高考数学高分二轮复习练习:专题五 第3讲 圆锥曲线中的热点问题 (1)

合集下载

高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.

将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.

届数学二轮复习第二部分专题篇素养提升文理专题五解析几何第3讲圆锥曲线的综合应用学案含解析

届数学二轮复习第二部分专题篇素养提升文理专题五解析几何第3讲圆锥曲线的综合应用学案含解析

第3讲圆锥曲线的综合应用JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷20椭圆的简单性质及方程思想、定点问题12Ⅱ卷19椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程12Ⅲ20椭圆标准方程和求三角形12(文科)Ⅲ卷21椭圆标准方程和求三角形面积问题,椭圆的离心率定义和数形结合求三角形面积,12201 9Ⅰ卷21直线与圆的位置关系,定值问题12Ⅱ卷20椭圆的定义及其几何性质、参数的范围12Ⅲ卷21直线与抛物线的位置关系、定点问题12201 8Ⅰ卷20直线的方程,直线与抛物线的位置关系、证明问题12Ⅱ卷20直线的方程,直线与抛物线的位置关系、圆的方程12Ⅲ卷20直线与椭圆的位置关系、证明问题12KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一圆锥曲线中的最值、范围问题错误!错误!错误!错误!典例1(2020·青海省玉树州高三联考)已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p〉0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.【解析】(1)将l:x-y+1=0与抛物线C:y2=2px联立得:y2-2py+2p=0,∵l与C相切,∴Δ=4p2-8p=0,解得:p=2,∴抛物线C的方程为:y2=4x。

(2)由题意知,直线m斜率不为0,可设直线m方程为:x =ty+1,联立{y2=4x,x=ty+1得:y2-4ty-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4t,∴x1+x2=ty1+1+ty2+1=4t2+2,∴线段AB中点M(2t2+1,2t).设A,B,M到直线l距离分别为d A,d B,d M,则d A+d B=2d M=2·错误!=2错误!错误!=2错误!错误!,∵(t-错误!)2+错误!≥错误!,∴当t=错误!时,错误!min=错误!,∴A,B两点到直线l的距离之和的最小值为:22×错误!=错误!。

高中数学二轮复习 圆锥曲线中的热点问题 课件理(全国通用)

高中数学二轮复习   圆锥曲线中的热点问题   课件理(全国通用)

1
1+4������2 1
, =
1+8������2 1 1+4������2 1
因此|OC|=
������ 2
+
������ 2
.
-9热点考题诠释 高考方向解读
由题意可知 sin
2 1+������2 1 1+8������1
2 所以|AB|= 1 + ������1 |x1-x2|= 2
1+2������2 1
.Байду номын сангаас
-8热点考题诠释 高考方向解读
由题意可知圆 M 的半径 r 为
2 2 1+ ������ 1+8 ������ 1 1 2 2 2 r=3|AB|= 3 . 2������2 +1 1
3.(2017 山东,理 21)在平面直角坐标系 xOy 中,椭圆
������2 ������
2 =1(a>b>0)的离心率为 ,焦距为 2.
������2 E: 2 ������
+
2 2
(1)求椭圆 E 的方程.
3 (2)如图,动直线 l:y=k1x- 2 交椭圆 E 于 A,B 两点,C 是椭圆 E 上一点, 2 直线 OC 的斜率为 k2,且 k1k2= 4 ,M 是线段 OC 延长线上一点,且|MC|∶
关闭
C
答案 答案
-3热点考题诠释 高考方向解读
2.(2017全国1,理10)已知F为抛物线C:y2=4x的焦点,过F作两条互相 垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则 |AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10 答案: A

专题五 第3讲 圆锥曲线中的定值、定点及证明问题

专题五     第3讲 圆锥曲线中的定值、定点及证明问题

第3讲 圆锥曲线中的定值、定点及证明问题[做真题](2019·高考全国卷Ⅲ节选)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .证明:直线AB 过定点.[明考情]圆锥曲线中的定点、定值问题是高考命题的热点,无论是选择题、填空题,还是解答题,只要考查与曲线有关的运动变化,都可能涉及探究定点或定值,因而这类问题考查范围广泛,命题形式新颖.定值问题1.直接消参求定值:常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示:(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.例1.(2017·高考全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.2.从特殊到一般求定值:常见处理技巧:(1)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;(2)巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.例2.(2015·高考四川卷)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.例3. (2019·贵阳市第一学期检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点M 为短轴的上端点,MF 1→·MF 2→=0,过F 2垂直于x 轴的直线交椭圆C 于A ,B两点,且|AB |= 2.(1)求椭圆C 的方程;(2)设经过点(2,-1)且不经过点M 的直线l 与椭圆C 相交于G ,H 两点.若k 1,k 2分别是直线MG ,MH 的斜率,证明:k 1+k 2为定值.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.[对点训练]已知椭圆方程为x 24+y 23=1,点F 为右焦点,若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).定点问题1.参数法:参数法解决定点问题的思路:(1)引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k );(2)利用条件找到k 与过定点的曲线F (x ,y )=0之间的关系,得到关于k 与x ,y 的等式,再研究变化量与参数何时没有关系,找到定点.例4.(2017·高考全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →= 2 NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1,证明:过点P 且垂直于OQ 的直线l 过C的左焦点F .2.由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.例5.(2017·高考全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.例6. (2019·安徽省考试试题)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为P ,右顶点为Q ,直线PQ 与圆x 2+y 2=45相切于点M ⎝⎛⎭⎫25,45.(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且P A →·PB →=0,求证:直线l 过定点.圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化的量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.[提醒] (1)直线过定点,常令参数的系数等于0即可.如直线y =kx +b ,若b 为常量,则直线恒过点(0,b );若b k为常量,则直线恒过点⎝⎛⎭⎫-b k ,0. (2)一般曲线过定点,把曲线方程变为f 1(x ,y )+λf 2(x ,y )=0(λ为参数).解方程组⎩⎪⎨⎪⎧f 1(x ,y )=0,f 2(x ,y )=0,即得定点坐标. [对点训练](2019·开封市定位考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为M ,△MF 1F 2为等腰直角三角形,且其面积为1.(1)求椭圆C 的方程;(2)过点M 分别作直线MA ,MB 交椭圆C 于A ,B 两点,设这两条直线的斜率分别为k 1,k 2,且k 1+k 2=2,证明:直线AB 过定点.证明问题代数转化法:圆锥曲线中的证明问题多涉及几何量的证明,比如涉及线段或角相等以及位置关系等等(注意一些常用的结论,如等腰三角形两底角相等,两直线斜率之和为0等).证明时,常把几何量用坐标表示,建立某个变量的函数,用代数方法证明,常将斜率利用整体法求解.例7.(2018·高考全国卷Ⅰ)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN例8.(2019·湖南省五市十校联考)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,右焦点为F,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)如图,过定点P(2,0)的直线l交椭圆C于A,B两点,连接AF并延长交椭圆C于点M,求证:∠PFM=∠PFB.圆锥曲线证明问题的类型及求解策略(1)圆锥曲线中的证明问题,主要有两类:①证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某点、某两条直线平行或垂直等;②证明直线与圆锥曲线中的一些数量关系(相等或不等).(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.[对点训练](2019·合肥市第一次质量检测)设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线交椭圆E 于A ,B 两点.若椭圆E 的离心率为22,△ABF 2的周长为4 6. (1)求椭圆E 的方程;(2)设不经过椭圆的中心而平行于弦AB 的直线交椭圆E 于点C ,D ,设弦AB ,CD 的中点分别为M ,N ,证明:O ,M ,N 三点共线.。

高三数学二轮专题五第3讲圆锥曲线中的热点问题共51页文档

高三数学二轮专题五第3讲圆锥曲线中的热点问题共51页文档


椭圆.
(1)求轨迹方程时,先看轨迹的形状能否预知,
若能预先知道轨迹为圆锥曲线,则可考虑用定义法求解或
用待定系数法求解.
(2)讨论轨迹方程的解与轨迹上的点是否对应,即应注意字
母的取值范围.
热点分类突破
第3讲
(2011·天津)在平面直角坐标系 xOy 中,点 P(a, b)(a>b>0)为动点,F1,F2 分别为椭圆xa22+by22=1 的左,右
线与圆锥曲线的位置关系、平面向量等基础知识,考查运
本 算求解能力、推理论证能力,考查函数与方程思想、数形

栏 结合思想、化归与转化思想、特殊与一般思想.

开 关
易错提醒 (1)先求出点 B 的坐标,再代入抛物线方程即可
求出参数 p 的值,从而得所求的抛物线方程;(2)假设在 y
轴上存在定点 M,使得以线段 PQ 为直径的圆经过点 M, 转化为M→P·M→Q=0,从而判断点 M 是否存在.
高考真题感悟
第3讲
(2)证明 方法一 由(1)知 y=14x2,y′=12x.
设 P(x0,y0),则 x0≠0,y0=14x20,且 l 的方程为
本 讲
y-y0=12x0(x-x0),即 y=12x0x-14x02.

目 开 关
由y=12x0x-14x20, y=-1
得x=x202-x04, y=-1.
其中 x∈[-4,4].
热点分类突破
第3讲
当 0<λ<34时,点 M 的轨迹为中心在原点、实轴在 y 轴上的
双曲线满足-4≤x≤4 的部分;

