计量经济学第9章滞后变量模型
《滞后变量模型 》课件
滞后变量模型考虑了时间序列数据的 自相关性和时间依赖性,能够更好地 解释和预测时间序列数据的变化趋势 。
滞后变量模型的应用场景
经济预测
用于预测股票价格、消费、投资等经济指标的 变化趋势。
金融分析
用于分析股票、债券、期货等金融产品的价格 波动和趋势。
自然灾害研究
用于预测地震、洪水等自然灾害的发生和影响。
要点三
案例分析
例如,在分析气温变化时,可以引入 前一期的气温作为滞后变量。通过建 立滞后变量模型,可以对未来气候变 化趋势进行预测,为应对气候变化提 供科学依据。
06
总结与展望
滞后变量模型的优势与不足
01
优势
02
考虑了时间滞后效应,能够更好地描述经济现象的 动态变化。
03
在数据不足的情况下,可以利用已知信息进行预测 ,提高预测精度。
找最优解。
参数估计的步骤
模型设定
根据研究目的和数据特征,设 定合适的滞后变量模型。
模型检验
对估计的参数进行检验,确保 模型的拟合效果和预测能力。
数据收集
收集与滞后变量模型相关的数 据,确保数据的准确性和完整 性。
估计参数
根据设定的模型选择合适的参 数估计方法,对模型中的未知 参数进行估计。
结果解释
滞后变量模型与其他模型的比较
与线性回归模型相比
滞后变量模型考虑了自相关性,能够 更好地处理时间序列数据。
与ARIMA模型相比
滞后变季节性 和趋势的影响。
02
滞后变量模型的原理
滞后变量的产生原因
经济现象的惯性
经济现象的变化往往具有惯性, 一个变量的变化往往会影响其未 来的变化趋势,因此需要引入滞
计量经济学分布滞后模型
Yt 0 1Yt 1 2Yt 2 qYt q 0 X t 1 X t 1 s X t s t
q,s:滞后时间间隔
自 回 归 分 布 滞 后 模 型 ( autoregressive distributed lag model, ADL):既含有Y对自身滞 后变量的回归,还包括着X分布在不同时期的滞 后变量。
例5.2.1 对一个分布滞后模型:
Y t 0 0 X t 1 X t 1 2 X t 2 3 X t 3 t
给定递减权数:1/2, 1/4, 1/6, 1/8 令
W 1t 1 1 1 1 X t X t 1 X t 2 X t 3 2 4 6 8
有限自回归分布滞后模型:滞后期长度有限 无限自回归分布滞后模型:滞后期无限
(1)分布滞后模型(distributed-lag model)
分布滞后模型:模型中没有滞后被解释变量, 仅有解释变量X的当期值及其若干期的滞后值:
Yt i 短 期 (short-run) 或 即 期 乘 数 (impact multiplier) ,表示本期 X 变化一单位对 Y 平均值 的影响程度。 i (i=1,2…,s):动态乘数或延迟系数,表 示各滞后期X的变动对Y平均值影响的大小。
1. 滞后效应与与产生滞后效应的原因 因变量受到自身或另一解释变量的前几期值 影响的现象称为滞后效应。 表示前几期值的变量称为滞后变量。 如:消费函数 通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响: Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
(1)经验加权法
根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
第九章(滞后变量)
第九章滞后变量一、滞后变量模型(一)滞后变量与滞后变量模型 现实经济生活中,许多经济变量不仅受同期因素的影响,而且还与某些因素,或者同自身的前期值有关。
我们通过把变量的前期值,即带有滞后作用的变量称为滞后变量,含有滞后变量的模型称为滞后变量模型。
(二)产生滞后效应的原因滞后效应是一个较为普遍的客观经济现象,原因可以归结为以下三个方面: 1.心理因素 2.技术因素 3.制度因素(三)滞后变量模型的种类 1.分布滞后模型011...t t t k x k t y x x x αβββε--=+++++2.自回归模型01122...t t t t k t k t y x y y y αββββε---=++++++(四)滞后变量模型的特点1.引入滞后变量能够有效地提高模型的拟合优度2.滞后变量模型是一个动态模型,可以来模拟分析经济系统的变化和调整过程存在的一些问题:(1)经济变量的各期值之间往往高度相关。
