回复与再结晶名词解释
回复与再结晶
(1)温度 随T↑,晶粒长大 温度一定,晶粒达到一定尺寸后不再长大。 (2)杂质与合金元素 异类原子吸附晶界处,降低晶界能,减少驱动力,阻碍晶粒长大。
第八章: 回复与再结晶
8.4晶粒长大
8.4.1晶粒的正常长大 3.影响晶粒长大的因素 晶粒长大,是通过晶界处的原子扩散迁移实现
(3)分散相粒子 第二相粒子越细小,数量越多,则阻碍晶粒长大能力越强。
8.1.1 显微组织的变化
冷变形金属随加热温度升高组织变化示意图
再结晶后组织恢复到变形前的程度,性能也恢复到变形前的程度 晶粒长大:新晶粒逐渐相互合并长大.
第八章: 回复与再结晶
8.1 冷变形金属及合金在退火过程中的变化
8.1.2 储存能与内应力变化
随T↑,储存能逐渐释放. 再结晶后,形变储存能全部释放.
第八章: 回复与再结晶
8.5 金属的热加工(变形)
8.5.2热加工后的组织与性能
热加工对组织和性能有如下影响: 3.产生带状组织
未热轧的20钢组织:F+P
热轧后的20钢组织:F+P 带状分布
带状组织常在热轧板材、管材中 出现,性能上产生各向异性
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.2 再结晶动力学
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.3 再结晶温度及其影响因素 再结晶温度:经过严重冷变形的金属,在一个小时的退火保温时间内,能完成再结 晶的最低温度(T再).对纯金属T再=0.4T熔 再结晶速度:V再 若T再低,V再快,则再结晶易进行. 影响再结晶的因素如下: 1.加热温度(退火温度) : 退火温度越高,原子扩散越容易进行,V再↑,完成再结晶时间越短. 2.预先变形量 变形度越大,则T再越低 ∵储存能大,再结晶驱动力大.
一文看懂回复和再结晶
一文看懂回复和再结晶回复和再结晶一、冷变形金属在加热时的组织与性能变化金属和合金经塑性变形后,由于空位、位错等结构缺陷密度的增加,以及畸变能(晶体缺陷所储存的能量)的升高将使其处于热力学不稳定的高自由能状态,具有自发恢复到变形前低自由能状态的趋势,但在室温下,因温度低,原子活动能力小,恢复很慢,一旦受热,温度较高时,原子扩散能力提高,组织、性能会发生一系列变化。
这一变化过程随加热温度的升高可表现为三个阶段:回复:指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。
在此阶段,组织:由于不发生大角度晶界的迁移,晶粒的形状和大小与变形态相同,仍为纤维状或扁平状。
性能:强度与硬度变化很小,内应力、电阻明显下降。
(回复是指冷塑性变形的金属在(较低温度下进行)加热时,在光学显微组织发生改变前(即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。
)再结晶:指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程。
在此阶段,组织:首先在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止。
性能:强度与硬度明显下降,塑性提高,消除了加工硬化,使性能恢复到变形前的程度。
晶粒长大:指再结晶结束之后晶粒的继续长大。
在此阶段,在晶界表面能的驱动下,新晶粒相互吞食而长大,最后得到较稳定尺寸的晶粒。
显微组织的变化:回复阶段:显微组织仍为纤维状,无可见变化。
再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变的等轴晶粒晶粒长大阶段:晶界移动,晶粒粗化,达到相对稳定的形状和尺寸。
性能变化:回复阶段:强度、硬度略有下降,塑性略有提高;密度变化不大,电阻明显下降。
再结晶阶段:强度、硬度明显下降,塑性明显提高;密度急剧升高。
晶粒长大阶段:强度、硬度继续下降,塑性继续提高;粗化严重时下降。