当34<λ<1 时,点 M 的轨迹为中心在原点、长轴在 x 轴上的

2014届高三二轮专题突破-圆锥曲线中的热点问题··

2014届高三二轮专题突破-圆锥曲线中的热点问题··

第3讲圆锥曲线中的热点问题【高考考情解读】 1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=(x1+x2)2-4x1x2,|y2-y1|=(y1+y2)2-4y1y2.(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式). 3. 弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 4. 轨迹方程问题(1)求轨迹方程的基本步骤:①建立适当的平面直角坐标系,设出轨迹上任一点的坐标——解析法(坐标法). ②寻找动点与已知点满足的关系式——几何关系. ③将动点与已知点的坐标代入——几何关系代数化. ④化简整理方程——简化.⑤证明所得方程为所求的轨迹方程——完成其充要性. (2)求轨迹方程的常用方法:①直接法:将几何关系直接翻译成代数方程;②定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程; ③代入法:把所求动点的坐标与已知动点的坐标建立联系;④交轨法:写出两条动直线的方程直接消参,求得两条动直线交点的轨迹;(3)注意①建系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方程则是代数表达式.步骤②⑤省略后,验证时常用途径:化简是否同解变形,是否满足题意,验证特殊点是否成立等.考点一 求轨迹方程例1 (2013·辽宁)如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时, A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12,所以A 点坐标为⎝⎛⎭⎫-1,14,故切线MA 的方程为y =-12(x +1)+14. 因为点M (1-2,y 0)在切线MA 及抛物线C 2上,于是 y 0=-12(2-2)+14=-3-224,①y 0=-(1-2)22p =-3-222p .②由①②得p =2.(2)设N (x ,y ),A ⎝⎛⎭⎫x 1,x 214,B (x 2,x224),x 1≠x 2, 由N 为线段AB 中点知 x =x 1+x 22,③ y =x 21+x 228.④切线MA 、MB 的方程分别为 y =x 12(x -x 1)+x 214.⑤ y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为 x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足x 2=43y .因此AB 中点N 的轨迹方程为 x 2=43y .(1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为圆锥曲线,则可考虑用定义法或待定系数法求解.(2)当曲线上动点的坐标受到另外一些点的坐标制约时,可以用相关点法,利用相关点法求解曲线方程需要注意两个方面:一是准确定位,即确定联动点,动点的轨迹可能与多个动点相关,但要抓住与其一起联动的点;二是找准关系,即根据已知准确求出动点与其联动点的坐标之间的关系,然后代入联动点所在曲线方程求解.设F (1,0),点M 在x 轴上,点P 在y 轴上,且MN →=2MP →,PM →⊥PF →.(1)当点P 在y 轴上运动时,求点N 的轨迹C 的方程;(2)设A (x 1,y 1),B (x 2,y 2),D (x 3,y 3)是曲线C 上的点,且|AF →|,|BF →|,|DF →|成等差数列,当AD 的垂直平分线与x 轴交于点E (3,0)时,求B 点坐标.解 (1)设N (x ,y ),则由MN →=2MP →,得P 为MN 的中点,所以M (-x,0),P (0,y 2).又PM →⊥PF →得PM →·PF →=0,PM →=(-x ,-y 2),PF →=(1,-y 2),所以y 2=4x (x ≠0).(2)由(1)知F (1,0)为曲线C 的焦点,由抛物线定义知,抛物线上任一点P 0(x 0,y 0)到F 的距离等于其到准线的距离,即|P 0F |=x 0+p2,所以|AF →|=x 1+p 2,|BF →|=x 2+p 2,|DF →|=x 3+p 2,根据|AF →|,|BF →|,|DF →|成等差数列,得x 1+x 3=2x 2, 直线AD 的斜率为y 3-y 1x 3-x 1=y 3-y 1y 234-y 214=4y 1+y 3,所以AD 中垂线方程为y =-y 1+y 34(x -3), 又AD 中点(x 1+x 32,y 1+y 32)在直线上,代入上式得x 1+x 32=1,即x 2=1,所以点B (1,±2). 考点二 圆锥曲线中的定值、定点问题例2 已知椭圆C :x 2a 2+y 2b 2=1经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F交椭圆于A 、B 两点,点A 、F 、B 在直线x =4上的射影依次为D 、K 、E . (1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且MA →=λAF →,MB →=μBF →,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,说明理由;(3)连接AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.(1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y 后可得点A ,B 的横坐标的关系式,然后根据向量关系式MA →=λAF →,MB →=μBF →把λ,μ用点A ,B 的横坐标表示出来,只要证明λ+μ的值与直线的斜率k 无关即证明了其为定值,否则就不是定值;(3)先根据直线l 的斜率不存在时的特殊情况,看两条直线AE ,BD 的交点坐标,如果直线AE ,BD 相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE ,BD 都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点.解 (1)依题意得b =3,e =c a =12,a 2=b 2+c 2,∴a =2,c =1,∴椭圆C 的方程为x 24+y 23=1.(2)因直线l 与y 轴相交,故斜率存在,设直线l 方程为 y =k (x -1),求得l 与y 轴交于M (0,-k ),又F 坐标为(1,0),设l 交椭圆于A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0, ∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,又由MA →=λAF →,∴(x 1,y 1+k )=λ(1-x 1,-y 1), ∴λ=x 11-x 1,同理μ=x 21-x 2,∴λ+μ=x 11-x 1+x 21-x 2=x 1+x 2-2x 1x 21-(x 1+x 2)+x 1x 2=8k 23+4k 2-2(4k 2-12)3+4k 21-8k23+4k 2+4k 2-123+4k2=-83. 所以当直线l 的倾斜角变化时,直线λ+μ的值为定值-83.(3)当直线l 斜率不存在时,直线l ⊥x 轴,则ABED 为矩形,由对称性知,AE 与BD 相交于FK 的中点N ⎝⎛⎭⎫52,0, 猜想,当直线l 的倾斜角变化时, AE 与BD 相交于定点N ⎝⎛⎭⎫52,0, 证明:由(2)知A (x 1,y 1),B (x 2,y 2),∴D (4,y 1),E (4,y 2),当直线l 的倾斜角变化时,首先证直线 AE 过定点⎝⎛⎭⎫52,0,∵l AE :y -y 2=y 2-y 14-x 1(x -4),当x =52时,y =y 2+y 2-y 14-x 1·⎝⎛⎭⎫-32=2(4-x 1)·y 2-3(y 2-y 1)2(4-x 1)=2(4-x 1)·k (x 2-1)-3k (x 2-x 1)2(4-x 1)=-8k -2kx 1x 2+5k (x 1+x 2)2(4-x 1)=-8k (3+4k 2)-2k (4k 2-12)+5k ·8k 22(4-x 1)·(3+4k 2)=0.∴点N ⎝⎛⎭⎫52,0在直线l AE 上.同理可证,点N ⎝⎛⎭⎫52,0也在直线l BD 上.∴当直线l 的倾斜角变化时,直线AE 与BD 相交于定点⎝⎛⎭⎫52,0.(1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.(1)解 如图,设动圆圆心为O 1(x ,y ),由题意,得|O 1A |=|O 1M |, 当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中 点,∴|O 1M |=x 2+42, 又|O 1A |=(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42, 化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明 由题意,设直线l 的方程为y =kx +b (k ≠0), P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk 2,① x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 考点三 圆锥曲线中的最值范围问题例3 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点 P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭 圆C 1于另一点D . (1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4, 故点O 到直线l 1的距离 d =1k 2+1, 所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4.故x 0=-8k4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12·|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313, 当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1. 求最值及参数范围的方法有两种:①根据题目给出的已知条件列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.已知椭圆C 1与抛物线C 2的焦点均在x 轴上且C 1的中心和C 2的顶点均为坐标原点O ,从每条曲线上的各取两个点,其坐标如下表所示:(1)求C 1,C 2(2)过点A (m,0)作倾斜角为π6的直线l 交椭圆C 1于C ,D 两点,且椭圆C 1的左焦点F 在以线段CD 为直径的圆的外部,求m 的取值范围.解 (1)先判断出(-6,0)在椭圆上,进而断定点(1,-3)和(4,-6)在抛物线上,故(3,1)在椭圆上,所以椭圆C 1的方程为x 26+y 22=1,抛物线C 2的方程为y 2=9x .(2)设C (x 1,y 1),D (x 2,y 2),直线l 的方程为y =33(x -m ), 由⎩⎨⎧y =33(x -m )x 26+y22=1,由Δ>0得Δ=4m 2-8(m 2-6)>0, 即-23<m <23,①而x 1x 2=m 2-62,x 1+x 2=m ,故y 1y 2=33(x 1-m )·33(x 2-m ) =13[x 1x 2-m (x 1+x 2)+m 2] =m 2-66.欲使左焦点F 在以线段CD 为直径的圆的外部, 则FC →·FD →>0,又F (-2,0),即FC →·FD →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+y 1y 2+4>0. 整理得m (m +3)>0, 即m <-3或m >0.②由①②可得m 的取值范围是(-23,-3)∪(0,23).1. 求轨迹与轨迹方程的注意事项(1)求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变.(2)求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解(即轨迹上的某些点未能用所求的方程表示).检验方法:研究运动中的特殊情形或极端情形. 2. 定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明.对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果.3. 圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其左、右焦点分别是F 1、F 2,过点F 1的直线l 交椭圆C 于E 、G 两点,且△EGF 2的周长为4 2. (1)求椭圆C 的方程;(2)若过点M (2,0)的直线与椭圆C 相交于两点A 、B ,设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|P A →-PB →|<253时,求实数t 的取值范围.解 (1)由题意知椭圆的离心率e =c a =22,∴e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2.又△EGF 2的周长为42,即4a =42,∴a 2=2,b 2=1. ∴椭圆C 的方程为x 22+y 2=1.(2)由题意知直线AB 的斜率存在,即t ≠0.设直线AB 的方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2),P (x ,y ), 由⎩⎪⎨⎪⎧y =k (x -2)x 22+y 2=1, 得(1+2k 2)x 2-8k 2x +8k 2-2=0.由Δ=64k 4-4(2k 2+1)(8k 2-2)>0,得k 2<12.x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2,∵OA →+OB →=tOP →,∴(x 1+x 2,y 1+y 2)=t (x ,y ),x =x 1+x 2t =8k 2t (1+2k 2),y =y 1+y 2t =1t [k (x 1+x 2)-4k ]=-4k t (1+2k 2). ∵点P 在椭圆C 上,∴(8k 2)2[t (1+2k 2)]2+2(-4k )2[t (1+2k 2)]2=2, ∴16k 2=t 2(1+2k 2).∵|P A →-PB →|<253,∴1+k 2|x 1-x 2|<253,∴(1+k 2)[(x 1+x 2)2-4x 1x 2]<209,∴(1+k 2)[64k 4(1+2k 2)2-4·8k 2-21+2k 2]<209,∴(4k 2-1)(14k 2+13)>0, ∴k 2>14.∴14<k 2<12. ∵16k 2=t 2(1+2k 2),∴t 2=16k 21+2k 2=8-81+2k 2, 又32<1+2k 2<2,∴83<t 2=8-81+2k 2<4, ∴-2<t <-263或263<t <2,∴实数t 的取值范围为(-2,-263)∪(263,2).(推荐时间:70分钟)一、选择题1. 已知方程x 2k +1+y 23-k=1(k ∈R )表示焦点在x 轴上的椭圆,则k 的取值范围是 ( )A .k <1或k >3B .1<k <3C .k >1D .k <3答案 B解析 若椭圆焦点在x 轴上,则⎩⎪⎨⎪⎧k +1>03-k >0k +1>3-k ,解得1<k <3.选B.2. △ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( )A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4) 答案 C解析 如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线 的右支,方程为x 29-y 216=1(x >3).3. 设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半径的圆和抛物线的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案 C解析 依题意得:F (0,2),准线方程为y =-2,又∵以F 为圆心,|FM |为半径的圆和抛物线的准线相交,且|FM |=|y 0+2|, ∴|FM |>4,即|y 0+2|>4, 又y 0≥0,∴y 0>2.4. 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( )A .2B .3C .6D .8 答案 C解析 设P (x 0,y 0),则x 204+y 203=1,即y 20=3-3x 204, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3 =14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6], 所以(OP →·FP →)max =6.5. 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1·e 2的取值范围是( )A .(0,+∞)B .(13,+∞)C .(15,+∞)D .(19,+∞)答案 B解析 设椭圆与双曲线的半焦距为c , PF 1=r 1,PF 2=r 2. 由题意知r 1=10,r 2=2c , 且r 1>r 2,2r 2>r 1, ∴2c <10,2c +2c >10, ∴52<c <5⇒1<25c2<4, ∴e 2=2c 2a 双=2c r 1-r 2=2c 10-2c =c 5-c ;e 1=2c 2a 椭=2c r 1+r 2=2c 10+2c =c 5+c. ∴e 1·e 2=c 225-c 2=125c 2-1>13. 二、填空题6. 直线y =kx +1与椭圆x 25+y 2m=1恒有公共点,则m 的取值范围是________.答案 m ≥1且m ≠5解析 ∵方程x 25+y 2m =1表示椭圆,∴m >0且m ≠5.∵直线y =kx +1恒过(0,1)点, ∴要使直线与椭圆总有公共点,应有: 025+12m≤1,m ≥1, ∴m 的取值范围是m ≥1且m ≠5.7. 设F 1、F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2面积最大时,PF →1·PF →2的值等于________. 答案 -2解析 易知当P ,Q 分别在椭圆短轴端点时,四边形PF 1QF 2面积最大. 此时,F 1(-3,0),F 2(3,0),不妨设P (0,1), ∴PF →1=(-3,-1),PF →2=(3,-1), ∴PF →1·PF →2=-2.8. 已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为________. 答案522-1 解析 过点P 作抛物线的准线的垂线,垂足为A ,交y 轴于B ,由抛物线方程为y 2=4x 得焦点F 的坐标为(1,0),准线为x =-1,则由抛物线的定义可得 d 1+d 2=|P A |-|AB |+d 2=|PF |-1+d 2, |PF |+d 2大于或等于焦点F 点P 到直线l , 即|PF |+d 2的最小值为|1-0+4|2=522,所以d 1+d 2的最小值为522-1.9. (2013·安徽)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________. 答案 [1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2x 2+(y -a )2=a 得y 2+(1-2a )y +a 2-a =0. 即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0a -1≥0,解得a ≥1.三、解答题10.已知直线x -2y +2=0经过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 和上顶点D ,椭圆C的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :x =103分别交于M ,N 两点. (1)求椭圆C 的方程;(2)求线段MN 的长度的最小值.解 (1)如图,由题意得椭圆C 的左顶点为A (-2,0),上顶点为 D (0,1),即a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)直线AS 的斜率显然存在且不为0,设直线AS 的方程为y =k (x +2)(k >0),解得M (103,16k3),且将直线方程代入椭圆C 的方程,得(1+4k 2)x 2+16k 2x +16k 2-4=0.设S (x 1,y 1),由根与系数的关系得(-2)·x 1=16k 2-41+4k 2.由此得x 1=2-8k 21+4k 2,y 1=4k 1+4k 2,即S (2-8k 21+4k 2,4k1+4k 2). 又B (2,0),则直线BS 的方程为y =-14k (x -2),联立直线BS 与l 的方程解得N (103,-13k ).∴|MN |=⎪⎪⎪⎪16k 3+13k =16k 3+13k ≥216k 3·13k =83. 当且仅当16k 3=13k ,即k =14时等号成立,故当k =14时,线段MN 的长度的最小值为83.11.(2013·课标全国Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB |.解 (1)设圆P 的半径为r , 则|PM |=1+r ,|PN |=3-r , ∴|PM |+|PN |=4>|MN |,∴P 的轨迹是以M 、N 为焦点的椭圆,左顶点除外, 且2a =4,2c =2,∴a =2,c =1, ∴b 2=a 2-c 2=3.∴P 的轨迹曲线C 的方程为x 24+y 23=1(x =-2).(2)由(1)知:2r =(|PM |-|PN |)+2≤|MN |+2=4, ∴圆P 的最大半径为r =2.此时P 的坐标为(2,0). 圆P 的方程为(x -2)2+y 2=4. ①当l 的方程为x =0时,|AB |=23, ②设l 的方程为y =kx +b (k ∈R ),⎩⎪⎨⎪⎧|-k +b |1+k 2=1|2k +b |1+k 2=2解之得:⎩⎪⎨⎪⎧ k =24b =2或⎩⎪⎨⎪⎧k =-24b =-2. ∴l 的方程为y =24x +2,y =-24x - 2. 联立方程⎩⎨⎧x 24+y 23=1y =24x +2化简:7x 2+8x -8=0∴x 1+x 2=-87,x 1x 2=-87,∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2=187.12.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +y b =1的距离d =455,O 为坐标原点. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值;(3)在(2)的条件下,试求△AOB 的面积S 的最小值. (1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b .由左顶点M (-a,0)到直线x a +yb =1,即bx +ay -ab =0的距离d =455, 得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3. 所以椭圆C 的方程为x 24+y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0, 所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB . 所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0. 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255.(3)解 设直线OA 的斜率为k 0. 当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1, 故45≤S ≤1,故S 的最小值为45.。

