工程力学第九章 扭转
工程力学.第九章 扭 转
二、极惯性矩与抗扭截面系数
I p A dA
2
10
d
Wp
Ip R
1、实心圆截面
O
D
I p A dA 0 2 d
2 R 3
1 2
R
4
D
4
32
∴ I p
Wp
D
Ip R
4
单位:m4,cm4,mm4。
Ip
32
D
3
单位:m3,cm3,mm3。
上海应用技术学院
1
T1 MC
2
2
T3
B MB
3
D
T2
B
C
(3) 绘制扭矩图
6
MB
T1 = –4.775 kN· m T2 = –9.55 kN· m
MC
MA
MD
T3 = 6.336 kN· m
B
C
A
6.336
D
T
C B 4.775 9.55 CA 段为危险截面:
上海应用技术学院
+
-
A
D
x
| T |max = 9.55 kN· m
Ti li GI p
i
15
(rad/m)
在工程上限制 ,使其不超过许用扭转角 [ ]:
max
Tmax GI p
∵ :rad/m, [ ]:º /m ∴
max
T GI p 180
(/m)
对一般传动轴: [ ] = (0.5~1.0) º /m 对精密机械的轴: [ ] = (0.25~0.50) º /m
工程力学C-第9章 扭转
max
84.88MPa
16
min max
10 42.44MPa 20
§9-6 圆轴扭转破坏与强度条件
一、圆轴扭转时的破坏现象
脆性材料扭转破坏
沿450螺旋曲面被拉断
塑性材料扭转破坏
沿横截面被剪断
二、圆轴扭转的强度条件
D 1.192 得: d1
2
D2
A空 A实 4
(1 0.8 )
d1
4
2
0.512
例6 传动轴AB传递的功率为 P =7.5kW, 转速n=360r/min。轴的 AC 段为实心圆轴, CB 段为空心圆轴。已知:D =30mm,d =20mm。试计算AC段的最大剪应力,CB 段横截面上内、外缘处的剪应力。 解: (1)计算外力偶矩和扭矩 P AC段最大剪应力: m 9549 198.9N m n Tmax D 1max 37.5 10 6 Pa 37.5MPa T m 198.9N m I P1 2 (2)计算极惯性矩 CB段上内外缘的剪应力: D 4 T d 8 4 AC段:I P1 7.95 10 m 2内 I P2 2 32 D 4 4 31.2 10 6 Pa 31.2MPa (1 ) CB段:I P 2 T D 32 2外 8 4 6.38 10 m I P2 2 46.8 10 6 Pa 46.8MPa (3)计算应力
A
ρτ
ρ
dA T
d 2 G ρ dA T dx A
令:
ρ dA I P
2 A
极惯性矩
d G IP T dx
工程力学-第9章 扭转
第9章扭转(6学时)教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。
教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。
教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。
教具:多媒体。
通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
通过例题、练习和作业熟练掌握强度和刚度计算。
本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。
教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。
教学学时:6学时。
教学提纲:9.1 引言工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。
还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。
例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图9-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。
在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图9-2)。
以扭转变形为主的杆件通常称为轴。
截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。
图9-1图9-2本章主要讨论圆轴扭转时的应力、变形、强度及刚度计算等问题,同时非圆截面杆进行简单介绍。
圆轴扭转的计算(工程力学课件)
9 549 20 637 300
Nm
318 N.m 1 477 N.m 2 1432 N.m 3 637 N.m
B
1C
A 2
D 3
扭矩图(T图)
318 N.m
477 N.m
1432 N.m
637 N.m
B
C
A
D
练习1
画扭矩图!
