三维空间中的向量代数没有差别.线性方程组的系数、线性方程组的解是一个多元有序数组,在多元有序数组集合中引进加法、数乘运算,可以简化线性方程组的讨论,这使它们自然地将三维向量空间推广到n元有序数组集合的n维向量空间.不仅n维向量的集合具备上面所说的这些特性,就是同一类型的矩阵集合以及物理向量:力、速度、加速度等等也具备这些性质.完全是另外性质的数学对象,如一个变元的多项式全体、已知区间[a,b]上的连续函数的全体,线性齐次微分方程解的全体等等,也都具备这些性质.这些例子引导人们进一步推广向量空间的概念,这种空间的元素可以是任意数学对象或物理对象,这就引进了一般的线性空间的概念.同样它们满足加法和数乘一定的运算规律.在很多数学研究中需要改换变数,即从一组变数,…… ,过渡到与它们有函数关系的另一组变数,,…….例如,如果变数是平面上或空间中点的坐标,那么从一个坐标系过渡到另一个坐标系就引起坐标的一个交换,它将原来的坐标用新的坐标表出.此外,在研究一个物体从一个位置或状态变为另一个位置或状态时,如果它的位置或状态由变数的值所给出,变数的变换也会产生.线性变换是线性空间到自身的变换.线性空间中每一个线性变换都对应着一个方阵,变换本身可以用矩阵语言写成形状,这里x是原向量的坐标组成的列,y是变换后的向量的坐标组成的列,是变换的系数矩阵.欧氏空间中,将保持向量长度不变的线性变换称为正交变换.正交变换是将三维空间中坐标原点不动的旋转或旋转与对通过原点的某一平面的反射的联合对n维空间的推广.正交变换是非退化变换的重要特殊情形.线性空间与线性变换是线性代数的几何架构,数组向量和矩阵实际上是它们的代数形式,其间的转换枢纽是基底,就好象是平面和立体几何里的坐标系.然而线性代数里的向量空间却往往从抽象定义开始,这只是相当大的一般性.3.抽象代数在十八世纪后半叶,数学内部悄悄积累的矛盾已经开始酝酿新的变革.当时数学家们面临一系列数学发展进程中自身提出的、长期悬而未决的问题,其中在代数方面最突出的是:高于四次的代数方程的根式求解问题.在十九世纪初,这个问题已变得越发尖锐而不可回避.它们引起了数学家们集中的关注和热烈的探讨,并导致了代数学发展的新突破.在前面曾经说过,中世纪的阿拉伯数学家把代数学看成是解方程的学问.直到十九世纪初,代数学研究仍未超出这个范围.不过这时数学家们的注意力集中在了五次和高于五次的代数方程上.考虑一般的五次式更高次的方程能否像二、三、四次方程一样来求解,也就是说对于形如:(其中)的代数方程,它的解能否通过只对方程的系数作加、减、乘、除和求正整数次方根等运算的公式得到呢?遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪都没有解决.最终,阿贝尔(1802--1829)解决了五次和高于五次的一般方程的求解问题,证明了五次或五次以上方程不可能有代数解.即这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来.他还考虑了一些特殊的能用根式求解的方程,其中的一类被称为“阿贝尔方程”.在这一工作中,他实际上引进了“域”这一重要的近世代数概念,虽然他没有这样来称呼.但他没能解决判定已知方程是否可用根式来求解的问题.这个问题最终由另一个年轻的天才数学家法国的伽罗瓦彻底解决.在十九世纪,代数学的研究对象已突破了数(包括用符号表示的数)的范畴,这种突破是由伽罗瓦群的概念开始的.伽罗瓦20岁的时候,因为积极参加法国资产阶级革命运动曾两次被捕入狱,1832年4月,他出狱不久便在一次私人决斗中死去,年仅21岁.伽罗瓦在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿.他在给朋友舍瓦利叶的信中说:“我在分析方面做了一些新发现.有些是关于方程论的;有些是关于整函数的……公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见.我希望将来有人发现消除所有这些混乱对它们是有益的.”伽罗瓦死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中.他的论文手稿过了14年,才由刘维尔(1809--1882)编辑出版了他的部分文章,并向数学界推荐.随着时间的推移,伽罗瓦的研究成果的重要意义愈来愈为人们所认识.伽罗瓦虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念.在伽罗瓦之后,群的概念本身进一步发展,除了有限的、离散的群,又出现了无限群、连续群等,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革.从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步发展.在数学大师们的经典著作中,伽罗瓦的论文是最薄的,但他的数学思想却是光彩夺目的.代数对象的扩张,在十九世纪还沿着其他途径进行,先后产生了许多其他代数系统,例如四元数与超复数、域、理想等.十九世纪数学家还引进了环(戴德金,1871.克罗内克也研究过环并称之为“order”,希尔伯特首先使用了“ring”即环这个名称)和格(戴德金,1897)等.。