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理
(1)求直线AP斜率的取值范围; (2)求|PA|·|PQ|的最大值.
切入点:(1)直接套用斜率公式,并借助-12<x<32求其范围; (2)先分别计算|PA|、|PQ|的长,再建立|PA|·|PQ|的函数,进而借 助导数求其最值.
[解](1)设直线AP的斜率为k,k=xx2+-1214=x-12, 因为-12<x<32, 所以-1<x-12<1, 即直线AP斜率的取值范围是(-1,1).
(与向量交汇直线过定点问题)设M点为圆C:x2+y2=4上的动 点,点M在x轴上的投影为N.动点P满足2 P→N = 3 M→N ,动点P的轨迹 为E.
(1)求E的方程; (2)设E的左顶点为D,若直线l:y=kx+m与曲线E交于A,B两 点(A,B不是左、右顶点),且满足| D→A + D→B |=| D→A - D→B |,求证:直 线l恒过定点,并求出该定点的坐标.
第二部分 讲练篇
专题五 解析几何 第3讲 圆锥曲线中的综合问题
研考题 举题固法
求圆锥曲线中的最值范围问题(5年2考) 考向1 构造不等式求最值或范围
[高考解读] 以直线与圆锥曲线的位置关系为载体,融函数与 方程,均值不等式、导数于一体,重在考查学生的数学建模、数学 运算能力和逻辑推理及等价转化能力.
[解](1)设点M(x0,y0),P(x,y),由题意可知N(x0,0), ∵2P→N= 3M→N,∴2(x0-x,-y)= 3(0,-y0), 即x0=x,y0= 23y, 又点M在圆C:x2+y2=4上,∴x20+y20=4, 将x0=x,y0= 23y代入得x42+y32=1, 即轨迹E的方程为x42+y32=1.
设C(p,q),由2qpp=+q21,-2=0
得p=q=2,所以C(2,2).

圆锥曲线中的热点问题

圆锥曲线中的热点问题

(1)求椭圆C1的方程;
思维启迪 P点是椭圆上顶点,圆C2的直径等于椭圆长轴长;
解 由题意得ba==12,. 所以椭圆 C1 的方程为x42+y2=1.
(2)求△ABD面积取最大值时直线l1的方程.
思维启迪 设直线l1的斜率为k,将△ABD的面积表示为关于k的函数.
解 设A(x1,y1),B(x2,y2),D(x0,y0). 由题意知直线l1的斜率存在,不妨设其为k, 则直线l1的方程为y=kx-1. 又圆C2:x2+y2=4,
第 3讲 圆锥曲线中的热点问题
主干知识梳理 热点分类突破 真题与押题
1.本部分主要以解答题形式考查,往往是试卷的
压轴题之一,一般以椭圆或抛物线为背景,考
查弦长、定点、定值、最值、范围问题或探索
性问题,试题难度较大.
考 2.求轨迹方程也是高考的热点与重点,若在客观
情 解
题中出现通常用定义法,若在解答题中出现一
又|O1A|= x-42+y2,
∴ x-42+y2= x2+42,
化简得y2=8x(x≠0). 又当O1在y轴上时,O1与O重合 ,点O1的坐标为 (0,0)也满足方程y2=8x, ∴动圆圆心的轨迹C的方程为y2=8x.
(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹 C交于不同的两点P,Q,若x轴是∠PBQ的角平分 线,证明:直线l过定点.
其中Δ=-32kb+64>0.
由x1x根2=与bk系22,数的关系得,x1+x2=8-k22 bk,
① ②
∵x轴是∠PBQ的角平分线,
∴x1y+1 1=-x2y+2 1,
即y1(x2+1)+y2(x1+1)=0,
(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,

大学数学(高数微积分)专题五第讲圆锥曲线中的热点问题(课堂讲义)

大学数学(高数微积分)专题五第讲圆锥曲线中的热点问题(课堂讲义)

=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的
斜截式:y=kx+m,则直线必过定点(0,m).
22
热点分类突破
(2013·陕西)已知动圆过定点A(4,0),且在y轴上截得
弦MN的长为8.
(1)求动圆圆心的轨迹C的方程;
(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同
猜想,当直线l的倾斜角变化时,

讲 栏 目
AE与BD相交于定点N52,0,
开 关
证明:由(2)知A(x1,y1),B(x2,y2),
∴D(4,y1),E(4,y2),当直线l的倾斜角变化时,首先证直线
AE过定点52,0,
∵lAE:y-y2=y42--xy11(x-4), 19
热点分类突破
当x=52时,y=y2+y42--xy11·-32

目 时,求B点坐标.

关解
(1)设 N(x,y),则由M→N=2M→P,得 P 为 MN 的中点,
所以 M(-x,0),P(0,2y). 又P→M⊥P→F得P→M·P→F=0,P→M=(-x,-2y), P→F=(1,-2y),所以y2=4x(x≠0).
13
热点分类突破
(2)由(1)知F(1,0)为曲线C的焦点,由抛物线定义知,抛物线上
“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义
的运用,以简化运算.

(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,
讲 栏 目
y2),则所得弦长|P1P2|= 1+k2 |x2-x1|或|P1P2|= 1+k12
开 关
. |y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关

高三数学二轮复习圆锥曲线热点问题 课件

高三数学二轮复习圆锥曲线热点问题 课件

【例4】已知椭圆E:
2
2
+
2
2
= 1(a>b>0)的离心率e=
3
,且点P(
2
2,
2
)为椭圆
2
E上一点.点A,B为椭圆E的上下顶点,动点M在第一象限内且坐标为(m,2),
过M作直线MA,MB分别交椭圆E于C,D两点.
(1)求椭圆E的标准方程;
(2)问直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明
若结论不正确,则不存在.
思路
策略
①当条件和结论不唯一时要分
类讨论;
②当给出结论而要推导出存在
的条件时,先假设成立,再推
出条件.
的等量关系.
利用隐含的不等关系建立不等式,从而求出参数的取值范围.
利用已知的不等关系构造不等式,从而求出参数的取值范围.
利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定
参数的取值范围.
热点3:证明问题
【例3】在平面直角坐标系xOy中,已知向量=(x+ 2 ,y), =(x‒ 2 ,y),
为(0,b),且△HF1F2的面积为2 2 .
(1)求椭圆C 的方程;
F1
O
F2
x
y
(2)是否存在直线 y=2x+t 与椭圆C 相
交于M,N两点,使得直线HM与HN的斜
H
N
率之和为1?若存在,求此时的直线方程;
若不存在,请说明理由.
O
M
x
求解存在性问题的思路及策略
先假设存在,推证满足条件的
结论,若结论正确,则存在;
热点1:最值问题
2
【例1】已知椭圆E: 2

