多面体外接球内切球的半径求法

合集下载

多面体的外接球和内切球(解析版)

多面体的外接球和内切球(解析版)

多面体的外接球和内切球一、结论1、球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。

定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。

球的内切问题(等体积法)例如:在四棱锥P -ABCD 中,内切球为球O ,求球半径r .方法如下:V P -ABCD =V O -ABCD +V O -PBC +V O -PCD +V O -PAD +V O -PAB即:V P -ABCD =13S ABCD ⋅r +13S PBC ⋅r +13S PCD ⋅r +13S PAD ⋅r +13S PAB ⋅r ,可求出r .球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB =CD ,AD =BC ,AC =BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P-ABC中,选中底面ΔABC,确定其外接圆圆心O1(正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2r=asin A);②过外心O1做(找)底面ΔABC的垂线,如图中PO1⊥面ABC,则球心一定在直线(注意不一定在线段PO1上)PO1上;③计算求半径R:在直线PO1上任取一点O如图:则OP=OA=R,利用公式OA2=O1A2+OO12可计算出球半径R.4.双面定球心法(两次单面定球心)如图:在三棱锥P-ABC中:①选定底面ΔABC,定ΔABC外接圆圆心O1②选定面ΔPAB,定ΔPAB外接圆圆心O2③分别过O1做面ABC的垂线,和O2做面PAB的垂线,两垂线交点即为外接球球心O.二、典型例题1(2023春·湖南湘潭·高二统考期末)棱长为1的正方体的外接球的表面积为()A.3π4B.3πC.12πD.16π【答案】B【详解】解:易知,正方体的体对角线是其外接球的直径,设外接球的半径为R,则2R=12+12+12=3,故R=3 2.所以S=4πR2=4π×322=3π.故选:B.【反思】本例属于正方体外接球问题,其外接球半径公式可直接记忆.2(2023春·湖南长沙·高三长沙一中校考阶段练习)在四面体PABC中,PA⊥AB,PA⊥AC,∠BAC= 120°,AB=AC=AP=2,则该四面体的外接球的表面积为()A.12πB.16πC.18πD.20π【答案】D【详解】因为PA⊥AB,PA⊥AC,AB∩AC=A,AB,AC⊂平面ABC,所以PA⊥平面ABC.设底面△ABC的外心为G,外接球的球心为O,则OG⊥平面ABC,所以PA⎳OG.设D为PA的中点,因为OP=OA,所以DO⊥PA.因为PA⊥平面ABC,AG⊂平面ABC,所以PA⊥AG,所以OD⎳AG.因此四边形ODAG为平行四边形,所以OG=AD=12PA=1.因为∠BAC=120°,AB=AC=2,所以BC=AB2+AC2-2AB⋅AC cos∠BAC=4+4-2×2×2×-1 2=23,由正弦定理,得2AG=2332=4⇒AG=2.所以该外接球的半径R满足R2=OG2+AG2=5,故该外接球的表面积为S=4πR2=20π.故选:D.【反思】本例属于单面定球心问题①用正弦定理求出ΔABC外心G;②过G做平面ABC的垂线,则外接球球心O在此垂线上;③通过计算算出半径.3(2023秋·湖南娄底·高三校联考期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD 是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50π C.100π D.500π3【答案】B【详解】因PA⊥平面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,则PA⊥AB,PA⊥AD,又因四边形ABCD为矩形,则AB⊥AD.则阳马的外接球与以PA,AB,AD为长宽高的长方体的外接球相同.又PA=5,AB=3,AD=BC=4.则外接球的直径为长方体体对角线,故外接球半径为:R=PA 2+AB 2+AD 22=32+42+522=522,则外接球的表面积为:S =4πR 2=4π⋅504=50π.故选:B【反思】本例属于墙角型模型,通过补形,将原图形补成长方体模型,借助长方体模型求外接球半径.4(2023·全国·高三专题练习)已知菱形ABCD 的各边长为2,∠D =60°.如图所示,将ΔACD 沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S -ABC ,此时SB =3.E 是线段SA 的中点,点F 在三棱锥S -ABC 的外接球上运动,且始终保持EF ⊥AC ,则点F 的轨迹的周长为()A.233π B.433π C.533π D.2213π【答案】C【详解】取AC 中点M ,则AC ⊥BM ,AC ⊥SM ,BM ∩SM =M ,∴AC ⊥平面SMB ,SM =MB =3,又SB =3,∴∠SBM =∠MSB =30°,作EH ⊥AC 于H ,设点F 轨迹所在平面为α,则平面α经过点H 且AC ⊥α,设三棱锥S -ABC 外接球的球心为O ,△SAC ,△BAC 的中心分别为O 1,O 2,易知OO 1⊥平面SAC ,OO 2⊥平面BAC ,且O ,O 1,O 2,M 四点共面,由题可得∠OMO 1=12∠O 1MO 2=60°,O 1M =13SM =33,解Rt △OO 1M ,得OO 1=3O 1M =1,又O 1S =23SM =233,则三棱锥S -ABC 外接球半径r =OO 21+O 1S 2=73,易知O 到平面α的距离d =MH =12,故平面α截外接球所得截面圆的半径为r 1=r 2-d 2=73-14=536,∴截面圆的周长为l =2πr 1=533π,即点F 轨迹的周长为533π.故选:C 【反思】此题典型的双面定球心。

