(人教版七年级上册)一元一次方程---从算式到方程

合集下载

人教版七上数学.1一元一次方程课件(共37张)

人教版七上数学.1一元一次方程课件(共37张)
你能解释这些方程中等号两边各表示什 么意思吗?体会列方程所根据的相等关系.
(来自教材)
总结
知2-讲
分析实际问题中的数量关系,利用其中的相等关 系列出方程.
知2-练
1 列等式表示: (1)比a大5的数等于8; (2)b的三分之一等于9; (3)x的2倍与10的和等于18; (4)x的三分之一减y的差等于6; (5)比a的3倍大5的数等于a的4倍; (6)比b的一半小7的数等于a与b的和.
(1)a+5=8;
(2) 1 b=9;
3
(3)2x+10=18;
(4) 1 x-y=6;
3
(5)3a+5=4a;
(6) 1 b-7=a+b.
2
(来自教材)
2 根据下列条件能列出方程的是( D ) A.a与5的和的3倍 B.甲数的3倍与乙数的2倍的和 C.a与b的差的15% D.一个数的5倍是18
知2-练
知识点 3 一元一次方程
知3-讲
定义 只含有一个未知数(元),未知数的次数都是1, 等号两边都是整式的方程叫做一元一次方程.
知3-讲
一元一次方程
1、只含有一个未知数 2、未知数的最高次数是1次 3、等号的两边都是整式
知3-讲
例3 下列方程,哪些是一元一次方程?
(1) 1 x+y=1-2y; (2)7x+5=7(x-2);
知4-讲
1.使方程中等号左右两边相等的未知数的值,就是 这个方程的解.
2.求方程的解的过程叫做解方程.
例5 下列说法中正确的是( C )
A.y=4是方程y+4=0的解
B.x=0.000 1是方程200x=2的解
C.t=3是方程|t|-3=0的解
D.x=1是方程
x 2

2024人教版七年级上册数学第五单元《一元一次方程》课件PPT

2024人教版七年级上册数学第五单元《一元一次方程》课件PPT

C.4x=5(x+4)
D.4(x+4)=5x
例3:如图,轩轩将一个正方形纸片剪去一个宽为4 cm的长条后,
再从剩下的长方形纸片上剪去一个宽为5 cm的长条(图中阴影部
分).若分两次剪下的长条面积正好相等,则每一个长条的面积
为多少?为解决这个问题,轩轩设正方形的边长为x cm,根据题
意,可列方程为( ) A
情境导入
同学们,你们知道老师的年龄吗? 我是4月出生的,我年龄的2倍减去2,正好是我出生的那个月总天数 的2倍. 请你们猜猜我的年龄是多少?
年龄是31岁
故事导入
同学们,你们知道丢番图是谁吗? 丢番图是古希腊数学家,人们对他的生平事迹知道的很少, 但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图, 多么令人惊讶,它忠实地记录了其所经历的人生旅程. 上帝赐予他的童年占六分之一,又过了十二分之一他两颊长出来胡须,再过七分 之一,点燃了新婚的蜡烛,五年之后喜得贵子,可怜迟到的宁馨儿,享年仅其父 之半便入黄泉,悲伤只有用数字研究去弥补,又过四年,他也走完了人生的旅 途.——出自《希腊诗文选》 你能求出丢番图去世时的年龄吗?
【题型二】根据实际问题列方程
例2:根据下列条件列出方程: (1)一个数x比它的 23大45 :_____x_-__23_x_=__45; (2)一个数x的一半比它的3倍大4:___12_x_-__3_x_=__4_; (3)一个数x比它的平方小24:____x_2-__x_=__2_4__; (4)一个数x的40%与25的差等于30:____4_0_%_x_-__2_5_=_3_0.
6是等式,但不是方程
2x-6=6等
-3y=10等
注:判断一个式 子是不是方程:
知识点2:列方程(难点)

3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件

3人教版七年级数学上册第三章  3.1.1 一元一次方程 优秀教学PPT课件

【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.

