第8章滞后变量模型
滞后变量模型与自回归模型
2、分布滞后模型的修正估计方法
人们提出了一系列的修正估计方法,但并不很 完善。 各种方法的基本思想大致相同:都是通过对各 滞后变量加权,组成线性合成变量而有目的地减 少滞后变量的数目,以缓解多重共线性,保证自 由度。 (1)经验加权法
根据实际问题的特点、实际经验给各滞后变量 指定权数,滞后变量按权数线性组合,构成新的 变量。权数据的类型有:
由于无法预见知电力行业基本建设投资对发电 量影响的时滞期,需取不同的滞后期试算。 经过试算发现,在2阶阿尔蒙多项式变换下,滞 后期数取到第6期,估计结果的经济意义比较合理。 2阶阿尔蒙多项式估计结果如下:
ˆ 3319 Y .5 3.061 W0t 0.101 W1t 0.271 W2t t
2、滞后变量模型
以滞后变量作为解释变量,就得到滞后变量模 型。它的一般形式为:
Yt 0 1Yt 1 2Yt 2 qYt q 0 X t 1 X t 1 s X t s t
q,s:滞后时间间隔 自回归分布滞后模型 ( autoregressive distributed lag model, ADL):既含有Y对自身滞后变量的回归, 还包括着X分布在不同时期的滞后变量
k 1 2
(*)
s
将(*)代入分布滞后模型
s 2 i 0 k 1
Yt i X t i t
i 0
得
Yt ( k (i 1) k ) X t i t
1 (i 1) X t i 2 (i 1) 2 X t 2 t
Yt 0 i X t i t
2、自回归模型(autoregressive model) 自回归模型:模型中的解释变量仅包含X的当 期值与被解释变量Y的一个或多个滞后值
第8章滞后变量模型
第8章滞后变量模型8.1 滞后变量模型的基本概念8.1.1 滞后现象与产生滞后现象的原因因变量受其自身或其他经济变量前期水平影响的经济现象,称之为滞后现象(或滞后效应)。
产生滞后现象的原因主要有以下几个方面:1.经济变量自身的原因:有些经济变量的发展变化有很强的继往性,当期水平与前期水平有极为密切的关系。
2.决策者心理上的原因3.技术上的原因4.制度的原因8.1.2 滞后变量与滞后变量模型所谓滞后变量(lagged variable),是指过去时期的、对当前因变量产生影响的变量。
滞后变量可分为滞后解释变量与滞后因变量两类。
把滞后变量(滞后解释变量与滞后因变量)引入回归模型,这种回归模型称为滞后变量模型。
含有滞后解释变量的模型,又称为动态模型。
滞后变量模型的一般形式为(8.1.1)其中,k,p分别为滞后解释变量和滞后因变量的滞后期长度。
为被解释变量的第阶滞后,为解释变量的第阶滞后。
若滞后期长度为有限,称模型为有限滞后变量模型;若滞后期长度为无限,称模型为无限滞后变量模型。
由于模型既含有对自身滞后变量的回归,还包括解释变量分布在不同时期的滞后变量,因此,一般称为自回归分布滞后模型(autoregessive distributed lag model,ADL)。
1.分布滞后模型如果滞后变量模型中没有滞后因变量,因变量受解释变量的影响分布在解释变量不同时期的滞后值上,即模型形如(8.1.2)(8.1.2)*具有这种滞后分布结构的模型称为分布滞后模型(distributed lag model)。
在分布滞后模型中,各系数体现了解释变量的各个滞后值对因变量的不同影响程度。
称为短期影响乘数(或即期乘数、短期乘数、短期效果),表示本期解释变量x变动一个单位对被解释变量y值产生的影响,即短期影响。
称为延期过渡性乘数(或中期乘数、动态乘数)(i=1,2,…,k,…),表示解释变量在各滞后期变动一个单位对y值的影响大小,即x的滞后影响。
《滞后变量模型 》课件
滞后变量模型考虑了时间序列数据的 自相关性和时间依赖性,能够更好地 解释和预测时间序列数据的变化趋势 。
滞后变量模型的应用场景
经济预测
用于预测股票价格、消费、投资等经济指标的 变化趋势。
金融分析
用于分析股票、债券、期货等金融产品的价格 波动和趋势。
自然灾害研究
用于预测地震、洪水等自然灾害的发生和影响。
要点三
案例分析
例如,在分析气温变化时,可以引入 前一期的气温作为滞后变量。通过建 立滞后变量模型,可以对未来气候变 化趋势进行预测,为应对气候变化提 供科学依据。
06
总结与展望
滞后变量模型的优势与不足
01
优势
02
考虑了时间滞后效应,能够更好地描述经济现象的 动态变化。
03
在数据不足的情况下,可以利用已知信息进行预测 ,提高预测精度。
找最优解。
参数估计的步骤
模型设定
根据研究目的和数据特征,设 定合适的滞后变量模型。
模型检验
对估计的参数进行检验,确保 模型的拟合效果和预测能力。
数据收集
收集与滞后变量模型相关的数 据,确保数据的准确性和完整 性。
估计参数
根据设定的模型选择合适的参 数估计方法,对模型中的未知 参数进行估计。
结果解释
滞后变量模型与其他模型的比较
与线性回归模型相比