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧面两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =.练习1 (2003,四个顶点在同一球面上,则此球的表面积为( )3π B. 4πC. D. 6π2(2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A. 27B. 2C. 8D. 243 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 .4(2008年安徽高考题)已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AB =,则B 、C 两点间的球面距离是 .寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上. ∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截CDAB SO 1图3面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512πB.1259πC.1256πD.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.外接球内切球问题1. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C . 43 D .123答案 B2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。

外接球半径常见的求法

外接球半径常见的求法

多面体外接球半径常见求法知识回顾:左义1:若一个多而体的各顶点都在一个球的球而上,则称这个多面体是这个球的内接多而体,这个 球是这个多而体的外接球。

宦义2:若一个多而体的各面都与一个球的球而相切,则称这个多而体是这个球的外切多而体,这个 球是这个多而体的内切球。

球心到截而的距离〃与球半径尺及截而的半径『有以下关系: __________________ .球而被经过球心的平而截得的圆叫 _________ •被不经过球心的平而截得的圆叫 __________________ 球的表面积表面积S= __________ :球的体积9= __________ .球与棱柱的组合体问题1. 正方体的内切球:球与正方体的每个而都相切,切点为每个而的中心,显然球心为正方体的中心。

设正方体的棱长 为球半径为尺。

如图3,截而图为正方形EFGH 的内切圆,得/? = -:22. 与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截而图,圆0为正方形EFGH 的外接圆,易得R = —a 023. 正方体的外接球:正方体的八个顶点都在球而上,如图5,以对角面作截而图得,圆0为一、公式法例1 一个六棱柱的底而是正六边形,苴侧棱垂宜于底而,已知该六棱柱的顶点都在同一个球面上,9且该六棱柱的体积为-,底而周长为3,则这个球的体积为8 -----------------------------------------------------------矩形AA.QC 的外接圆,易得R = A }O = 4 ——a2图3图4C1C小结本题是运用公式R2=r2求球的半径的,该公式是求球的半径的常用公式.二、多面体几何性质法例2已知各顶点都在同一个球而上的正四棱柱的高为4,体积为16,则这个球的表面积是A. 16兀B. 20”C. 24兀D. 32龙小结 本題是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.三、补形法 例3若三棱锥的三个侧而两两垂直,且侧棱长均为则其外接球的表面积是小结 一般地,若一个三棱维的三条侧棱两两垂直,且其长度分别为“、b 、c,则就可以将这个三棱 维补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径•设其外接球的半径为R ,则有2R = >ja 2 +b 2 +c 2 .变式仁三棱锥O — 4BC 中,OAQBQC 两两垂直,且OA = OB = 2OC = 2a,则三棱锥O-ABC 外接球的表而积为()四、寻求轴截面圆半径法例4正四棱锥S - ABCD 的底面边长和各侧棱长都为,S 、A. B 、C 、£>都在同一球面上,则此球的体积为 ___________而把立体几何问题转化为平面几何问题来研究•这种等价转化的数学思 法值得我们学习.变式仁求棱长为a 的正四面体P-ABC 的外接球的表面积变式I:底而边长为后勺正三棱柱外接球的体积为竽,则该三棱柱的体积为五、确定球心位置法C. \2TTU 2D. 24曲'想方1:三棱锥P-ABC中,底IfilAABC是边长为2的正三角形,P4丄底而ABC,且E4 = 2,贝眦三棱锥外接球的半径为()A. 41B・y[5C・ 2 D・^―3六.构造直三角形,巧解正棱柱与球的组合问题正棱柱的外接球,其球心泄在上下底而中心连线的中点处,由球心、底而中心及底而一顶点构成的直角三角形便可得球半径。