(2)降低样本的自由度,影响参数的估计精度。
(3)难以客观地确定滞后期的长度。
二、分布滞后模型的估计(一)经验加权法根据经验指定各期滞后变量的权数,将各期滞后变量加权组合成新的解释变量,估计变换后的模型,最后得到原模型中各参数的估计值。
(各期权数和不一定为1) 经常使用的权数类型有:1.递减型:各期权值是递减的。
2.常数型:各期权数值相等。
3.倒V 型:各期权数先递增后递减呈倒V 型。
历年投资对产生的影响一般为倒V 型。
?你认为经验加权法的优点和缺点在哪里 (二)阿尔蒙估计法1.原理:设有限分布滞后模型为011...t t t k t k t y x x x αβββε--=+++++根据weierstrass 定理,S.Almon 认为,连续函数2012()....()m i m f i i i i m k βαααα==++++<将这一关系代入原来的分布滞后模型,并经过适当的变量变换,可以减少模型中的变量个数,从而在消费多重共线性影响的情况下,估计模型中的参数。
计量经济学:滞后变量模型
将Koyck假定代入原模型:
yt 0 i xt i t
滞后变量模型(单方程回归的高级问题)
§10-1 §10-2 §10-3 §10-4 §10-5 滞后变量模型的基本概念 分布滞后模型的参数估计 自回归模型 自回归模型的系数估计 因果关系检验
§10-1
滞后变量模型的基本概念
一、滞后效应定义及其产生的原因 滞后效应 ——因变量受到自身或另一经济变量的 前几期影响。 注:滞后变量的引入就表明滞后效应的存在。
滞后效应产生的原因: 心理因素:(不能及时适应新的经济状况) 技术原因:(生产过程存在时间滞后) 制度原因:(定期存款对社会购买力的影响)
二、滞后变量模型
1、分布滞后模型
2、自回归模型
§10-2 分布滞后模型的参数估计
二、阿尔蒙(Almon)多项式
三、科伊克方法(Koyck)
Koyck方法是将无限分布滞后模型转换为自回归 模型,然后进行估计。
i 0
0 i xt i t
滞后一期,并乘以 ,得:
i 0
(1)
yt 1 0 i 1 xt (i 1) t 1
即
i 0
பைடு நூலகம்
yt 1 0 i xt i t 1
i 1
(2)
由⑴代入⑵可得:
yt yt 1 (1 ) 0 xt t t 1
计量经济学分章习题与答案
第一章 导 论一、名词解释1、截面数据2、时间序列数据3、虚变量数据4、生变量与外生变量二、单项选择题1、同一统计指标按时间顺序记录的数据序列称为 ( )A 、横截面数据B 、虚变量数据C 、时间序列数据D 、平行数据2、样本数据的质量问题,可以概括为完整性、准确性、可比性和 ( )A 、时效性B 、一致性C 、广泛性D 、系统性3、有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用该模型预测未来 煤炭行业的产出量,这是违反了数据的哪一条原则。
( ) A 、一致性 B 、准确性 C 、可比性 D 、完整性4、判断模型参数估计量的符号、大小、相互之间关系的合理性属于什么检验? ( )A 、经济意义检验B 、统计检验C 、计量经济学检验D 、模型的预测检验5、对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值? ( )A 、i C (消费)5000.8i I =+(收入)B 、di Q (商品需求)100.8i I =+(收入)0.9i P +(价格)C 、si Q (商品供给)200.75i P =+(价格)D 、i Y (产出量)0.60.65i K =(资本)0.4i L (劳动)6、设M 为货币需求量,Y 为收入水平,r 为利率,流动性偏好函数为012M Y r βββμ=+++,1ˆβ和2ˆβ分别为1β、2β的估计值,根据经济理论有 ( ) A 、1ˆβ应为正值,2ˆβ应为负值 B 、1ˆβ应为正值,2ˆβ应为正值 C 、1ˆβ应为负值,2ˆβ应为负值 D 、1ˆβ应为负值,2ˆβ应为正值三、填空题1、在经济变量之间的关系中, 因果关系 、 相互影响关系 最重要,是计量经济分析的重点。
