分数裂项法解分数计算

合集下载

裂相相消法

裂相相消法

裂相相消法
裂项相消法是一种把一个分数拆分成两个或者两个以上分数的相减或相加的形式,然后再进行计算的方法。

这种方法常用于一些特定的算式中,如求有限数列的和。

裂项相消法的关键在于找到合适的拆分方式,使得拆分后的每个部分都能够进行有效的相消。

常用的裂项相消公式包括:
1.n ( n + 1 ) = 1 n − 1 n + 1 ;
2. 1 n ( n + k ) = 1 k ( 1 n − 1 n + k ) ;
3. 1 2 n − 1 + 2 n + 1 = 1 2 ( 2 n + 1 − 2 n − 1 ) 等。

在使用裂项相消法时,需要注意以下几点:
1.要明确哪些项可以裂项,哪些项不可以裂项;
2.要找到恰当的拆分点,使得拆分后的每个部分都易于计算;
3.要注意拆分后项的符号,避免出现错误的结果。

总的来说,裂项相消法是一种非常实用的数学方法,它能够将复杂的计算转化为简单的计算,帮助我们快速找到问题的答案。

分数裂项法总结.

分数裂项法总结.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2233445566778
1 1 8 若干个分数连加,如果每个分数的分母,
7 8
练习:
都是两个相邻自然数相乘,且分子是1时, 就可以利用裂差公式,把每个分数拆成两 个分数单位的差,消去中间留下两边.
n 2n 1
练习1
Sn
1 1 4
1 47
1 7 10

1
(3n 2)(3n 1)
解:
1 1 11 1 11 1
11
1
Sn

(1 ) ( ) ( 3 4 34 7 37
) 10
(

)
3 3n 2 3n 1
1 (1 1 ) n 3 3n 1 3n 1
n n 1



1 1 1 1 1 1 2 23 3 4 45 56
111111 34 45 56 67 78 89
11 1 1 1 1 1 2 6 12 20 30 42 56
1 + 1 + 1 +L +
1
1 2 23 3 4
就可以利用裂项法公式: n
1 (n
1)

1 n

1 n 1
把每个分数拆成两个分数单位的差,消 23
L
L

(n
1 1)

n

1 n(n
1)

1
n
1 1

n
n 1
分数裂项的减法形式举例如下:
通分与拆分互逆:
Q 11 3 2 1 2 3 23 23 6
11 2 5 7 35

六年级分数-裂项法

六年级分数-裂项法

六年级分数-裂项法1.2分数计算(裂项法)知识要点和基本方法分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。

分数计算同整数计算一样既有知识要求又有能力要求。

法则、定律、性质是进行计算的依据,要使计算快速、准确,关键是掌握运算技巧。

对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力,都有很大的帮助。

公式:(1)平方差公式:)()(22b a b a b a -⨯+=- (2)等差数列求和公式:()n a a a aa a a n n n +=++⋅⋅⋅⋅⋅⋅+++-1132121(3)分数的拆分公式:①)1(1+n n =n 1-11+n ②)(1d n n +=d 1×(n 1-dn +1)例1. 计算:211⨯+321⨯+431⨯+ (100991)例2. 计算:110×11+111×12 +……+159×60例3. 计算:12 +16 +112+120 +130 +142例4. 计算:110×11+111×12 +……+119×20 例5. 计算12×3 +13×4+……+16×7 +17×8例6. 计算:1+12 +16 +112+120例7. 计算:16 +112 +120+130 +142 +156 +172例8. 计算:31+151+351+631+991+1431例9. 计算:11111144771*********++++⨯⨯⨯⨯⨯例10. 计算:22222315356399++++例11. 计算:1111118244880120168+++++例12. 计算:11+21+22+21+31+32+33+32+31+……+1001+1002+……+100100+10099+……+1001例13. 计算:1+211++3211+++43211++++……+20053211+⋅⋅⋅⋅⋅⋅⋅+++例14.计算:2×(1-220051)×(1-220041)×(1-220031)×……×(1-221)例1. 计算:20042003200312005⨯例2. 计算:(751×911×116)÷(113×76×95)例3. 计算:989+9899+98999+……+43421K K 99989999个例4. 计算:(1+21)×(1+41)×(1+61)×(1+81)×(1-31)×(1-51)×(1-71)×(1-91)例5. 计算:200421-131+200221-331+200021-531+……+421-200131+221-200331例6. 计算:(971+97971+9797971+979797971)÷(861+86861+8686861+868686861) 例7. 计算:⎪⎭⎫⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211=.例8. 计算:222345567566345567+⨯⨯+= .例9. 计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= .例10. 计算:4513612812111511016131+++++++= .例11. 计算:()()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= .例12. 计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++⎪⎭⎫⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211=能力训练:1、计算:1) 5132÷132+7143÷143+9154÷1542) 156 +172 +190 +11103) 18 +124 +148 +180 +1120 4) 212005⨯+322005⨯+432005⨯+……+200520042005⨯5) 212+772+1652+……+16772+202126) 21+65+1211+2019+……+1101097) 1+216 +3112 +4120 +5130 +6142 +7156 +8172 +91908) 21+43+87+1615+3231+6463+128127+256255+5125119) 5431⨯⨯+6541⨯⨯+7651⨯⨯+8761⨯⨯+9871⨯⨯+10981⨯⨯。