二、回复1. 回复动力学上图同一变形程度的多晶体铁在不同温度退火时,屈服强度的回复动力学曲线特点:(1)没有孕育期;(2)在一定温度下,初期的回复速率很大,随后即逐渐变慢,直至趋近于零;(3)每一温度的恢复程度有一极限值,退火温度越高,这个极限值也越高,而达到此一极限值所需的时间则越短;(4)预变形量越大,起始的回复速率也越快,晶粒尺寸减小也有利于回复过程的加快。
冷变形金属的回复、再结晶与长大
根据加热温度不同,发生回复、再结晶及晶粒长大过程,经塑性变形后的金的过程称之为“退火”.回复阶段,从光学显微镜下观察的组织几乎没有变化,晶粒仍是冷变形之后的纤维状;在再结晶阶段,首先是出现新的无畸变的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止;晶粒长大阶段,是在界面能的驱动下,再结晶的新晶粒相互吞并而长大,以获得该温度下更为稳定的晶粒尺寸回复和再结晶的驱动力是内部储存的畸变能(内应力),在回复和再结晶过程中全部释放出来,不同的金属类型,再结晶以前释放的储能不同,从纯金属→不纯金属→合金,储能的释放增加;由于杂质和溶质原子阻碍再结晶的形核和长大,推迟再结晶过程.三个阶段金属的性能变化如图所示:①电阻率在回复阶段就已明显下降,到再结晶时下降更快,最后恢复到变形前的电阻;②强度和硬度在回复阶段下降不多,再结晶开始后硬度急剧下降,降低的规律因金属的种类不同而不同;③内应力在回复阶段明显下降,宏观内应力在回复时可以全部或大部分被消除,微观内应力部分消除;在再结温度以上,微观内应力被全部消除.④材料的密度随退火温度升高而增加.所谓回复是指冷变形金属在加热时,在新的无畸变晶粒出现之前,所产生的亚结构与性能的变化过程.回复动力学研究材料的性能向变形前回复的速率问题:①回复过程没有孕育期;②在一定的温度下,初期的回复速率很高,以后逐渐减慢,直到最后回复的速率为零.③每一个温度的回复过程都有一个极限值,退火温度越高,这个极限值越高,需要时间越短.R为回复时已恢复的加工硬化,σm σr σ0分别为变形后、回复后以及完全退火的屈服应力,R越大,(1-R)越小,表示回复阶段性能恢复程度越大.回复过程的组织变化与回复机制多边形化:金属塑性变形后,滑移面上塞积的同号刃型位错沿原滑移面水平排列,高温时通过滑移和攀移使位错变成沿垂直滑移面的排列,形成所谓的位错墙,每组角度晶界分割晶粒成亚晶,这一过程称为位错的多边形化.只在产生単滑移的晶体中,多边形化过程最典型,多滑移情况下可能存在,更易形成胞状组织.胞状组织的规整化:过剩空位消失,变形胞状组织内的位错被吸引到胞壁,并与胞壁中的异号位错互相抵消位错密度降低,位错变得平直较规整,当回复继续时,胞胞壁中的位错缠结逐渐形成能量较低的位错网,胞壁变薄,单胞有所长大,构成亚晶粒.亚晶粒的合并:可能通过位错的攀移和位错壁的消失,从而导致亚晶转动来完成.去应力退火:冷变形金属经回复后使内应力得到很大程度的消除,同时又能够保持效果,因此回复退火又称为去应力退火.工件中内应力的降低可以避免工件的变形或开裂,②异号位错在热激活作用下相互吸引而抵消③亚晶粒长大;①位错攀移和位错环缩小;②亚晶粒合并;③多边形化;中温回复(0.3-0.5T m )高温回复(≧0.5T m )不同温度下对应的回复机制(T 表示熔点)温度回复机制低温回复(0.1-0.3T m )①点缺陷移至晶界或位错处消失;②点缺陷①缠结中的位错重新排列而构成亚晶;.冷加工”塑性变形后的金属再进行加热仍是冷变形之后的纤维状;在周围的变形基体而长大,直到阶段,是在界面能的驱动粒尺寸的过程.回复和再结晶过程中全部释放金属→不纯金属→合金,储能,推迟再结晶过程.这个极限值越高,需要时间越短.后以及完全越大.沿原滑移面水平排列,高温时,每组位错墙均以小可能存在,更易形成胞状组织.被吸引到胞壁,并与胞壁中的时,胞内几乎无位错,单胞有所长大,构成亚晶粒.导致亚晶转动来完成.够保持冷变形的硬化开裂,并提高其耐腐蚀性.而抵消,位错密度下降;熔点)点缺陷合并;;0σσσσ--=m r m R质原子被吸附在晶界,织;②加工温度范围在速率敏感系数.状;抛光表面没有显示滑移线;,晶粒长大越明显;。