2、从观察单位和时点的角度看,经济数据可分为 时间序列数据 、 截面数据 、 面板数据 。
3、根据包含的方程的数量以及是否反映经济变量与时间变量的关系,经济模型可分为 时间序列模型 、 单方程模型 、 联立方程模型 。
第九章 滞后变量模型
总乘数=3.96875,平均滞后时间=0.944882
有限分布滞后模型的估计 模型:
Yt = a + b0 X t + b1 X t −1 + b2 X t − 2 + L + bs X t − s + ut t = s + 1, s + 2,L , n
宗旨是对分布滞后参数b1……bs施加约束 施加约束, 减少待估变量的个数
1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 50 55 60 65 70 X 75 80 85 90
12.5 12.0 11.5 11.0 10.5 10.0 9.5 50 55 60 65 70 Y 75 80 85 90
模拟2: 年以前X为 ,以后为1 模拟 :1960年以前 为0,以后为 年以前
称为分布滞后消费函数。 含义: 本期的消费Yt不仅依赖于本期的收入Xt, 还依赖于过去s个时期的收入:Xt-1、Xt- 2,…… Xt-s 这样,就将时间因素引入了模型,使模型具有 了动态的特征 动态的特征。 动态的特征
例:固定资产存量
K t = a + b0 I t + b1 I t −1 + b2 I t − 2 + L + bs I t − s + ut t = s + 1, s + 2,L , n
X t -2 - - x1 x2 … xn-2
X t -3 - - - x1 … xn-3
分布滞后模型
Yt = a + b0 X t + b1 X t −1 + b2 X t − 2 + L + bs X t − s + ut t = s + 1, s + 2,L , n
计量经济学 滞后变量模型.详解
克模型与自适应预期模型不满足古典假定,如果用最小二乘法直接进 行估计,则估计是有偏的,而且不是一致估计。
8.4.2 工具变量法
所谓工具变量法,就是在进行参数估计的过程中选择适当的替代
变量,代替回归模型中同随机误差项存在相关性的解释变量。工具变 量的选择应满足如下条件:
(1)与随机误差项不相关,这是最基本的要求;
(2)与所代替的解释变量高度相关,这样的工具变量与替代的解 释变量才有足够的代表性; (3)与其他解释变量不相关,以免出现多重共线性。
8.5 案例分析
表8.5.1给出了某地区消费总额y(亿元)和货币收入总额x(亿元)的 年度资料,试分析消费同收入的关系。 表8.5.1 某地区消费总额和货币收入总额年度资料
2.自回归模型
如果滞后变量模型的解释变量仅包括自变量x的当期值和因变量的若干期 滞后值,即模型形如
例8.1.1
消费滞后
消费者的消费水平,不仅依赖于当年的收入,还同以前的消费水平有关。 其消费模型可以表示为
边际消费倾向:增加的消费和增加的收入之间的比率,也就是 增加的1单位的收入中用于增加的消费部分的比率,用公式表示就 是:MPC=ΔC/ΔY。 例如,收入增加到3万亿元(增加了1万亿元),消费增加到2万 亿元(增加了0.5万亿元),边际消费倾向就是0.5(0.5/1)。 国际上大致的划分是: 通 货 (M0)=银行体系外的纸币或铸币 狭义货币(M1)=流通中的现金+支票存款(以及转账信用卡 存款) 广义货币(M2)=M1+储蓄存款(包括活期和定期储蓄存款) 另外还有M3=M2+其他短期流动资产(如国库券、银行承兑汇 票、商业票据等)
CROSS
y
x
例8.2.2
表8.2.3给出了某行业1975-1994年的库存额y和销售额x的
计量经济学-9
2 2 2 Var (v e0 ) u 0 u,即误差方差比没有测量误差时更大,也导致