分数裂项求和方法总结

分数裂项求和方法总结

分数裂项求和方法总结本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March分数裂项求和方法总结(一) 用裂项法求1(1)n n +型分数求和 分析:因为111n n -+=11(1)(1)(1)n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111(1)1n n n n =-++ 【例1】 求111 (101111125960)+++⨯⨯⨯的和。

111111()()......()101111125960111060112=-+-++-=-= (二) 用裂项法求1()n n k +型分数求和 分析:1()n n k +型。

(n,k 均为自然数) 因为11111()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111()()n n k k n n k =-++【例2】 计算11111577991111131315++++⨯⨯⨯⨯⨯ 111111*********()()()()()25727929112111321315=-+-+-+-+- 11111111111[()()()()()]2577991111131315=-+-+-+-+-111[]2515115=-= (一) 用裂项法求()k n n k +型分数求和 分析:()k n n k +型(n,k 均为自然数) 11n n k-+=()()n k n n n k n n k +-++=()k n n k + 所以()k n n k +=11n n k-+ 【例3】 求2222 (1335579799)++++⨯⨯⨯⨯的和 1111111(1)()()......()33557979911999899=-+-+-++-=-=(二) 用裂项法求2()(2)k n n k n k ++型分数求和 分析:2()(2)k n n k n k ++(n,k 均为自然数) 211()(2)()()(2)k n n k n k n n k n k n k =-+++++【例4】 计算:4444 (135357939597959799)++++⨯⨯⨯⨯⨯⨯⨯⨯11111111()()......()()1335355793959597959797991113979932009603=-+-++-+-⨯⨯⨯⨯⨯⨯⨯⨯=-⨯⨯= (一) 用裂项法求1()(2)(3)n n k n k n k +++型分数求和 分析:1()(2)(3)n n k n k n k +++(n,k 均为自然数) 1111()()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-++++++++ 【例5】 计算:111......1234234517181920+++⨯⨯⨯⨯⨯⨯⨯⨯⨯1111111[()()......()]3123234234345171819181920111[]3123181920113920520=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=--⨯⨯⨯⨯=(二) 用裂项法求3()(2)(3)k n n k n k n k +++型分数求和 分析:3()(2)(3)k n n k n k n k +++(n,k 均为自然数) 311()(2)(3)()(2)()(2)(3)k n n k n k n k n n k n k n k n k n k =-++++++++ 【例6】 计算:333 (1234234517181920)+++⨯⨯⨯⨯⨯⨯⨯⨯⨯111111()()......()1232342343451718191819201112318192011396840=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=--⨯⨯⨯⨯= (七)用裂项法求复合型分数和(例题略)。

小学六年级数学难题:分数计算(裂项法)

小学六年级数学难题:分数计算(裂项法)