2019届高三理科数学第二轮专题复习配套文档专题五 第3讲圆锥曲线中的定点与定值

2019届高三理科数学第二轮专题复习配套文档专题五 第3讲圆锥曲线中的定点与定值

第3讲圆锥曲线中的定点与定值、范围与存在性问题[真题再现]1.(2017·课标Ⅱ)设O为坐标原点,动点M在椭圆C:错误!+y2=1上,过M作x轴的垂线,垂足为N,点P满足错误!=错误!错误!.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且错误!·错误!=1.证明:过点P且垂直于OQ的直线l过C的左焦点F。

[解析](1)设P(x,y),M(x0,y0),设N(x0,0),错误!=(x-x0,y),错误!=(0,y0).由NP,→= 2 错误!得x0=x,y0=错误!y0.因为M(x0,y0)在C上,所以错误!+错误!=1.因此点P的轨迹方程为x2+y2=2.(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则错误!=(-3,t),错误!=(-1-m,-n),错误!·错误!=3+3m-tn,错误!=(m,n),错误!=(-3-m,t-n).由错误!·错误!=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0。

所以错误!·错误!=0,即错误!⊥错误!。

又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F。

2.(2018·已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+错误!=1(x<0)上的动点,求△P AB面积的取值范围.[解](1)解:设P(x0,y0),A错误!,B错误!。

因为P A,PB的中点在抛物线上,所以y1,y2为方程错误!2=4·错误!即y2-2y0y+8x0-y错误!=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)解:由(1)可知错误!所以|PM|=错误!(y错误!+y错误!)-x0=错误!y错误!-3x0,|y1-y2|=2错误!。

【名师名校典型题】高考数学二轮复习名师知识点总结圆锥曲线中的热点问题

【名师名校典型题】高考数学二轮复习名师知识点总结圆锥曲线中的热点问题

的弦被点
12,
1 2
平分,则这条弦所在的直线方程是
答案 2x+ 4y- 3= 0
解析 设弦的两个端点为 A(x1, y1) ,B(x2,y2),
则 x1+ x2= 1, y1+ y2=1.
∵ A, B 在椭圆上,

x21+ 2
y21=
1,
x22+ 2
y22=
1.
x1+ x2 x1- x2
2
+( y1+ y2)(y1-y 2)= 0,
(1) 问中.
1. 直线与圆锥曲线的位置关系
(1)直线与椭圆的位置关系的判定方法: 将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若
Δ>0,则直
线与椭圆相交;若 Δ= 0,则直线与椭圆相切;若 Δ<0,则直线与椭圆相离.
(2)直线与双曲线的位置关系的判定方法: 将直线方程与双曲线方程联立,消去 y(或 x),得到一个一元方程
d=
|-3- 2+ 2
2| =Biblioteka 3 22,所以 △PAB 的面积
S=
1 2|AB|
9 ·d=2.
解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆 方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中 点的问题常常用 “ 点差法 ” 解决,往往会更简单.
椭圆
x2+y2=1 2
即 y1- y2=- x1- x2
x1+ x2 2 y1+ y2
=-
12,
____________ .
即直线
AB 的斜率为-
1 2.
∴ 直线 AB 的方程为
y-
12=-
1 2

人教版全国高考压轴解析几何第3讲圆锥曲线中的热点问题

人教版全国高考压轴解析几何第3讲圆锥曲线中的热点问题

第2讲圆锥曲线中的热点问题高考分析1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一;2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查. 真题体验1.(2015·全国Ⅰ卷)已知),(00y x M 是双曲线12:22=-y x C 上的一点,F1,F2是C 的两个焦点,若021<⋅→→MF MF ,则0y 的取值范围是()A.33,33(-B.63,63(-C.322,322(-D.332,332(-2.(2017·全国Ⅰ卷)已知椭圆)0(1:2222>>=+b a b y a x C ,四点)1,1(1P ,)1,0(2P ,)23,1(3-P ,)23,1(4P 中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于B A ,两点.若直线A P 2与直线B P 2的斜率的和为1-,证明:l 过定点.归纳提升1.圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.温馨提醒圆锥曲线上点的坐标是有范围的,在涉及到求最值或范围问题时注意坐标范围的影响.2.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:)(00x x k y y -=-,则直线必过定点),(00y x ;若得到了直线方程的斜截式:m kx y +=,则直线必过定点),0(m .(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.3.存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组).(2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在.(3)得出结论. 热点题型热点一圆锥曲线中的最值、范围【例1】(2016·浙江卷)如图所示,设抛物线)0(22>=p px y 的焦点为F,抛物线上的点A 到y 轴的距离等于|AF|-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N,AN 与x 轴交于点M,求M 的横坐标的取值范围.归纳提升求圆锥曲线中范围、最值的主要方法:(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.【训练1】已知点A(0,-2),椭圆)0(1:2222>>=+b a b y a x E 的离心率为32,F 是椭圆E的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P,Q 两点,当△OPQ 的面积最大时,求l 的方程.热点二定点、定值问题命题角度1圆锥曲线中的定值【例2-1】(2016·北京卷)已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,)0,(a A ,B(0,b),O(0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M,直线PB 与x 轴交于点N.求证:|AN|·|BM|为定值.归纳提升 1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练2】(2017·唐山一模)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为22,点),(bab Q 在椭圆上,O 为坐标原点.(1)求椭圆C 的方程;(2)已知点P,M,N 为椭圆C 上的三点,若四边形OPMN 为平行四边形,证明四边形OPMN 的面积S 为定值,并求该定值.命题角度2圆锥曲线中的定点问题【例2-2】(2017·哈尔滨模拟)已知两点)0,2(),0,2(B A -,动点P 在y 轴上的投影是Q ,且22→→→=⋅PQPB P A (1)求动点P 的轨迹C 的方程;(2)过)0,1(F 作互相垂直的两条直线交轨迹C 于点N M H G ,,,,且21,E E 分别是GH ,MN 的中点.求证:直线21E E 恒过定点.归纳提升1.动直线l 过定点问题.设动直线方程(斜率存在)为t kx y +=,由题设条件将t用k 表示为mk t =,得)(m x k y +=,故动直线过定点)0,(m -.2.动曲线C 过定点问题.引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【训练3】(2017·菏泽调研)已知焦距为22的椭圆)0(1:2222>>=+b a by a x C 的右顶点为A,直线y=43与椭圆C 交于P,Q 两点(P 在Q 的左边),Q 在x 轴上的射影为B,且四边形ABPQ是平行四边形.(1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M,N.若M 是椭圆的左顶点,D 是直线MN 上一点,且DA⊥AM.点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点.热点三圆锥曲线中的存在性问题【例3】(2017·长沙调研)已知椭圆)0(1:2222>>=+b a by a x C 的离心率为12,且过点)23,1(P ,F 为其右焦点.(1)求椭圆C 的方程;(2)设过点A(4,0)的直线l 与椭圆相交于M,N 两点(点M 在A,N 两点之间),是否存在直线l 使△AMF 与△MFN 的面积相等?若存在,试求直线l 的方程;若不存在,请说明理由.归纳提升1.此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,不成立则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.【训练4】(2017·新乡三模)已知抛物线)0(2:2>=p py x C 的焦点为F,直线2x-y+2=0交抛物线C 于A,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q.(1)D 是抛物线C 上的动点,点E(-1,3),若直线AB 过焦点F,求|DF|+|DE|的最小值;(2)是否存在实数p,使|2QA →+QB →|=|2QA →-QB →|?若存在,求出p 的值;若不存在,说明理由.归纳提升1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关:(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值.3.存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件. 专题训练一、选择题1.21,F F 是椭圆1422=+y x 的左、右焦点,点P 在椭圆上运动,则→→⋅21PF PF 的最大值是()A.-2 B.1 C.2 D.42.(2017·沈阳二模)若点P 为抛物线22x y =上的动点,F 为抛物线的焦点,则|PF|的最小值为()A.2B.12C.14D.183.(2017·北京西城区调研)过抛物线x y 342=的焦点的直线l 与双曲线C:122=-y x 的两个交点分别为),(),,(2211y x y x ,若021>x x ,则k 的取值范围是()A.21,21(-B.),21()21,(+∞--∞ C.)2,2(-D.),2()2,(+∞--∞ 4.(2017·全国Ⅰ卷)设A,B 是椭圆13:22=+my x C 长轴的两个端点.若C 上存在点M 满足∠AMB=120°,则m 的取值范围是()A.(0,1]∪[9,+∞)B.(0,3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)5.在直线y=-2上任取一点Q,过Q 作抛物线y x 42=的切线,切点分别为A,B,则直线AB 恒过的点的坐标为()A.(0,1)B.(0,2)C.(2,0)D.(1,0)二、填空题6.已知双曲线)0,0(12222>>=-b a by a x 的渐近线与圆02422=++-y x x 相交,则双曲线的离心率的取值范围是______.7.已知抛物线y x C 8:2=的焦点为F,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P,则FP →·FQ →的最小值为________.8.(2017·济南模拟)已知抛物线x y 42=,过焦点F 的直线与抛物线交于A,B 两点,过A,B 分别作x 轴,y 轴垂线,垂足分别为C,D,则|AC|+|BD|的最小值为________.三、解答题9.(2017·延安调研)如图,椭圆)0(1:2222>>=+b a by a x E ,经过点A(0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P,Q(均异于点A),证明:直线AP 与AQ 的斜率之和为定值.10.(2017·昆明二模)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为22,短轴长为2.直线l:y=kx+m 与椭圆C 交于M,N 两点,又l 与直线y=12x,y=-12x 分别交于A,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.。

高三数学二轮专题复习课件:专题五 第3讲 圆锥曲线中的热点问题

高三数学二轮专题复习课件:专题五 第3讲 圆锥曲线中的热点问题

真题感悟 考点整合
热点聚焦 分类突破
归纳总结 思维升华
@《创新设计》
【训练1】 (2018·浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上 存在不同的两点A,B满足PA,PB的中点均在C上.
(1)设 AB 中点为 M,证明:PM 垂直于 y 轴; (2)若 P 是半椭圆 x2+y42=1(x<0)上的动点,求△PAB 面积的取值范围.
则 k1+k2=y1x-1 1+y2x-2 1=kx1+xm1 -1+kx2+xm2 -1=2kx1x2+(m-x1x12)(x1+x2).
由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0. ∴(2k+1)·44mk22+-14+(m-1)·4-k28+km1=0.
真题感悟 考点整合
真题感悟 考点整合
热点聚焦 分类突破
归纳总结 思维升华
@《创新设计》
3.存在性问题的解题步骤: (1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式 (组). (2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在. (3)得出结论.
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
热点二 定点、定值问题 考法 1 圆锥曲线中的定值 【例 2-1】 (2018·烟台二模)已知椭圆 C:ax22+by22=1(a>b>0)的焦距为 2 3,斜率为12
的直线与椭圆交于 A,B 两点,若线段 AB 的中点为 D,且直线 OD 的斜率为-12. (1)求椭圆 C 的方程; (2)若过左焦点 F 斜率为 k 的直线 l 与椭圆交于 M,N 两点,P 为椭圆上一点,且满 足 OP⊥MN,问:|M1N|+|O1P|2是否为定值?若是,求出此定值;若不是,说明理由.