函数形式误设的一般检验(RESET) 基本思想:如果原模型y 0 1 x1 2 x2 L k xk u 满足假定(u∣x) 0 E 那么,在方程中添加自变量的非线性关系应该是不显著的。 不过,当解释变量很多时,添加自变量的平方和立方项会产生更多的 解释变量,损失了很大一部分自由度。一般会在模型中添加被解释变量 ˆ ˆ 的预测值的平方y 2及立方y 3: ˆ ˆ y 0 1 x1 2 x2 L k xk 1 y 2 2 y 3 u 检验H 0:1 0, 2 0 F 统计量渐近服从F2,nk 3分布。显著的F 统计量表明存在某种函数形式问题
(2)经典的含误差变量(CEV)假定:cov(x1 , e1 )=0 2 2 2 x1 x1 e1, cov( x1 , e1 ) E ( x1e1 ) E ( x1 e1 ) E (e1 ) 0 e1 e1 ,
自变量与测量误差肯定相关,因此自变量与合成误差u 1e1也必然
因变量测量误差问题 假设模型:y 0 1 x1 L k xk u,满足CLRM 假定 y是对y 观测到的度量,它们之间的误差为:e0 y y , 可估计的模型变成:y 0 1 x1 L k xk u e0 , 随机误差项变成了u e0
自变量测量误差问题
考虑一个简单回归模型:y 0 1 x1 u,假设满足CLRM 假定, 则参数估计是无偏的和一致的,但是x1 观测不到,我们只能观测到x1, 它们之间存在着一个测量误差:e1 x1 x1 假定E(e1 )=0,u与x1和x1 都不相关,此时将x1取代x1 放入原方程进行OLS
计量经济学第九章分布滞后和自回归模型
自回归模型的理论导出
适应性预期(Adaptive expectation)模型
在某些实际问题中,因变量 Yt 并不取决于解释变量的当
前实际值
X
t
,而取决于X
t
的“预期水平”或“长期均衡水X
* t
平” 。
例如,家庭本期消费水平,取决于本期收入的预期值;
❖ 为了解决滞后长度不确定的困难,可以依次估计滞 后效应变量的一期滞后、二期滞后…当发现滞后变 量(加入的最多期滞后)的回归系数在统计上开始 变得不显著,或至少有一个变量的系数改变符号 (由正变负或由负变正)时,就不再增加滞后期, 把此前一个模型作为分布滞后模型的形式,相应参 数估计作为模型的参数估计。
市场上某种商品供求量,决定于本期该商品价格的均衡值。
因此,适应性预期模型最初表现形式是
Yt
0
1
X
* t
t
由于预期变量是不可实际观测的,往往作如下 适应性预期假定:
X
* t
X* t 1
(Xt
X
* t 1
)
其中:r为预期系数(coefficient of expectation), 0r 1。
该式的经济含义为:“经济行为者将根据过去的 经验修改他们的预期”,即本期预期值的形成是一 个逐步调整过程,本期预期值的增量是本期实际值 与前一期预期值之差的一部分,其比例为r 。
这个假定还可写成:
X
* t
X t
(1
)
X
* t 1
将
X
* t
X t
(1
)
X
* t 1
代入
第九章 空间计量经济学
第三节 空间自相关的检验
一、空间自相关的形式表达 时间序列上的自相关 空间自相关 空间地理关系导致的-自身影响邻居,邻居反过来影 响自身-均衡结果受到自身的影响 某种特定关联结构导致的自相关
表示空间自相关的方法是指定一个空间随机过程,可分 为两种类型:空间自回归过程(SAR)和空间移动平均 过程(SMA)。
字母A表示我们要分析的空间单元对象,字母B表示A的 全部二阶Rook邻居
三、基于距离的空间权重矩阵(Distance Based Spatial Wei (一)基于空间距离的空间权重矩阵
空间权值指标随区域 i和 j之间的距离 d 的变化而变化 ij 其取值取决于选定的函数形式。 一般有欧式距离、Chebyshev距离,Braycur距离, Canberra距离和 Gcircle距离. 由于空间距离的计算公式不统一,Pace(1997)提出了 有限距离的设定