2.从算术到代数(含答案)-

2.从算术到代数(含答案)-

2.从算术到代数知识纵横“算术”可以理解为“计算的方法”,而“代数”(algebra)•可以理解为“以符号替代数字”,即“数学符号化”。

著名数学教育家玻利亚曾说:“代数是一种不用词句而只用符号所构成的语言。

”用字母表示数是数学发展史上的一件大事,是由算术跨越到代数的桥梁,是人类发展史上的一个飞跃,也是代数与算术的最显著的区别。

字母表示数使得数学具有简洁的语言,能更普遍地说明数量关系,在列代表式(algebra expression)、求代数式的值、形成公式等方面有广泛的应用。

例题求解【例1】(2001年河南省中考题)观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,……这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出来:____________.思路点拨在观察给定的等式基础上,寻找数字特点,等式的共同特征,•发现一般规律.解:(n+2)2-n2=4(n+1)【例2】(2003年“TRULY信利杯”竞赛题)某商品2000年比1999年涨价5%,2001年又比2000年涨价10%,•2002•年比2001年降价12%,则2002年比1999年( )A.涨价3%B.涨价1.64%C.涨价1.2%D.降价1.2%思路点拨设此商品1999年的价格为a元,把相应年份的价格用a的代数式表示,由计算作出判断.解:选B.【例3】计算:(12+13+…+12002)(1+12+13+…+12001)-(1+12+…+12002)(12+13…+12001)思路点拨直接计算复杂而繁难,注意括号内数式的联系,引入字母,•将复杂的数值计算转化为简单的式的计算.解:1 2002提示:设1+12+13+…+12001=a,12+13+…+12001=b,则a-b=1【例4】(第17届江苏省竞赛题)有一张纸,第1次把它分割成4片,第2次把其中的11319?片分割分4片,•以后每一次都把前面所得的其中一片分割成4片,如此进行下去,试问: (1)经5次分割后,共得到多少张纸片? (2)经n 次分割后,共得到多少张纸片?(3)能否经若干次分割后共得到2003张纸片?为什么?思路点拨 从简单情形入手,发现纸片数的特点是解本例的关键.解:(1)因为每分割1次,就要增加3张纸片,所以经5次分割,共得到1+3×5=16•张纸片.(2)经n 次分割,共得到(1+3n)张纸片.(3)若能分得2003张纸片,则1+3n=2003,3n=2002,无整数解,•所以不可能经若干次分割后得到2003年纸片.【例5】(北京市“迎春杯”竞赛题)在右图中有9个方格,要求每个方格填入不同的数,使得每行、每列、每条对角线上三个数之和都相等,问:右图上角的数是多少?思路点拨 虽然要求的只是右上角的数,但是题目的条件还与其他的数有关,因此,需恰当地引进不同的字母表示数,以便充分运用已知条件.解:提示:如图,设相应方格中的数为x 1,x 2,x 3和x 4,问号处填的数为x,由已知条件得:x+x 1+x 2=x+x 3+x 4=x 1+x 3+13=x 2+19+x 4,这样,前面两个式子之和等于后面的两个式子之和,•即 2x+x 1+x 2+x 3+x 4=13+19+x 1+x 2+x 3+x 4,∴2x=13+19,得x=16.1319x 4x 3x 2x 1x学力训练 一、基础夯实:1. (2001年福州市中考题)给出下列算式:12+1=1×2, 22+2=2×3, 32+3=3×4, ……观察上面一列算式,你能发现什么规律,用代数式子表示这个规律:________. 2. (2003年武汉市中考题)已知:2+23=22×23,3+38=32×38,4+415=42×415……,若10+a b =102×ab(a 、b 为正整数),•则a+b=_________. 3. (第15届江苏省竞赛题)若(m+n)人完成一项工程需要m 天,则n 个人完成这项工程需要________天.(假定每个人的工作效率相同)4. (河南省竞赛题)某同学上学时步行,回家时坐车,路上一共要用90分钟,若往返都坐车,全部行程只需30分钟,如果往返都步行,那么,需要的时间是________.5.一项工程,甲建筑队单独承包需要a 天完成,乙建筑队单独承包需要b 天完成,•现两队联合承包,完成这项工程需要( )天. A.1a b + B.1a +1b C.ab a b+ D.1ab6. (2003年河南省中考题)某专卖店在统计2003年第一季度的销售额时发现,二月份比一月份增加10%,•三月份比二月份减少10%,那么三月份比一月份( ) A.增加10% B.减少10% C.不增不减 D.减少1% 7. (2001年河北省中考题)如图,在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,依照图中标注的数据,计算图中空白部分的面积,其面积是( )A.bc-ab+ac+c 2B.ab-bc-ac+c 2C.a 2+ab+bc-acD.b 2-bc+a 2-ab 8.为了绿化环境,美化城市,在某居民小区铺设了正方形和圆形两块草坪,•如果两块草坪的周长相同,那么它们的面积S 1、S 2的大小关系是( )A.S 1>S 2B.S 1<S 2C.S 1=S 2D.无法比较 9.从1开始,连续的奇数相加,和的情况如下:1=12, 1+3=4=22, 1+3+5=9=32, 1+3+5+7=16=42,EDBG FCA 1+3+5+7+9=25=52,(1)请你推测出,从1开始,n 个连续的奇数相加,它们的和s 的公式是什么? (2)计算:①1+3+5+7+9+11+13+15+17+19; ②11+13+15+17+19+21+23+25.(3)已知1+3+5+…+(2n-1)=225,求整数n 的值.10. (第17届江苏省竞赛题)从小明的家到学校,是一段长度为a 的上坡路接着一段长度为b 的下坡路(•两段路的长度不等但坡度相同).已知小明骑自行车走上坡路时的速度比走平路时的速度慢20%,走下坡路时的速度比走平路时的速度快20%,又知小明上学途中花10分钟,•放学途中花12分钟.(1)判断a 与b 的大小;(2)求a 与b 的比值.二、能力拓展:11.观察下列各正方形图形,每条边上有n(n ≥2)个圆点,每个图案中圆点的总数是S.按时规律推断出S 与n 的关系式是__________.(2001年广西中考题)n=4,s=12n=3,s=8n=2,s=4.......12. (“希望杯”邀请赛试题)如图,将面积为a 2的小正方形与面积为b 2的大正方形放在一起(b>a>0),用a 、•b 表示三角形ABC 的面积为________.13. (天津市竞赛题)已知17个连续整数的和是306,那么,紧接在这17个数后面的那17个整数的和为_________.14. (2003年南昌市中考题)用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:(1)第4个图案中有白色地面砖_________块;(2)第n个图案中有白色地面砖_________块.15. (第17届江苏省竞赛题)下列四个数中可以写成100个连续自然数之和的是( )A.1627384950B.2345678910C.3579111300D.469258147016. (2002年重庆市竞赛题)给出两列数:1,3,5,7,9,…2001和1,6,11,16,21,…,2001,•同时出现在这两列数中的数的个数为( )A.199B.200C.201D.20217. (2003年山东泰安市中考题)一种商品每件进价为a元,按进价增加25%定出售价,后因库存积压降价,按售价的九折出售,每件还能盈利( )A.0125aB.0.15aC.0.25aD.1.25a18.如果用a名同学在b小时内共搬运c块砖,那么c名同学以同样的速度搬运a•块砖所需的小时数是( )A.22ca bB.2cabC.2abcD.22a bc19.已知a n+1=111na(n=1,2,3,…,2002),求当a1=1时,a1a2+a2a3+a3a4+…+a2002a2003的值.20. (2002年湖北省黄冈市竞赛题)在一次数学竞赛中,组委会决定用NS公司的赞助款购买一批奖品,•若以1•台NS计算器和3本《数学竞赛讲座》书为一份奖品,则可买100份奖品;若以1台NS•计算器和5本《数学竞赛讲座》书为一份奖品,则可买80份奖品。