第3讲 圆锥曲线中的热点问题

第3讲 圆锥曲线中的热点问题

第3讲 圆锥曲线中的热点问题高考定位 1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一;2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.真 题 感 悟1.(2018·浙江卷)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.解析 设A (x 1,y 1),B (x 2,y 2),由AP →=2PB →,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2(y 2-1),即x 1=-2x 2,y 1=3-2y 2.因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x 224+(3-2y 2)2=m ,x 224+y 22=m ,得y 2=14m +34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,所以当m =5时,点B 的横坐标的绝对值最大,最大值为2. 答案 52.(2017·全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于点P 3,P 4关于y 轴对称,由题设知C 必过P 3,P 4.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1, 所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2. 如果直线l 的斜率不存在,此时l 垂直于x 轴. 设l :x =m ,A (m ,y A ),B (m ,-y A ),k 1+k 2=y A -1m +-y A -1m =-2m =-1,得m =2,此时l 过椭圆C 右顶点,与椭圆C 不存在两个交点,故不满足. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.则k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. ∴(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得m =-2k -1,此时Δ=32(m +1), ∴当且仅当m >-1时,Δ>0,∴直线l 的方程为y =kx -2k -1,即y +1=k (x -2). 所以l 过定点(2,-1).3.(2018·北京卷节选)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程; (2)若k =1,求|AB |的最大值. 解 (1)由题意得2c =22,c = 2. ∵e =c a =63,∴a =3,则b 2=a 2-c 2=1. 所以椭圆M 的方程为x 23+y 2=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =x +m ,x 23+y 2=1得4x 2+6mx +3m 2-3=0.Δ=36m 2-16(3m 2-3)=-12m 2+48>0,所以0≤m 2<4, 所以x 1+x 2=-3m2,x 1x 2=3m 2-34. |AB |=(x 2-x 1)2+(y 2-y 1)2=2(x 2-x 1)2=2[(x 1+x 2)2-4x 1x 2]=12-3m 22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6.考 点 整 合1.圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.温馨提醒 圆锥曲线上点的坐标是有范围的,在涉及到求最值或范围问题时注意坐标范围的影响.2.圆锥曲线中的定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题. 3.圆锥曲线中的存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组).(2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在. (3)得出结论.热点一 圆锥曲线中的最值、范围问题【例1】 (2019·长郡中学模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点(2,2).(1)求椭圆C 的标准方程;(2)设A ,B 为椭圆C 的左、右顶点,过C 的右焦点F 作直线l 交椭圆于M ,N 两点,分别记△ABM ,△ABN 的面积为S 1,S 2,求|S 1-S 2|的最大值. 解 (1)根据题意,得c a =22,4a 2+2b 2=1,a 2=b 2+c 2. 解得a 2=8,b =2.故椭圆C 的标准方程为x 28+y 24=1.(2)由(1)知F (2,0),当直线l 的斜率不存在时,S 1=S 2,于是|S 1-S 2|=0; 当直线l 的斜率存在时,设直线l :y =k (x -2)(k ≠0),设M (x 1,y 1),N (x 2,y 2),联立⎩⎨⎧y =k (x -2),x 28+y 24=1,得(1+2k 2)x 2-8k 2x +8k 2-8=0.∴x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-81+2k2, 于是|S 1-S 2|=12×42×|y 1+y 2|=22|k (x 1+x 2)-4k |=22⎪⎪⎪⎪⎪⎪k ×8k 21+2k 2-4k =82|k |1+2k2=821|k |+2|k |≤8222=4. 当且仅当k =±22时等号成立,此时|S 1-S 2|的最大值为4. 综上,|S 1-S 2|的最大值为4.探究提高 求圆锥曲线中范围、最值的主要方法:(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围. 【训练1】 (2019·湖南师大附中联考)已知椭圆Γ的中心在原点,焦点在x 轴上,焦距为2,且长轴长是短轴长的2倍. (1)求椭圆Γ的标准方程;(2)设P (2,0),过椭圆Γ左焦点F 的直线l 交Γ于A ,B 两点,若对满足条件的任意直线,不等式P A →·PB →≤λ(λ∈R )恒成立,求λ的最小值. 解 (1)依题意,c =1,a =2b ,又a 2=b 2+c 2,得2b 2=b 2+1,∴b 2=1,a 2=2. ∴椭圆Γ的标准方程为x 22+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),则P A →·PB →=(x 1-2,y 1)·(x 2-2,y 2)=(x 1-2)(x 2-2)+y 1y 2,当直线l 垂直于x 轴时,x 1=x 2=-1,y 1=-y 2且y 21=12,此时P A →=(-3,y 1),PB →=(-3,y 2)=(-3,-y 1), 所以P A →·PB →=(-3)2-y 21=172, 当直线l 不垂直于x 轴时,设直线l :y =k (x +1), 由⎩⎪⎨⎪⎧y =k (x +1),x 2+2y 2=2,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2,所以P A →·PB →=x 1x 2-2(x 1+x 2)+4+k 2(x 1+1)(x 2+1)=(1+k 2)x 1x 2+(k 2-2)(x 1+x 2)+4+k 2 =(1+k 2)2k 2-21+2k 2-(k 2-2)·4k 21+2k 2+4+k 2=17k 2+22k 2+1=172-132(2k 2+1)<172. 要使不等式P A →·PB →≤λ(λ∈R )恒成立,只需λ≥172, 故λ的最小值为172.热点二 圆锥曲线中的定值、定点问题 角度1 圆锥曲线中的定值【例2-1】 (2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM→=λQO →,QN →=μQO →,求证:1λ+1μ为定值. (1)解 因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0,解得k <1, 又因为k ≠0,故k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2. 直线P A 的方程为y -2=y 1-2x 1-1(x -1).令x =0, 得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N =x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ=2为定值.探究提高 1.求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练2】 如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1, 得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2,从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.角度2 圆锥曲线中的定点问题【例2-2】 (2019·西安调研)已知两点A (-2,0),B (2,0),动点P 在y 轴上的投影是Q ,且2P A →·PB →=|PQ →|2.(1)求动点P 的轨迹C 的方程;(2)过F (1,0)作互相垂直的两条直线交轨迹C 于点G ,H ,M ,N ,且E 1,E 2分别是GH ,MN 的中点.求证:直线E 1E 2恒过定点. (1)解 设点P 坐标为(x ,y ),∴点Q 坐标为(0,y ). ∵2P A →·PB→=|PQ →|2, ∴2[(-2-x )(2-x )+y 2]=x 2, 化简得点P 的轨迹方程为x 24+y 22=1.(2)证明 当两直线的斜率都存在且不为0时,设l GH :y =k (x -1),G (x 1,y 1),H (x 2,y 2),l MN :y =-1k (x -1),M (x 3,y 3),N (x 4,y 4), 联立⎩⎨⎧x 24+y 22=1,y =k (x -1),消去y 得(2k 2+1)x 2-4k 2x +2k 2-4=0. 则Δ>0恒成立.∴x 1+x 2=4k 22k 2+1,且x 1x 2=2k 2-42k 2+1.∴GH 中点E 1坐标为⎝ ⎛⎭⎪⎪⎫2k 22k 2+1,-k 2k 2+1, 同理,MN 中点E 2坐标为⎝ ⎛⎭⎪⎫2k 2+2,k k 2+2,∴kE 1E 2=-3k2(k 2-1), ∴lE 1E 2的方程为y =-3k2(k 2-1)⎝ ⎛⎭⎪⎫x -23,∴过点⎝ ⎛⎭⎪⎫23,0, 当两直线的斜率分别为0和不存在时,lE 1E 2的方程为y =0,也过点⎝ ⎛⎭⎪⎫23,0,综上所述,lE 1E 2过定点⎝ ⎛⎭⎪⎫23,0.探究提高 1.动直线l 过定点问题.设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).2.动曲线C 过定点问题.引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【训练3】 (2019·成都诊断)已知A (-2,0),B (2,0),点C 是动点,且直线AC 和直线BC 的斜率之积为-34. (1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P ,与直线x =4相交于点Q ,求证:以PQ 为直径的圆过x 轴上一定点.(1)解 设C (x ,y ).由题意得k AC ·k BC =y x +2·y x -2=-34(y ≠0).整理,得x 24+y 23=1(y ≠0).故动点C 的轨迹方程为x 24+y 23=1(y ≠0).(2)证明 法一 易知直线l 的斜率存在,设直线l :y =kx +m .联立得方程组⎩⎨⎧y =kx +m ,x 24+y 23=1.消去y 并整理,得(3+4k 2)x 2+8kmx +4m 2-12=0.依题意得Δ=(8km )2-4(3+4k 2)(4m 2-12)=0, 即3+4k 2=m 2.设x 1,x 2为方程(3+4k 2)x 2+8kmx +4m 2-12=0的两个根,则x 1+x 2=-8km3+4k 2,∴x 1=x 2=-4km 3+4k2.∴P ⎝ ⎛⎭⎪⎪⎫-4km 3+4k 2,3m 3+4k 2,即P ⎝ ⎛⎭⎪⎫-4k m ,3m . 又Q (4,4k +m ),设R (t ,0)为以PQ 为直径的圆上一点,则由RP →·RQ →=0,得⎝ ⎛⎭⎪⎫-4k m -t ,3m ·(4-t ,4k +m )=0.整理,得4km (t -1)+t 2-4t +3=0.由km 的任意性,得t -1=0且t 2-4t +3=0,解得t =1. 综上可知,以PQ 为直径的圆过x 轴上一定点(1,0).法二 设P (x 0,y 0),则曲线C 在点P 处的切线PQ :x 0x 4+y 0y3=1.令x =4,得Q ⎝ ⎛⎭⎪⎫4,3-3x 0y 0. 设R (t ,0)为以PQ 为直径的圆上一点,则由RP →·RQ →=0,得(x 0-t )·(4-t )+3-3x 0=0,即x 0(1-t )+t 2-4t +3=0.由x 0的任意性,得1-t =0且t 2-4t +3=0,解得t =1. 综上可知,以PQ 为直径的圆过x 轴上一定点(1,0). 热点三 圆锥曲线中的存在性问题【例3】 (2019·南昌调研)设椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33. (1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?若存在,试求出定值和点D 的坐标;若不存在,请说明理由.解 (1)在△ABC 中,由余弦定理AB 2=CA 2+CB 2-2CA ·CB ·cos C =(CA +CB )2-3CA ·CB =4.又S △ABC =12CA ·CB ·sin C =34CA ·CB =33, ∴CA ·CB =43,代入上式得CA +CB =2 2. 椭圆长轴长为2a =22,焦距为2c =AB =2. 所以椭圆M 的标准方程为x 22+y 2=1.(2)设直线方程y =k (x -1),E (x 1,y 1),F (x 2,y 2), 联立⎩⎨⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0, ∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.假设x 轴上存在定点D (x 0,0),使得DE →·DF→为定值.∴DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(x 0+k 2)(x 1+x 2)+x 20+k 2 =(2x 20-4x 0+1)k 2+(x 20-2)1+2k 2.要使DE →·DF →为定值,则DE →·DF →的值与k 无关,∴2x 20-4x 0+1=2(x 20-2),解得x 0=54,此时DE →·DF→=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0. 探究提高 1.