回复与再结晶ppt
金属材料在高温或高压下发生塑性变形,随后在较低的温度 或压力下发生再结晶,改变晶格结构和相变,提高材料的强 度和韧性。
半导体材料的回复与再结晶
半导体材料在高温或高压下的回复过程中,通过晶格结构的 变化和缺陷的修复,材料的电学性能得到改善。
THANKS
谢谢您的观看
汇报的目的和背景
汇报目的
本次汇报旨在探讨回复与再结晶对金属材料性能的影响以及应用方面的研究 进展。
背景
随着工业和科技的发展,金属材料在各个领域的应用越来越广泛,而回复与 再结晶作为金属材料热处理过程中的重要环节,对于提高金属材料的综合性 能具有重要意义。
02
回复
回复的定义和特点
回复是指一种物质在受到外部刺激(如温度、压力、电磁波 等)后,产生的某种反应或变化。
对回复与再结晶未来发展的展望
探索新的回复与再结晶技术,提高材料的综合 性能和可靠性,以满足现代科技和工业发展的 需求。
加强回复与再结晶基础理论的研究,深入探讨 材料在回复与再结晶过程中微观结构和物理性 质的演变规律。
研究新型材料在回复与再结晶过程中的行为和 特性,拓展回复与再结晶理论的应用范围。
对回复与再结晶具体案例的分析
升温
将金属加热到一定温度,使其发生再结晶 。
形核
在金属中形成新的晶核。
晶粒细化
通过控制温度和变形量,细化晶粒,提高 金属性能。
长大
新晶核逐渐长大,形成新的晶粒组织。
04
回复与再结晶的关系
回复与再结晶的联系
两种现象都与材料在高温下发生的物理性质变化有关。 两种现象都受到材料内部结构的影响。
回复与再结晶的区别
回复的特点是具有滞后性和不完全性。即,回复是在外部刺 激作用下的一个过程,需要一定的时间和能量,且回复的程 度往往不能完全恢复到初始状态。
回复与再结晶
第一节 冷变形金属在加热时的 组织与性能变化
一、 回复与再结晶的概念 回复:冷变形金属在低温加热时,其光学显微组织无可见变化,但其物 理、力学性能却部分恢复到冷变形以前的过程。 再结晶:冷变形金属被加热到适当温度时,在变形组织内部新的无畸变 的等轴晶粒逐渐取代变形晶粒,而使形变强化效应完全消除的过程。 二 、显微组织变化(示意图) 回复阶段:显微组织仍为变形晶粒(纤维状),形态无可见变化; 再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变等轴晶粒。 晶粒长大阶段:晶界移动、晶粒粗化,达到相对稳定的形状和尺寸。
二、 回复机制
1.低温回复(T=0.1-0.3Tm) 点缺陷运动:空位迁移至晶界、位错处而消失;空位与间隙原子 结合而消失; 空位聚集(空位群),然后崩塌成位错环而消失。 2.中温回复 (T=0.3-0.35Tm) 位错滑移:异号位错相遇而抵销、缠结位错重新排列,位错密度 降低。 3.高温回复(T>0.35Tm) 位错攀移(+滑移)→位错垂直排列(亚晶界)→多边化(亚晶 粒)→弹性畸变能降低。 多边化的条件:塑性变形使晶体点阵弯曲、滑移面上有塞积的同 号刃型位错、较高的加热温度使刃型位错产生攀移运动。
六、再结晶后晶粒大小及其控制
晶粒大小-变形量关系图
1.变形量:存在临界变形量(一般约为2%-10%);在临界变形量以下, 不发生再结晶,晶粒尺寸不变;在临界变形量处,再结晶后晶粒 特别粗大(峰值),生产中应避免临界变形量;在临界变形量以 上,随变形量增大,再结晶后晶粒逐渐细化。(d∝(G/N)1/2) 2. 退火温度:退火温度提高,晶粒粗化;退火温度越高,临界变 形度越小,晶粒粗大。 3. 原始晶粒尺寸:原始晶粒越细小,再结晶驱动力越大,再结晶 温度越低,且形核位臵越多,使再结晶后晶粒细化。 七、再结晶的应用-再结晶退火 恢复变形能力、改善显微组织、消除各向异性、提高组织稳定性。
机械工程材料.答案