5
3
+
A
B
C
练习2
3000N.m
3000
+
1200
T图(N.m)
G E
材料的三个弹性常数
2(1 ) 由三个中的任意两个,求出其第三个
扭转的概念 扭矩和扭矩图
扭转变形
角应变
扭转角
受力特点
大小相等、方向相反, 作用面垂直于杆件轴线的外力偶矩
变形特点 任意横截面绕杆轴线产生转动
典型构件
以扭转变形为主的杆件通常称为轴 最常用的是圆截面轴
扭转的工程实例
螺丝刀杆工作时受扭
输出功率: PB 10 kW PC 15 kW PD 20 kW
M eA
9
549
PA n
9 549 45 1 432 300
Nm
M eB
9
549 PB n
9
549 10 318 300
Nm
M eC
9 549 PC n
9 549 15 477 300
Nm
M eD
9 549 PD n
(1)条件 (2)求约束力
扭矩 T图
T
Ip
Tl l FN l
GI P
EA
扭转
拉压
max
Tmax Wp
工程力学第9章(扭转)
壁厚 由于管壁很薄,近似认为切应力沿壁厚均匀分布 由于管壁很薄,
2 2 T = ∫ τδ R0 dθ = 2π R0τδ 0 2π
T ∴ τ= 2 2π R0 δ
二、纯剪切与切应力互等定理
1. 切应力互等定理
∑ M (F ) = 0 :
z
(τδ dy )dx = (τ ′δ dx )dy
∴ τ =τ′
∑M ∑M
x
(F ) = 0 : (F ) = 0 :
T1 − M A = 0
解得: 解得: T1 = 76.4N ⋅ m 2-2: :
x
−T2 − M C = 0
解得: 解得: T2 = −114.6N ⋅ m ⑶ 绘制扭矩图
§9-3 切应力互等定理与剪切胡克定律
一、薄壁圆管的扭转应力
试验现象: 试验现象: 1.各圆周绕轴线相对转动,但其形状、 1.各圆周绕轴线相对转动,但其形状、大小及相 各圆周绕轴线相对转动 邻两圆周线之间的距离不变, 邻两圆周线之间的距离不变,说明横截面上无正应 力。 2.在小变形下 各纵向线倾斜相同的小角度, 在小变形下, 2.在小变形下,各纵向线倾斜相同的小角度,但 仍为直线,表面的矩形变为平行四边形, 仍为直线,表面的矩形变为平行四边形,说明横截 面上有切应力
[τ ] =
τU
n
二、圆轴的扭转强度条件
τ max
工程力学——圆轴的扭转
Wn=
Ip d
d 3 0.2d 3 16
(9-5)
2
图9.9(a)
第9章 圆轴的扭转
(2) 空心圆截面(见图 9.9(b))
Ip = D4 d 4 D4 1 4 0.1D4 1 4 (9-6)
32
32
Wn
=
Ip D
D3
16
14
0.2D3
1 4
2
(9-7)
式中,α = d ,为空心圆轴 D
图9.11
第9章 圆轴的扭转
解:由图 9.11 可知,各段扭矩大小相等,各段的极惯性
矩为 AC 段:Ip= D4 = 3.14 304 =7.952×104mm4
32
32
CB 段:Ip= D4 32
14
3.14 304 32
1
20 30
4
6.381104
mm4
所以根据式(9-12)得
(1) 先确定扭转 Mn 向。 (2) τ 矢量线与半径垂直。
(3) τ 指向与扭矩转向相同。
由 应 力 分布 图可 看 出, 在 圆截 面 的边 缘 上, 即 当
ρ=ρmax=R 时 , τ=τmax , 由 此 可 得 最大 切 应力 公 式 为
τma x=
Mn • Ip
R
式中,R
与
I
都是与截面尺寸有关的几何量,
(2) 按强度条件设计轴的直径 d1。由式(9-8)得
τmax=
Mn Wn
Mn 0.2d13
≤[τ]
得
d1≥
3
Mn
0.2
3
1080 103 0.2 40
=51.3mm
第9章 圆轴的扭转
工程力学(静力学与材料力学)第二篇第九章扭转
P = Mω
2πn P ×10 = M × 60