空间计量经济学了弥补地理空间临近带来的空间相 关性和空间异质性,通过空间结构参数化方法能更 准确地检验空间变量相互影响的关系、方向和强度 空间计量经济学研究包括以下四个感兴趣的领域: 计量经济模型中空间影响的确定,合并了空间影响的 模型的估计,空间影响存在的说明检验和诊断,空间 预测。 空间计量经济学广泛应用于区域科学、地理经济学、 城市经济学和发展经济学等领域。如研究区域经济、 土地使用、房屋价值、人均收入、环境状况等
空间相关性是指第 i个空间观测单元的观测变 量 yni 与其他各地观测变量之间存在着函数关 系 f
yi f ( y1,, yi1, yi1,, yn ) i , i 1,, n
f
空间自相关通常是空间相关性的核心内容,是用来 测试空间某点的观测值是否与其相邻点的值存在相 关性的一种分析方法。可用来表示属性值相似性与 位置相似性的一致程度
中级计量经济学Lecture 6_滞后变量模型
10
1.分布滞后模型 1.分布滞后模型
被解释变量受解释变量的影响分布在解释变量 不同时期的滞后值上, 不同时期的滞后值上,即模型形如
14
第二节 分布滞后模型的估计
本节基本内容: 本节基本内容:
●分布滞后模型估计的困难 ●有限分布滞后模型的估计
●近似确定滞后期数 ●经验加权估计法 阿尔蒙(Almon) ●阿尔蒙(Almon)法
●无限分布滞后模型介绍
15
一、分布滞后模型估计的困难
滞后长度难于确定的问题 自由度问题 多重共线性问题
Yt = 0.2 X t + 0.7 X t −1 + 0.05 X t − 2 + ε t
7
存款创生
假如央行给银行系统注入1000亿元, 假如央行给银行系统注入1000亿元,那么银行的 1000亿元 储蓄总额最终可达多少呢? 储蓄总额最终可达多少呢?假如法律要求银行必 须留下20%作保证金。 20%作保证金 须留下20%作保证金。
z1, , z2 , z3
回归分析结果整理如下 ˆ 模型一: 模型一: Yt = −66.53 +1.07 Z1t
(−3.67) (50.91) R2 = 0.9943 DW = 1.44 F = 2598 AIC = 106.8
ˆ Yt = -133.18+1.37 Z2t (-5.03) (37.37) R2 = 0.9894 DW =1.04 F =1397 AIC = 117
计量经济学中sdm模型
计量经济学中sdm模型
计量经济学中空间杜宾模型(SDM)是空间滞后模型和空间误差项模型的组合扩展形式,可通过对空间滞后模型和空间误差模型增加相应的约束条件设立。
空间杜宾模型(SDM)是一个通过加入空间滞后变量而增强的SAR模型(空间滞后模型)。
空间计量经济学的核心定义在于空间依赖关系,空间依赖直观上的理解就是个体之间的相关性。
如果一个空间单位的观察值依赖于邻近空间单元的观察值,那么称为两个空间单元之间存在空间依赖关系。
第九章 滞后变量模型
第九章 滞后变量模型一. 单项选择题1.下列属于有限分布滞后模型的是( )。
A. t t t t t u Y b Y b X b Y +++++=-- 22110αB. t t t t u X b X b Y ++++=- 110αC. t k t k t t t t u Y b Y b Y b X b Y ++++++=--- 22110αD.t k t k t t t t u X b X b X b X b Y ++++++=--- 22110α2.消费函数模型211.03.05.0400ˆ--+++=t t t t I I I C ,其中I 为收入,则当期收入I t 对未来消费C t+2的影响是:I 增加1单位,C t+2增加( )。
A. 0.5单位;B. 0.3单位C. 0.1单位;D. 0.9单位3.在分布滞后模型t k t k t t t t u X b X b X b X b Y ++++++=--- 22110α中,长期乘数为( )。
A.0bB. i b (i=1,2,…,k)C.∑=ki ib1D.∑=ki ib4.在分布滞后模型的估计中,使用时间序列资料可能存在的序列相关问题就表现为( )。