此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,不成立则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论. 2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.【训练4】 (2019·湖北部分重点中学模拟)已知长轴长为4的椭圆x 2a 2+y 2b 2=1(a >b >0)过点P ⎝ ⎛⎭⎪⎫1,32,点F 是椭圆的右焦点.(1)求椭圆方程;(2)在x 轴上是否存在定点D ,使得过D 的直线l 交椭圆于A ,B 两点.设点E 为点B 关于x 轴的对称点,且A ,F ,E 三点共线?若存在,求D 点坐标;若不存在,说明理由.解 (1)∵2a =4,∴a =2,将点P ⎝ ⎛⎭⎪⎫1,32代入x2a 2+y 2b 2=1,得b 2=3.∴椭圆方程为x 24+y 23=1. (2)存在定点D 满足条件.设D (t ,0),直线l 方程为x =my +t (m ≠0),联立⎩⎨⎧x =my +t ,x 24+y 23=1,消去x ,得(3m 2+4)y 2+6mt ·y +3t 2-12=0, 设A (x 1,y 1),B (x 2,y 2),则E (x 2,-y 2), ⎩⎪⎨⎪⎧y 1+y 2=-6mt 3m 2+4,y 1y 2=3t 2-123m 2+4,且Δ>0. 由A ,F ,E 三点共线,可得(x 2-1)y 1+(x 1-1)y 2=0, 即2my 1y 2+(t -1)(y 1+y 2)=0, ∴2m ·3t 2-123m 2+4+(t -1)·-6mt 3m 2+4=0,解得t =4, 此时由Δ>0得m 2>4.∴存在定点D (4,0)满足条件,且m 满足m 2>4.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关:(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值.3.存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.A级巩固提升一、选择题1.椭圆C:x23+y2m=1的焦点在x轴上,点A,B是长轴的两端点,若曲线C上存在点M满足∠AMB=120°,则实数m的取值范围是() A.(3,+∞) B.[1,3)C.(0,3)D.(0,1]解析依题意,当0<m<3时,焦点在x轴上,要在曲线C上存在点M满足∠AMB=120°,则ab≥tan 60°,即3m≥3,解得0<m≤1.答案 D2.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2B.12 C.14 D.18解析根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=12y,其准线方程为y=-18,∴当点P在抛物线的顶点时,d有最小值18,即|PF|min=18.答案 D3.(2019·长春模拟)已知以圆C :(x -1)2+y 2=4的圆心为焦点的抛物线C 1与圆C 在第一象限交于A 点,B 点是抛物线C 2:x 2=8y 上任意一点,BM 与直线y =-2垂直,垂足为M ,则|BM |-|AB |的最大值为( ) A.1B.2C.-1D.8解析 易知抛物线C 1的焦点为(1,0),所以抛物线C 1的方程为y 2=4x .由⎩⎪⎨⎪⎧y 2=4x ,(x -1)2+y 2=4及点A 位于第一象限可得点A (1,2).因为抛物线C 2:x 2=8y 的焦点F (0,2),准线方程为y =-2,所以由抛物线的定义得|BM |=|BF |.如图,在平面直角坐标系中画出抛物线C 2及相应的图形,可得|BM |-|AB |=|BF |-|AB |≤|AF |(当且仅当A ,B ,F 三点共线,且点B 在第一象限时,不等式取等号).故所求最大值为|AF |=1,故选A. 答案 A4.已知圆M :(x -2)2+y 2=1经过椭圆C :x 2m +y 23=1(m >3)的一个焦点,圆M 与椭圆C 的公共点为A ,B ,点P 为圆M 上一动点,则P 到直线AB 的距离的最大值为( ) A.210-5 B.210-4 C.410-11D.410-10解析 易知圆M 与x 轴的交点为(1,0),(3,0),∴m -3=1或m -3=9,则m =4或m =12.当m =12时,圆M 与椭圆C 无交点,舍去.所以m =4.联立⎩⎨⎧(x -2)2+y 2=1,x 24+y 23=1,得x 2-16x +24=0.又x ≤2,所以x =8-210.故点P 到直线AB 距离的最大值为3-(8-210)=210-5.答案 A 二、填空题5.(2019·安徽“江南十校”联考)已知点(1,2)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,则双曲线离心率的取值范围是________.解析 由已知得1a 2-4b 2=1,所以b 2a 2=b 2+4,则e =c a =1+b 2a 2=b 2+5> 5.答案 (5,+∞)6.(多填题)设抛物线x 2=4y 的焦点为F ,A 为抛物线上第一象限内一点,满足|AF |=2;已知P 为抛物线准线上任一点,则|P A |+|PF |的最小值为________,此时△P AF 的外接圆半径为________.解析 由x 2=4y ,知p =2,∴焦点F (0,1),准线y =-1.依题意,设A (x 0,y 0)(x 0>0),由定义,得|AF |=y 0+p2,则y 0=2-1=1,∴AF ⊥y 轴.易知当P (1,-1)时,|P A |+|PF |最小,∴|PF |=12+(-1-1)2=5,则|P A |+|PF |=25,由正弦定理,2R =|PF |sin A =525=52,因此△P AF 的外接圆半径R =54.答案 25 547.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0), B (x 2,y 2)(y 2<0).则|AC |+|BD |=x 2+y 1=y 224+y 1. 又y 1y 2=-p 2=-4. ∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),由g ′(x )=x 3+82x 2=0,得x =-2,分析知g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2,即y 2=-2时,|AC |+|BD |的最小值为3. 答案 3 三、解答题8.已知曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点.(1)若OA →·OB→=-4,求证:直线l 恒过定点; (2)若直线l 与曲线M 相切,求P A →·PB →(点P 坐标为(1,0))的最大值. (1)证明 易知直线l 的斜率不为0, 设l :x =my +n ,A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0.由Δ=(4m )2+16n >0, 即m 2+n >0.∴y 1+y 2=4m ,y 1y 2=-4n . ∴x 1+x 2=4m 2+2n ,x 1x 2=n 2. 由OA →·OB→=-4,得x 1x 2+y 1y 2=n 2-4n =-4,解得n =2. ∴直线l 方程为x =my +2, ∴直线l 恒过定点(2,0).(2)解 ∵直线l 与曲线M :(x -1)2+y 2=4(x ≥1)相切, ∴|1-n |1+m2=2,且n ≥3,整理得4m 2=n 2-2n -3(n ≥3).① 又点P 坐标为(1,0),∴由已知及①,得 P A →·PB →=(x 1-1,y 1)·(x 2-1,y 2) =(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+y 1y 2 =n 2-4m 2-2n +1-4n =n 2-4m 2-6n +1=4-4n . 又y =4-4n (n ≥3)是减函数,∴当n =3时,y =4-4n 取得最大值-8. 故P A →·PB→的最大值为-8. 9.(2019·河北省“五个一”名校联盟考试)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,点P (x 1,y 1),Q (x 2,y 2)是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为k 1,k 2,若m =⎝ ⎛⎭⎪⎫x 12,y 1,n =⎝ ⎛⎭⎪⎫x 22,y 2,m·n =0.(1)求证:k 1·k 2=-14;(2)试探求△OPQ 的面积S 是否为定值,并说明理由. (1)证明 ∵k 1,k 2均存在,∴x 1x 2≠0,又m·n =0,∴x 1x 24+y 1y 2=0,即x 1x 24=-y 1y 2, ∴k 1·k 2=y 1y 2x 1x 2=-14.(2)解 当直线PQ 的斜率不存在,即x 1=x 2,y 1=-y 2时,由y 1y 2x 1x 2=-14,得x 214-y 21=0,又∵点P (x 1,y 1)在椭圆上,得x 214+y 21=1,∴|x 1|=2,|y 1|=22.∴S △POQ =12|x 1|·|y 1-y 2|=1. 当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +b (b ≠0).由⎩⎨⎧y =kx +b ,x 24+y 2=1,得(4k 2+1)x 2+8kbx +4b 2-4=0,Δ=64k 2b 2-4(4k 2+1)(4b 2-4)=16(4k 2+1-b 2)>0, ∴x 1+x 2=-8kb4k 2+1,x 1x 2=4b 2-44k 2+1.∵x 1x 24+y 1y 2=0,∴x 1x 24+(kx 1+b )(kx 2+b )=0, 得2b 2-4k 2=1,满足Δ>0. ∴S △POQ =12·|b |1+k 2|PQ |=12|b |(x 1+x 2)2-4x 1x 2=2|b |·4k 2+1-b 24k 2+1=1.综上可知,△POQ 的面积S 为定值.10.(2019·河南八市联考)如图,已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,左、右焦点分别为F 1,F 2,椭圆的一条弦AB 过其右焦点F 2,AB 的中点为M ,直线OM 与椭圆交于点C ,D ,△ABF 1的周长为8.(1)求椭圆E 的方程;(2)若直线AB 的斜率k 存在且k ≠0,求四边形ACBD 的面积S 的取值范围. 解 (1)由e =c a =12,得a =2c ,由题意及椭圆的定义知△ABF 1的周长为|AB |+|AF 1|+|BF 1|=|BF 1|+|BF 2|+|AF 1|+|AF 2|=4a =8,得a =2,∴c =1, ∴b 2=a 2-c 2=3,∴椭圆E 的方程为x 24+y 23=1.(2)由题意可设直线AB 的方程为y =k (x -1),k ≠0,由⎩⎨⎧x 24+y 23=1,y =k (x -1)消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0,∴Δ=122(k 2+1)>0,x A +x B =8k 24k 2+3,x A x B =4k 2-124k 2+3.∴|AB |=(1+k 2)·122(k 2+1)(4k 2+3)2=12(k 2+1)4k 2+3, M ⎝ ⎛⎭⎪⎫4k 24k 2+3,-3k 4k 2+3,∴直线OM 的斜率k OM =-34k , ∴直线OM 的方程为y =-34k x .由⎩⎪⎨⎪⎧x 24+y 23=1,y =-34k x ,得⎩⎪⎨⎪⎧x =4k4k 2+3,y =-34k 2+3或⎩⎪⎨⎪⎧x =-4k 4k 2+3,y =34k 2+3,不妨令C⎝⎛⎭⎪⎫4k4k 2+3,-34k 2+3,D ⎝⎛⎭⎪⎫-4k4k 2+3,34k 2+3, ∴点C ,D 到直线AB 的距离之和为d C +d D =|k (x C -1)-y C |+|k (x D -1)-y D |k 2+1=|[k (x C -1)-y C ]-[k (x D -1)-y D ]|k 2+1=|k (x C -x D )-(y C -y D )|k 2+1=24k 2+3k 2+1.∴S =12|AB |(d C +d D )=12×12(k 2+1)4k 2+3×24k 2+3k 2+1=12k 2+14k 2+3=1214+14(4k 2+3)(k ≠0),∴S 的取值范围是(6,43).B 级 能力突破11.(2019·石家庄质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且经过点⎝⎛⎭⎪⎫-1,32.(1)求椭圆C 的方程.(2)过点(3,0)作直线l 与椭圆C 交于不同的两点A ,B ,试问在x 轴上是否存在定点Q ,使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由.解 (1)由题意可得c a =32,1a 2+34b 2=1, 又a 2-b 2=c 2,所以a 2=4,b 2=1. 所以椭圆C 的方程为x 24+y 2=1.(2)存在定点Q ⎝ ⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称.设直线l 的方程为x +my -3=0,与椭圆C 的方程联立得⎩⎨⎧x +my -3=0,x 24+y 2=1,整理得(4+m 2)y 2-23my -1=0.设A (x 1,y 1),B (x 2,y 2),定点Q (t ,0)(依题意t ≠x 1,t ≠x 2). 由根与系数的关系可得,y 1+y 2=23m4+m 2,y 1y 2=-14+m2. 直线QA 与直线QB 恰关于x 轴对称,则直线QA 与直线QB 的斜率互为相反数, 所以y 1x 1-t +y 2x 2-t =0,即y 1(x 2-t )+y 2(x 1-t )=0.又x 1+my 1-3=0,x 2+my 2-3=0,所以y 1(3-my 2-t )+y 2(3-my 1-t )=0,整理得,(3-t )(y 1+y 2)-2my 1y 2=0, 从而可得,(3-t )·23m 4+m 2-2m ·-14+m 2=0,即2m (4-3t )=0,所以当t =433,即Q ⎝ ⎛⎭⎪⎫433,0时,直线QA 与直线QB 恰关于x 轴对称.特别地,当直线l 为x 轴时,Q ⎝ ⎛⎭⎪⎫433,0也符合题意. 综上所述,在x 轴上存在定点Q ⎝ ⎛⎭⎪⎫433,0,使得直线QA 与直线QB 恰关于x 轴对称.12.(2019·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点.(1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1. (2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1.令y =0,得点M 的横坐标x M =-x 1y 1-1. 又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1. 同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1. 由⎩⎨⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2. 