11.经过大量塑性变形后,由于位错密度增大和发生交互作用, 位错分布不均,并使晶粒分化成许多位向略有差异的亚晶块, 称为( )。 (a)小晶粒 (b)亚晶粒 (c)晶粒 (d)位错晶粒 12.在塑性变形量很大时,伴随着晶粒的转动,各个晶粒的滑移 面和滑移方向都会逐渐与形变方向趋于一致,从而使多晶体中 原来取向互不相同的各个晶粒在空间位向上呈现—定程度的一 致性,这种现象称为择优取向,这种组织称为( )。 (a)择优组织(b)变形组织 (c)形变织构 (d)拉长组织 13.加工硬化使金属( )。 (a)强度升高、塑性降低 (b)强度降低、塑性降低 (c)强度升高、塑性升高 (d)强度降低、塑性升高 14.经冷塑性变形的金属在加热时,在光学显微组织发生改变前 (即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化 过程称为( )。 (a)恢复 (b)回复 (c)再结晶 (d)结晶
1. 点
(1) 组织发生变化。 变形晶粒由无畸变新晶粒代替。 (2)消除加工硬化现象。 (3)变形储存能充分释放。
§2-3 回复与再结晶 2.再结晶的过程 实质:新晶粒重新形核和长大的过程。
变 形 晶 粒
新 等 轴 晶 粒
再结晶过程示意图
§2-3 回复与再结晶
3. 再结晶温度及再结晶退火
再结晶温度 T再≈0.4T熔 (绝对温度)
作业 5、6、9
1.金属变形的三个阶段分别是( )。
(a)弹性变形、粘流变形和断裂 (b)弹性变形、弹塑性变形和断裂 (c)弹性变形、高弹变形和断裂 (d)高弹变形、弹塑性变形和断裂
2.发生明显塑性变形后而发生的断裂称为( )。 (a)韧性断裂 (b)脆性断裂 (c)疲劳断裂 (d)延时断裂 3.断裂前无明显塑性变形的断裂称为( )。 (a)韧性断裂 (b)脆性断裂 (c)疲劳断裂 (d)延时断裂 4.( )是晶体的一部分沿着一定的晶面和晶向相对于另一部分 作相对的滑动,是晶体发生塑性变形的主要方式。 (a)攀移 (b)滑移 (c)位错 (d)剪切 5.单晶体塑性变形的基本方式有( )。 (a)滑移和孪晶 (b)滑移和孪生 (c)滑动和孪生 (d)错 动和孪生
材料科学基础4-回复、再结晶
Q Q A exp RT t1 A exp RT t2 1 2
t1 t2 exp exp 1 1 RT2 R T2 T1 e RT 1
晶粒长大--3.影响晶粒长大(即晶界迁移率)的因素
(1)温度 温度越高,晶粒长大速度越快,晶粒越粗大
G =G0exp(-QG /RT)
G:晶界迁移速度 G0:常数 QG:晶界迁移的激活能
(2)第二相 晶粒长大的极限半径 R=kr/f K:常数 r:第二相质点半径 f:第二相的体积分数 ∴ 第二相质点的数量越多,颗粒越小,则阻碍晶粒长大的能 力越强。 (3)可溶解的杂质或合金元素阻碍晶界迁移,特别是晶界偏 聚现象显著的元素,其阻碍作用更大。但当温度很高时, 晶界偏聚可能消失,其阻碍作用减弱甚至消失。
§2
一、回复动力学 1.回复动力学曲线
回复
回复动力学特点:
(1)回复过程没有孕育期,随着退火的开始进行,发 生软化。 (2)在一定温度下,初期的回复速率很大,以后逐渐 变慢,直到最后回复速率为零。
(3)每一温度的回复程度有一极限值,退火温度越高, 这个极限值也越高,而达到此极限所需时间则越短
(4)回复不能使金属性能恢复到冷变形前的水平。
TC TA TB sin A sin B sin C
当界面张力平衡时: 因 为 大 角 度 晶 界 TA=TB=TC, 而 A+B+C=360o ∴A=B=C=120o
晶粒长大--晶粒长大的方式
(3)在二维坐标中, 晶界边数少于6的晶 粒,其晶界向外凸出, 必然逐渐缩小,甚至 消失,而边数大于6 的晶粒,晶界向内凹 进,逐渐长大,当晶 粒的边数为6时,处 于稳定状态。 在三维坐标中, 晶粒长大最后稳 定的形状是正十 四面体。
第七章 回复与再结晶(新)
过程:
亚晶蚕食机制示意图
① ρ很大的小区域位错攀移重分布,使位错运动到相邻晶粒, 形成一个ρ低的小区域。 ②ρ低的区域逐渐扩大,其与周围区域的位向角增大。 ③当小区域扩大到一定体积,与周围晶粒之晶界变为大角晶界。 ④大角晶界弓出形成核心。