滞后变量模型考虑了自相关性,能够 更好地处理时间序列数据。
与ARIMA模型相比
滞后变季节性 和趋势的影响。
02
滞后变量模型的原理
滞后变量的产生原因
经济现象的惯性
经济现象的变化往往具有惯性, 一个变量的变化往往会影响其未 来的变化趋势,因此需要引入滞
名词解释和简答
第一章 导论三、名词解释经济变量:经济变量是用来描述经济因素数量水平的指标。
解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。
被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。
它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。
内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。
外生变量:外生变量是由模型统计之外的因素决定的变量,不受模型内部因素的影响,表现为非随机变量,但影响模型中的内生变量,其数值在模型求解之前就已经确定。
滞后变量:滞后变量是滞后内生变量和滞后外生变量的合称,前期的内生变量称为滞后内生变量;前期的外生变量称为滞后外生变量。
前定变量:通常将外生变量和滞后变量合称为前定变量,即是在模型求解以前已经确定或需要确定的变量。
控制变量:控制变量是为满足描绘和深入研究经济活动的需要,在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,它一般属于外生变量。
计量经济模型:计量经济模型是为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,是以数学形式对客观经济现象所作的描述和概括。
四、简答题1、简述计量经济学与经济学、统计学、数理统计学学科间的关系。
答:计量经济学是经济理论、统计学和数学的综合。
经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。
§5.2 滞后变量模型
................................ . ... ....... ... .. .
王中昭制作
滞后变量模型的一般形式
• • • • • • • • • • •
在模型中含有滞后变量的模型称为滞后变量模型。 滞后变量模型的一般形式(线性): Yt=b0+b1Yt-1+…+bsYt-s+a0Xt+…+aq Xt-q+μt S,q分别称为滞后因变量和滞后解释变量的滞后期。 例如:消费函数:Ct= b0+b1Ct-1+b2It+μt (1)、分布滞后模型 只含有滞后解释变量的模型称为分布滞后模型。 Yt=b0+a0Xt+…+aq Xt-q+μt (2)、自回归模型 只含有解释变量和滞后因变量的模型称为自回归模型。 例如:Yt=b0+b1Yt-1+…+bsYt-s+a0Xt+μt
பைடு நூலகம்
王中昭制作
4、模型的参数含义
• (1)、对于分布滞后模型: • Yt=a0+b0Xt+b1Xt-1+…+bsXt-s+μt • 分布滞后模型的各系数体现了解释变量的当 期值和各期滞后值对被解释变量的不同影响程度。 因此称为乘数。 • b0称为短期(或即期)乘数,表示本期X变 化一单位对Y平均值的影响程度。 bi (i=1,2…,s): 动态乘数或延迟系数,表示各滞后期X的变动对 Y平均值影响的大小。 • b0+b1+…+bs称为累计系数或长期或均衡乘 数,表示X变动一个单位,由于滞后效应而形成 的对Y平均值总累计影响的大小。
•
• 即把它化为分布滞后模型。各种参数的含义与 分布滞后模型相同。
计量经济学复习
第二章 一元线性回归模型1.随机误差项形成的原因:① 在解释变量中被忽略的因素 ② 变量观测值的观测误差 ③ 模型的关系误差或设定误差 ④ 其他随机因素的影响。
2.总体回归方程和样本回归方程的区别和联系:总体回归方程是对总体变量间关系的定量表述,条件均值E(Y|X=x)是x 的一个函数 ,记作:E(Y|X=x)=f(x),其中,f(x)为x 的某个函数 ,它表明在X=x 下,Y 的条件均值与x 之间的关系。
但实际中往往不可能得到总体的全部资料 ,只能先从总体中抽取一个样本,获得样本回归方程 ,并用它对总体回归方程做出统计推断。
通过样本回归方程按照一定的准则近似地估计总体回归方程 ,但由于样本回归方程随着样本的不同而有所不同,所以这种高估或低估是不可避免的。
3.随机误差项的假定条件:(1)零均值:随机误差项具有零均值,即E( )=0,i=1,2,… (2)随机误差项具有同方差: 即每个 对应的随机误差项 具有相同的常数方差。
Var( )=Var( )= ,i=1,2,… (3)无序列相关:即任意两个 和 所对应的随机误差项 、 是不相关的。
Cov( , )=E( )=0,i j,i,j=1,2,… (4)解释变量X 是确定性变量,与随机误差项不相关。