5.1.1从算式到方程课件 人教版数学七年级上册 (20)

5.1.1从算式到方程课件 人教版数学七年级上册 (20)
2
(3)设卖出铅笔x支,则卖出圆珠笔(60-x)支,故1.2×0.8x+2×0.9(60-x)=87.
2
2
0
9
9
思考 1.怎样将一个实际问题转化为方程问题?
2.列方程的依据是什么?
实际问题
抓关键句子找等量关系
设未知数列方程
一元一次方程
列方程的步骤:① 设:恰当的设出未知数,用字母表示问题中的未知量;
(2) 2 + 15 = 3;
(3) 3 − 5 = 5 + 4 ;
(4) 2 + 2 − 6 = 0 ;
(5) −3 + 1.8 = 3;
(6) 3 + 9 > 15;
(7)
2
2
0
9
9
1
−6
= 1.
活动小结
判断是否是方程谨记两个方程的特点:
①含有未知数;
②等式.
2
2
0
9
9
活动探究
任务二:根据等量关系列方程,并说说方程的意义
活动:根据下列问题,设未知数,列出方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?
(2)一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.
(3)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在儿童
节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,
解:根据题目,知:外沿大圆的半径 R1 = 10cm.
圆环的面积是外沿大圆的面积减去内沿小圆的面积,
即:π × 12 − π × 22 = 200cm2,
用数学方程,我们可以表示为:

人教版七年级上册.1一元一次方程课件

人教版七年级上册.1一元一次方程课件
②③
练一练
例2 若关于x的方程 是一元一次方程,则n 的值为 .
2或-2
1
典例精析
注:一元一次方程需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
例3 判断下列m的值是不是使方程3m+2=6–m左右两边相等?
——田载今(教材编审)
思考:列算式和列方程有什么不同?哪一种方法思考起来方便些?
专家观点:
从算式到方程是数学的进步!
列算式
只能用已知数
多为逆向思维列式
列方程
既可用已知数,又可用未知数
多为顺向思维列式
方程是为了寻求未知数,而在未知数和已知数之间建立起来的等式关系.——张奠宙(院士)
【方程】
方程:70 t =60(t+1)
等量关系:客车t小时路程=卡车(t+1)小时路程
方程方法二:
当然,我们也可以设卡车行完AB的总时间为y,从而列方程解决问题.
专家观点:列算式经常要反着想,而列方程是顺着想. 算式中只含有已知数而不含未知数,方程是比算式更有力的数学工具,它打破了列算式时只能使用已知数的限制. 这样的突破使得列方程一般比列算式更直接、更自然、更宽松,从而给解决问题带来了更大的便利.
∴ x =3不是方程的解.
课堂小结
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两边都是整式,这样的方程叫做一元一次方程.2. 方程的解: 解方程就是求出使方程中等号两边相等的未知数的式到方程
第三章 一元一次方程
3.1.1 一元一次方程
学习目标
1.算术方法与方程方法的比较.2.掌握方程、一元一次方程的定义.(重点)3.初步学会寻找问题中的等量关系,并列方程. (难点)

人教版初中七年级上册数学精品授课课件 第三章 一元一次方程 从算式到方程 3.1.1 一元一次方程

人教版初中七年级上册数学精品授课课件 第三章 一元一次方程 从算式到方程 3.1.1 一元一次方程

(3)某校女生占全体学生人数的52%, 比男生多80人,这个学校有多少学生?
解:设这个学校的学生数为x,那么女生数为 0.52x,男生数为(1-0.52)x.
列方程
0.52x-(1 - 0.52)x= 80
观察上面例题列出的三个方程有什么特征?
(1)只含有一个未知数x, (2)未知数x的次数都是1, (3)整式方程.
解:设小水杯的单价是x 元,大水杯的单价 是(x+5) 元,
15x = 10(x+5)
4. x=3,x=0,x=-2,各是下列哪个方程的解?
(1)5x+7=7-2x; (2)6x-8=8x-4; (3)3x2=4+x.
(2)把1400元奖学金按照两种奖项奖给22名 学生,其中一等奖每人200元,二等奖每人50 元,获得一等奖的学生有多少人?
上面例题中的三个方程,可以发现,
当x=6时,4x的值是24,这时方程 4x=24等号左右两边相等.
x=6叫做方程4x=24的解.
同样的,x=5时,方程1700+150x=2450 等号左右两边相等,
x=5是方程1700+150x=2450的解
解方程就是求出使方程中等号左右两边相 等的未知数的值,这个值就是方程的解.
只含有一个未知数(元),未知数的次数都 是1,等号两边都是整式, 这样的方程叫做一元 一次方程.
数 实际问题 列方程 一元一次方程
分析实际问题中的数量关系. 利用其 中的相等关系列出方程,是用数学解决实 际问题的一种方法.
知识点3 方程的解
列方程是解决问题的重要方法,利用 方程可以求出未知数.
思考
x =1000和x =2000中哪一个是方程0.52x - (1 - 0.52)x = 80的解?