正四面体外接球内切球半径

正四面体外接球内切球半径

解析正四面体外接球内切球半径正四面体是一种非常特殊的多面体,其四个面都是等边三角形,相互之间都是等角的。

正四面体有个很有意思的性质,就是它的外接球和内切球的半径是相等的。

这个性质可以通过以下步骤进行证明:首先,我们需要知道正四面体外接球和内切球的半径分别为r和R。

我们可以画出如下的图形:正四面体的四个顶点分别为A、B、C、D。

正四面体外接球的圆心为O,内切球的圆心为I。

现在我们来证明r=R。

步骤1:连接OI,这条线段的长度为r+R。

步骤2:连接AB、AC、AD、BC、BD、CD,将正四面体分成四个小正三角形。

步骤3:我们知道正四面体每个小正三角形的面积都相等,设为S。

步骤4:我们可以通过三角形的面积公式求出AO、BO、CO、DO的长度。

AO=BO=CO=DO=√(3S)/3步骤5:再通过余弦定理求出角AOI的大小。

cos(AOI)=(OI²+AO²-AI²)/(2×OI×AO)=(r+R)/(2r)步骤6:由于AOI是一个等腰三角形,所以角OAI也等于角OIA。

因此,我们可以用余弦定理求出AI的长度。

cos(OAI)=(OI²+AI²-OA²)/(2×OI×AI)=cos(AOI)AI=√(OI²+OA²-2×OI×OA×cos(AOI))步骤7:我们可以用同样的方法求出BI、CI、DI的长度。

BI=√(OI²+OB²-2×OI×OB×cos(BOI))CI=√(OI²+OC²-2×OI×OC×cos(COI))DI=√(OI²+OD²-2×OI×OD×cos(DOI))步骤8:根据勾股定理,我们可以求出AB、AC、AD、BC、BD、CD 的长度。

几何体外接球常用结论及方法(如何求几何体的外接球半径)

几何体外接球常用结论及方法(如何求几何体的外接球半径)

几何体外接球常用结论及方法(如何求几何体的外接球半径)几何体的外接球是一个常见的问题,其中有一些常用的结论和方法:1.对于三棱锥P-ABC,如果PA垂直于PB和PC,则该三棱锥的外接球半径2R可以用公式2R=PA²+PB²+PC²求得。

2.对于等边三角形,其外接圆的半径等于连长的1/3倍。

3.直角三角形的外接圆半径等于斜边的一半。

4.对于一般的三角形ABC,可以用正弦定理求得外接圆半径R,而内切圆的半径r可以用海龙公式S=Cr求得。

5.如果已知三棱锥P-ABC中PA=a,且△ABC的外接圆半径为r,则该三棱锥的外接球半径2R可以用公式2R=2r+a²求得。

6.正方体的外接球、内切球和棱切球的直径分别为正方体的体对角线长2R=3a、棱长2R=a和面对角线长2R=2√2a。

7.对于四面体P-ABC,如果∠APC=90°且∠ABC=90°,则该四面体的外接球直径为AC。

8.对于正三棱锥V-ABC,可以用射影定理求得其外接球半径,即VA²=h(2R-h)。

9.对于正四面体,其高h=2/3√2a,外接球半径和内切球半径均为a。

10.对于有内切球的多面体,其内切球半径可以用公式V=Sr/3求得。

11.如果三棱锥A-BCD中的面ABD和面BCD互相垂直且其外接圆半径分别为r1和r2,公共棱BD的长度为a,则该三棱锥的外接球半径2R可以用公式2R=2r1+2r2-a²/2√(r1²+r2²)求得。

的公共弦AD和BC的垂线,分别交于点E和F。

连接OE和OF,则OE=OF=R,且OE和OF分别是三棱锥P-ABC 和A-BCD的外接球的直径。

由于三棱锥P-ABC和A-BCD的外接球是重合的,因此它们的直径相等,即2R=2r1+2r2-a。

对于三棱锥P-ABC,已知面PAC与ABC所形成的二面角为θ(θ<θ≤90°),且已知ΔPAC和ΔABC的外接圆的半径分别为r1,r2,AC=a,则该棱锥的外接球半径R满足:left(2R+2\cos\theta\right)\left(R-r_1\right)\left(R-r_2\right)=2\left(r_1+r_2\right)^2-4\left(r_1-r_2\right)^2\cos^2\frac{\theta}{2}$这个公式可以通过对三棱锥P-ABC和A-BCD的共面直角投影,推导出它们的公共弦长等于$\sqrt{a^2+\left(r_1+r_2\right)^2-2r_1r_2\cos\theta}$。

内切球与外接球常见解法

内切球与外接球常见解法

内切球与外接球常见解法内切球与外接球是数学里经典的概念,许多数学问题都涉及到了这两类球的概念,比如说圆锥曲线,并且内切球与外接球的解法也十分经典。

本文将会介绍内切球与外接球的常见解法。

一、内切球的解法1. 欧拉公式法欧拉公式告诉我们,对于任意一个凸多面体,其顶点数、棱数、面数之和等于2加上该凸多面体的亏格数。

因此,对于一个球体,其亏格数为2。

设内切球半径为r,球心到多面体某一个面的距离为d,则可以得到以下公式:r=(d1+d2+...+dn-nr)/(n-2)其中,d1、d2、...、dn为该面到球心的距离。