3
M N⋅m = 9549
P kW nr / min
例: P=5 kW, n=1450 r/min, 则 =
5 kW M=9549× (N⋅m) = 32.9 N⋅m 1450r/min
单辉祖:材料力学教程 8
扭矩与扭矩图
扭矩
扭矩定义-矢量方向垂直于横截面的内力偶矩, 扭矩定义-矢量方向垂直于横截面的内力偶矩, 并用 T 表示 符号规定-按右手螺旋法则将扭矩用矢量表示, 符号规定-按右手螺旋法则将扭矩用矢量表示, 矢量方向与横截面外法线方向一致 的扭矩为正, 的扭矩为正,反之为负
极惯性矩与抗扭截面系数
空心圆截面
dA=2πρdρ
Ip = ρ dA =
2
∫A
∫
D/ 2
d/2
ρ2 ⋅ 2πρ dρ
πD4 α= d Ip = 1−α4 D 32 Ip πD3 W= = 1−α4 p D 16 2
(
)
(
)
实心圆截面
πd4 Ip = 32
单辉祖:材料力学教程
πd 3 W= p 16
24
γ ≈tanγ =1.0×10−3rad
τ = Gγ
τ = (80×109 Pa)(1.0×10−3 rad) = 80 MPa
注意: 虽很小, 很大, 注意:γ 虽很小,但 G 很大,切应力 τ 不小
单辉祖:材料力学教程 18
例 3-2 一薄壁圆管,平均半径为 0,壁厚为δ,长度为 , 一薄壁圆管,平均半径为R 长度为l, 横截面上的扭矩为T,切变模量为G, 横截面上的扭矩为 ,切变模量为 ,试求扭转角ϕ。
解:1. 扭矩分析
名师讲义【赵堔】工程力学第9章扭转强度与刚度
d MTn x dx
GI p
AB 截面相对扭转角为:
l
d
l
MTn x dx
GI p
# 图示为变截面圆杆,A、B 两端直径分别为 d1、d2 。
从中取 dx 段,该段相邻两截 面的扭转角为:
d T dx
GI P (x)
AB 截面相对扭转角为:
d
T dx
L
L GI P ( x)
三、 扭转杆的刚度计算
圆管强度。
解:1. 计算扭矩作扭矩图
2. 强度校核
危险截面:截面 A 与 B
A
TA
2πR02d1
ml
2πR02d1
44.6
MPa [
]
ml
B
TB
2π 2
27.9
MPa [
]
圆管强度足够
例 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m,
d
5、切应力的计算公式:
dA 对圆心的矩 → dAr0
T
AdA.r0
2 0
r0
2td
r02t2
T
2r0 2t
薄壁圆筒扭转时 横截面上的切应力计算式
二、关于切应力的若干重要性质
1、剪切虎克定律
为扭转角 r0 l
l
r0 即
l
做薄壁圆筒的扭转试验可得 T
纵轴 T——
T
2r02t
核轴的刚度 解:1. 内力、变形分析
T1 MA 180 N m
AB
T1l GIp
1.5010-2
rad
T2 MC 140 N m
工程力学扭转详解
验确定,钢材的G值约为80GPa。
表明材料弹性性质的三个常数:弹性模量E、剪切弹性模量G
和泊松比μ。对各向同性材料,可证明三者存在下列关系:
G
E 2(1
)
§9.4 圆轴扭转时的应力和强度计算
等直圆杆横截面应力
①变形几何方面 ②物理关系方面
平面假设:
一、外力偶矩(Me)的计算 设某轮所传递的功率为P kW,轴的转速为 n r/min
P kW的功率相当于每分钟做功:
W = P×1000×60 (1)
外力偶矩1min所做的功:
W = 2 n Me (2)
二者做功相等,即:
P× 1000× 60=2 n Me
所以: Me 9549 P n
P单位为kW
e
2t
δ
r
三、切应力互等定理
取厚度为δ的微小单元体:
薄壁圆筒受扭时,单元体左、右侧
面上有切应力为: dy
a
dy
´
c
z
dx
´
b
d t
两侧面上切应力形成力偶,力偶矩为: dy dx