小升初数学思训第5讲——从算术到代数

小升初数学思训第5讲——从算术到代数

小升初数学思训第4讲——从算术到代数1、甲、乙二人从M 地同时出发去N 地,甲用一半的时间以每小时a 千米的速度行走,另一半的时间以每小时b 千米的速度行走;乙以每小时a 千米的速度行走一半的路程,另一半路程以每小时b 千米的速度行走。

若a ≠b ,则( )先到达N 地。

A 、甲B 、乙C 、二人同时到达D 、不确定2、已知游艇在静水中的航速为每小时10千米,某一旅游团乘该游艇在黄河顺水航行2小时,又用3小时返回出发地,求该团所走的航程是( )A 、24千米B 、12千米C 、48千米D 、40千米3、某人从A 地步行到B 地,当走到预定时间时,离B 地还有0.5千米;若把步行速度提高25%,则可比预定时间早半小时到达B 地。

已知AB 两地相距12.5千米,则某人原来步行的速度是( )A 、2千米/时B 、4千米/时C 、5千米/时D 、6千米/时4、一个两位数,十位上的数与个位上的数的和是7,若十位上的数与个位上的数对换,现在的两位数与原来的两位数的差是9,则现在的两位数是( )A 、43B 、34C 、25D 、525、早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。

两辆汽车的速度都是每小时60千米,8点32分时,第一辆车离开化肥厂的距离是第二辆车的3倍。

到了8点39分时,第一辆车离开化肥厂的距离是第二辆车的2倍。

则第一辆车是8点 分离开化肥厂的.6、甲、乙两个同学从A 地到B 地,甲步行的速度为每小时3千米,乙步行的速度为每小时5千米,两人骑自行车的速度都是每小时15千米。

现在甲先步行,乙先骑自行车,两人同时出发。

走了一段路程后,乙放下车步行,甲走到乙放车处改骑自行车,以后不断交替行进,两人恰好同时到达B 地。

甲走全程的平均速度是 千米/小时7、一船从重庆到上海要5昼夜,而从上海到重庆要7昼夜,那么有一木排从重庆顺流漂到上海要 昼夜8、有四个正整数,其中任三个数的算术平均数与第四个数的和,分别等于29、23、21、19,则这四个数中最大的一个是9、在33⨯方格上进行填数游戏,要求在9个方格的每一个方格中都分别填上适当的数,使得每行、每列以及两条对角线上的三个方格内的三个数的和都等于S 。

跨越从算术思维到代数思维这道鸿沟

跨越从算术思维到代数思维这道鸿沟

跨越从算术思维到代数思维这道鸿沟算术思维到代数思维的过渡绝非是一蹴可及的,无法在缺乏经验下直接灌输,必须经过长适当的、多元的、循环的学习过程,才能顺利的跨越这一道鸿沟。

跨越这一道鸿沟一方面要从具体的数字到抽象的代数符号数学算式是数学沟通及思考最重要的媒介,而符号表征式的理解与使用更是代数的学习不可或缺的工具,因此要过渡到代数思维,首要进行的便是符号的理解与使用,此处的代数符号包含=、×、+、…、□、甲、乙、x、y、…等等。

从字面上来看,「代数」带有「以符号代表数」的意味,然则教学上所要关心的是:学生为何需要有运用文字符号来代替数字的思维?这种将待求之数以代数(文字)符号之,至少会引出四个不同的功用:(一)改变解题思维动向。

亦即能对「待解的已定数」作运算:例:「某数加5得到8,求该数。

」以算术思维的方法求解时,无论解题思维是「因为某数加5得到8,所以某数是…」或「什么数加5得到8?3加5是8,所以某数是…」,都是以「某数」为解题焦点,所有的运作只能以它为中心。

而当它被文字符号暂代时(如:x+5=8),焦点已经转移到这个方程式及其解法了。

(二)让解法跳脱题目所给的情境或数字,而聚焦在一般性的解题方法:这个功用对代数的一般性(抽象性)与结构性有直接的影响,因为当解题不会因为题目所给的数字不同而改变作法,其实已经在建立代数的一般性与结构性了。