、裂项法小学数学课本在讨论分数加减法时曾指出:两个分母不同的分数相加减,自然数,公分母正好是它们的乘积.把这个例题推广到一般情况,就有一个很有用的等式:下面利用这个等式,巧妙地计算一些分数求和的问题例1 计算:分析与解此题按常规方法先通分后再求和,显然计算起来十分繁杂是 1 ,而分母又都是相邻两个自然数的积,符合上面等式的要求.如果按上面等式把题目中的前12 个加数也分别写成两个单位分数之差的形式,就得到下面12 个等式:上面12 个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法.例2 计算:分析与解这里的每一项的分子是1,分母不是相邻两个自然数的积,但都是从 1 开始的连续若干个自然数的和,这使我们联想到计算公式:1+当n分别取1,2,3,⋯,100时,就有即题目中的每一项都变成了一个分子为2、分母为相邻两个自然数乘积的形式,略加变形就得到例 1 的形式,仿照例 1 的方法便可求出解来分析与解猛一看,此题似乎无法下手,而且与裂项法也没关系.但小学数学课本上曾说过,减法是加法的逆运算.换句话说,任一加法算式都可以改为这个题的答案是否只有这一个呢?如果不只一个,怎样才能找出所有答案呢?为此,我们来讨论这类问题的一般情况.设n、x、y 都是自然数,且当t=1 时,x=7,y=42,当t=2 时,x=8,y=24,当t=3 时,x=9,y=18,当t=4 时,x=10,y=15,当t=6 时,x=12,y=12,当t=9 时,x=15,y=10,当t=12 时,x=18,y=9,当t=18 时,x=24,y=8,当t=36 时,x=42,y=7.故□和○所代表的两数和分别49、32、27、25.为例 4 已知A、B、C、D、E、F为互不相等的自然数,当A、B、C、D、E、F 各为什么数时,下面等式成立?当A=3 ,B=7,C=43,D=1807,E=3263443,F=10650056950806时,等式成立.即这方法计算量太大,我们试着找另外方便一些的解法在上面两种解法中,后面的解法明显比前面的解法简便.下面我们把后面的那种解题方法一般化.当A 有n个不同的约数a1,a2,a3,⋯,a n时练习一1.计算:2. 计算:4.当A、B、C、D、E、F各是什么不同的自然数时,下式成立?5. 计算:。