三种形核机制都是大角度晶界的突然迁移,所不同的是获得大角度晶界的途径不同。
超塑性
超塑性:某些材料在特定变形条件下呈现的特别大的延伸率。 条 件 : 晶 粒 细 小 、 温 度 范 围 ( 0.5~0.65Tm ) 、 应 变 速 率 小 ( 1 ~ 0.01%/s)。 本质:多数观点认为是由晶界的滑动和晶粒的转动所致。 应用:复杂零件的精密成形;难于热变形材料的加工。
晶粒的异常长大
1 异常长大: 少数再结晶晶粒的急剧长大现象 (二次再结晶) 2 基本条件:正常晶粒长大过程被(第二分散相微粒、织构)强烈阻碍。 3 驱动力:界面能变化(不是重新形核) 4 原因:晶粒内部肯定存在大量的阻止晶粒长大的因素。 1)合金元素附集晶界,阻碍晶界迁移。 2)第二相粒子阻碍晶界运动。
第七章 回复与再结晶
将冷变形后的金属加热到临界点以下 某温度区间,变形金属的组织、性能 会恢复到变形前的状态,这一过程称 为回复、再结晶。 回复:冷变形金属在低温加热时,其 显微组织无可见变化,但其物理、力 学性能却部分恢复到冷变形以前的过 程。 再结晶:冷变形金属被加热到适当温 度时,在变形组织内部生成新的无畸 变的等轴晶粒逐渐取代变形晶粒,而 使形变强化效应完全消除的过程。
动态再结晶
热加工后的组织与性能
(1)改善铸锭组织。气泡焊合、破碎碳化物、细化晶粒、降低偏析。提 高强度、塑性、韧性。 (2)形成纤维组织(流线)。 组织:枝晶、偏析、夹杂物沿变形方向呈纤维状分布。 性能:各向异性。沿流线方向塑性和韧性提高明显。 (3)形成带状组织 形成:两相合金变形或带状偏析被拉长。 影响:各向异性。类似于流线组织。 消除:避免在两相区变形、减少夹杂元素含量、采用高温扩散退火或 正火。
材料科学基础I__第九章-2__(回复与再结晶)
3、凸出形核
当冷变形量较 小时,再结晶在 原晶界处形核。
对于多晶体,不同晶粒的变形 程度不同,变形大的位错密度高, 畸变能高;变形小的位错密度低, 畸变能低。低畸变区向高畸变区 伸展,以降低总的畸变能。
三、再结晶核心的长大
再结晶核心形成后,在变形基体中长大。实质是具有临界曲 率半径的大角度晶界向变形基体迁移,直至再结晶晶粒相遇, 变形基体全部消失。 温度越高,扩散越快,再结晶速度越快,时间越长,再结晶 晶粒越粗大。
其他条件相同时,原始晶粒越细,冷变形抗力越大,变形后 储存能越多,再结晶温度越低。 同样变形度,原始晶粒越细,晶界总面积越大,可供再结晶 形核的地方越多,形核率高,再结晶速度快。
5、第二相粒子
根据粒子尺寸和间距的大小,可分为二种情况: 1)粒子较粗大,间距较远——促进再结晶 原因:粒子对位错运动、亚晶界迁移的阻碍作用小;另一方 面,加速再结晶形核。 2)粒子细小,间距小——阻碍再结晶 原因:粒子阻碍位错运动和亚晶界迁移,使亚晶粒生长减慢 或停止,就阻碍了再结晶的形核与长大。
退火温度对临界变形度影响很大,温度越高,临界变形度越小。
注意:图中纵坐标,向上表示晶粒数少,尺寸大。
§9-9 再结晶后的晶粒长大
冷变形金属完成再结晶后,继续加热时会发生晶粒长大。 晶粒长大又可分为正常长大和异常长大(二次再结晶)。
一、晶粒的正常长大
再结晶刚完成时得到的是细小的、无畸变和内应力的等轴晶 粒。温度继续升高或延长保温时间,晶粒仍可以继续长大,若 是均匀地连续生长,就称为正常长大。
晶粒特别粗大。此变形度称为临界变形度。 超过临界变形度后,随变形量增加,储存能增加,使再结晶驱 所以再结晶后晶粒细化。
动力增加,形核率和长大速率同时提高,但由于形核率增加更快,
《材料科学基础》回复与再结晶
G:晶界迁移速度; G0:常数; QG:晶界迁移激活能。
45
(2)弥散第二相粒子: 弥散第二相粒子对晶界移动有钉扎作用。 产生原因:晶界开始穿过粒子时,晶界面积减小, 即减少了总的界面能量,这时粒子是帮助晶界前进 的。