(三)能保留对运算的程序或结构:例:「边长为2的正方形,得到其面积为4」。

但是得出4之后,就无法得知4究竟是2 、2×2、2+2,还是其它方式而来。

而符号的一个功用就是能保留这些程序或结构,这尤其在多项式、函数、乘法公式、代数论证…上,程序或结构的保留对概念的形式化有不可或缺的地位。

跨越这一道鸿沟另一方面要从特殊化到一般化(抽象化、去情境化)转变。

符号的使用只是进入代数思维的第一步,真正进入代数思维,凭借的是支撑在符号背后的代数想法,也就是一般化的想法。

保障初中数学课堂教学有效性的思想方法研究

保障初中数学课堂教学有效性的思想方法研究

保障初中数学课堂教学有效性的思想方法研究摘要:本文基于笔者多年从事初中数学教学的相关教学经验,以数学思想方法的培养为研究对象,从5个方面分析了如何在教学中培养学生的数学思想思想方法,每个思想方法的论述中笔者都结合自身的教学实例,相信对从事相关工作的教职工作者有着重大的参考价值和借鉴意义。

关键词:数学教学思想方法分类讨论数形结合在一个人的知识结构中,哪些东西最重要?哪些知识可让一个人终身受益?知识海洋广阔无垠,现代社会更是知识爆炸时代,知识呈几何级数增长发展,一个人要学会所有的知识是绝对不可能的。

那么我们的教育要达到什么样的功能呢?在有限的时间内,培养和提高学生的思维素质,这才是教育的根本目的。

数学在基础教育中是培养学生逻辑思维能力、提高思维素质最有力和最好的工具,这种功能是其它任何一门课程所不能比拟、不能取代的,这已形成共识。

正如法国学者劳厄所言:“教育无非是一切已学过的东西都忘掉时所剩下的东西。

”在数学中遗忘之余,所剩的东西就是数学思想方法。

某哲人也曾说过:“能使学生获得受用终身的东西的那种教育,才是最高尚和最好的教育。

”数学思想方法的教学正是这样一件有意义的工作。

而我们大多的初中数学教师和学生对数学思想方法的理解和认识却仍维持在似懂非懂、可有可无的边界线上。

《九年义务教育数学教学大纲》明确指出“使学生受到必要的数学教育,具有一定的数学素养,对于提高全民族素质,为培养社会主义建设人才奠定基础是十分必要的”。

又指出:“初中数学的基础知识,主要是概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。

这其中既把数学知识的“精灵”——数学思想和方法纳入基础知识之中,又凝聚了形成知识所经历的思想方法、规律及逻辑过程。

如果说历史上是数学思想方法推进了数学科学,那么在教学中就是数学思想方法在传导数学精神,在对一代人的数学素质施加深刻持久的影响。

初中数学中蕴含的数学思想方法很多,最基本的数学思想方法有符号与变元的思想、化归的思想、数形结合的思想、分类讨论的思想、方程的思想、函数的思想等,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓。