人教版七年级上册.1从算式到方程课件

人教版七年级上册.1从算式到方程课件

快车每小时比 慢车多走10km
时间:快车比慢车早1h经过B地
相同的时间,快车 比慢车多走60km
慢车 610hkm 快车走了6h
A
快车 B
算式:60 ÷(70-60)×70=420(km)
(2)如果将AB之间的路程用x表示,用含x的式子表示 下列时间关系: 慢车 1h
A
快车 B
快车行完AB全程所用时间:7x0 h 慢车行完AB全程所用时间:6x0 h
上面我们列出的方程有什么特点?
温馨提示: 1、含有未知量的个数 2、未知量的次数 两方面考虑。
它们都只含有一个未知数,并且未知数的次数都是1 一元一次方程: 只含有一个未知数,并且未知数的次数是1的方程。
【总结提升】 判断一元一次方程的三个条件 (1)必须只含有一个未知数. (2)未知数的次数都是1. (3)等号两边都是整式.
检测目标
3.已知下列方程:①x-2= ②0.3x=1;③ x 5;
2
④x2-4x=3;⑤x=0;⑥x+2y=0,其中是一元一次方程
的有( B )
A.2个
B.3个
C.4个 D.5个
检测目标
4.甲乙两数的和为10,并且甲比乙大2,求甲、
乙两数.下面所列方程正确的是( D )
A.设乙数为x,则x+2=10 B.设乙数为x,则(x-2)+x=10 C.设甲数为x,则(x+2)+x=10 D.设乙数为x,则(x+2)+x=10
列出一元一次方程的一般步骤:
1.设:恰当的设出未知数,用字母X表
示问题中的未知量
关键
2.找:寻找实际问题中的相等关系
3.列:利用实际问题中的相等关系列出方 程

5.1.1从算式到方程课件 人教版数学七年级上册 (21)

5.1.1从算式到方程课件 人教版数学七年级上册 (21)
0
9
9
=−2
B.2 − 1 = 4 − 3
D. − 4 = 5 − 2
方法总结
判断一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算;
2.将数值代入方程右边进行计算;
3.若左边=右边,则是方程的解,反之,则不是.
2
2
0
9
9
活动探究
任务二:探究一元一次方程的特点.
活动:观察下列方程,找出它们的共性.
2
2
0
9
9
x

2
3
4
5
6

1.2x+1
2.2
3.4
4.6
5.8
7
8.2

0.8x+3 3.8
3.6
5.4 6.2
7
7.8
活动2:x=1000和x=2000中哪一个使得等式0.52x-(1-0.52)x=80成立?
解:当x=1000时,方程左边=0.52×1000-(1-0.52)×1000=520-480=40,
右边=80,左边≠右边;
当x=2000时,方程左边= 0.52×2000-(1-0.52)×2000=1040-960=80,
右边=80,左边=右边,
2
2
0
9
9
新知讲解
一般地,使方程左、右两边的值相等的未知数的值,叫作
方程的解.求方程的解的过程,叫作解方程.
注:(1) 方程的解与解方程是两个不同的概念,前者是一个具体
1 ;
①x 2
x
x

③ 5x 1 ;
②3x 11
④y 2 4 y 3 ;

《一元一次方程》PPT优秀课件

《一元一次方程》PPT优秀课件
列方程: 1700 .150x 2450 .
探究新知
(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学 生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为 (1- 0.52)x.
等量关系:女生人数- 男生人数=8, 列方程:0.52x- (1-0.52)x=8.
(7) 3x+1.8=3 y.
含有两个
未知数 解析: 只含有一个未知数(元),未知数的次数都是1(次)的整式方程
叫做一元一次方程.
(4)(5)是一元一次方程.
巩固练习
下列哪些是一元一次方程?
(1)3y-7 ;
(2)7a+8=10 ;√
(3)16y-7=9-2y ; √ (4)7y-y2=12;
(5)-4.5y-12=x-10 ; (7)7-13 y 9 .
方程 的解
解方程就是求出使方程中等号两边相等的未知数 的值,这个值就是方程的解.
建立 方程 模型
实际 问题
设未 找等量 知数 关系
列方程
一元一次方程
导入新知 用方程来解决
汽车匀速行驶途经王家庄、青山、秀水三地的时间 如表所示,翠湖在青山、秀水两地之间,距青山50千米 ,距秀水70千米.王家庄到翠湖的路程有多远?
地名 时间 王家庄 10:00
青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能列出方程吗? 70千米
x千米 50千米
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.