Cov( , )=E( )=0,此假定保证解释变量X 是非随机变量。
(5) 服从正态分布, ~N(0, )4.为什么用决定系数 评价拟合优度,而不用残差平方和作为评价标准?判定系数 = = 1- ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。
该值越大说明拟合得越好。
而残差平方和值的大小受变量值大小的影响,不适合具有不同量纲的模型的比较。
5.可决系数 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?可决系数 是对模型拟合优度的综合度量 ,其值越大,说明在Y 的总变差中由模型作出了解释的部分占得比重越大 ,模 型的拟合优度越高 ,模型总体线性关系的显著性越强。
空间自变量滞后模型
空间自变量滞后模型在传统的经济学模型中,通常假设变量之间是独立的,即一个地区的变量不受其他地区变量的影响。
然而,现实世界中的经济现象往往具有空间相关性,即一个地区的经济变量受到周边地区经济变量的影响。
空间自变量滞后模型就是为了解决这个问题而提出的。
空间自变量滞后模型的基本思想是,一个地区的经济变量受到周边地区经济变量的影响,而这种影响是通过空间滞后变量来体现的。
空间滞后变量是指一个地区的经济变量在空间上的邻域地区的经济变量的加权平均。
这种加权平均可以通过距离加权矩阵来计算,其中距离越近的地区的权重越大。
通过引入空间滞后变量,空间自变量滞后模型可以更准确地描述地区之间的相互关系。
例如,在研究房价影响因素时,传统模型可能只考虑到地区的人口、收入等变量,而忽略了周边地区的影响。
而空间自变量滞后模型可以在考虑这些传统变量的同时,还考虑到周边地区的房价对该地区房价的影响。
空间自变量滞后模型的应用非常广泛。
在经济学中,它可以用来研究城市发展、区域经济差异、产业布局等问题。
在社会学中,它可以用来研究犯罪率、教育水平等社会现象。
在环境科学中,它可以用来研究空气质量、水资源利用等问题。
总之,只要涉及到空间相关性和空间依赖性的问题,空间自变量滞后模型都可以发挥作用。
虽然空间自变量滞后模型在理论上非常有吸引力,但在实际应用中也存在一些问题。
首先,如何选择合适的距离加权矩阵是一个难题。
不同的加权方式可能会得到不同的结果,因此需要根据具体问题进行选择。
其次,空间自变量滞后模型的估计和推断方法也比较复杂,需要使用专门的统计软件进行计算。
尽管存在这些问题,空间自变量滞后模型仍然是研究空间相关性和空间依赖性的重要工具。
它可以帮助我们更好地理解经济、社会和环境现象之间的相互关系,为政府决策和社会发展提供科学依据。
空间自变量滞后模型是一种用于研究空间相关性和空间依赖性的方法。
它通过引入空间滞后变量来考虑地区之间的相互影响,可以更准确地描述经济、社会和环境现象。
第六讲 滞后变量模型
1、滞后效应与与产生滞后效应的原因 1、心理因素 :人们的心理定势,行为方式 滞后于经济形势的变化,如中彩票的人不可能 很快改变其生活方式。
2 、技术原因 :如当年的产出在某种程度上 依赖于过去若干期内投资形成的固定资产。
3、制度原因:如定期存款到期才能提取, 造成了它对社会购买力的影响具有滞后性。
表5.2.1 中国电力工业基本建设投资与发电量 年度 基本建设投资X 发电量 (亿元) (亿千瓦时) 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 30.65 39.98 34.72 50.91 50.99 48.14 40.14 46.23 57.46 76.99 107.86 1958 2031 2234 2566 2820 3006 3093 3277 3514 3770 4107 年度 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 基本建设投资X 发电量 (亿元) (亿千瓦时) 161.6 210.88 249.73 267.85 334.55 377.75 489.69 675.13 1033.42 1124.15 4495 4973 5452 5848 6212 6775 7539 8395 9218 10070
i 0
s
i
称为长期(long-run)或均衡乘数(total distributed-lag multiplier),表示X变动 一个单位,由于滞后效应而形成的对Y平 均值总影响的大小。
如果各期的X值保持不变,则X与Y间的长 期或均衡关系即为:
E (Y ) ( i ) X
i 0 s
(2)局部调整(Partial Adjustment)模型
计量经济学 滞后变量模型.详解
克模型与自适应预期模型不满足古典假定,如果用最小二乘法直接进 行估计,则估计是有偏的,而且不是一致估计。
8.4.2 工具变量法
所谓工具变量法,就是在进行参数估计的过程中选择适当的替代
变量,代替回归模型中同随机误差项存在相关性的解释变量。工具变 量的选择应满足如下条件:
(1)与随机误差项不相关,这是最基本的要求;
(2)与所代替的解释变量高度相关,这样的工具变量与替代的解 释变量才有足够的代表性; (3)与其他解释变量不相关,以免出现多重共线性。
8.5 案例分析
表8.5.1给出了某地区消费总额y(亿元)和货币收入总额x(亿元)的 年度资料,试分析消费同收入的关系。 表8.5.1 某地区消费总额和货币收入总额年度资料
2.自回归模型
如果滞后变量模型的解释变量仅包括自变量x的当期值和因变量的若干期 滞后值,即模型形如
例8.1.1
消费滞后
消费者的消费水平,不仅依赖于当年的收入,还同以前的消费水平有关。 其消费模型可以表示为
边际消费倾向:增加的消费和增加的收入之间的比率,也就是 增加的1单位的收入中用于增加的消费部分的比率,用公式表示就 是:MPC=ΔC/ΔY。 例如,收入增加到3万亿元(增加了1万亿元),消费增加到2万 亿元(增加了0.5万亿元),边际消费倾向就是0.5(0.5/1)。 国际上大致的划分是: 通 货 (M0)=银行体系外的纸币或铸币 狭义货币(M1)=流通中的现金+支票存款(以及转账信用卡 存款) 广义货币(M2)=M1+储蓄存款(包括活期和定期储蓄存款) 另外还有M3=M2+其他短期流动资产(如国库券、银行承兑汇 票、商业票据等)
CROSS
y
x
例8.2.2
表8.2.3给出了某行业1975-1994年的库存额y和销售额x的
计量经济学第8章
6443.33 8631.94 1
最高收入户
7593.95 10962.1 0
8262.42 12083.79 1
表 回归结果
这表明1998年、1999年我国城镇居民消费函数并没有显著差 异。因此,可以将两年的样本数据合并成一个样本,估计城镇居 民的消费函数,结果如下:
回归结果
虚拟变量的特殊应用
0
1
0
1988.1
3929.8 25 0
0
0
1984.4
4270.6 12
1
0
0
1988.2
4126.2 26 0
0
1
1985.1
3044.1 13
0
0
0
1988.3
4015.1 27 0
1
0
1985.2
3078.8 14 0
0
1
1988.4
4904.2 28 1
0
0
由于受取暖用煤的影响,每年第四季度的销售量大大高于其
设根据同一总体两个样本估计的回归模型分别为
为“相异回归”(Dissimilar regressions)。 上述情况中,只有第(1)种情况模型结构是稳定的,其余情况都表明模 型结构不稳定。
3.分段回归
回归系数反映了奖金的提高程度。使用虚拟变量既能如实描述不同阶段 的经济关系,又未减少估计模型时的样本容量,保证了模型的估计精度。
后期变动一个单位对Y的影响,即x的滞后影响。 如果 b = bi 存在,i=0,1,2…,k
b 称为长期分布或总分布乘数。表示X 变动一个单
位时,由于滞后效应而形成的对Y值的总的影响。
分布滞后模型的参数估计
对分布滞后模型直接采用OLS不适宜 • 没有先验准则确定滞后期长度;
第8章特殊解释变量优秀课件
5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2
第 8 章 特殊解释变量
例 8-1 农业产值与耕地面积关系研究(file:5break5)
上式说明,在 1993 和 1998 年农业产值对耕地面积的弹性系数
没有发生明显的变化,当耕地面积增加 1%时,农业产值增加
0
1996.4
1
x8
0
0
0
1
1997.1
1
x9
1
0
0
0
…
…
…
…
…
…
…
D1
1, 0,
1季度 2,3,4季度
,
D2
1, 0,
2季度 1,3,4季度
,
D3
1, 0,
3季度 1,2,4季度
,
D4
1, 0,
4季度 1,2,3季度
。
则必有 D4 = 1 – (D1 + D2 + D3),即 D1, D2, D3, D4 存在函数关系,当把 D1 D4 同时引入回归 模型中,D1 + D2 + D3+ D4 =1 与解释变量数据矩阵 X 的第 1 列(单位列向量)完全相同, 从而导致 X 降秩,无法用最小二乘法估计回归系数。
之上。不同年份的观测值呈两组特征。可以考虑用虚拟变量区别两个不同年度的产值并建
立模型。定义若数据属于 1993 年,虚拟变量 D 等于 0;若数据属于 1998 年,虚拟变量 D
等于
1,即
D
0, 1,
1993。建立模型 1998
Lnyt
=
0
+
1
D
计量经济学(内蒙古大学) 第八章 经典单方程计量经济学模型:专门问题(滞后变量模型)
第四章: 经典单方程计量经济学模型: 专门问题(滞后变量模型)
经世致用 管人悟道
内蒙古大学经济管理学院
在许多情况下被解释变量Y 不仅受到同期的解
释变量Xt 的影响,而且和X的滞后值Xt-1, Xt-2 ,
…,有很强的相关性 。