(完整版)六年级分数裂项法.doc

(完整版)六年级分数裂项法.doc

第二讲分数 1.2NT1.2 分数计算(裂项法)知要点和基本方法分数算是小学数学的重要内容,也是数学的重要内容之一。

分数算同整数算一既有知要求又有能力要求。

法、定律、性是行算的依据,要使算快速、准确,关是掌握运算技巧。

算式真察,剖析算是的特点及个数之的关系,巧妙、灵活的运用运算定律,合理改运算序,使算便易行,启迪思,培养合分析、推理能力和灵活的运算能力,都有很大的帮助。

公式:( 1)平方差公式:a2 b2 ( a b) ( a b)( 2)等差数列求和公式:a1 a2 a3 an 1 a n1a1 a n n2( 3)分数的拆分公式:① 11) =1- 1n(n n n 1② 1d) =1×(1- 1 )n(n d n n d 裂项法:例1. 算: 1 + 1 + 1 +⋯⋯+99 11 2 2 3 3 4 10011 1例4.算:++⋯⋯+10×1111×1219× 20例2.1 1 1算:10× 11+11×12+⋯⋯+59× 60例5.1 1 1 1算2×3+3×4 +⋯⋯+6× 7+7× 8例3.算:21+16+121+201+301+421六年级第一学期NT例6. 算: 1+1+1+1+126 12 20例 10. 算:22 2 2 23 15 35 63 99例7. 算:1 1 1 1 1 1 16+12+20+30+42+56+72例 11. 算:11 1 1 1 18 24 48 80 120 168例 8.算:1+1+1+1+1+1 315 3563 99 143例 9. 算:14 1711011311 4 7 10 13 16例 12. 算:1+1+2+1+1+2+3+2+1+⋯⋯+ 1 +2+⋯⋯+100 +99+⋯⋯+ 1 1 2 2 2 3 3 3 3 3 100 100 100 100 100例 13. 算: 1+ 1 +1 1 +113+⋯⋯+1 2 311 2 2 3 2 4 2005例 14.算: 2×( 1- 1 2)×( 1- 1 2)×( 1-12)×⋯⋯×(1-12)2005 2004 2003 2第二讲分数 1.2NT六年级 第一学期NT综合计算例 1.计算 : 2005120032003 2004例 2. 计算 : ( 1 5 × 1 1 × 6 )÷( 3 × 6 × 5)7 9 11 11 7 9例 3.计算 : 98+ 99 8 + 999 8+⋯⋯+ 9999899999个 9例 4.计算 : ( 1+1)×( 1+1)×( 1+1)×( 1+1)×( 1-1)×( 1- 1 )×( 1-1)×( 1- 1)2468357 9例 5. 计算 : 2004 1 - 1 1 +2002 1 -3 1 +2000 1 -5 1 +⋯⋯+ 4 1 -2001 1 +2 1 - 200312 3 2 3 2 3 2 3 2 3例 6.计算 : ( 1+ 1 +1 + 1 )÷( 1 + 1 + 1 + 1 )979797979797 97979797868686868686 86868686第二讲 分数 1.2NT例 7.计算 : 11 1 11 111 111 11 1=.2 4 610359例 8.计算 :567345 566 =.567 345 222例 9.计算 : 7116 61 1 5 511 4 41 1 3 31 12 = .6 7 5 6 4 5 3 4 2 3例 10. 计算 :11 1 1 1 1 1 1 = .3 6 10 15 21 28 36 451 29 1 29 1 291 29 1 29例 11. 计算 :2 3 30 31 = .1 31 1 31 1 311 31 1 312 328 29计算 :12 3 4 5 6 21 2 3 4 5 6 1例 12.2 3 4 5 6 72 3 4 5 6 7211 2 3 4 5 6 2 3 4 5 62 345 673 456 =7六年级第一学期NT能力训练:1、分数化成最分数:12 =18 = 4 =13 =8 = 2 =18 27 20 65 32 82、小数化成最分数:0.75= 4.8= 1.25=0.36= 3.2= 5.4=3、算:1) 51 2 ÷1 2 + 71 3÷1 3 + 914÷1 4 2005 2005 2005 20053 34 45 51 2 + 2 3 + 3 4 +⋯⋯+ 2004 20054)2)1 1 1 156 +72 +90+1102222 25)21 + 77 + 165 +⋯⋯+ 1677 + 20213) 1 1 1 1 18+24+48+80+120 1 5 11 19 1096) 2 + 6 + 12 + 20 +⋯⋯+ 1101111111 17)1+ 26+ 312+ 420+ 530+ 642+ 756+ 872+ 990第二讲分数 1.2NT137 1531 631272555118) 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 5121 1 1 1 1 19) 3 45 + 4 56 + 5 67 + 6 78 + 7 89 + 8 9 10。

分数裂项法解分数计算

分数裂项法解分数计算

分数裂项法解分数计算
首先,我们来看一个例子:
计算分数1/5+2/7
传统的方法是先找到两个分数的公共分母,然后进行分子相加、分母相同的运算。

但是这种方法不直观,计算过程繁琐。

对于例子中的1/5+2/7,我们可以这样进行计算:
1/5=(1/6+1/30)
2/7=(1/7+1/14)
将两个分数进行分解,然后合并:
1/5+2/7=(1/6+1/30)+(1/7+1/14)
=1/6+1/30+1/7+1/14
现在,我们需要找到这四个分数的最小公倍数作为新的分母。

最小公倍数是60。

1/6=10/60
1/30=2/60
1/7=8/56
1/14=4/56
现在,我们可以将分数相加:
10/60+2/60+8/56+4/56=24/60+12/60+8/56+4/56
再进行分子相加,分母保持不变:
=(24+12+8+4)/60
=48/60
最后,我们可以将分数简化为最简形式:
48/60=4/5
所以,1/5+2/7=4/5
通过分数裂项法,我们将原本繁琐的计算简化为了几个简单的分数的
相加操作,极大地提高了计算效率。