但当晶界到达粒子的最大截面处后,晶界继续 移动又会重新增加晶界面积,即增加了总的界面能 量,这时粒子对晶界移动产生拖曳力,即起钉扎作 用。
16
多边形化: 刃型位错通过攀移和滑移构成竖直排列(位错 墙),形成位错墙的过程称为多边形化。
17
回复亚晶:多边化形成小角度晶界,亚晶界将原来 的晶粒分割成许多亚晶块。
实质是胞壁处的缠结位错不断聚集、使胞壁 变薄,逐渐形成网络,构成清晰的亚晶界过程。
18
过程示意
19
三、回复退火的应用
主要用作去应力退火,使冷加工金属在基本 上保持加工硬化的状态下降低其内应力,以稳定 和改善性能,减少变形和开裂,提高耐蚀性。
这说明冷变形铁的回复,不能用一种单一的 回复机制来描述。
12
二、回复机理
点缺陷和位错在退火过程中发生运动,从而改 变了它们的组态和分布。 回复时空位迁动和消失是不会影响显微组织的, 只有涉及位错迁动时才会影响显微组织。 位错迁动和重排引起的显微组织变化主要是多 边形化和亚晶形成和长大。
13
1. 低温回复(0.1-0.3 Tm) 点缺陷运动:(1)空位、间隙原子移至晶界、位 错处消失;(2)空位聚集(空位群、对)。→点 缺陷密度降低 2. 中温回复(0.3-0.5 Tm)
回复速率和温度有阿累尼乌斯关系:
10
两边取对数得回复方程式:
以ln ( 1/t )对1/T作图,得直线,直线斜率为 Q/R,可求出回复过程的激活能。
材料科学基础2复习题及参考答案
材料科学基础2复习题及部分参考答案一、名词解释1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。
2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。
3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点强度和节约材料为目的。
(《笔记》聚合物拉伸时出现的细颈伸展过程。
)4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。
(《书》晶体中某处一列或者若干列原子发生了有规律的错排现象)5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成所谓的“柯氏气团”。
(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。
)6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。
7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。
8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。
(《书》晶体开始滑移时,滑移方向上的分切应力。
)9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬化。
(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。
)10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。
(《书》使金属在再结晶温度以上发生加工变形的工艺。
)11、柏氏矢量:是描述位错实质的重要物理量。
反映出柏氏回路包含的位错所引起点阵畸变的总积累。
(《书》揭示位错本质并描述位错行为的矢量。
)反映由位错引起的点阵畸变大小的物理量。
12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。
13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为层错面)两侧附近原子的错排的一种面缺陷。
第七章回复与再结晶
回复、再结晶及晶粒长大阶段中性能的变 化情况
7.2 回复