从算术向代数过渡

从算术向代数过渡

从算术向代数过渡从算术向代数过渡,是学生数学学习过程中极为重要的转变阶段.算术中的基本对象是数,包括数的表示、数的意义、数之间的关系、数的运算等,这些知识对学生是基本的,它们将为学生今后的代数学习打下坚实的基础.所不同的是,代数中的基本对象除了数,还出现了更具广泛意义的基本对象??符号,这是代数不同于算术的典型特征.在代数中,用字母表示数,用符号表示运算法则、运算性质、计算公式等,将数的知识提升到一般化的水平.在代数的课程中,学生要学习符号的意义、进行符号之间的运算(形式变换)和转换、用符号进行表示、用符号解决问题.在此过程中,学生还要学习许多新的概念,如代数式、变量、参数、图像、方程、函数等,而且他们还需要懂得代数的结构.因此,代数的内容和方法对学生提出了更高的要求,是学生所面对的又一次挑战.学生从算术向代数的过渡,是从对数的思考向对符号的思考的转变,是从算术思维向代数思维的转变,是思维层次从个别到一般、具体到抽象的飞跃.研究算术方法和代数方法各自的特点,研究它们之间的联系与不同,对于提高教师的专业水平,以及有效地进行教学设计和有针对性地对学生进行指导是十分重要的.1 结构结构,是代数最基本的方面之一.我们这里所说的结构,正如弗赖登塔尔所指出的:“结构是从语言表达抽象出来的一种形式.”他给出了一个代数结构的简单的例子a +b = c ,即将一个数a 和另一个数b 加到一起,就会得到数c.回想在算术中,当写两个数相加的形式时(如2+7),通常就是要算出2 和7 的和(9),2+7 通常只是一个过程,9 是2+7 的结果.而代数式a+b 这个形式本身,既表示 a 和b 这两个数作加法运算,也表示a 和 b 相加的结果.即a+b 本身既可以看作运算过程,又可以看作运算结果,也就是作为一个对象看待.将2+7 作为一个数的解释是真正的代数,它与文字演算紧密相关.如果说把代数式作为一个运算过程来理解,对于开始学代数的学生来说还不是太困难的话,那么把代数式作为一个结果对象来理解就是比较困难的了.我们不妨举马明先生的一段学生时期的回忆作为例证:“已知长方形的长为 a 尺、宽为 b 尺,求其周长.我算的结果是2(a+b)尺.我拿着这个结果去问老师:‘究竟这个长方形的周长是多少?’老师说:‘不是已经算出来了吗?2(a+b)尺!’我感到困惑不解.”这是对初学者只知代数式表示过程、不知代数式也表示结果的生动写照.因此,对代数式的意义的认识,学生不是一蹴而就的,而是需要一个理解的过程.代数式既表示运算过程,同时也表示运算结果,这件事可以这样理解,如2(a+b),当我们代入数值a = 2,b = 1 时,经过运算,就得到2(2+1) = 6,这显示了代数式过程性的一面.同时,对于2(a+b),不论 a 和b 代入何值,它都代表周长,代表长为a、宽为 b 的长方形的周长,是作为一个对象,或者说是作为一个整体来理解的,它在这一背景下有着确定的含义.我们可以进一步用下面的例子说明.1 用通项公式(n =1, 2,…)表示数列1,12,13,…,,…,…时,其中代数式是一个整体,是作为一个对象,而通常不是n 作为 1 和n 这两个对象.算术运算和代数运算的根本区别在于算术运算是过程性的,算术运算的目的是为了求出算式的结果,而代数运算是结构性的,是形式变换,代数运算具有过程和结果双重性.2 解法等号“=”表示等式两边对称的等价关系,a = b 即是说a、b 是同一个对象.但是在算术中经常被用来“宣布一个结果”.如2+3 = ?“=”所传达的信息是要把2+3 的结果算出来,宣布2+3 的结果是多少.在算术方法中,“小学生用‘=’表示计算结果,而不是用来表示等式两边对称的等量关系”.这使得小学生在进行运算的过程中,出现诸如2+15 = 17?11= 6之类的错误.这种对等号意义的错误理解,将会给用方程的方法解决问题带来障碍.为了帮助学生理解等号的意义,国外有的教师设计了诸如“有坏键的计算器”这样的问题.问题是这样的:一个计算器上的“5”键坏了,不用“5”键,如何用这个计算器计算525?257 = ?有学生用424+101-247-10 = 268,有学生用636-368 = 268,还有学生用414-146 = 268.很明显,学生在这里利用了525-257 = 424+101-247-10,525-257 = 636-368,525-257 = 414-146 等,等量关系.这种训练对于学生从算术向代数的过渡是有意义的.可以看出,这里所表现出来的正是算术中潜在的代数结构.为了发现和利用这些机会,即算术中潜在的代数结构,教师应该长着“代数的眼睛和耳朵”.用代数的方法解决问题和用算术的方法是不同的,让我们看下面的例子:例1 父亲给了玲玲15元钱,玲玲买文具花去了17 元后还剩下11 元,你知道玲玲自己原来有多少钱吗?(1)利用算术的方法,有:17+11 = 28,28-15 = 13,玲玲自己原来有13 元.(2)利用方程的方法,设玲玲原有x 元,列方程,得:x +15-17 = 11,解得x = 13.在学习方程的初期,有的学生列出方程17+11-15 = x,这本质上仍是算术方法.例2 用100元钱买8元一本的书和4元一本的书共17 本,你知道两种书各有多少本吗?(1)利用算术的方法:解法一(8×17-100)÷(8-4) = 36÷4 = 9,17?9 = 8.解法二(100-4×17)÷(8?4) = 32÷4 = 8,17?8 = 9.解法三若100 元钱都买4 元一本的书,可以买100÷4 = 25(本).少买2 本4 元的书,就可以买一本8 元的书,因此可以列出如表1 所示的数目与价值关系表.只有买4 元的书9 本,8 元的书8 本才合题意.(2)利用代数的方法,可以设买8 元一本的书x 本,4 元一本的书y 本,列方程组利用消元法,解得x = 8,y = 9.这两种方法是有区别的:(1)用算术的方法寻求问题的结果,是从具体问题的已知数出发,通过对已知数或计算产生的中间数进行一系列的计算而达到问题的解,并不将问题形式化.这里,“=”用来表示计算结果.利用算术的方法,思考的过程往往是逆向的.(2)而用方程的方法,需要首先分析问题中的等量关系,把问题表示为含有未知量的等式(建立数学模型),把问题形式化.然后利用等式的性质对方程进行恒等变形,在变化的过程中始终保持方程两端对称的等量关系,利用程序化的方法求得x =13.这里“=”用来表示等式左右两端对称的等量关系.从表示等量关系、保持等量关系,到求得方程的解,体现了方程的结构特点.用方程的方法解决问题,思考的过程往往是顺向的.(3)从解决问题方法多样性的角度来看,算术的方法、列表的方法都不失为解决问题的途径.但是从思维发展的角度来说,代数的思考是在抽象层面上的思考,代数的方法具有一般性,有助于培养高层次的思维.按照维果茨基(Vygotsky,1962)的说法,代数对算术就像书面语言对口头语言.因此,我们的教学应该引导学生从算术的思考逐步地过渡到代数的思考,逐步地从非形式化的水平上升到形式化的水平.3 利用逆运算的方法解方程一些教科书中,可能是出于使学生易于理解的原因,先教学生利用逆运算的方法解方程.如解方程2x-1 = 3,首先,指出2x-1 = 3 相当于2x 与1 的差是3,2x 是被减数,1 是减数,3 是差.被减数等于减数加差,因此2x = 1+3 = 4.其次,指明2x = 4 相当于2与x 的乘积是4,因此,乘数x = 4÷2 = 2.利用逆运算的方法解方程和利用代数的方法(方程的结构性质)解方程是大不相同的,它是一种算术的思考.算术思考的特点,最主要的是过程性的思考,主要集中在得到正确的结果.而代数的思考常被描述为关系的或结构的,它的目的往往是为了建立模型,对一般性和结构进行证明或进行交流.尽管代数的特性可以从结构和过程两方面都可以感受到,但是代数课程,特别是在从算术向代数过渡的阶段,最主要的方面基本上是结构的.从这个角度来看,利用逆运算的解法不利于形成对代数方法的认识,不利于学生向代数思维的转化.4 表示等量关系在用方程的方法解决问题时,我们教师的体会与国外的研究有相同之处.研究结果表明,大部分错误都是由于不能够形成问题情景的数学模型而引起的,而不是由于不能够理解问题情景或不会解代数方程.因此,学生对等量关系的理解和表示的过程不能进行得时间过短或速度过快,教师需要借助于多种途径精心进行教学设计,帮助学生理解和表示等量关系.如何引入等量关系的表示?弗赖登塔尔给出了如下的一个例子:教师首先拿起一个带有刻度的玻璃杯,其中水面的高度是k;然后又拿起另一个带有刻度的玻璃杯,其中水面的高度是c;然后教师把这两杯水都倒入第三个玻璃杯,此时这个玻璃杯含有水b.学生利用画图表示k、c、b 之间的联系,并且得到关系式表示c = b-k,b = c+k,k = b-c.琳斯(Lins,1994)给出了一个类似的例子:两个完全一样的容器(如图1),但盛有不同量的水.(a)容器中再倒入9桶水就会满,(b)容器中再倒入 5 桶水就会满.对这两个容器,你能得到哪些结论?学生列出了各种形式不同的等式.例如,x+9b = y+5b,并且化为了x+4b = y.新的代数课程,从对运算的强调转向更加关注对问题的表示或数学建模,转向关注学生是否能用数学的眼光把实际情境数学化、用数学的方法解决实际问题.因此,帮助学生理解符号表示和符号运算,考虑我们在教学上可以做什么,特别是在算术向代数过渡的阶段,是十分有益的.教师对课程的深刻理解和高水平的教学设计将为学生能力的发展提供一个坚实的平台.。