人教版七年级数学上册3.1从算式到方程《一元一次方程》教案

人教版七年级数学上册3.1从算式到方程《一元一次方程》教案
(3)运用等式的性质解一元一次方程,培养学生严谨的数学思维;
举例:解方程5x+3=2x+7,先将同类项移项得3x=4,进而求解得x=4/3。
2.教学难点
(1)理解一元一次方程的一般形式,特别是a≠0的条件,这是学生容易忽视的地方;
解释:当a=0时,方程不再是一元一次方程,而成为0=0,这是一个恒等式,没有实际意义。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在本次教学过程中,我发现学生们对一元一次方程的概念和解法的掌握程度参差不齐。有的同学能够迅速理解并熟练运用,而有的同学则在移项和合并同类项时出现错误。这让我意识到,在教学过程中,我们需要针对不同水平的学生进行分层次教学,因材施教。
在讲授一元一次方程时,我尽量用简单明了的语言和丰富的例子来解释概念,让学生更好地理解。同时,通过设置实际问题,让学生感受到数学知识在实际生活中的应用,提高他们的学习兴趣。这一点在课堂上取得了较好的效果,同学们积极参与,课堂氛围活跃。
人教版七年级数学上册3.1从算式到方程《一元一次方程》教案
一、教学内容
本节课选自人教版七年级数学上册第三章3.1节“从算式到方程”,主要教学内容为一元一次方程。具体包括以下内容:
1.认识一元一次方程及其一般形式:ax+b=0(a≠0);
2.学会解一元一次方程的步骤,包括移项、合并同类项、系数化为1;

5.1.1从算式到方程(课件)2024-2025学年人教版(2024)数学七年级上册

5.1.1从算式到方程(课件)2024-2025学年人教版(2024)数学七年级上册
一元一次方程。
三要素:
(1)整式方程;
(2)一元:一个未知数;
(3)一次:化简后未知数的次数是1。
3. = 1000和 = 2000中哪一个是方程0.52 − (1 − 0.52) = 80的解?
= 2000
习题解析
1. = 1是下列哪个方程的解 ( B )
. 1 − = 2
. 2 − 1 = 4 − 3
1.本节课我学到了关于方程的哪些知识?
2.按照研究方程的解、一元一次方程的思路,接下来我们会进一步研
究什么?可以如何开展研究?
对于变式又该怎么解决呢?
课程讲授
2.一个梯形的下底是5cm,高是5cm,面积是40cm2,求上底.
思考:
(1)这个问题中涉及哪些量?哪些量是已知的?哪些量是未知的?这
些量存在什么样的关系?
(2)你能解决这个问题吗?试一试
变式:一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上
底.
对于变式是否也可以用相同的方法呢?
课程讲授
1.我校女生占全体学生的52%,其中男生48人,我校有多少学生?
思考:
(1)你打算怎么解决这个问题?试一试。
(2)这个问题中涉及哪些量?哪些量是已知的?哪些量是未知的?这
些量存在什么样的关系?
(3)若我校学生数用字母x表示,如何用x表示这个问题中相关的量?
如何用x表示这里的相等关系?
变式:我校女生占全体学生的52%,比男生多80人,我校有多少学生?
7.已知代数式 = 3 − 2 − + 2 .
(1)化简M;
(2)如果 + 1 2 + 4 −2 − 3 = 0是关于x的一元一次方程,求M的值.

七年级数学上册第三章一元一次方程《从算式到方程:一元一次方程》

七年级数学上册第三章一元一次方程《从算式到方程:一元一次方程》

听课记录:新2024秋季七年级人教版数学上册第三章一元一次方程《从算式到方程:一元一次方程》1. 教学目标(核心素养)教学目标:1.知识与技能:学生能够理解从算式到方程的自然过渡,掌握一元一次方程的基本概念和表示方法,能够识别并构建一元一次方程。