该公式适用于多面体的任何一个面。

2. 套路法对于任意一个多面体,在球心到多面体顶点的连线上,肯定会存在一个最小的球,使得该球完全包含了多面体的所有面。

这个球就是内切球。

通过套路法可求出内切球的半径。

首先取一个多面体面的中心点作为初始点,然后每次将该点沿着与之相邻的面的法线方向平移,并使点到多面体的距离为内切球半径。

当所有点到多面体距离之和最小时的内切球半径即为所求。

3. 向量法对于一个三角形,其内切球圆心为三角形的角平分线交点。

我们可以求出三角形的边向量和平面法向量,从而得到角平分线向量。

由角平分线乘以内切球半径即可得到内切球圆心坐标。

同理,对于多面体,内切球圆心为多面体一个面的平面角平分线交点。

二、外接球的解法1. 向量法对于一个三角形,其外接圆圆心为三角形的垂心和三边的交点。

由于垂心很难求得,我们通常使用法向量法求出外接球圆心。

首先求出三角形的边向量和平面法向量,然后将平面法向量沿着垂直三角形所在平面的方向延长,得到一个点P。

将点P连线到三角形三个顶点分别得到三个垂足,并将三个垂足连线求出其交点,即为外接圆圆心。

同理,对于多面体,通过面的法向量求得平面,然后将平面法向量沿着垂直多面体所在平面的方向延长,得到一个点P。

将点P连线到多面体任一面的一个顶点分别得到各个垂足,并将各个垂足连线求出其交点,即为外接球圆心。

多面体的外接球的半径求法

多面体的外接球的半径求法

立体几何专题:多面体外接球的半径求法引理:点O 为多边形E ABCD ⋅⋅⋅⋅⋅的外接圆的圆心,过点O 作一条直线l 垂直平面E ABCD ⋅⋅⋅⋅⋅,则l 上的任意一点P 到多边形的顶点的距离相等。

确定多面体外接球的球心方法:先确定一个三角形,找出此三角形外接圆的圆心,过圆心作此三角形所在平面的垂线1l ;再确定另一则外接球的半径h R R h r R 2)(222=⇒-+= 八、三棱锥BCD A -中,若AB =CD =a ,AC =BD =b ,AD =BC =c ,则外接球的半径R 221222c b a ++= 方法:构造长方体,c b a ,,为长方体面对角线的长,设长方体的长、宽、高分别为z y x ,,。

则)(21222222222222222c b a z y x c x z b z y a y x ++=++⇒⎪⎩⎪⎨⎧=+=+=+,∴外接球的半径R 221222c b a ++= 附:三角形ABC 的外接圆半径r 的求法: 设Cc B b A a r a BC b AC c AB sin 2sin 2sin 2,,,===⇒===(由正弦定理) S Sabc r (4=表示⊿ABC 的面积)①。

②例2 1 2球 3球4 A π26 B π36 C π6 D π125、三棱锥BCD A -,,5,90=︒=∠=∠AC ADC ABC 则三棱锥BCD A -外接球的体积为 。