数学思想方法的几次重大转折

数学思想方法的几次重大转折

数学思想方法的几次重大转折历史表明,数学的发展,不仅表现为量的积累,而且还表现为质的飞跃。

数学思想方法在历史上经历了四次重大转折:从算术到代数,从常量数学到变量数学,从必然数学到或然数学,从明晰数学到模糊数学,就充分说明这一点。

回顾、总结和分析这四次重大转折,将有助于我们全面了解数学思想方法演变的历史及其规律。

1.从算术到代数算术和代数,作为最基础而又最古老的两个分支学科,有着不可分割的亲缘关系。

算术是代数产生的基础,代数是算术发展到一定阶段的必然产物。

从算数发展到代数,是人们对数及其运算在认识上的突破,也是数学在思想方法上的一次重大转折。

在算术解题法中,未知数是不允许作为运算的对象的,它们没有参加运算的权利。

而在代数解题法中,所列出的方程作为一种条件等式,已是由已知数和未知数构成的有机统一体。

在这个统一体中,未知数和已知数有着同等的权利,即未知数在这里也变成了运算的对象,它们不再是消极、被动地静等在等式的一边,而是和已知数一样,可以接收各种运算指令,并可以依照某种法则从等式的一边移到另一边。

解方程的过程,实质上就是未知数和已知数进行重新组合的过程,也是未知数向已知数转化的过程。

解方程是古典(经典)代数最基本的内容。

方程在数学中占有重要的地位,它的出现不仅极大地扩充了数学应用的范围,使得许多算术解题法不能解决的问题能够得以解决,而且对整个数学的进程产生巨大的影响。

特别是数学中的许多重大发现都与它密切相关,例如,∙对二次方程的求解,导致虚数的发现;∙对五次和五次以上方程的求解,导致群论的诞生;∙对一次方程组的研究,导致线性代数的建立;∙应用方程解决几何问题,导致解析几何的形成;∙等等。

显然,代数解题法(相对于算术解题法)更具有新奇性和简单性(算术解题法需要更强的技巧)2.从常量数学到变量数学算术、初等代数、初等几何和三角,构成了初等数学的主要内容。

它们都以常量即不变的数量和固定的图形为其研究对象,因此这部分内容,也称为常量数学。

数学思想方法的重大突破

数学思想方法的重大突破

数学思想方法的重大突破数学思想方法的最大突破一、数学思想方法的重大突破之从算术到代数【编者按】数学的发展并不是一些新概念、新命题、新方法的简单积累,它包含着数学本身许多根本的变化,也即质的飞跃。

历史上发生的数学思想方法的几次重大突破,就充分说明了这一点。

算术和代数是数学中最基础而又最古老的分支学科,两者有着密切的联系。

算术是代数的基础,代数由算术演进而来。

从算术演进到代数,是数学在思想方法上发生的一次重大突破。

一、代数学产生的历史必然性代数学作为数学的一个研究领域,其最初而又最基础的分支是初等代数。

初等代数研究的对象是代数式的运算和方程的求解。

从历史上看,初等代数是算术发展的继续和推广,算术自身运动的矛盾以及社会实践发展的需要,为初等代数的产生提供了前提和基础。

我们知道,算术的主要内容是自然数、分数和小数的性质与四则运算。

算术的产生,表明人类在现实世界数量关系认识上迈出了具有决定性意义的第一步。

算术是人类社会实践活动中不可缺少的数学工具,在人类社会各部门都有广泛而重要的应用,离开算术这一数学工具,科学技术的进步几乎难以相象。

在算术的发展过程中,由于算术理论和实践发展的要求,提出了许多新问题,其中一个重要问题就是算术解题法的局限性在很大程度上限制了数学的应用范围。

算术解题法的局限性,主要表现在它只限于对具体的、已知的数进行运算,不允许有抽象的、未知的数参加运算。

也就是说,利用算术解应用题时,首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过加、减、乘、除四则运算求出算式的结果。