2.过程与方法:通过具体实例,引导学生经历从实际问题抽象出数学模型(即一元一次方程)的过程,培养学生的抽象思维能力和数学建模能力。

3.情感态度与价值观:激发学生对数学的兴趣,体会数学与实际生活的紧密联系,培养解决问题的信心和毅力。

核心素养:•数学抽象:从具体情境中抽象出一元一次方程的数学模型。

•数学建模:运用数学知识解决实际问题,建立一元一次方程。

•逻辑推理:理解一元一次方程的结构和性质,进行简单的逻辑推理。

2. 导入教师行为:•教师展示一个贴近学生生活的实际问题,如“小明买了5个苹果,每个苹果的价格是x元,他一共花了多少钱?”•引导学生用算式表示这个问题,即“5x元”。

•接着,教师提出:“如果我们知道小明一共花了10元,那么我们可以怎样表示这个问题呢?”引导学生思考并引出方程“5x = 10”。

学生活动:•学生积极思考,用算式“5x”表示苹果的总价。

•在教师的引导下,学生理解到当知道总价时,可以用“=”连接已知数和未知数,形成方程“5x = 10”。

过程点评:导入环节通过贴近生活的实例,有效地激发了学生的兴趣,自然地从算式过渡到方程,为学生理解一元一次方程的概念奠定了基础。

3. 教学过程3.1 一元一次方程的概念教师行为:•讲解一元一次方程的定义:只含有一个未知数,且未知数的次数都是1的方程叫做一元一次方程。

•举例说明,如“2x + 3 = 7”,“-5y = 10”等都是一元一次方程。

学生活动:•认真听讲,理解一元一次方程的定义。

•尝试自己判断给出的式子是否为一元一次方程。

过程点评:教师讲解清晰,通过举例帮助学生更好地理解一元一次方程的概念,学生参与度高,对概念有了初步的认识。

人教版七年级数学上册从算式到方程课件

人教版七年级数学上册从算式到方程课件

问题2
如果所有的钱用来买A种跳绳可以买20根,全部买B种跳绳可以 买16根,A种跳绳比B种跳绳的单价少3元,一共有多少钱?
算术法
16根B比A 多用的钱
A比B多 的数量
316 20 16 20 240
A的单价
问题2
如果所有的钱用来买A种跳绳可以买20根,全部买B种跳绳可以 买16根,A种跳绳比B种跳绳的单价少3元,一共有多少钱?
算术法
3 ( 1 1 ) 240 16 20
份数
问题2
你能用方程解决这个问题吗?
如果所有的钱用来买A种跳绳可以买20根,全部买B种跳绳可以
买16根,A种跳绳比B种跳绳的单价少3元,一共有多少钱?
A种跳绳 B种跳绳
单价
数量
20
16
总价
对照方法,体验方程价值
比较列算式和列方程解决这个问题各有什么特点?
行数x列数=总数
x 2.每个篮球120元,每个排球80元,买 个篮球和 y 个排球共
用了880元,可列方程 120x 80 y 880 .
买篮球的钱数+买排球的钱数=总钱数
你视能察试剩着下给的它这们些分方类程吗有?什分么类共根同据特是征什?么?

12x 360
20 y 16( y 3)
①算术方法: 由已知量
未知量
②列方程方法:
已知量 未知量
列方程
未知量
所以,从算式到方程是数学的进步!
问题2
如果所有的钱用来买A种跳绳可以买20根,全部买B种跳绳可以
买16根,A种跳绳比B种跳绳的单价少3元,一共有多少钱?
A种跳绳 B种跳绳
单价
数量
20
16
总价

人教版七年级上册从算式到方程课件

人教版七年级上册从算式到方程课件
从算式到方程
一元一次方程
在我们小学的学习过程中,
我们曾经学习过方程,那么
你还记得什么是方程吗?和
算式有什么区分?
含有未知数的等式—方程
练习
判断下列式子是不是方程,正确的打“√”
(1) 1+2=3
(2) 1+2x=4
(3) x+1-3
( )
(√)
( )
(4)5-6=-1
(5) x+y=2
(6) x2-1=0
根据车速相等,得
x 50
x 70
=
3
5
王家庄到青山行
车的速度
王家庄到秀水行车的速

归纳
列方程解决实际问题步骤: (1)用字母表示问题
中的未知数(通常用x,y,z等字母):(2)根据问
题中的相等关系,列出方程.
实际问题
设未知数 列方程
一元一次方程
练一练
1.设未知数
2.找出等量关系
1.甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,
( )
(√ )
(√ )
想一想
如图,汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠
湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠
湖的路程有多远?
1.我们运用哪个公式求解?
2.从上图中你能获得哪些信息?
3.你会用之前的方法求出王家庄到翠湖
的距离吗?
4.如何运用方程来求解。
分析
x 50
3
速度:从王家庄到青山行车的速度是_____千米/时,从王家庄
x 70
到秀水行车的速度是______千米/时.