上、下面必有力偶与之平衡,力偶矩为: ' dx dy
mz 0
dy dx dx dy
结论
在单元体一对相互垂直的平面上,切应力必然成对存在;其 数值大小相等,两者都垂直于两平面的交线,方向为共同指 向或共同背离两平面的交线,称为切应力互等定理。
Tmax [ ]
WP
([] 称为许用剪应力。)
Tmax [ ]
WP
WP
Tm a x
[ ]
WP
实空::1DD63(3 116
工程力学中的扭转力学分析
工程力学中的扭转力学分析扭转力学是工程力学中的一个重要分支,研究物体在受到扭转力作用时产生的变形和应力分布。
在工程实践中,扭转力学的应用非常广泛,特别是在建筑、机械、航空航天等领域。
一、引言扭转力学研究的对象是物体在受到外界扭转力矩作用下的行为。
扭转力学涉及到以下几个关键概念:扭转角、扭转应变、扭转应力等。
二、基本原理与公式推导在扭转力学分析中,我们需要借助一些基本原理和公式来描述扭转的行为。
其中,最基本的原理是胡克定律,它表明物体在弹性阶段的扭转行为与受到的扭转力矩成正比。
公式推导过程如下:(1)胡克定律:θ = T / (G * J)其中,θ表示物体的扭转角,T表示扭转力矩,G表示切变模量,J 表示抗扭转性能指标。
(2)扭转应变:γ = θ * r / L其中,γ表示扭转应变,r表示被扭转物体的半径,L表示物体的长度。
(3)扭转应力:τ = G * γ其中,τ表示扭转应力。
三、典型扭转问题的分析在工程实践中,我们常常遇到一些典型的扭转问题,如轴材料的扭转分析、螺旋桨的扭转分析等。
下面以轴材料的扭转分析为例,介绍典型问题的求解过程:(1)问题描述:一根长度为L,半径为r的均质轴材料,在受到扭转力矩T作用下,求解轴的扭转角和轴的最大扭转应力。
(2)解答过程:首先,根据胡克定律可以得到轴的扭转角:θ = T / (G * J),其中G 为轴材料的切变模量,J为轴的惯性矩。
然后,根据扭转应变公式可以得到轴的扭转应变:γ = θ * r / L。
最后,根据扭转应力公式可以得到轴的扭转应力:τ = G * γ。
四、工程应用示例扭转力学在工程中的应用非常广泛,例如在机械工程中,通过对扭转力学的分析,我们可以设计出更加合理的轴、齿轮等零件;在建筑工程中,我们可以通过扭转力学的分析,预测结构在风荷载下的变形和损伤等。
五、总结扭转力学是工程力学中的重要分支,研究物体在受到扭转力作用下的变形和应力分布。
本文通过引言、基本原理与公式推导、典型扭转问题的分析以及工程应用示例的介绍,对扭转力学的相关内容进行了阐述。
工程力学—第九章 扭转
第二节 动力传递与扭矩
扭矩与扭矩图 扭转变形的内
力: —扭矩。 扭矩 :即n-n
截面处的内力偶 矩。
第二节 动力传递与扭矩
扭矩的正负号规定:采用右手螺旋法则。
指向截 面外侧 为正
指向截 面内侧 为负
kW。试作轴的扭矩图。
解:1. 计算作用在各轮上的外力偶矩
M1
(9.55103
500)N 300
m
15.9 103
N
m
15.9
kN
m
M2
M3
(9.55103
150) 300
N
m
4.78103
Nm
4.78
kN m
M4
(9.55103
200) 300
Nm
横截面的扭矩T即为:
T
2 0
Ro2
d
2Ro2
薄壁圆管扭转的切应力为:
= T 2Ro2
当 Ro /10 时,该公式足够精确。
第三节 切应力互等定理与剪切虎克定律
纯剪切与切应力互等定理: 切应力互等定理:在微体的两个相互垂直
的截面上,切应力总是同时存在,且大小 相等,方向则共同指向或共同背离两截面 的交线。
工程力学
彭雅轩 2019年9月16日
第九章 扭 转
基本概念 动力传递与扭矩 切应力互等定理与剪切虎克定律 圆轴扭转横截面上的应力 圆轴扭转破坏与强度条件 圆轴扭转变形与刚度条件
第一节 引 言
工程力学09-圆轴扭转的应力