6、三棱锥BCD A -,,2,3,90===︒=∠=∠=∠BD CB AB CBD ABD ABC 则三棱锥BCD A -外接球的表面积为 。

7、点D C B A ,,,在同一球面上,,2,2===AC BC AB 若球的表面积为425π,则四面体ABCD 体积的最大值为 。

多面体外接球、内切球的半径求法

多面体外接球、内切球的半径求法

多面体外接球、内切球的半径的求法第一部分外接球方法一、公式法例1 一个六棱柱的底面是正六边形,苴侧棱垂直于底面,已知该六棱柱的顶点都在同—个球面上,且该六棱柱的体积为底面周长为3,则这个球的体和为8 ---------------------------------6x = 3<9 A VT 2 ——6 x —x ■解设正六棱柱的底面边长为x ,高为力,则有8 4二正六棱柱的底面圆的半径r 球心到底面的距离rf = —. /■外接球的半径R= J尸二护=1 .3小结君题是运网公式用=r:+d‘求球的半径旳,该公式是求球的半径的営同公式.方法二、多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A. 16^-B. 20^C. 24^D. 32穴解设正四棱柱的底面边长为工,外接球的半径为则有4x:=16.解得x = 2.•:= +2,+ 4’ =2忆二7?=亦…••这个球的表面积是亠了尺‘ =24^ •选C.小结本题是运同-正四技炷的朱对角线的长等于其外接球的宜径^这一性熨来求解的. 方法三、补行法例3若三棱锥的三个侧棱两两垂直,且侧棱长均为,则其外接球的表面积是解据题意可知,该三棱锥的三条侧棱两两垂直…•.把这个三棱锥可以补成一个棱长为d的正方体,于是正方体的外接球就是三棱锥的外接球.设苴外接球的半径为Q 则有(2尺)‘ =(>/1「+丨\/7「+(\/7「=9.二疋二?故其外接球的表面和S = 4^R: =9兀・小结一般地.若一个三陵锥的三条例祓两两垂直,且其良覽分别为队亠—则就牙以特这个三谡维补成一令枚方体.于是长方俸的依对筒贱的悅就是该三谡维的外接球的直徑设其外接球的半桎为乩则有2应二J/ +F +F .方法四、寻求轴截面半径法例4正四棱锥S-ABCD的底面边长利各侧棱长都为JT,点S、A, B y C. D都在同一球面上•则此球的体和为 _______ .解设正四棱锥的底面中心为O:,外接球的球心为O,如图3 所示•二由球的截面的性质,可得06丄平.又SO:丄平面/1ECD,二球心O必在SQ所在的直线上.■■- 4SC的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ZUSC 中,由血= SC = Q AC = 2, ^SA2 +SC;= AC2r二AJSC是以JQ为斜边的RM■ ■ —= 1是外接圆的半径,也是外接球的半径.故4 =也*2 3小结檢拇题意、我们可以遶择聂佳商叟找出含有正愎锥超•圧元董的外接球的一个轴耘习王’二是该圜旳半径弐是斫文旳外茯球旳半逐,轧题炭厲蓟这呻退路是袄求三梭红歼接球半経的通解通法,该方法的实质就是逸过寻我外接球的一个轴截霽圆,从而把立体几何问瑟转化为平厨几何问题来研究.这釉竽价转化的数学魁想方法值得我们学习.方法五、确定球心位置法例5在矩形ABCD中,AB = 4,BC = i r沿卫C将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为125 125 125A.——広B.——広C*——才12 9 6D求该棱锥的外接球半径求该棱锥的外接球半径 ZDD((W)C(-bv5,0) 由平面知识得 B禅潯所以半径为R选+ (Zl_Z2)【例题】:已知在三A -BCD 中,貝Q 丄®4BCW :由已知建立空间直角坐标系设球心坐标为O(x.y.z)则AO = BO = CO = DO :生空间两点间臣离公式知X 2+ v 2 +Z =(x-l): +O - 石)‘ +Z ^(0,0,0) 5(2,0,0) 根据勾股定瑾知.假设正四面体的边长为。

立体几何中球的内切和外接问题(完美版)

立体几何中球的内切和外接问题(完美版)

C 1
注意:①割补法,② V多面体 3 S全 r内切球
变式训练:一个正方体内接于一个球,过球心作一截面,如 图所示,则截面的可能图形是( )




• A .①② B.②④ C.①②③ D.②③④
D A
D1 A1
C
B O
C1 B1
球的内接正方体的对角线等于球直径。
变式训练:已知正四面体内接于一个球,某人画出四 个过球心的平面截球与正四面体所得的图形如下,
的动点,当弦 MN 的长度最大时, PM • PN 的取值范围是

感谢阅读
• 感谢阅读
• 感谢阅读
• 感谢阅读
• 感谢阅读
2023最新整理收集 do something
球与多面体的内切、外接
球的半径r和正方体 的棱长a有什么关系?
.r
a
一、 球体的体积与表面积


二、球与多面体的接、切
定义1:若一个多面体的各顶点都在一个球的球面上,
则称这个多面体是这个球的内接多面体,
这个球多是面这体个的外接球

定义2:若一个多面体的各面都与一个球的球面相切,
,即 为该四面体的外接球的球心
A
O
C
所以该外接球的体积为
03
破译规律-特别提

2 例题剖析-针对讲 解
04
举一反三-突破提

4 举一反三-突破提 升 1、(2015 海淀二模)已知斜三棱柱的三 视图如图所示,该斜三棱柱的体积为 ______.
4 举一反三-突破提 升
2、(2015 郑州三模) 正三角形ABC的2 边3 长
5 正棱锥的外接球的球心是在其 高上