人教版七年级数学上册一元一次方程《从算式到方程(第2课时)》示范教学课件

人教版七年级数学上册一元一次方程《从算式到方程(第2课时)》示范教学课件
观察上节课例 1 中所列出的 3 个方程 4x=24,1 700+150x=2 450,0.52x-(1-0.52)x=80,你发现了什么?
只含有一个未知数
未知数的次数都是 1
等号两边都是整式
1
1
1
一元一次方程
思考
归纳
只含有一个未知数(元),未知数的次数都是 1,等号两边都是整式,这样的方程叫做一元一次方程.
定义
一元一次方程
解方程
解方程
方程的解
检验某个值是否是方程的解
右边=4+3=7,
所以左边=右边,
所以 x=3 是方程 3x-2=4+x 的解.
例2 x=3,x=4各是下列哪个方程的解?
(2)3x-2=4+x.
解:(2)当 x=4 时,
左边=3×4-2=10,
右边=4+4=8,
所以左边≠右边,
所以 x=4 不是方程 3x-2=4+x 的解.
解:(1)当 x=4 时,
左边=2×4+8=16,
右边=12+4=16,
(1)2x+8=12+x;
所以左边=右边,
所以 x=4 是方程 2x+8=12+x 的解.
例2 x=3,x=4各是下列哪个方程的解?
(2)3x-2=4+x.
解:(2)当 x=3 时,
左边=3×3-2=7,
(1) ;
例1 判断下列方程是否是一元一次方程?若不是,请说明理由.
(2)3x-4y=12;
(3)-5x2+x=3;
(4) .
解:(1)是;
(2)含有两个未知数 x 和 y ,不是一元一次方程;
(3)未知数 x 的最高次数是 2 ,不是一元一次方程;
(4)等式的左边不是整式,不是一元一次方程.

5.1.1 从算式到方程 课件2024-2025学年人教版(2024版)初中数学七年级上册

5.1.1 从算式到方程 课件2024-2025学年人教版(2024版)初中数学七年级上册
未知数x的等式通过本章的学习,我们将能够从这个含有未知数
x的等式中解出未知数的值x=5,从而求出5h后甲队追上乙队.
根据题目列等式
问题1 用买12个大水杯的钱,可以买16个小水杯,大水
杯的单价比小水杯的单价多5元,两种水杯的单价各是
多少元?设大水杯x元。
问题2 如图是一枚长方形的庆
祝中国共产党成立100周年纪念
方程:
(1)环形跑道一周长400 m,沿跑道跑多少周,可以跑3 000 m?
(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用9 元钱买了两
种铅笔共20 支,两种铅笔各买了多少支?
(3)一个梯形的下底比上底多2 cm,高是5 cm,面积是40 cm2,
求上底.
(4)用买10 个大水杯的钱,可以买15 个小水杯,大水杯比小水
问题2:观察上面例题列出的三个方程有什么特征?
(1)只含有一个未知数x,
(2)未知数x的指数都是1,
(3)整式方程.
一般地,果方程中只含有一个未知数(元),且含有
未知数的式子都是整式,未知数的次数都是1,这样的方
程叫作一元一次方程(linear equationwith one unknown)
用“元”表示未知数,源于我国宋元时期的
称为“方程术”.19世纪50年代,清
代数学家李善兰翻译外国数学著
作时,开始将equation(指含有未
知数的等式)一词译为“方程”
思考
(1)怎样将一个实际问题转化为方程问题?
(2)列方程的依据是什么?
实际问题
设未知数 列方程
方程
分析实际问题中的数量关系,利用其中的相等关
系列出方程,是用数学解决实际问题的一种方法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1从算式到方程
教学目标:
1.了解什么是方程,什么是一元一次方程;
2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广博的数学工具;3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;
4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝胜利的怡悦,增强用数学的意识,激发学习数学的热情。

教学重点:
1.了解什么是方程、一元一次方程;
2.分析实际问题中的数量关系,利用其中的相等关系列出方程。

教学难点:
分析实际问题中的数量关系,利用其中的相等关系列出方程。

教学过程:
一、游戏激趣
同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;……。

现在,我们就来“比一比,说儿歌”(屏幕出示)。

要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。

规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。

(进行比赛)
我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“x只青蛙x张嘴,2x只眼睛4x条腿,x声扑通跳下水”)(屏幕出示)
这样,我们用字母x代替了详尽的数,就用一句话代表了所有情况,使问题变得便当、简便。