回复过程3阶段(储存能在回复阶段三个峰值所对应的) 约化温度:表征加热温度的高低,用绝对温标表示的加热温度与其熔点温度之比, TH =T/Tm。
错相遇相消,位错密度下降,位错缠结内部重新排列组合,使亚晶规整化。
(3)高温回复( TH >0.5Tm) 高温回复,原子活动能力进一步增强,位错除滑移外,还可攀移。主要机制是多边化。冷变形后由
于同号刃型位错在滑移面上塞积而导致点阵弯曲,在退火过程中通过刃型位错的攀移和滑移,使同号 刃型位错沿垂直于滑移面的方向排列成小角的亚晶界,这个过程称为多边化。其驱动力来自应变能的 下降。
位错及晶界处,对位错的运动及晶界的迁移起阻碍作用,因此不利于再结晶的形核与长大,阻碍再结 晶,使再结晶温度升高。 4.原始晶粒尺寸
其他条件相同情况下,晶粒越细,变形抗力越大,冷变形后存储能越多,再结晶温度越低。相同变 形度,晶粒越细,晶界总面积越大,可供形核场所较多,生核率也增大,再结晶速度加快。
5.分散相粒子 分散相粒子直径较大,离子间距较大的情况下,再结晶被促进;而小的粒子尺寸和小的粒子间距,
储存能的释放与性能变化
1 储存能:存在于冷变形金属内部的一小部分(~10%)变形功。
弹性应变能(3~12%) 2 存在形式 位错(80~90%)
点缺陷
3 储存能的释放:原子活动能力提高,迁移至平衡位置,储存能得以释放。
(1)力学性能 回复阶段:强度、硬度略有下降,塑性略有提高。 再结晶阶段:强度、硬度明显下降,塑性明显提高。 晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗
动态回复和再结晶
亚晶尺寸与稳
态流变应力成反比, 并随变形温度升高 和变形速度降低而 增大(图5.39)。
图 5.39 铝在400oC挤压时动态 回复所形成旳亚晶
3)动态回复旳机制
(1).是位错旳攀移和交滑移,攀移在动态回复中 起主要旳作用。
(2).层错能旳高下是决定动态回复进行充分是否 旳关键原因
(3). 动态回复易在层错能高旳金属,如铝及铝合 金中发生。
热变形或热加工指金属材料在再结晶温度以上旳 加工变形。工业生产个,高温进行旳铸造,轧制等 压力加工属热加工。热加工过程中,在金属内部同 步进行着加工硬化与回复再结晶软化两个相反旳过 程。
1.热加工与冷加工
从金属学旳角度,将再结晶温度以上进行旳压力加工称为热加 工,发生硬化、回复、再结晶。而将再结晶温度下列进行旳压力 加工称为冷加工,发生加工硬化。 例如钨旳再结晶温度约为 1200℃,所以,虽然在1000℃进行变形加工也属于冷加工。
(1)、(2)是在温度和负荷联合作用下发生旳。 • (3) 亚动态再结晶 • (4) 静态再结晶 • (5) 静态回复
(3)、(4)、(5)是在变形停止之后,即在无负荷 作用下发生旳。
5.4.1 动态回复和动态再结晶
在金属冷形变后旳加热过程中发生旳,称为静态回复和静态 再结晶。若提升金属变形旳温度,使金属在较高旳温度下形变 时,金属在热变形旳同步也发生回复和再结晶,这种与金属 热变形同步发生旳回复和再结晶称为动态回复(dynamic recovery)和动态再结晶(dynamic recrystallization)。
第Ⅰ阶段—微应变阶段现。 第Ⅱ阶段—均匀变形阶段:曲线旳斜率逐渐下降,金属材料开始均匀塑性变 形,即开始流变,并发生加工硬化,且随加工硬化作用旳加强,开始出现动 态回复并逐渐加强,其造成旳软化逐渐抵消加工硬化作用,使曲线旳斜率下降 并趋于水平,加工硬化率为零,进入第三阶段。 第Ⅲ阶段—稳态流变阶段:在到达第三阶段后,即可实现连续形变。体现为 由变形产生旳加工硬化与动态回复产生旳软化
7 回复与再结晶
(4) 对组织和性能的影响
织构明显
各向异性
优化磁导率;
晶粒大小不均,导致性能不均;晶粒粗大
降低强度和塑性、韧性;
提高表面粗糙度。
大多数情况下应当避免。
7.2.2 回复机制
)
高温回复(>0.5T
m
位错攀移(+滑移)→位错垂直排列
→多边化(亚晶粒)→弹性畸变能降低。