例如,人们的储蓄和当期的收入以及过去几期的收 入有着很强的相关性;固定资产的形成不仅取决 于现期投资额而且还取决于前几个时期的投资额 的影响等。这样的社会现象还有很多,有经济方 面的,也有其它领域的,对这些问题进行讨论就
经世致用 管人悟道
6
内蒙古大学经济管理学院
一、分布滞后模型的概念及相关问题
于是,由该例可以得到以下消费函数关系式
Yt 常量 0.4 X t 0.3X t 1 0.2 X t 2 ut
式中, Y=消费支出,X=收入。该方程就 是一个分布滞后模型,它表示收入对消费的 影响分布于不同时期。
在经济活动中,某一个经济变量的影响不仅 取决于同期各种因素,而且也取决于过去时期的各 种因素,有时还受自身过去值的影响。例如,居民 现期消费水平,不仅受本期居民收入影响,同时受 到前几个时期居民收入的影响。
把这些过去时期的变量,称作滞后变量, 把那些包括滞后变量作为解释变量的模型称作 滞后解释变量模型。
经世致用 管人悟道
5
内蒙古大学经济管理学院
一、分布滞后模型的概念及相关问题
什么是分布滞后模型? 例如:消费者每年收入增加10000元,假如,该
消费者把各年增加的收入按照以下方式分配:当年
增加消费支出4000元,第二年再增加消费支出3000
元,第三年再增加消费支出2000元,剩下的1000元 作为储蓄。第三年的消费支出不仅取决于当年的收 入,还与第一年和第二年的收入有关。当然,还可 以和前面更多期有关。
计量经济学教材答案(八、九章)
第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。
加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。
如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。
这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。
4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。
试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。
解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi其他定性因素可用如下虚拟变量表示:有奖学金无奖学金来自发达地区男性来自欠发达地区女性则引入各虚拟变量后的回归模型如下:Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D3i=1,D2i=D4i=0)=(β0+α1+α3)+β1X i(4) 来自发达地区的城市男生,未得到奖学金时的月消费支出:E(Y i|= X i,D2i=D3i=D4i=1, D1i=0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。
中国农业大学《计量经济学》(10滞后变量模型)(精)
:称为长期乘数或总分布乘数,表示 X 变动一个单
i
k
位时,由于滞后效应而形成的对 Y 总的影响大小。
i 0
处理方法: 对于有限分布滞后模型,其基本思想是设法有目的地 减少需要直接估计的模型参数个数,以缓解多重共线性, 保证自由度。 对于无限分布滞后模型,主要是通过适当的模型变换, 使其转化为只需估计有限个参数的自回归模型。
一、滞后变量模型的种类
滞后变量模型的一般形式为
Yt 0 X t 1 X t 1 2 X t 2 s X t s 1Yt 1 2Yt 2 qYt q ut
其中S、q 分别为滞后解释变量和滞后被解释变 量的滞后期长度。
2、自回归模型 (ADL:auto-regressive distributed lag)
如果滞后变量模型的解释变量仅包括自变量的当期值 和被解释变量的若干期滞后值,即模型形如:
Yt 0 X t 1Yt 1 2Yt 2 qYt q ut
则称这类模型为自回归模型,其中 q 称为自回归模型的阶数。
(1) 经验权数法
所谓经验权数法,是根据实际经济问题的特点及经 验判断,对滞后变量赋予一定的权数,利用这些权数构成 各滞后变量的线性组合,以形成新的变量,再应用最小二 乘法进行估计。 常见的滞后结构类型: 递减滞后结构(a) 不变滞后结构 (b)
型滞后结构 (c)
常见的滞后结构类型
w w
w
0
(2)考伊克(koyck)变换
对于无限分布滞后模型
设
Yt 0
X
i i 0
t i
ut
i 0
i
i =0,1,2,…
计量经济学第八章分布滞后模型
根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
•递减型: 即认为权数是递减的, X 的近期值对 Y 的 影响较远期值大。 如消费函数中,收入的近期值对消费的影 响作用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8
1.