计算轴的最大切应力 Mx 1500 N.m 6 tmax= = -6m3 = 51×10 Pa =51MPa ≤[t ] WP 29.4×10 故:传动轴满足强度条件 2)将轴该实心,在相同条件下确定轴的直径 ∵ M实(=[t ]WP实)=M空(= [t ]WP空) ∴ WP实= WP空
3 pD1 WP实= = WP空 = 29.4×10-6m3
9.1 工程中上传递功率的圆轴 及其扭转变形
工程实例
M
扭转变形
Me γ Me
j
受力特点:横截面上作用有一对力偶Mx
变形特点:相邻横截面发生绕轴线相对力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
pD4(1-a4)
32
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
9.3 圆轴扭转时的切应力分析
Me Me x
j
dx
公式推导(略) 截面上任意点切应力 Mxr (9-8) t(r)= Ip
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
9.4 承受扭转时圆轴的 强度设计与刚度设计
9.4.1 扭转实验与扭转破坏现象 韧性材料:以达到屈服强度ts为破 坏标志;试件断口为横截面。 破坏表现为受切应力作用而 被剪切断裂 脆性材料:以达到强度极限tb为破 坏标志;试件断口为45°螺旋面。 破坏表现为微元体受拉断裂
工程力学(扭转)课件
扭转力的作用
01
02
03
传递扭矩
在机械系统中,扭转力用 于传递扭矩,实现动力的 传递和转换。
平衡系统
在建筑结构中,扭转力用 于平衡不同方向的力和扭 矩,保持结构的稳定。
调整结构
在桥梁、高层建筑等大型 结构中,扭转力用于调整 结构的形状和稳定性。
扭转力的分类
按作用方式
可分为静态扭转力和动态扭转力。 静态扭转力作用缓慢,变形量较 小;动态扭转力作用迅速,变形
抗扭强度的计算
抗扭强度的计算公式通常基于剪切应 力的极限值或剪切模量,具体公式取 决于材料的性质和受力条件。
除了理论计算,还可以通过实验测试 来测定材料的抗扭强度。实验方法包 括扭转试验、弯曲试验和压缩试验等。
对于金属材料,可以根据弹性力学理 论计算抗扭强度。对于复合材料和复 合结构,需要考虑各组分材料的性能 以及它们之间的相互作用。
未来发展
随着科技的不断进步,工程力学 (扭转)的研究将更加深入和广
泛。
未来研究将更加注重实验和数值 模拟的结合,探索扭转变形的微
观机制和宏观表现。
随着新材料和新工艺的出现,扭 转变形的研究将更加关注材料性
能和结构优化设计。
THANKS
力矩的计算公式
M=FL,其中M为力矩,F 为力,L为力臂。
力臂
从转动轴到力的垂直距离。
力矩的平衡
平衡状态
物体保持静止或匀速直线运动的 状态。
力矩平衡条件
合力矩为零,即所有外力矩的代 数和为零。
平衡方程
∑M=0,其中∑表示求和符号, M表示外力矩。
力矩的传递
传递方式
通过轴承、齿轮等机械零件将力矩传递给其他部件。
扭矩与弹性模量的关系
工程力学第9章圆轴的扭转
τ ′d x d z
d
τ
c
τ d yd z
x
∑F = 0 ∑F = 0 ∑M = 0
y x z
自动满足 存在τ'
(τ d y d z ) d x = (τ ′ d x d z ) d y
得
τ′ =τ
y
τ'
a dy b z
切应力互等定理 d
在相互垂直的两个面上, 在相互垂直的两个面上,切 应力总是成对出现,并且大小相 应力总是成对出现,并且大小相 等,方向同时指向或同时背离两 个面的交线。 个面的交线。
一、圆轴扭转时横截面上的应力 1、几何关系:由实验找出变形规律 应变的变化规律 几何关系 由实验找出变形规律→应变的变化规律 1)实验: 实验:
2)观察变形规律: 观察变形规律:
圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动 形状、大小、间距不变, 圆周线 形状 了一个不同的角度。 了一个不同的角度。 纵向线——倾斜了同一个角度,小方格变成了平行四边形。 倾斜了同一个角度,小方格变成了平行四边形。 纵向线 倾斜了同一个角度 扭转平面假设:变形前的横截面,变形后仍为平面, 扭转平面假设 变形前的横截面,变形后仍为平面,且形状 、大 小 以及间距不变,半径仍为直线。 以及间距不变,半径仍为直线。
3
) 16T 3 16(1.5×103N⋅m = = 0.0535 m d ≥ 6 π(50×10 Pa) π[τ ]
m 取: d = 54 m
2. 确定空心圆轴内、外径 确定空心圆轴内、
Wp =
3
πD3 16
(1−α )
4
16T π 3 D (1−α 4) 16
结论: 结论:
横截面上
工程力学第九章圆柱扭转
x
73.4MPa
从以上计算结果看出:最大切应力发生在扭矩较小的
BC段。由于max=73.4MPa>[ ],所以轴AC的强度不够。
第九章
圆轴的扭转
由无缝钢管制成的汽车传动轴AB,外径D=90mm,壁厚 t=2.5mm,材料为45钢,许用切应力[ ] =60MPa,工作时最大 外扭矩Mn=1.5kN· m。 1)试校核AB轴的强度。 2)如将AB轴改为实心轴,试在相同条件下确定轴的直径。 3)比较实心轴和空心轴的质量。
扭矩。
MA 一传动系统的主轴ABC,其转 速n=960r/min,输入功率 PA=27.5kW,输出功率PB=20kW, PC=7.5kW,不计轴承摩擦等功率 消耗。试作ABC轴的扭矩图。 解 1)计算外力偶矩。由式(9-1)得
MB 第九章
MC 圆轴的扭转
A
B
C
PA 27.5 M A 9550 9550 N m 274 N m n 960 PB 20 M B 9550 9550 N m 199 N m n 960 PC 7.5 M C 9550 9550 N m 75N m n 960
O
M
Mn O
A
max
=K 。
第九章
Mn 圆轴的扭转 O
=K
扭转切应力的计算如图,圆轴横截面上微 面积dA上的微内力为dA ,对截面中心O的力 矩为dA· 。 整个横截面上所有微力矩之和应等于该截面 上的扭矩Mn,则有 (9-2)
A
max dA
Mn dA O
M n dA K 2dA
故AB轴满足强度要求 。
第九章
圆轴的扭转
已知:D=90mm,t=2.5mm, [ ] =60MPa,Mn=1.5kN· m。 1)试校核AB轴的强度。 2)如将AB轴改为实心轴,试在相同条件下确定轴的直径。 3)比较实心轴和空心轴的质量。 解 1)校核AB轴的强度。 2)确定实心轴的直径。若实心轴与空心轴的强度相同,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
τδdydx。
顶面与底面的两个力所构成
的力偶之矩为τ’δdxdy。 微体平衡,则 τ = τ’。
纯剪切:如上述微体的四个侧面上,仅 存在切应力而无正应力的应力状态。
第三节 切应力互等定理与剪切虎克定律
剪切虎克定律 : τ =G γ
在切应力作用下,微体发生切应变。 薄壁圆管的扭转试验表明:当切应力不超过材
3
16T
3
16 1.5103
50106
0.0535m
Wp
d 3
16
取 d=54mm (注意取法)
(2)确定空心轴的内、外径
do
3
16T
14
3
16 1.5 103 1 0.94 50 106
0.0763m
则其内径为: di=0.9do=0.90.0763=0.0687m 取 do=76mm,di=68mm(注意)
扭力偶矩:使杆产 生扭转变形的外力 偶之矩。
第一节 引 言
轴:凡以扭转为主要变形的直杆称为轴。
第一节 引 言