许多古老的数学应用问题,如行程问题、工程问题、流水问题、分配问题、盈亏问题等,都是借助这种方法求解的。

算术解题法的关键是正确地列出算术,即通过加、减、乘、除符号把有关的已知数据连结起来,建立能够反映实际问题本质特征的数学模型。

对于那些只具有简单数量关系的实际问题,列出相应的算式并不难,但对于那些具有复杂数量关系的实际问题,在列出相应的算式,往往就不是一件容易的事了,有时需要很高的技巧才行。

算术、数和代数式(一)

算术、数和代数式(一)

算术、数和代数式(一)(总分:100.00,做题时间:90分钟)一、单项选择(总题数:40,分数:100.00)1.要使方程3x2+(m-5)x+m2-m-2=0的两个实根分别满足0<x1<1和1<x2<2,实数m的取值范围是______。

A.-2<m<-1 B.-4<m<-1 C.-4<m<-2 D.-3<m<1(分数:2.50)A. √B.C.D.解析:如图所示,设f(x)=3x2+(m-5)x+m2-m-2则f(x)开口向上,与x轴交于(x1,0)和(x2,0)两点,有不等式组,从而有这里主要考查二次函数(方程)的性质。

如果用一元二次方程根与系数的关系解题,比较繁琐,我们不妨结合图形解题。

2.设φ(x)是x到离x(分数:2.50)__________________________________________________________________________________________ 正确答案:(解法1:如图所示,解法2:)解析:此题至少有两种解法。

直接用积分的方法也能算出答案,但是比较繁琐,如果借助于图形,答案就一目了然了。

其实所求积分就是如图所示的100个三角形的面积之和。

3.若与|b-1|互为相反数,则的值为______。

A. B. C D.0(分数:2.50)A. √B.C.D.解析:[解析] 由与|b-1|互为相反数,得+|b-1|=0又因为,|b-1|≥0,,b-1=0得,b=1故正确答案为A。

4.某商品单价上调15%后,再降为原价,则降价率为______。

A.15% B.14% C.13% D.12%(分数:2.50)A.B.C. √D.解析:[解析] 设该商品原价为a,上调15%后的单价为1.15a,若此时下调的百分比为x,降为原价a,则应有1.15a(1-x)=a,化为,,故正确答案为C。

5.数轴上点A的坐标为-2,动点B在数轴上运动,且B点与A点间的距离不超过5,则B点坐标x的值应适合______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是典型的追及问题:
丙比甲早出发30分钟
甲追上丙耗100分钟
也是追及问题:
的某个倍数代入:
解法1既用了算术的追及问题公式
又用了列方程的代数方法.下面再介绍一种列表法
对解这类题更方便.
解法2:我们把题中的条件按下列方式填入下面表格中:让同一列格子中填行相同路程时甲、乙、丙三辆汽车各自所需的时间
并学会了用这些四则运算去解一些不太复杂的四则应用题.归纳一下
在用算术方法解应用题时主要用到了以下三种关系:
①部分数与总数的关系;
②两数差的关系;
③一倍数(或一份数)、倍数和几倍数的关系.第1、第2种关系用"加"、"减"法完成
第3种关系则用乘、除法完成.在解四则运算题时用到了对于数的"加法"、"乘法"都普遍成立的运算法则:交换律、结合律、分配律.设a、b、c表示任意三个数
40+5=45(元)
那么换多少箱
货款正好减少多出来的810元呢?做除法:
810÷45=18(箱).
答:共换坏了18箱.
②代数解法:
设损坏了x箱
则没损坏的共2000-x箱.
依题意列方程
5(2000-x)-40x=9190
45x=10000-9190
里程碑上是三位数
又恰好是第一个两位数中间加了个零(用
3.在一个红钱包与一个黑钱包里分别装着6枚和8枚硬币
并且两个钱包中的总钱数相等.如果从红钱包中任取两枚硬币与黑钱包中任取的两枚硬币交换时
红钱包中的总钱数要么比原来多2分
要么比原来的钱数少2分.问两个钱包中共装了多少钱?(注:这里的硬币只有1分、2分、5分三种)
58÷9=6...4
答:58为所求最小自然数.
例5 三个学生甲、乙、丙各有若干张画片互相赠送.第一次由甲送给乙、丙画片
所送的张数等于乙、丙各人已有的画片数;第二次由乙送给甲、丙画片
所送的张数等于甲、丙各人已有的画片数;最后由丙送给甲、乙画片
所送的张数也正好等于甲、乙各人已有的画片数.这时每人的画片数都是32张.问原来甲、乙、丙三人各有多少张画片?
3.解方程.目的是把原方程变成同解的形如ax=b的方程
进而解出
①用分配律去括号.而不一定能像算术中那样先把括号中数算出来.因为其中有的是未知数算不出来.如下例中的(1)变成(2).
例1 64+x=3(32-x) (1)
64+x=96-3 (2)
x+3x=96-64 (3)
如第一列中填入稍稍转化了的已知条件:乙走40分钟的路程丙需走40+10=50(分钟);第二列中填入甲走100分钟的路程丙需用100+20+10=130(分钟).以前两列中条件的关系
再根据当速度一定时路程与时间成正比的性质
当丙走650=[50
130]分钟的路程时乙需用40×13=520(分钟)
在本题的条件下
c=650
a=500
b=520.
例7 星期日小明去找同学玩了两三个小时
离开家时他看了看钟
回家时又看了看钟
发现时针与分针恰好互换了一个位置.问小明共离开家多少时间?
解:因为小明离家回来时时针走到分针位置
分针走到时针位置
说明两针合起来恰好走了若干个整圈.设外出时间分为二个时段
车站共收到运货款9190元.问损坏了几箱玻璃.
解:①算术解法:假如设有损坏
2000箱玻璃全运到
则应得运货款:2000× 5= 10000(元).
和实际所得运货款相差:
10000-9190=810(元).
现在让我们用一箱好的换一箱损坏的玻璃
总箱数2000不变
但每换一箱所得运货款减少:
q枚一分币.则
m+n=6
p+q=8
5m+n=5p+q.
显然m>p.因此5(n-p)=q-n
因为0<q-n≤8
5│q-n
所以q-n=5
m-p=1.这两式相减
得到(p+q)-(m+n)=4.这与(p+q)-(m+n)=8-6=2矛盾.所以这种情形也不会发生.
综上所述
两个钱包中共有2角4分钱.
甲则需用100×5=500分钟.由于乙比甲早出发20分钟
恰为520分钟与500分钟之差
因此甲出发后500分钟时追上乙.
答:甲出发后需500分钟才能追上乙.
说明:一般地
当知道丙走c分钟的路程与甲走a分钟、乙走b分钟的路程相等时
可列一方程求出所需的答案.设甲出发后ax分钟追上乙