滞后效应与与产生滞后效应的原因
因变量受到自身或另一解释变量的前几期值 影响的现象称为滞后效应。 表示前几期值的变量称为滞后变量。 如:消费函数 通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响: Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
该模型可用OLS法估计。假如参数估计结果为:
ˆ0
=0.5
ˆ 1 =0.8
则原模型的估计结果为:
0 .8 0 .8 Yˆ t 0 . 5 Xt X 2 4
t 1
0 .8 6
X
t2
0 .8 8
X
t3
0 .5 0 .4 X t 0 .2 X
t 1
0 . 133 X
①在解释变量x之后必须指定k和m的值,d为可选项, 不指定时取默认值0;1强制b0趋于0;2强制bk趋于0; 3强制两端趋于0。
②如果有多个具有滞后效应的解释变量,则分别用几 个PDL项表示;例如: LS Y C PDL(x1,4,2) PDL(x2,3,2,2) ③在估计分布滞后模型之前,最好使用互相关分析命 令CROSS初步判断滞后期的长度k; 命令格式为: CROSS Y X 接着输入滞后期 p 之后,将输出 yt 与 xt , xt-1…xt-p的各期相关系数,以判断较为合适的滞后 期长度k。 例 表给出了中国电力基本建设投资X与发电 量Y的相关资料,拟建立一多项式分布滞后模型 来考察两者的关系。
第八章 模型中的特殊解释变量
一、随机解释变量 二、滞后变量问题 三、虚拟变量问题 四、时间变量
第一节
随机解释变量问题
一、估计量的渐近特征
1.渐进无偏性(P202) 所谓渐进分布是指,当样本容量N→∞时, 随机变量序列将收敛到某个特定的分布。 所谓渐进无偏性是指,如果当N→∞时, 参数估计量的数学期望值将趋向于总体参数 的真实值。这时,将参数估计量称为总体参 数的渐近无偏估计。
第三节 虚拟变量
一、虚拟变量的基本含义 许多经济变量(定量变量)是可以定量度量 的,如:商品需求量、价格、收入、产量等; 但是,经济中有一些影响经济变量的因素无 法定量度量(定性变量),如:职业、性别对收 入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等等。 为了在模型中能够反映这些因素的影响,并 提高模型的精度,需要将它们“量化”,这种 “量化”通常是通过引入“虚拟变量”来完成的。
一元回归中,工具变量法估计量为
1
~ z ( x ) z z x z x
i 1 i i i i 1 i i i
i
两边取概率极限得:
P lim(1 ) 1
~
P lim 1 n zi i P lim 1 n z i xi
如果工具变量Z选取恰当,即有
根据定性变量的属性类型,构造只取“0”或 “1”的人工变量,这些人工变量通常称为虚拟变量 (dummy variables),记为D。 • 例如,反映文程度的虚拟变量可取为: • 1, 本科学历 • D= • 0, 非本科学历 一般地,在虚拟变量的设置中: • 基础类型、肯定类型取值为1;
• 比较类型、否定类型取值为0。
四、工具变量法
模型中出现随机解释变量且它(们) 与随机误差项相关时,OLS估计量是有偏的。 此时,为了得到参数的无偏估计量,最常 用的估计方法是工具变量法(Instrument variables)。