除了分数求和之外,分数裂项法还可以应用于分数减法、分数乘法和
分数除法等计算中。

通过将分数进行合理的拆分,我们可以简化计算过程,更加直观地理解运算原理。

总而言之,分数裂项法是一种简化分数计算的方法,通过分解分数,
将问题转化为多个简单的分数的求和或相乘运算,从而提高计算效率和准
确性。

它在数学计算中具有重要的应用价值。

裂项法在分数计算中的应用

裂项法在分数计算中的应用

裂项法在分数计算中的应用裂项法是分数运算中常用的简便方法之一,而且运用裂项法往往会使繁杂的分数计算简单化,所以掌握裂项法的解题要求和思想是十分重要的。

裂项法的原理:我们在进行分数计算使运用了BA B A B A B A A B B A 11,11,我们将此运算逆向思维,则可以得到BA B A B A B A B A A B 11,11 。

即当一个分数的分母是两个正整数的乘积,而分子是这两个正整数的差或和,则我们可以将这个分数写成两个分数的和或差。

裂项法的原理比较简单,但是分数计算中所涉及到的题型的变化和其他数学思想的渗入、结合,使有些问题变得复杂、棘手。

下面就有关于裂项法所涉及到的一些题型和变化进行一番探索。

例1、计算200520041431321211 分析:此题是运用裂项法进行分数计算的最基本的运用,分母是两个正整数的乘积,而分子是这两个正整数的差,所以我们可以将每一个分数分裂成两分数的差,即111)1(1 n n n n 20052004200511200512004131212111 解:原式 小结:通过以上的介绍可以看到在分数计算中,有的计算如果运用通分等思想,由于题目过于复杂,不容易计算,而使用裂项法就使解题变得十分的简单。

111111131212111)1(1321211 n n n n n n n 例2、计算561542133011209127311 分析:此题好象不符合裂项法的要求,但是我们仔细分析,发现分母上的 ,5420,4312 ,而分子恰好是这两个正整数的和:3+4=7,4+5=9,…,所以可以运用裂项法的原理来解。

)8171()7161()6151()5141()4131(311 解:原式 87811 例3、计算200520032752532312 分析:此题是分数运用裂项法计算的最基本的变化,但是从题中可以看出,此种类型的题目还是没有脱离裂项法的基本题型:分母是两个正整数的乘积,分子是这两个正整数的差。

分数巧算之裂项法

分数巧算之裂项法

【举一反三】 计算:
3 3 3 3 3 (1) 6 12 20 30 42
7 7 7 7 7 (2) 42 56 72 90 110

1 1 1 1 ....... 2 3 3 4 4 5 49 50 1 1 1 1 1 1 1 1 1 ....... 2 3 3 4 4 5 5 49 50 1 1 2 50 24 12 50 25
【举一反三】 计算:
1 1 1 通过拆分,我们将例2转化成了 n(n 1) n n 1
的形式,因此
1 1 1 1 1 原式 5 ( ) 1 2 2 3 3 4 4 5 5 6 5 5 6 25 6
【举一反三】计算:
8 8 8 8 8 (1) 23 24 24 25 25 26 26 27 27 28
3 (
1 1 1 1 1 ) 20 30 42 56 72
分母写成两个 相邻的数的乘积
1 1 1 1 1 3 ( ) 4 5 5 6 6 7 7 8 8 9
1 1 1 1 1 1 1 1 1 1 3 ( ) 4 5 5 6 6 7 7 8 8 9 1 1 3 ( ) 4 9 5 5 3 36 12
1 1 1 将每一个分数分裂成两分数的差,即 n(n 1) n n 1
1 1 1 1 1 ...... 1 2 2 3 3 4 48 49 49 50
1 1 1 1 1 1 1 1 1 1 ( ) ( ) ( ) ...... ( ) ( ) 1 2 2 3 3 4 48 49 49 50