乙有28张
丙有16张画片.
例6 有甲、乙、丙三辆汽车
各以一定的速度从A地开往B地.乙比丙晚出发10分钟
出发后40分钟追上丙;甲比乙又晚出20分钟
出发后1小时40分钟追上丙.那么甲出发后需用多少分钟才能追上乙?
解法1:设三车速度依次为V甲
V乙
V丙.丙比乙早出发10分钟
乙追上丙耗40分钟
4x=32 (4)
x=8. (5)
②移项.把含未知数的项与常数项(即不含未知数的项)分离开来
分别移到等号两端
注意移项变号法则.如上例中的(2)变成(3).
③合并同类项
如上例中的(3)变成(4).
④用未知数的系数去除方程两端求出x的值.如上例中的(4)变成(5).
被10除余8
被9除余4的最小自然数.
解:∵该数被6除余4 (1)
又 该数被10除余8 (2)
∴ 该数是偶数.
再从被9除余4的偶数中从小到大挑选符合条件(1)、(2)的数:
4
4+9×2=22
22+9×2=40
40+9×2=58
又 58÷6=9...4
58÷10=5...8
并找出理由加以解释
再做这类题时就"套"这种公式.所以用算术方法解应用题时
对不同类型的题用不同的思路列式求解
解法就不同
因而用算术方法解应用题是不带普遍性的.
代数方法的进步首先在于找出了一个统一的方法
即用列"方程"来解很多不同类型的应用题."方程"是代数学中的重要内容之一.用方程来解应用题时
第一段为2小时.小明出去整2小时
分针就应转过2圈
转回原处
而时针两小时走了
习题九
1.把一个两位数的个位数字与其十位数字交换后得到一个新数
它与原来的数加起来恰好是某个自然数的平方
求原来这个两位数与新得到的两位数的和.
2.一辆汽车在公路上匀速行驶
司机看见里程碑上的数字是一个两位数再过一小时
4.验算.一是实际计算求出的根是否满足方程
不满足的都舍去
二是根据题目的实际意义
删除不合理的解.
先以几个简单的四则应用题为例来对"算术解法"与"代数解法"作一比较.
例2 车站给某工厂运2000箱玻璃.合同规定完好地运到一箱给5元运费.如损坏一箱
不给运费
倒赔40元.这批玻璃运到后
45x=810
x=18.
答:损坏了18箱.
比较这两种解法
可见代数方法简洁并具有高度普遍性.我们在后面的许多例题中都能充分地看出代数方法的优越性.但这决不等于说可以取消算术.这正如火车虽快决不能代替步行.在攀登高峰的崎岖的小道上还常常靠坚实的足步.下面举几个例子来看看算术方法的不可缺少.因为有的问题不易找到等量关系列方程.
解:用倒推法.由最后每人都是32张画片开始
在下面表格里由上行到下一行逐行填写
可知在第三次丙送画片前
乙送完画片后三人手中的画片(张);同理
在第二次乙送画片前
甲送完画片后三人手中的画片数应分...可推知原来:丙有16张
乙有28张
甲有8+28+16=52(张).
答:原来甲有52张
包括已知数和未知数
运用在"算术"中学过的"数的运算法则"把未知数求出来.因为这些法则是对任何数都成立的
当然对那些暂时还不知它的值的"未知数"也应当成立.只要适当地运用这些法则
一般就可求出方程中的未知数的值.归纳起来用代数方法解应用题的步骤如下:
1.设未知数.常用x
y
z
t
s
...等字母表示.
首先是用一些简单的符号
通常用x
y
z
t
s
u
v等字母来表示问题中待求的未知数
然后把这些未知数和已知数平等地看待
并把题目中的数量关系直接(平铺直叙)"翻译"为算式表示出来.这就是所谓依题意列方程.接着是通过代数方程去确定其中所含未知数应该等于什么样的值
即"解方程".而解方程的原理就是对方程中的数
题意列方程.即把所要解决的代数问题中的未知量换成代表未知数的字母
把问题中各种量间的关系"翻译"为带字母的算式表示出来
特别注意找出其中的相等关系.用两个代数式表示同一个数量
列出一个方程.因此方程是含有未知数的等式.一般说来
有n个相等关系就能列出n个方程
当然我们从中选取列方程与解方程时最方便的形式.
由于两钱包中钱数相等而硬币数不等
因此不可能红、黑钱包中都只有2分币.
情形1:当红钱包中全为2分币时
总钱数为2×6=12分.此时显然黑钱包中不可能有两个或两个以上的五分币
也不可能都是一分币(否则红、黑钱包中装钱数不等).因此黑钱包里有一个五分币和七个一分币.这种情形显然也满足题目中的后一条件.这种情况
相关文档
最新文档