所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1 =⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=⎪⎪⎪⎪⎪⎪⎪⎪2t 2-21+2k 2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2=2⎪⎪⎪⎪⎪⎪⎪⎪1+t 1-t . 又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪⎪⎪1+t 1-t =2. 解得t =0,所以直线l 经过定点(0,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 圆锥曲线中的热点问题高考定位 1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一;2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.真 题 感 悟1.(2018·浙江卷)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.解析 设A (x 1,y 1),B (x 2,y 2),由AP →=2PB →,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2(y 2-1),即x 1=-2x 2,y 1=3-2y 2.因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x 224+(3-2y 2)2=m ,x 224+y 22=m ,得y 2=14m+34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大,最大值为2. 答案 52.(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM→=λQO →,QN →=μQO →,求证:1λ+1μ为定值. (1)解 因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x . 由题意知,直线l 的斜率存在且不为0.设直线l 的方程为y =kx +1(k ≠0). 由⎩⎨⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <1,又因为k ≠0,故k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2.直线P A 的方程为y -2=y 1-2x 1-1(x -1).令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2. 同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N =x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ=2为定值.3.(2017·全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于点P 3,P 4关于y 轴对称,由题设知C 必过P 3,P 4.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1, 所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎨⎧a 2=4,b 2=1.故C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2. 如果直线l 的斜率不存在,l 垂直于x 轴. 设l :x =m ,A (m ,y A ),B (m ,-y A ),k 1+k 2=y A -1m +-y A -1m =-2m =-1,得m =2, 此时l 过椭圆右顶点,不存在两个交点,故不满足. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.则k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x2=2kx 1x 2+(m -1)(x 1+x 2)x 1x2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. ∴(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解之得m =-2k -1,此时Δ=32(m +1)>0,方程有解, ∴当且仅当m >-1时,Δ>0,∴直线l 的方程为y =kx -2k -1,即y +1=k (x -2). 所以l 过定点(2,-1).考 点 整 合1.圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.温馨提醒 圆锥曲线上点的坐标是有范围的,在涉及到求最值或范围问题时注意坐标范围的影响. 2.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题. 3.存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组).(2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在. (3)得出结论.热点一 圆锥曲线中的最值、范围【例1】 (2018·西安质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,直线x +3y -1=0被以椭圆C 的短轴为直径的圆截得的弦长为 3. (1)求椭圆C 的方程;(2)过点M (4,0)的直线l 交椭圆于A ,B 两个不同的点,且λ=|MA |·|MB |,求λ的取值范围.解 (1)原点到直线x +3y -1=0的距离为12, 由题得⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=b 2(b >0),解得b =1.又e 2=c 2a 2=1-b 2a 2=34,得a =2.所以椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率为0时,λ=|MA |·|MB |=12.当直线l 的斜率不为0时,设直线l :x =my +4,点A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧x =my +4,x 24+y 2=1,消去x 得(m 2+4)y 2+8my +12=0.由Δ=64m 2-48(m 2+4)>0,得m 2>12, 所以y 1y 2=12m 2+4.λ=|MA |·|MB |=m 2+1|y 1|·m 2+1|y 2|=(m 2+1)|y 1y 2|=12(m 2+1)m 2+4=12⎝ ⎛⎭⎪⎫1-3m 2+4. 由m 2>12,得0<3m 2+4<316,所以394<λ<12.综上可得:394<λ≤12,即λ∈⎝ ⎛⎦⎥⎤394,12.探究提高 求圆锥曲线中范围、最值的主要方法:(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解. (2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围. 【训练1】 (2018·浙江卷)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎪⎫y +y 022=4·14y 2+x 02, 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0,因此,PM 垂直于y 轴. (2)解 由(1)可知⎩⎨⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 2,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22(y 20-4x 0).因此,△P AB 的面积S △P AB =12|PM |·|y 1-y 2| =324(y 20-4x 0)32. 因为x 20+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],因此,△P AB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104. 热点二 定点、定值问题 考法1 圆锥曲线中的定值【例2-1】 (2018·烟台二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,斜率为12的直线与椭圆交于A ,B 两点,若线段AB 的中点为D ,且直线OD 的斜率为-12.(1)求椭圆C 的方程;(2)若过左焦点F 斜率为k 的直线l 与椭圆交于M ,N 两点,P 为椭圆上一点,且满足OP ⊥MN ,问:1|MN |+1|OP |2是否为定值?若是,求出此定值;若不是,说明理由.解 (1)由题意可知c =3,设A (x 1,y 1),B (x 2,y 2), 则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减并整理得,y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2a 2,即k AB ·k OD =-b 2a 2.又因为k AB =12,k OD =-12,代入上式得,a 2=4b 2. 又a 2=b 2+c 2,c 2=3,所以a 2=4,b 2=1, 故椭圆的方程为x 24+y 2=1.(2)由题意可知,F (-3,0), 当MN 为长轴时,OP 为短半轴, 则1|MN |+1|OP |2=14+1=54,否则,可设直线l 的方程为y =k (x +3),联立⎩⎪⎨⎪⎧x24+y 2=1,y =k (x +3),消y 得,(1+4k 2)x 2+83k 2x +12k 2-4=0, 则有x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,所以|MN |=1+k 2|x 1-x 1| =1+k 2⎝ ⎛⎭⎪⎫-83k 21+4k 22-4⎝ ⎛⎭⎪⎫12k 2-41+4k 2=4+4k 21+4k 2, 设直线OP 方程为y =-1k x , 联立⎩⎪⎨⎪⎧x 24+y 2=1,y =-1k x ,根据对称性不妨令P ⎝⎛⎭⎪⎫-2k k 2+4,2k 2+4, 所以|OP |=⎝⎛⎭⎪⎫-2k k 2+42+⎝ ⎛⎭⎪⎫2k 2+42=4+4k 2k 2+4. 故1|MN |+1|OP |2=1+4k 24+4k 2+1⎝ ⎛⎭⎪⎫4+4k 2k 2+42=1+4k 24+4k 2+k 2+44+4k 2=54, 综上所述,1|MN |+1|OP |2为定值54.探究提高 1.求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练2】 已知椭圆C :x 2a 2+y 2b 2=1过点A (2,0),B (0,1)两点. (1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. (1)解 由题意知a =2,b =1.所以椭圆方程为x 24+y 2=1,又c =a 2-b 2= 3.所以椭圆离心率e =c a =32. (2)证明 设P 点坐标为(x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,由B 点坐标(0,1)得直线PB 方程为:y -1=y 0-1x 0(x -0),令y =0,得x N =x 01-y 0,从而|AN |=2-x N =2+x 0y 0-1,由A 点坐标(2,0)得直线P A 方程为y -0=y 0x 0-2(x -2),令x =0,得y M =2y 02-x 0,从而|BM |=1-y M =1+2y 0x 0-2,所以S 四边形ABNM =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2. 即四边形ABNM 的面积为定值2. 考法2 圆锥曲线中的定点问题【例2-2】 (2018·衡水中学质检)已知两点A (-2,0),B (2,0),动点P 在y 轴上的投影是Q ,且2P A →·PB→=|PQ →|2.(1)求动点P 的轨迹C 的方程;(2)过F (1,0)作互相垂直的两条直线交轨迹C 于点G ,H ,M ,N ,且E 1,E 2分别是GH ,MN 的中点.求证:直线E 1E 2恒过定点. (1)解 设点P 坐标为(x ,y ),∴点Q 坐标为(0,y ). ∵2P A →·PB→=|PQ →|2, ∴2[(-2-x )(2-x )+y 2]=x 2, 化简得点P 的轨迹方程为x 24+y 22=1.(2)证明 当两直线的斜率都存在且不为0时,设l GH :y =k (x -1),G (x 1,y 1),H (x 2,y 2),l MN :y =-1k (x -1),M (x 3,y 3),N (x 4,y 4), 联立⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x -1),消去y 得(2k 2+1)x 2-4k 2x +2k 2-4=0. 则Δ>0恒成立.∴x 1+x 2=4k 22k 2+1,且x 1x 2=2k 2-42k 2+1.∴GH 中点E 1坐标为⎝ ⎛⎭⎪⎫2k 22k 2+1,-k 2k 2+1, 同理,MN 中点E 2坐标为⎝ ⎛⎭⎪⎫2k 2+2,k k 2+2,∴kE 1E 2=-3k2(k 2-1),∴lE 1E 2的方程为y =-3k 2(k 2-1)⎝ ⎛⎭⎪⎫x -23,∴过点⎝ ⎛⎭⎪⎫23,0, 当两直线的斜率分别为0和不存在时,lE 1E 2的方程为y =0,也过点⎝ ⎛⎭⎪⎫23,0,综上所述,lE 1E 2过定点⎝ ⎛⎭⎪⎫23,0.探究提高 1.动直线l 过定点问题.设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0)2.动曲线C 过定点问题.引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【训练3】 已知曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点.(1)若OA →·OB→=-4,求证:直线l 恒过定点; (2)若直线l 与曲线M 相切,求P A →·PB →(点P 坐标为(1,0))的最大值. 解 设l :x =my +n ,A (x 1,y 1),B (x 2,y 2). 由⎩⎨⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0. ∴y 1+y 2=4m ,y 1y 2=-4n . ∴x 1+x 2=4m 2+2n ,x 1x 2=n 2. (1)证明 由OA →·OB→=-4,得x 1x 2+y 1y 2=n 2-4n =-4,解得n =2. ∴直线l 方程为x =my +2, ∴直线l 恒过定点(2,0).(2)∵直线l 与曲线M :(x -1)2+y 2=4(x ≥1)相切, ∴|1-n |1+m 2=2,且n ≥3, 整理得4m 2=n 2-2n -3(n ≥3).① 又点P 坐标为(1,0),∴由已知及①,得 P A →·PB →=(x 1-1,y 1)·(x 2-1,y 2) =(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+y 1y 2 =n 2-4m 2-2n +1-4n =n 2-4m 2-6n +1=4-4n . 