裂项法

裂项法

裂项法解分式方程
在解分数的加减时,常常会遇到一些数值非常大但又不好解得分数,然而有时他们却拥有着特性,例如:分母是两个正整数的乘积,分子是那两个正整数的差1/n(n+1)=1/n - 1/n+1
裂项法的思想是将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和的目的。

但当分母不是两个相邻的数的乘积时,结果先找出两个正整数相差几,再用几分之一去乘,然后用算式的首项减去尾项。

对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:
⎪⎪⎭
⎫ ⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n ⎪⎪⎭
⎫ ⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n
解分式方程:
例1:
1/30=1/n - 1/n+1
这种时候就可以利用裂项法,将30拆成5*6,两个积数的差是它的分子。

通过裂项法来解得n=5
例2:
1/40=1/3(1/n-1/n+k)
解:这道题可以用裂项法中的
由1/3可知40需要拆成两个差为3的积数,所以代入公式n 为5。

小学六年级数学难题:分数计算(裂项法)

小学六年级数学难题:分数计算(裂项法)

一、裂项法小学数学课本在讨论分数加减法时曾指出:两个分母不同的分数相加减,自然数,公分母正好是它们的乘积.把这个例题推广到一般情况,就有一个很有用的等式:下面利用这个等式,巧妙地计算一些分数求和的问题.例1计算:分析与解此题按常规方法先通分后再求和,显然计算起来十分繁杂.是1,而分母又都是相邻两个自然数的积,符合上面等式的要求.如果按上面等式把题目中的前12个加数也分别写成两个单位分数之差的形式,就得到下面12个等式:上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法.例2 计算:分析与解这里的每一项的分子是1,分母不是相邻两个自然数的积,但都是从1开始的连续若干个自然数的和,这使我们联想到计算公式:1+当n分别取1,2,3,…,100时,就有即题目中的每一项都变成了一个分子为2、分母为相邻两个自然数乘积的形式,略加变形就得到例1的形式,仿照例1的方法便可求出解来.分析与解猛一看,此题似乎无法下手,而且与裂项法也没关系.但小学数学课本上曾说过,减法是加法的逆运算.换句话说,任一加法算式都可以改为这个题的答案是否只有这一个呢?如果不只一个,怎样才能找出所有答案呢?为此,我们来讨论这类问题的一般情况.设n、x、y都是自然数,且当t=1时,x=7,y=42,当t=2时,x=8,y=24,当t=3时,x=9,y=18,当t=4时,x=10,y=15,当t=6时,x=12,y=12,当t=9时,x=15,y=10,当t=12时,x=18,y=9,当t=18时,x=24,y=8,当t=36时,x=42,y=7.故□和○所代表的两数和分别为49、32、27、25.例4 已知A、B、C、D、E、F为互不相等的自然数,当A、B、C、D、E、F各为什么数时,下面等式成立?当A=3,B=7,C=43,D=1807,E=3263443,F=10650056950806时,等式成立.即这方法计算量太大,我们试着找另外方便一些的解法.在上面两种解法中,后面的解法明显比前面的解法简便.下面我们把后面的那种解题方法一般化.当A有n个不同的约数a1,a2,a3,…,a n时练习一1.计算:2.计算:4.当A、B、C、D、E、F各是什么不同的自然数时,下式成立?5.计算:。