专题12 多面体的外接球和内切球

专题12 多面体的外接球和内切球

专题12 多面体的外接球和内切球一、结论1.球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。

定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。

类型一 球的内切问题(等体积法)例如:在四棱锥P ABCD −中,内切球为球O ,求球半径r .方法如下:P ABCD O ABCD O PBC O PCD O PAD O PAB V V V V V V −−−−−−=++++即:1111133333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r −=⋅+⋅+⋅+⋅+⋅,可求出r .类型二 球的外接问题 1、公式法正方体或长方体的外接球的球心为其体对角线的中点 2、补形法(补长方体或正方体) ①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 3、单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P ABC −中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2sin ar A=); 图2图3②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则OP OA R ==,利用公式22211OA O A OO =+可计算出球半径R .4、双面定球心法(两次单面定球心) 如图:在三棱锥P ABC −中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ②选定面PAB ∆,定PAB ∆外接圆圆心2O③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .二、典型例题1.(2022·山西吕梁·一模(文))在《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑,如图在鳖臑ABCD 中,AB ⊥平面BCD ,1AB BC CD ===,BC CD ⊥,则鳖臑ABCD 内切球的表面积为( ) A .3π B.(3π− C .12π D.(3π+【答案】B 【解析】解:因为四面体ABCD 四个面都为直角三角形,AB ⊥平面BCD ,BC CD ⊥,所以AB BD ⊥,AB BC ⊥,BC CD ⊥,AC CD ⊥,设四面体ABCD 内切球的球心为O ,则()13ABCD O ABC O ABD O ACD O BCD ABC ABD ACD BCD V V V V V r S S S S −−−−=+++=+++△△△△内,所以3ABCDVr S =内, 因为四面体ABCD的表面积为1ABCD ABC ABD ACD BCD S S S S S =+++=△△△△又因为四面体ABCD 的体积16ABCD V =,所以312V r S ==内,所以24(3S r ππ==−球, 故选:B【反思】本例中涉及到求内切球问题,典型的等体积法.2.(2021·四川省南充高级中学高二期中(文))在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,1PA =,2PB =,3PC =,则该三棱锥的外接球的表面积为( )A .494π B .56πC D .14π【答案】D【解析】将三棱锥P -ABC 补全为长方体,则长方体的外接球就是所求的外接球,设球半径为R ,则()222224214R R PA PB PC ==++=,所以球的表面积为2414S R ππ==.故选:D .【反思】由题意PA ,PB ,PC 两两垂直,可直接用补形法,补成长方体,利用长方体求外接球.3.(2021·全国·高一课时练习)已知三棱锥P ABC −,在底面ABC 中,30A =,1BC =,PA ⊥面ABC ,PA = )A .163πB .C .323πD .16π【答案】D 【解析】设ABC 的外接圆半径为R ,因为30A =,1BC =,由正弦定理得:122sin sin 30BC R A ===︒,所以ABC 的外接圆半径为1,设ABC 的外接圆圆心为D ,过点D 做PA 的平行线,则球心一定在该直线上,设为O ,因为PA ⊥面ABC ,PA =由于OP OA R ==,故12OD PA =2OA =,即此三棱锥的外接球的半径为2,故外接球表面积为24π216π⨯=.故选:D【反思】此题典型的单面定球心求外接球的问题,先确定ABC 的外接圆圆心D ,再过D 做PA 的平行线,则可确定球心O 在该直线上,进而通过计算求出外接球半径R . 4.三棱锥ABC P −中,平面PAB ⊥平面ABC ,PAB ∆和ABC ∆均为边长为2的正三角形,则三棱锥ABC P −外接球的半径为 .【解析】:由于ABC ∆是正三角形,并且边长为2,所以ABC ∆的外接圆圆心为1O ,则1HO =,1O C =同理可得PAB ∆的外接圆圆心为2O,可得到23HO =,23O P =,分别过1O 做面ABC 的垂线,过2O 做面PAB 的垂线交于O ,因为平面PAB ⊥平面ABC ,所以四边形12HO OO 为正方形,且OC R =,利用勾股定理:2222221153OC OO OC R =+⇒=+=,所以R =【反思】此题典型的双面定球心,由于选定的面ABC ∆,PAB ∆都是正三角形,故其外心都是中心,如果是普通三角形,可以采用正弦定理定外心.三、针对训练 举一反三一、单选题1.(2021·湖北黄冈·高一期末)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积是球体积两倍时,该圆锥的高为( ) A .2 B .4CD.2.(2021·青海·海南藏族自治州高级中学高三开学考试(理))如图正四棱柱1111ABCD A B C D −中,底面面积为36,11A BC V 的面积为111B A B C −的外接球的表面积为( )A .68πB .C .172πD .3.(2022·全国·高三专题练习)已知四面体P ABC −中,PA ⊥平面ABC ,2PA AB ==,BC 3tan 2ABC ∠=,则四面体P ABC −的外接球的表面积为( ) A .15πB .17πC .18πD .20π4.(2021·江苏·金陵中学高一期末)前一段时间,高一年级的同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中一位同学的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O 面上,若圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于( ) A .818πB .812πC .1218πD .1212π5.(2021·云南·弥勒市一中高二阶段练习)设直三棱柱111ABC A B C −的所有顶点都在一1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是( )A .1B .2C .D .46.(2021·重庆·西南大学附中高一期末)已知正方形ABCD 中,2AB =,E 是CD 边的中点,现以AE 为折痕将ADE 折起,当三棱锥D ABE −的体积最大时,该三棱锥外接球的表面积为( ) A .525π48B .5π4C .25π4D .25π7.(2021·广西·柳铁一中高三阶段练习(理))在三棱锥A BCD −中,3AB AD BC ===,5CD =,4BD =,AC =( ) A .63π10B .64π5C .128π5D .126π58.(2021·江西省南丰县第二中学高一学业考试)已知四棱锥S ABCD −,SA ⊥平面ABCD ,AB BC ⊥,BCD DAB π∠+∠=,2SA =,BC =S BC A −−的大小为3π.若四面体S ACD −的四个顶点都在同一球面上,则该球的体积为( )A B .C .10πD .323π 二、填空题9.(2022·河南焦作·一模(理))已知三棱锥P ABC −的每条侧棱与它所对的底面边长相等,且ABC 是底边长为积为___________.10.(2022·河南驻马店·高三期末(文))在三棱锥P ABC −中,底面是以AB 为斜边的等腰直角三角形,4AB =,PA PB PC ==P ABC −外接球的表面积为______.11.(2022·全国·模拟预测(理))已知A 、B 、C 、D 为空间不共面的四个点,且2BC BD AB ===A BCD −体积最大时,其外接球的表面积为______.12.(2022·安徽马鞍山·一模(理))三棱锥-P ABC 中,PAC △是边长为角形,2AB BC ==,平面PAC ⊥平面ABC ,则该三棱锥的外接球的体积为______13.(2021·湖北荆州·高一期中)如图,在一个底面边长为2锥P ABCD −中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的表面积为______.。