A.异方差问题B.自相关问题C.多重共线性问题D.随机解释变量问题5.对于有限分布滞后模型t k t k t t t t u X b X b X b X b Y ++++++=--- 22110α中,如果其参数i b (i=1,2,…, k) 可以近似地用一个关于滞后长度i (i=1,2,…,k) 的多项式表示,则称此模型为( )。
A.有限多项式滞后模型B.无限多项式滞后模型C.考伊克变换模型D.自适应预期模型6.自适应预期模型基于如下的理论假设:影响被解释变量Y t 的因素不是X t,而是关于X 的预期*1+t X ,且预期*1+t X 形成的过程是*1+t X -*t X =)(*1+-t t X X γ,其中0<γ<1,γ被称为( )。
中国农业大学《计量经济学》(10滞后变量模型)(精)
:称为长期乘数或总分布乘数,表示 X 变动一个单
i
k
位时,由于滞后效应而形成的对 Y 总的影响大小。
i 0
处理方法: 对于有限分布滞后模型,其基本思想是设法有目的地 减少需要直接估计的模型参数个数,以缓解多重共线性, 保证自由度。 对于无限分布滞后模型,主要是通过适当的模型变换, 使其转化为只需估计有限个参数的自回归模型。
一、滞后变量模型的种类
滞后变量模型的一般形式为
Yt 0 X t 1 X t 1 2 X t 2 s X t s 1Yt 1 2Yt 2 qYt q ut
其中S、q 分别为滞后解释变量和滞后被解释变 量的滞后期长度。
2、自回归模型 (ADL:auto-regressive distributed lag)
如果滞后变量模型的解释变量仅包括自变量的当期值 和被解释变量的若干期滞后值,即模型形如:
Yt 0 X t 1Yt 1 2Yt 2 qYt q ut
则称这类模型为自回归模型,其中 q 称为自回归模型的阶数。
(1) 经验权数法
所谓经验权数法,是根据实际经济问题的特点及经 验判断,对滞后变量赋予一定的权数,利用这些权数构成 各滞后变量的线性组合,以形成新的变量,再应用最小二 乘法进行估计。 常见的滞后结构类型: 递减滞后结构(a) 不变滞后结构 (b)
型滞后结构 (c)
常见的滞后结构类型
w w
w
0
(2)考伊克(koyck)变换
对于无限分布滞后模型
设
Yt 0
X
i i 0
t i
ut
i 0
i
i =0,1,2,…
第9章 滞后变量
Koyck法是将无限分布滞后模型 转换为自回归模型,然后进行估 计。它以一个滞后被解释变量替 代了大量滞后解释变量,节省自 由度。并且由于滞后一期被解释 变量与解释变量的线性相关程度 低,缓解了多重共线性。
说
明
在实际中,我们常常建立有限分 布滞后模型,而我们阿尔蒙多项 式法进行估计。在下面的案例分 析中,我们主要介绍在eviews下 如何对模型参数进行阿尔蒙多项 式估计。
案例分析
我们考虑1975到1995年中国电 力基本建设投资X与发电量Y,建 立一多项式分布滞后模型用以考 察两者之间的关系。
模型建立
在无法预知电力行业基本建设投 资对发电量影响的时滞期的情况 下,我们取不同的滞后期试算。 试算后发现,在2阶阿尔蒙多项 式变换下,滞后期取到第6期, 估计结果比较有经济意义。
滞后效应及其成因
被解释变量受到自身或另一解释 变量的前几期值影响的现象称为 滞后效应。 产生滞后效应的原因众多,成因 主要有: 1、心理原因 2、技术原因 3、制度原因
滞后变量模型
以滞后变量作为解释变量,就得到滞 后变量模型,它一般形式为:
Yt=β0+ β1Yt-1+‥+ βqYt-q+α0Xt+ α1Xt-1+‥+ αsXt-S+μt
估计结果
估计结果说明
尽管我们使用二阶阿尔蒙多项式 进行估计的参数的t值较小,单 个参数对被解释变量的影响不显 著,然而模型整体的拟合优度较 高,F值也较大,说明变量总体 上对Y存在线性影响,但是有可 能存在多重共线性。
直接OLS估计的结果
Almon vs Ols
分析OLS回归结果,尽管其拟合 优度有所提高,然而,其所有变 量在5%的置信水平下,均不能通 过显著性检验,并且一期滞后, 四期滞后与六期滞后前均出现负 值,与实际经济情况不符。 因此,在有限分布滞后模型中, 运用阿尔蒙多项式法明显优于 OLS估计。
第九章 滞后模型