分数计算裂项相消在三项相乘的用法

分数计算裂项相消在三项相乘的用法

分数计算裂项相消在三项相乘的用法分数的计算是数学中的一项基础技能,我们常常会遇到需要计算分数的问题。

而裂项相消是在分数计算中的一种常用方法,可以使计算过程简化并得到准确的结果。

下面我们就来详细了解一下裂项相消在三项相乘中的用法。

首先,我们来看一个简单的例子,假设我们需要计算以下表达式的值:(2/3) * (3/4) * (4/5)。

我们可以按照分数的乘法法则,将分子相乘得到新的分子,分母相乘得到新的分母,即2 * 3 * 4 / 3 * 4 * 5。

然后,我们可以对分子和分母进行约分,即可以找到它们的最大公约数,将分子和分母都除以最大公约数,得到最简分数。

然而,通过裂项相消的方法,我们可以更加简便地计算出结果。

具体做法如下:首先,我们观察到在三项中,有些因子的分子和分母是相同的,这时我们可以直接将这个因子消去,即相乘后可以得到结果的分数。

在这个例子中,我们可以发现分数(3/4)中的分子3与分数(2/3)中的分母3是相同的,那么我们可以将它们相约并消去。

消去后,我们的表达式变为(2/1) * (1/4) * (4/5)。

接下来,我们继续寻找能够相消的因子。

我们可以发现(2/1)中的分母1与(1/4)中的分子1相同,那么我们可以将它们相约并消去。

消去后,我们的表达式变为(2/1) * (1/1) * (4/5)。

此时,我们可以发现(2/1)和(1/1)都是整数,不需要继续进行化简。

我们仅需将剩余的分数相乘得到结果即可,即2 * 1 * 4 / 1 * 5 = 8 / 5。

通过裂项相消的方法,我们可以轻松得到结果为8/5。

相比起繁琐的分数的乘法运算,裂项相消可以简化操作并节省时间。

特别是在计算复杂的分数表达式时,使用裂项相消可以显著提高计算效率。

需要注意的是,在使用裂项相消时,我们要仔细观察各个分数项中的分子和分母,找出能够相消的因子。

只有当分子和分母完全相同时,才能将其约去。

而如果我们错过了某个可以相消的因子,可能会导致结果的不准确。

分数裂项法总结.知识讲解

分数裂项法总结.知识讲解
一、两个相邻数裂项方法:
若干个分数连加,如果每个分数的 分母,都是两个相邻自然数相乘, 且分子是1时,就可以利用裂项法 式,把每个分数拆成两个分数单位
的差,消去中间留下两边.
一、两个相邻数裂项:
一.分母是两个相邻数裂项:若干个分数连加,如果每个分数的分母,
都是两个相邻自然数相乘,且分子是1时,
解:
1 1 11 1 11 1
11
1
Sn
(1 ) ( ) ( 3 4 34 7 37
) 10
(
)
3 3n 2 3n 1
1 (1 1 ) n 3 3n 1 3n 1
判断:
判断:
判断:
1111111 2 6 12 20 30 42 56
1+ 1+ 1+ L+ 1 1 2 2 33 4 2 0 1 0 2 0 1 1
总结:
1 1 1 1
1 2 23
(n 1) n n (n 1)
1 1 n 1
n n 1
一 .分 母 是 两 个 相 邻 数 裂 项 法 总 结 :
就可以利用裂项法公式: n
1 (n
1)
1 n
1 n 1
把每个分数拆成两个分数单位的差,消去中间留下两边即:
总结:
1 1 2
1 23
L
L
(n
1 1)
n
1 n(n
1)
1
1 n 1
n n 1
分数裂项的减法形式举例如下:
通分与拆分互逆:
Q 11 3 2 1 2 3 23 23 6
1= 3 2 =1 1 6 23 23 2 3
把每个分数拆成两个分数单位的差,
消 去 中 间 留 下 两 边 .即 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数裂项计算
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项
一、“裂差”型运算
将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b
⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b
=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:
1(1)(2)
n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 裂差型裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:
常见的裂和型运算主要有以下两种形式:
(1)11a b a b a b a b a b b a
+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:
裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

【例 1】
111111223344556
++++=⨯⨯⨯⨯⨯ 。

【巩固】 111 (101111125960)
+++⨯⨯⨯ 【巩固】 2222109985443
++++=⨯⨯⨯⨯L 【例 2】 111111212312100
++++++++++L L L 【例 3】 111113355799101
++++=⨯⨯⨯⨯L 【巩固】 计算:1111251335572325⎛⎫⨯++++= ⎪⨯⨯⨯⨯⎝⎭
L 【巩固】 2512512512512514881212162000200420042008
+++++⨯⨯⨯⨯⨯L 【巩固】 计算:3245671255771111161622222929
++++++=⨯⨯⨯⨯⨯⨯ 【例 4】 计算:11111111()1288244880120168224288
+++++++⨯= 【巩固】 11111111612203042567290
+++++++=_______ 【巩固】 11111113610152128
++++++= 【巩固】 计算:1111111112612203042567290
--------= 【巩固】 11111104088154238
++++= 。