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。

多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。

解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。

多面体外接球半径的求法在解题中往往起到至关重要的作用。

一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。

解析:要求球的表面积,只需知道球的半径。

由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。

故表面积为27π。

例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。

由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。

2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。

长方体体对角线长为√14,故球的表面积为14π。

例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。

由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。

3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。

由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。

多面体外接球半径常见的几种求法

多面体外接球半径常见的几种求法

多面体外接球半径常见的几种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 此题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的外表积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的外表积是2424R ππ=.选C.小结 此题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 假设三棱锥的三个侧面两两垂直,则其外接球的外表积是 .解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的外表积249S R ππ==.小结 一般地,假设一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -的底面边长和各侧棱长CD ABSO 1图3S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=. ∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =43V π=球.小结 根据题意,我们可以选择最正确角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.此题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512π B. 1259π C. 1256π D. 1253π解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.出现两个垂直关系,利用直角三角形结论【原理】:直角三角形斜边中线等于斜边一半。

球的内切和外接问题

球的内切和外接问题

正方体外接球的直径2R 3 2 a, R 6 a
2
4
S表
3 2
a 2
A B
O D
C
求正多面体外接球旳半径
求正方体外接球旳半径
球旳内切、外接问题
1、内切球球心到多面体各面旳距离均相等, 外接球球心到多面体各顶点旳距离均相等。 2、正多面体旳内切球和外接球旳球心重叠。 3、正棱锥旳内切球和外接球球心都在高线上,但不 重叠。
丙球外接于该正方体,则三球表面面积之比为( A )
A. 1:2:3
B. 1: 2: 3 C. 1:3 4:3 9 D. 1: 8: 27
图3
图4
图5
甲球为内切球直径=正方体棱长
设为1
S甲 4 R12 =
D
C
A
B
中截面
O
.
D1
C1
A1
B1
球内切于正方体旳棱
正方形旳对角线等于球旳直径= 2a
S乙 4 R22 =2
连 AO 延长交 PD 于 G
6a 3
P
则 OG ⊥ PD,且 OO1 = OG
3
∵ Rt △ PGO ∽ Rt △ PO1D
A
a 2
•O G
O1 D
R
6 a R 3
3a
3a
2
6
R 6 a 4
E 3a
6
S表
3 2
a2
求棱长为a的正四面体P ABC的外接球的表面积
解法2:
正方体的棱长为 2 a, 2
球与多面体旳内切、外接
球旳半径r和正方体 旳棱长a有什么关系?
.r
a
一、 球体旳体积与表面积