第九章 滞后变量回归模型回归分析经常遇到时间序列资料,如果在回归模型中不仅含有解释变量X 的当前值而且含有X 的滞后值,它就称为分布滞后模型(Distributed-Lag Model),如t t t t t X X X Y εβββα++++=--221100(9.0.1)就是一个分布滞后模型。
如果模型中包含一个或若干个因变量的滞后值,它就称为自回归模型(Autoregressive Model),如t t t t Y X Y εγβα+++=-1(9.0.2)就是一个自回归模型。
分布滞后模型与自回归模型都属于滞后变量回归模型,它在经济领域有广泛的应用。
一个当前的经济指针,经常受到过去某些经济指针(包括自身的)影响,这是件很常见很容易理解的事情。
我们在处理这一类问题时要考虑下列问题:1.经济分析中滞后起什么作用? 2.滞后的原因是什么?3.在实证分析中对滞后有没有什么理论判别方法?4.自回归与分布滞后有什么关系?能否从一个导出另一个? 5.滞后变量模型中有哪一些统计问题?6.变量之间的滞后是否意味着灾难?如果是,如何度量它? 这些问题有些是不能给出精确定义或精确解答的,只可体会其意思。
我们以下主要是从经济模型的数学形式来展开讨论。
第一节 模型概念:消费滞后、通胀滞后与存款创生实际经济活动中,因变量Y 经常是与经济自变量的过去值有关,而与当前值有关反而少一些。
为了具体说明这种滞后关系,我们看一些实例。
1.消费滞后假如一个消费者从今年起每年工资增加2000元,并将持续一段时间。
他的消费行为将受到怎样的影响呢?一般来说,他不会把当年增加的收入全部花光。
很可能是,他把每增加的2000元当年花掉800元,第二年花掉600元,第三年花掉400元,余下的永久储蓄起来。
这样到第三年,他的消费增加额将是1800元。
这样的消费函数写下就是t t t t t X X X C Y ε++++=--212.03.04.0(9.1.1)这里Y 是消费开支,C 是常数,X 是收入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•2.主观原因
• 经济活动离不开人的参与,人们往往对于信息了解不全面或者受心 理因素的影响,因而对于新的变化了的情况反应迟钝。人们受习惯势力 的影响,往往不能迅速调整自己的行为使之适合于新的环境。由于人们 固有的心理定势和行为习惯,其行为方式往往滞后于经济形势的变化。
•例如 :
•1)中彩票的人不可能很快改变其生活方式。因此,以往的行为延续 • 产生了滞后效应。
•
•例如 :
• 在研究消费函数时,通常认为,本期的消费除了受本期的收入水平 •影响之外,还受前一期收入以及前一期消费水平的影响
•设Ct、Yt分别是t时的消费和收入,则消费函数为
• (9-1)
•这就是含有滞后变量的模型,Yt-1、Ct-1为滞后变量。
•
•又如 :
• 对耐用品的需求(Yt)不仅取决于现在的收入(Xt )、过去的收入水平(Xt-s ), •还取决于耐用品的存量或过去得到的耐用品数量(Yt-1)、价格(Pt )等等。 •可设定需求函数为
•
•一、滞后效应与产生滞后效应的原因
•滞后效应的概念:
• 一般说来,被解释变量与解释变量的因果关系不一定就在瞬时发生, 可 •能存在时间上的滞后,或者说解释变量的变化可能需要经过一段时间才能完 •全对被解释变量产生影响。同样地,被解释变量当前的变化也可能受其自身 •过去水平的影响,这种被解释变量受到自身或另一解释变量的前几期值影响 •的现象称为滞后效应,表示前几期值的变量称为滞后变量 。
•2)消费,人们对某种商品的消费量不仅受商品当前价格影响,而且 • 还受预期价格影响,当人们预期价格上涨时,就会加快当期的购买, • 而当人们预期价格要下降时,就会持币观望,减少当期的购买,由 • 于对将来的预期要依据过去的经验,因此在一定条件下,这种“预 • 期”因素的影响可转化为滞后效应。
•
•二、滞后变量模型
• 由于模型既含有Y对自身滞后变量的回归,还包括着解释变量X分布在不同
•时期的滞后变量,因此一般称为自回归分布滞后模型(ADL)。
• 若滞后期长度有限,称模型为有限自回归分布滞后模型:若滞后期无限, •称模型为无限自回归分布滞后模型。