【例 5】 计算:1111135357579200120032005
++++⨯⨯⨯⨯⨯⨯⨯⨯L 【例 6】 7 4.50.161111181315356313 3.75 3.23
⨯+⎛⎫⨯+++= ⎪⎝⎭
-⨯& 【例 7】 计算:11111123420261220420
+++++L 【巩固】 计算:11111200820092010201120121854108180270
++++= 。

【巩固】 计算:1122426153577
++++= ____。

【巩固】 计算:1111111315356399143195
++++++ 【巩固】 计算:15111929970198992612203097029900+++++++=L .
【例 8】
111123234789
+++⨯⨯⨯⨯⨯⨯L 【巩固】 计算:1111232349899100
+++⨯⨯⨯⨯⨯⨯L 【巩固】 计算:1111135246357202224
++++⨯⨯⨯⨯⨯⨯⨯⨯L 【巩固】 4444 (135357939597959799)
++++⨯⨯⨯⨯⨯⨯⨯⨯ 【巩固】 999897112323434599100101
++++⨯⨯⨯⨯⨯⨯⨯⨯L 【例 9】 11111123423453456678978910
+++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【巩固】 333 (1234234517181920)
+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【例 10】 计算:57191232348910
+++=⨯⨯⨯⨯⨯⨯L . 【巩固】 计算:5717191155234345891091011
⨯++++⨯⨯⨯⨯⨯⨯⨯⨯L () 【巩固】 计算:3451212452356346710111314
++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯L 【例 11】 12349223234234523410
+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯L L 【例 12】 123456121231234123451234561234567
+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【巩固】 计算:23993!4!100!
+++=L . 【例 13】 234501(12)(12)(123)(123)(1234)(12349)(1250)++++⨯++⨯++++⨯+++++++⨯+++L L L 【巩固】 2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++L L L 【巩固】 23101112(12)(123)(1239)(12310)
----⨯++⨯++++++⨯++++L L L () 【例 14】 22222211111131517191111131
+++++=------ . 【巩固】 计算:2222221
11111(1)(1)(1)(1)(1)(1)23454849
-⨯-⨯-⨯-⨯⨯-⨯-=L 【巩固】 计算:222222223571512233478
++++⨯⨯⨯⨯L 【巩固】 计算:222222222231517119931199513151711993119951
++++++++++=-----L . 【巩固】 计算:22222222
222213243598100213141991
++++++++=----L . 【巩固】 计算:2222
1235013355799101
++++=⨯⨯⨯⨯L . 【例 15】 5667788991056677889910
+++++-+-+⨯⨯⨯⨯⨯ 【巩固】 36579111357612203042
++++++ 【巩固】计算:1325791011193457820212435
++++++++= 【巩固】 123791117253571220283042+++++++
【巩固】 1111120102638272330314151119120123124
+++++++++ 【巩固】 35496377911053116122030425688⎡⎤⎛⎫-+-+--÷ ⎪⎢⎥⎝⎭⎣⎦
【巩固】 计算:57911131517191612203042567290
-+-+-+-+ 【巩固】 11798175451220153012
++++++ 【例 16】 22222222
122318191920122318191920
++++++⋯⋯++⨯⨯⨯⨯ 【巩固】 11112007111(......)(......)120072200620062200712008120062200520061
++++-+++⨯⨯⨯⨯⨯⨯⨯ 【例 17】 计算:11111123459899515299
+++++++=⨯⨯⨯L L 【例 18】 计算:24612335357357911
++++=⨯⨯⨯⨯⨯⨯⨯L 【例 19】 计算:283411
12222221335571719135357171921⎛⎫++++-+++= ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭L L。

相关文档
最新文档