二、创设情境,引入课题
1、同学们都挺喜欢吃巧克力吧!假如你妈妈从文峰买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?
好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?
如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。

此时你又分得多少颗?(让学生自己回答出两种解法——代数方法和算术方法)2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。

今天这一节课我们就共同来研究“2.1节从算式到方程”。

3、什么是方程?同学们还记得吗?请大家回忆一下。


4、刚才的问题是用列方程的方法解答的请举手。

确实,方程也是解决问题的一种好方法。

(设计意图:通过巧克力问题,1、让学生认识到列方程也是解决数学问题的一个好方法,甚至有时比算术方法要简单,2、引出方程的概念)
三、呈现问题,自主探索
1、请你用算术方法或列方程解决下列问题:
每一道题你都可以选择用算术方法还是列方程解决,只要想到方法的就到黑板上来写,不需要举手,如果列算术请写在左边,如果列方程请写在右边。

注意:我们这一节课只研究根据实际问题列方程,怎样从方程中求出未知数,我们以后会深入讨论。

所以,今天的问题都只要求同学们列出算式或方程,不需要求出结果。

现在开始。

2、学生解放到黑板上写
3、现在请各位同学解释一下自己的方法。

(学生在座位上回答,教师合适提醒学生说出等式两边的含义和列方程所依据的相等关系。

针对解题格式上的问题加以提醒。

)统计每道题用算术方法和用代数方法的人数。

4、通过解决刚才的这几个问题,对于做一道题时,是选择列算式还是列方程,你有什么感想?(生答)
其实呀,方程确实是一种应用很广博的数学工具,在现实生活中有好多好多的问题可以用方程解决。

下面我们不妨来试试看。

好吗?
(设计意图:通过几道例题,1、让学生初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,2、渗透建立方程模型的思想)
四、巩固练习,提高发展
1、现在我们就用列方程的方法解决问题,请拿出学案纸,完成第一大题。

要求是:(屏幕出示)根据下列问题,设未知数并列出方程,同样不需要求出结果。

2、学生独立完成。

3、哪位同学来讲讲你做的第一题,说说你的解题思路和过程。

4、通过刚才的研究,我们发现利用方程解决问题要经过哪些步骤呢?
先设未知数,然后根据相等关系列出方程,这样,就将实际问题转化成了数学问题。

(设计意图:通过练习让学生继续学会分析实际问题中的数量关系,利用其中的相等关系列出方程。


五、合作学习,开拓创新
1、我们知道,数学来源于生活,又应用于生活。

今天,老师在来滨江初中的过程中,遇到了这样一个问题:
汽车匀速行驶,7:00从实验初中出发,7:30途经常青初中到达滨江初中是7:50,吴庄在常青初中、滨江初中两地之间,距常青初中6千米,与滨江初中的距离是总路程的,问实验初中到吴庄的路程有多远?
现在,就请大家运用你所掌握的知识、方法,结合线段图解决它。

请拿出学案纸,看第二大题,只需要列式,并说出理由,不需要求出结果。

请大家先独立思考,然后学习小组内互相交流,互相讨论,看看谁想到的方法多。

现在开始。

2、学生完成
3、学生展示例外的方法。

(设计意图:改变书上的引例,把它换成现实生活中的实例,鼓励学生探索、合作、交流,有利于激发学生的学习兴趣)
六、交流收获,归纳总结
各组同学都积极开动脑筋,想出了各种方法解决问题,看来同学们今天都是“学有所获”,我们共同来对今天的学习活动作一个总结与回顾。

通过本节课的学习,你有哪些收获?
七、课后作业,拓展视野
1.必做题:阅读课本第72页“阅读与思考”;完成课本第75页第1题,第76页第5、6题。

2.选做题:课本第74页第10题。

教学反思:
本节课我在本校执教的时候效果较好,而到滨江初中上这一节课,结果却不尽如人意,甚至没有能完成预定的教学任务。

通过这一节课,我感受最深的一点是:要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也就是常说的要学会备学生,应从学生能否理解的角度来安排合适的教学程序,用风趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的浅深及分寸,做到进行合适的引导,达到事半功倍的效果。

相关文档
最新文档