V球

多面体外接球、内切球的半径求法

多面体外接球、内切球的半径求法

设正多面体外接球、内切球得半径得求法第一部分外接球方法一、公式法例1—个六棱柱的底面是正六边形,其側棱垂直于底面,已知该六棱柱的顶点都在同9—个球面上,且该六棱柱的体和为二,底面周长为了,则这个球的休积为8一正六棱柱的底面圆的半径F =±球心到底面的距离巾二二外接球的半径R— J 厂亠二一1. “--------- .3小结■轧题是运円公式尺二十用术球的半径的,该公式是求球的半径的兽円公式. 方法二、多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4体积为16,则这个球的表面和是扎16 龙 B.20T C. 24/r D.32 疔解设正四棱柱的底面边长为匚外接球的半径为尺,则有4,? =16,解得v = 2.A 2R・VFZFTF二ls/6匸R二离*二这个球的表面积是4疗7?6二21选C.小结本題是运用••正四陵柱的体苦角线的长茅于其外接球的宜径粹这一性质来求錢的.方法三、补行法例3若三稜锥的三个侧棱两两垂直,且侧棱长均为41・则其外接球的表面积是例5在矩/宓9中,二 二沿解 据題意可知,该三棱锥的三条侧棱两两垂直,二把这个三棱锥可以补成一个棱长为 的正方体•于是 正方体的外接球就是三棱锥的肺接球.设其外接球的半径为则有(2町二(同十阿+ (旬=9・• •庆斗 故其外接球的表面积5 =曲耳『小结一般地,若一个三祓惟的三条便檢两两垂宜,且共悅度分别为z b 、。

则就 可以將这个三按 维社成一个长方农于是戋方体钓本对角线的戈就是该三擁锥的外接球的車径.设其外接球的半衽为R, 则有2?二十方:十/ .方法四、寻求轴截面半径法例4正四棱锥5 ■宓9的底面边长和各侧棱长都为JT ,点5•儿及6 D 都在同一球面上,则此球的体和为 _____________解设正四棱锥的福面中心为外接球的球心为O,如图3所示…由球的截面的性质,可得00:丄平面月QCQ •又S3丄平面乩?CQ,二球心O 必在S6所在的直线上的外接圖就是外接球的一个轴截面圆,外接圜的半径就是外接球的半径.在&LSC 中•由 S£ 二 SC 二 JI 二2 , A SA +SC 2=AC\ ・'・AJSC 是以JC 为斜边的RtA ・ACIiT-—二1呈外接圆的半径,也是外接球的半径■故卩人二一・ 2 3小结框拇题意,我们可以选择壷佳角覽找出舍肓正唆链蚌爼元畫的外接球的一个抽截Sr 圆、于 是该圜的半径就是所求的外接球的半径•本题提供的这种思■路是探求正棱锥外接球半桎的逸塀逸 法,该方法的实质就是通过寻找外接球的一个軸截笛園,从而把虫体几何问题 特化为平石几■何问题 来研究•这释等价转化的数学思想方去位得我們翅方法五、确定球心位置法B-AC-D,贝叮四面他⑦的外接球的体积为125 —n 12 B.125C ■——圧125D.——+ Gi — JJ+ (可一可)解设拒形对角线的交点2则由矩形对角线互相平分,可知0A = OB = 0C =0D,点0到四面体的四个顶点4 B, C.刀的 距离相等,即点O 为四面体的外 接球的掠心,如图2所示二外接球的半径R - 0A=二•故几一TJ7—丄二 才•选CL 2 3 6方法六、出现多个垂直尖系时建立空间直角坐标系 ,利用向量只就是求解 【洌題】:己知在三棱锥不如?中,且。

立体几何内切球求法

立体几何内切球求法

立体几何内切球求法
立体几何内切球是指一个球体与一个立体图形相切于一个点,且球心
在该点上。

求解立体几何内切球的方法有以下几种:
1. 利用欧拉公式求解
对于任意一个简单多面体(如正方体、正八面体等),都可以通过欧
拉公式求出其内切球的半径。

欧拉公式:V - E + F = 2,其中 V 表示顶点数,E 表示边数,F 表示
面数。

对于一个简单多面体,其内切球的半径 r 满足以下关系式:r = d / 2s,其中 d 表示该多面体的外接球直径,s 表示该多面体表面上任意一条
边的长度。

2. 利用向量法求解
对于任意一个平滑曲面(如圆柱、圆锥等),可以通过向量法求出其
内切球的半径。

设该平滑曲面方程为 F(x,y,z)=0,则该曲面在点 P(x0,y0,z0) 处的法向量为∇F(x0,y0,z0)。

则该平滑曲面内切球的半径 r 等于点 P 到该平滑曲面的距离 d,即:
r = d = |F(x0,y0,z0)| / |∇F(x0,y0,z0)|
3. 利用重心法求解
对于一个任意形状的立体图形,可以通过重心法求出其内切球的半径。

设该立体图形的重心为 G,则内切球的半径 r 等于 G 到该立体图形表
面上任意一点 P 的距离 d,即:
r = d = 2V / (S + L),其中 V 表示该立体图形的体积,S 表示该立体
图形表面积,L 表示 G 到 P 的距离。

以上三种方法均可用于求解立体几何内切球,具体选择哪种方法取决
于所给定的问题和数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档