•
•第二节 分布滞后模型
•一、分布滞后模型
•概念 :• 如果滞后变量模型中没有滞后被解释变量,仅有解释变量X的当期
• (9-2)
•
•产生滞后效应的原因主要有以下几个方面:
•1.客观原因
•(1)技术原因
• 在现实经济运行中,从生产到流通再到使用,每一个环节都需要 •一段时间,从而形成时滞。
•例如 : •1)工业生产中,当年的产出在某种程度上依赖于过去若干期内投资形
• 成的固定资产。
•2)当年农产品产量主要取决于过去一年价格的高低。
•例如 : •1)企业要改变它的产品结构或产量,会受到过去签订的供货合同的制约;
•2)定期存款到期才能提取,造成了它对社会购买力的影响具有滞后性;
•b)管理层次过多、管理的低效率也会造成滞后效应。
• 这些情况说明,当一种变量发生变化时,另一变量由于制度方面 •的原因,需经过一定时期才能做出相应的变动,从而形成滞后现象。
•◆ 基本要求
•1)认识到滞后效应、滞后变量模型是计量经济学建模经常会遇到的问题; •2)了解滞后变量、滞后效应、滞后变量模型、分布滞后模型、自回归模型 • 等概念; •3)掌握分布滞后模型和自回归模型建模方法、参数估计及应用。
•
•第九章 滞后变量模型
•◆ 滞后变量模型 •◆ 分布滞后模型 •◆ 自回归模型 •◆ 格兰杰因果关系检验
•值及其若干期的滞后值,则称为分布滞后模型(distributed-lag model), •也称为外生滞后变量模型。
•分布滞后模型的一般形式为:
•(9-4)
•
•(9-4)
• 分布滞后模型的各系数体现了解释变量的当期值和各期滞后值对被解释 •变量的不同影响程度,因此也称为乘数(multiplier)。
计量经济学第9章滞后变 量模型
2020年7月21日星期二 Nhomakorabea•第九章 滞后变量模型
• 在前面几章中,主要介绍了经典线性回归模型及其在若干基本假定 下的估计问题,并分析了一个或多个假定不满足时所产生的后果及其可 能的改进措施。还探讨了虚拟变量模型问题。然而上述方法还不能解决 经济生活中遇到的全部问题。
•例如:
•3)生产者扩大生产规模和改进产品质量会受到工艺技术水平和生产 能 • 力的限制,生产者将产品的产量调整到最佳水平,需要一定时间来 • 增加设备和改进工艺技术,这段时间长短决定于调整速度,
•
•产生滞后效应的原因主要有以下几个方面:
•1.客观原因
•(2)制度原因 •a)契约、管理制度等因素也会造成经济行为一定程度的滞后。
•
•第一节 滞后变量模型
• 在经济活动中,广泛存在着时间滞后效应,即动态性。某些经济变 •量不仅受到同期各种因素的影响,而且也受到过去某些时期的各种因素 •甚至自身的过去值的影响。
•三个基本概念:
•把这种过去时期的具有滞后作用的变量叫做滞后变量(1agged variable ) 。 •含有滞后变量的模型称为滞后变量模型。 • 滞后变量模型考虑了时间因素的作用,使静态分析的问题有可能成 •为动态分析。含有滞后被解释变量的模型,又称动态模型(dynamic models)。
•——称为短期或即期乘数,表示本期X变化一个单位对Y平均值的影响程度。 •(i=1,2,…, s) •——称为动态乘数或延迟系数,表示各滞后期X的变动对Y
•以滞后变量作为解释变量,就得到滞后变量模型。
•它的一般形式为:
• Yt=β0+β1Yt-1+β2Yt-2+…+βqYt-q+α0Xt+α1Xt-1 +…+αsXt-s+μt
• (9-3)
•其中,q、s为滞后时间间隔,称为滞后期,Yt-q为被解释变量Y的第q期滞后,
•
•
Xt-s为解释变量X的第s期滞后。
•某变量的过去行为是怎样影响变量当前变动路线的??
• 本章将主要介绍经典单方程计量经济学模型中滞后解释变量或(和)滞后被 解释变量的问题,并在此基础上对建立单方程计量经济学模型的方法论进行 简单的总结与讨论。
•
•第九章 滞后变量模型
•◆ 学习目的
• 了解滞后变量、滞后效应、滞后变量模型、分布滞后模型、 •自回归模型等概念及滞后效应产生的原因,掌握分布滞后模型和 •自回归模型的建立及参数估计方法。