扭转角:轴的变形以横截面间绕轴线的相 对角位移称扭转角。
第二节 动力传递与扭矩
功率、转速与扭力偶矩之间的关系
功率P=Mω,又 1W=1N·m/s
于是上式变为
P*103=M*2πn/60
(3)重量比较
由于空心及实心圆轴的长度及材料均相同,所以,二者的 重量比等于其横截面面积之比,即
=
d02
d
2 i
4
4
d 2
0.0762 0.0682
0.0542
0.395
上述数据充分说明,空心轴比实心轴轻。即空心轴省材料。
例题
例 题 4
已知:P=7.5kW,n=100r/min,许用切应力= 40MPa,
M2 B
d1 M1
A
d2 M3
C
M1
9550 P1 n
9550 368 8.3 60
7057N
m
M2
9550 P2 n
9550 147 8.3 60
2819N
m
2
1
3
M3
9550 P3 n
9550 221 8.3 60
4238N
m
(2)求扭矩
T1 M 2 2819N m
横截面的扭矩T即为:
T
2 0
Ro2
d
2Ro2
薄壁圆管扭转的切应力为:
= T 2Ro2
当 Ro /10 时,该公式足够精确。
第三节 切应力互等定理与剪切虎克定律
纯剪切与切应力互等定理: 切应力互等定理:在微体的两个相互垂直
的截面上,切应力总是同时存在,且大小 相等,方向则共同指向或共同背离两截面 的交线。
T1 M A 76.4N m T2 -M C -114.6N m
(3)画扭矩图 根据上述分析,画扭矩图,扭矩的最大绝对值为
T max
T2
114.6N m
T
76.4N·m
x
114.6N·m
例题
一传动轴如图,转速
n
300
r min
;
主动轮输入的功率P1= 500 kW,三个从动轮输出的
校核此轴的强度。若在同样强度条件下,将
空心轴改成实心轴,试确定其直径,并比较
二者的重量。
解:(1)计算抗扭截面系数
d D 2 89 2 2.5 0.944
DD
89
WP 0.2D3 1 4 0.2893 1 0.9444
2.9104 mm3 2.9105 m(3 注意单位)
第二节 动力传递与扭矩
扭矩与扭矩图 扭转变形的内
力: —扭矩。 扭矩 :即n-n
截面处的内力偶 矩。
第二节 动力传递与扭矩
扭矩的正负号规定:采用右手螺旋法则。
指向截 面外侧 为正
指向截 面内侧 为负
第二节 动力传递与扭矩
扭矩图 :表示扭矩沿轴线变化情况 的图线 。
例题1 图示传动轴,转速n=500r/min,轮B 为主 动轮,输入功率PB=10kW ,轮A与轮C均为从动 轮,输出功率PA=4kW, PC=6kW 。试计算轴的 扭矩,并画扭矩图。
max
Tmax WP
第五节 圆轴扭转破坏与强度条件
Ip=
d
32
4
对于实心圆截面
d 3
Wp= 16
对于圆环截面
Ip=
D
32
4
(
1-
4
)
Wp=
D
16
3
(
1-
4
)
=d / D
例1 已知传动轴的转速n=8.3s-1,主动轮输入功率 PP[θ12==]=31164087/kkmWW,,,G从 P=3动=802轮G221P、akW。3分,试别按[τ输强]=出度7功条0M率件P为求a,AB段的直 径定dd1的;大B小C段。的直径d2;若两段采用同一直径d,试确 解 (1)求外力偶矩
N
m
4.78
kN m
M4
(9.55103
200) 300
Nm
6.37 103
Nm
6.37
kN m
2. 计算各段的扭矩 BC段内: T1 M2 4.78 kN m 注意这个扭矩是假定为负的
CA段内:T2 M 2 M3 9.56 kN m (负) AD段内:T3 M 4 6.37 kN m
3. 作扭矩图
由扭矩图可见,传动轴的最大扭矩Tmax在CA段内,其 值为9.56 kN·m。
第二节 动力传递与扭矩
思考:如果将从动轮D与C的位置对调,试作该传 动轴的扭矩图。这样的布置是否合理?