:回复过程中由位错重新分布而形成确定的亚晶结构的过程。
7.3.2 再结晶晶核的形成与长大
再结晶晶核的形成(非均匀形核)
亚晶形核机制
一般发生在冷变形度较大的金属中。
亚晶合并机制
适于高层错能金属。
过程:位错多边化→回复亚晶→形核。
7.3.2 再结晶晶核的形成与长大
7.3.4 再结晶晶粒大小的控制
(2) 原始晶粒尺寸
当变形度一定时,材料的原始晶粒尺寸越细,则再结晶后的晶粒也越细。
(3) 合金元素及杂质
在其他条件相同的情况下,凡延缓再结晶及阻碍晶粒长大的合金元素或杂质均使金属再结晶后得到细晶粒组织。
金属的热加工
性能变化是双向的:
变形前变形后
再结晶
软软
加工硬化
2)组织结构的变化
特点:反复形核、有限长大。
晶粒是等轴的,大小不均匀,晶界呈锯齿状,等轴晶内存在被缠结位错所分割成的影响晶粒大小的因素:应变速率低、变形温度高时,晶粒尺寸大。
动态再结晶组织包含亚晶粒,并且位错密度较高,比静态再结晶组织强度、硬度高。
金属的冷变形强化、回复和再结晶
在临界变形速度 C之后,消耗于金属塑性变 形的能量转化为热能,即热效应。由于热效应的 作用,使金属温度升高,塑性上升,变形抗力减 小,金属易锻压加工。
3.应力状态 挤压时金属三个方向承受压应力,如图11-89a所示 。在压应力的作用下,金属呈现出很高的塑性。拉拔时 金属呈两向压应力和一向拉应力状态,如图 11-8b 所示 。拉应力易使金属内部的缺陷处产生应力集中,增加金 属 破 裂 倾 向 , 表 现 出 金 属 的 塑 性 下 降 。
机械制造基础
第十一章
二、金属的冷变形强化、回复和再结晶
(一) 金属的加工硬化(冷变形强化) 金属在低温下进行塑性变形时,随着 变形程度的增加,金属的硬度和强度升高 ,而塑性、韧性下降,这种现象称为金属 的冷变形强化或加工硬化。
冷变形强化是强化金属的重要途径之一,尤其是对 一些不能用热处理强化的金属材料显得特别重要,如 低碳钢、纯铜、防锈铝、镍铬不锈钢等,可通过冷轧 、冷挤、冷拔、冷冲压等方法来提高金属强度、硬度 。
机械制造基础
第十一章
(二) 锻造比 锻造比是表示金属变形程度大小的参数。具体计算如下: y拔长 = S0/S(视频) y镦粗 = H0/H(视频) 式中 S0、S —— 拔长前、后金属坯料的横截面积; H0、H —— 镦粗前、后金属坯料的高度; 锻造比越大,热变形程度也越大,热加工流线也越明显, 其金属组织、性能改善越明显。
回复和再结晶讲解
下面分别详细介绍回复、再结晶、晶粒长大、 再结晶织构以及金属材料的热加工。
第二节 回复 在这一节,涉及的主要问题是:
一、回复的作用 二、回复的动力学 三、回复的机制 四、回复退火的应用
一、回复的作用
260º进行“去应力退火”,内应力能够大部分消除, 而强度、硬度基本不变。这样处理所发生的过程就是回 复。
4、在回复和再结晶的过程中,金属会释放出冷塑 性变形所储存的能量,同时性能也会发生相应的变化。
Δ P,mW Δ ρ ,10-6Ω ·cm HV
125 Δρ
100
HV
30
75
20
50 10
25
ΔP
0
100
200
300
400
温度,°C
图8-1 在室温经75%压缩变形的纯铝(纯度99.998%)以 6ºC/sec的加热速度加热时,热量差Δ P、比电阻的变化Δ ρ 及维
第八章 回复与再结晶
第一节 概述
问题:
1、金属或合金经塑性变形后,为什么要进行退火处理?
金属或合金经塑性变形后,强度、硬度、电阻率和矫 顽力等升高,塑性、韧性、导磁率和耐蚀性则下降,为使 经冷塑性变形的金属的机械性能恢复到冷塑性变形前的状 态,需要对金属加热进行退火。
2、为什么将加工硬化的金属加热到适当的温度能使其恢 复到冷塑性变形前的状态呢?
3、经冷塑性变形的金属加热时,经过那些阶段?各 阶段的特点?
依次经过回复、再结晶和晶粒长大三个阶段 (此三阶段有部分交迭)。如图1所示:
回复
再结晶
晶粒长大
0
T1
T2Biblioteka T3图1 回复、再结晶、晶粒长大过程示意图