4.78
6.37
15.9
4.78
第三节 切应力互等定理与剪切虎克定律
薄壁圆管的扭转应力
从圆管上切取一微体abcd,微体既无轴向正 应变,也无横向正应变,只是相邻横截面ab与cd 之间发生相对错动,即仅产生剪切变形;而且, 沿圆周方向所有微体的剪切变形均相同。
料的剪切比例极限τ p时,切应力与切应变成正比, 即 τ γ 。引入比例系数 G, 则τ =G γ 。
G-切变模量(剪切弹性模量), 单位为Gpa,其值随材料而异, 由实验测定。
第四节 圆轴扭转横截面上的应力
平面假设:变形后,横截面仍保持为平面,其形状、 大小与间距均不变,而且,半径仍为直线。
最大扭转切应力
(2)强度校核
max
T Wp
1930 2.9 105
66.7 106 Pa 66.7MPa
70MPa
满足强度条件
(3)确定实心轴直径,并比较其重量
max
T WP
T 0.2d实3
d实
3
T
0.2 max
1930 0.2 66.7106
0.053m 53mm
第五节 圆轴扭转破坏与强度条件
()=Βιβλιοθήκη MxIp圆轴扭转时横截面上的最大切应力
当 = max 时, = max
max=
Mx
Wp
Wp=
Ip
max
Wp 扭转截面系数
第五节 圆轴扭转破坏与强度条件
强度条件:
max
T WP
max
对于等截面圆轴 :
由 此 得
M Nm
9549
Pk nr
W
min
若转速n的单位为r/s,
则
M Nm
159.2
PkW nr
s
式中:
P=Mω—功率,即力偶在单位时间内 所作之功 ,单位为kW(千瓦);
M—力偶矩,单位为N·m(牛顿·米);
ω—相应角速度;
{n}—轴的转速,单位为r/min(转/ 分),或r/s(也可表示为s-1)(转/ 秒)。
第九章 扭 转
基本概念 动力传递与扭矩 切应力互等定理与剪切虎克定律 圆轴扭转横截面上的应力 圆轴扭转破坏与强度条件 圆轴扭转变形与刚度条件
第一节 引 言
扭转:以横截面绕轴线作相对转动为主要 特征的变形形式,称为扭转。
第一节 引 言
扭力偶:使杆产生扭转变形的外力偶。
解(1)扭力偶矩计算
MA
9549 PA n
9549 4 500
76.4N m
MB
9549 PB n
9549 10 500
191N m
MC
9549 PC n
9549 6 114.6N m 500
(2)扭矩计算 设AB与BC段的扭矩为正,并分别用T1和T2表示,则
8.088 107
Pa
80.88MPa
max,2
16T2
D23
1
d2 D2
4
16( 100N m )
0.0223
1
0.018
4
0.022
8.67 107
Pa
86.7 MPa
Τmax,1与τmax,2均小于许用切应力,说明轴满足强度条件。