又y =4-4n (n ≥3)是减函数,∴当n =3时,y =4-4n 取得最大值-8. 故P A →·PB→的最大值为-8.热点三 圆锥曲线中的存在性问题【例3】 (2018·江南名校联考)设椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33. (1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?若存在,试求出定值和点D 的坐标;若不存在,请说明理由.解 (1)在△ABC 中,由余弦定理AB 2=CA 2+CB 2-2CA ·CB ·cos C =(CA +CB )2-3CA ·CB =4.又S △ABC =12CA ·CB ·sin C =34CA ·CB =33,∴CA ·CB =43,代入上式得CA +CB =2 2. 椭圆长轴2a =22,焦距2c =AB =2. 所以椭圆M 的标准方程为x 22+y 2=1.(2)设直线方程y =k (x -1),E (x 1,y 1),F (x 2,y 2), 联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0, ∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.假设x 轴上存在定点D (x 0,0),使得DE →·DF →为定值.∴DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(x 0+k 2)(x 1+x 2)+x 20+k 2 =(2x 20-4x 0+1)k 2+(x 20-2)1+2k 2要使DE →·DF →为定值,则DE →·DF →的值与k 无关, ∴2x 20-4x 0+1=2(x 20-2),解得x 0=54, 此时DE →·DF →=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0.探究提高 1.此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,不成立则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.【训练4】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点P ⎝ ⎛⎭⎪⎫1,32,F 为其右焦点.(1)求椭圆C 的方程;(2)设过点A (4,0)的直线l 与椭圆相交于M ,N 两点(点M 在A ,N 两点之间),是否存在直线l 使△AMF 与△MFN 的面积相等?若存在,试求直线l 的方程;若不存在,请说明理由.解 (1)因为c a =12,所以a =2c ,b =3c , 设椭圆方程x 24c 2+y 23c 2=1,又点P ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以14c 2+34c 2=1,解得c 2=1,a 2=4,b 2=3,所以椭圆方程为x 24+y 23=1.(2)易知直线l 的斜率存在,设l 的方程为y =k (x -4), 由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0,由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)>0, 解得-12<k <12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=32k 23+4k 2,①x 1x 2=64k 2-123+4k 2.②因为△AMF 与△MFN 的面积相等, 所以|AM |=|MN |,所以2x 1=x 2+4.③ 由①③消去x 2得x 1=4+16k 23+4k 2.④将x 2=2x 1-4代入②,得x 1(2x 1-4)=64k 2-123+4k 2⑤将④代入到⑤式,整理化简得36k 2=5. ∴k =±56,经检验满足题设故直线l 的方程为y =56(x -4)或y =-56(x -4).1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关:(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值. 3.存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.一、选择题1.若双曲线x 2λ-y 21-λ=1(0<λ<1)的离心率e ∈(1,2),则实数λ的取值范围为( )A.⎝ ⎛⎭⎪⎫12,1 B .(1,2) C .(1,4) D.⎝ ⎛⎭⎪⎫14,1 解析 易c =1,a =λ,且e ∈(1,2),∴1<1λ<2,得14<λ<1.答案 D2.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A .2B.12C.14D.18解析 根据题意,抛物线y =2x 2上,设P 到准线的距离为d ,则有|PF |=d ,抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18. 答案 D3.(2018·北京东城区调研)已知圆M :(x -2)2+y 2=1经过椭圆C :x 2m +y23=1的一个焦点,圆M 与椭圆C 的公共点为A ,B ,点P 为圆M 上一动点,则P 到直线AB 的距离的最大值为( ) A .210-5 B .210-4 C .410-11D .410-10解析 易知圆M 与x 轴的交点为(1,0),(3,0),∴m -3=1或m -3=9,则m =4或m =12.当m =12时,圆M 与椭圆C 无交点,舍去.∴m =4.联立⎩⎨⎧(x -2)2+y 2=1,x 24+y 23=1,得x 2-16x +24=0.∵x ≤2,∴x =8-210.故点P 到直线AB 距离的最大值为3-(8-210)=210-5.答案 A4.(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C的离心率为( ) A. 5B .2C. 3D. 2解析 不妨设一条渐近线的方程为y =b a x ,则F 2到y =ba x 的距离d =|bc |a 2+b2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-a c ,则3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca = 3. 答案 C 二、填空题5.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y 2=x 的一个交点的横坐标为x 0,若x 0>1,则双曲线C 的离心率e 的取值范围是________. 解析 双曲线C :x 2a 2-y 2b 2=1的一条渐近线为y =ba x ,联立⎩⎨⎧y 2=x ,y =b a x消去y ,得b 2a 2x 2=x .由x 0>1,知b 2a 2<1,b 2<a 2.∴e 2=c2a 2=a 2+b 2a 2<2,因此1<e < 2.答案 (1,2)6.(2018·武汉模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0), B (x 2,y 2)(y 2<0).则|AC |+|BD |=x 2+y 1=y 224+y 1.又y 1y 2=-p 2=-4.∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x ,在(-∞,-2)递减,在(-2,0)递增. ∴当x =-2,即y 2=-2时,|AC |+|BD |的最小值为3. 答案 3 三、解答题7.已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求动圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.(1)解 由题意得点M 与点(0,1)的距离等于点M 与直线y =-1的距离. 由抛物线定义知圆心M 的轨迹为以点(0,1)为焦点,直线y =-1为准线的抛物线,则p2=1,p =2.∴圆心M 的轨迹方程为x 2=4y .(2)证明 由题意知直线l 的斜率存在,设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),则C (-x 2,y 2),由⎩⎨⎧x 2=4y ,y =kx -2得x 2-4kx +8=0, Δ=16k 2-32>0得k 2>2, ∴x 1+x 2=4k ,x 1x 2=8.k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24,直线AC 的方程为y -y 1=x 1-x 24(x -x 1).即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1(x 1-x 2)4+x 214=x 1-x 24x +x 1x 24,∵x 1x 2=8,∴y =x 1-x 24x +2,则直线AC 恒过点(0,2).8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b ≥1)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△P AB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2. 又4a 2+1b 2=1,∴a 2=8,b 2=2.故所求椭圆C 的方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,消去y 得x 2+2mx +2m 2-4=0,判别式Δ=16-4m 2>0,即m 2<4. 又x 1+x 2=-2m ,x 1·x 2=2m 2-4, 则|AB |=1+14×(x 1+x 2)2-4x 1x 2 =5(4-m 2), 点P 到直线l 的距离d =|m |1+14=2|m |5. 因此S △P AB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+(4-m 2)2=2,当且仅当m 2=2即m =±2时上式等号成立,故△P AB 面积的最大值为2.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎪⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当该直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由. 解 (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上,所以2a =|AF 1|+|AF 2|=22,则a =2,b 2=a 2-c 2=1.故椭圆C 的方程为x 22+y 2=1.(2)不存在满足条件的直线,理由如下:设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝ ⎛⎭⎪⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0),由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x 得9y 2-2ty +t 2-8=0,所以y 1+y 2=2t9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t9,且-3<t <3.由PM→=NQ →得⎝ ⎛⎭⎪⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53.又-3<t <3,所以-73<y 4<-1, 与椭圆上点的纵坐标的取值范围是[-1,1]矛盾. 因此不存在满足条件的直线.10.(2018·惠州调研)在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2). (1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线的方程和弦长,如果不存在,说明理由.(1)证明 法一 当直线AB 垂直于x 轴时,不妨取y 1=22,y 2=-22, 所以y 1y 2=-8(定值).当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k (x -2), 由⎩⎨⎧y =k (x -2),y 2=4x得ky 2-4y -8k =0, 所以y 1y 2=-8.综上可得,y 1y 2=-8为定值. 法二 设直线AB 的方程为my =x -2.由⎩⎨⎧my =x -2,y 2=4x得y 2-4my -8=0,所以y 1y 2=-8. 因此有y 1y 2=-8为定值. (2)解 存在.理由如下:设存在直线l :x =a 满足条件,则AC 的中点E ⎝ ⎛⎭⎪⎫x 1+22,y 12,|AC |=(x 1-2)2+y 21, 因此以AC 为直径的圆的半径r =12|AC |=12(x 1-2)2+y 21=12x 21+4, 点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a ,所以所截弦长为 2r 2-d 2=214(x 21+4)-⎝ ⎛⎭⎪⎫x 1+22-a 2=x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2,当1-a =0,即a =1时,弦长为定值2,这时直线的方程为x =1. 11.(2018·西安模拟)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,左右顶点分别为A ,B ,P 为椭圆C 上任一点(不与A ,B 重合).已知△PF 1F 2的内切圆半径的最大值为2-2,椭圆C 的离心率为22. (1)求椭圆C 的方程;(2)直线l 过点B 且垂直于x 轴,延长AP 交l 于点N ,以BN 为直径的圆交BP 于点M ,求证:O ,M ,N 三点共线.解 (1)由题意知,c a =22,∴c =22a . 又b 2=a 2-c 2, ∴b =22a .设△PF 1F 2的内切圆半径为r , 则S △PF 1F 2=12(|PF 1|+|PF 2|+|F 1F 2|)·r , =12(2a +2c )·r =(a +c )r ,故当△PF 1F 2面积最大时,r 最大, 即P 点位于椭圆短轴顶点时,r =2-2, ∴(a +c )(2-2)=bc ,把c =22a ,b =22a 代入,解得a =2,b =2,∴椭圆方程为x 24+y 22=1.(2)由题意知,直线AP 的斜率存在,设为k , 则AP 所在直线方程为y =k (x +2), 联立⎩⎪⎨⎪⎧y =k (x +2),x 24+y 22=1,消去y ,得(2k 2+1)x 2+8k 2x +8k 2-4=0, 则有x P ·(-2)=8k 2-42k 2+1,∴x P =2-4k 22k 2+1,y P =k (x P +2)=4k 2k 2+1,得BP →=⎝ ⎛⎭⎪⎫-8k 22k 2+1,4k 2k 2+1,又N (2,4k ),∴ON →=(2,4k ). 则ON →·BP →=-16k 22k 2+1+16k 22k 2+1=0,∴ON ⊥BP ,而M 在以BN 为直径的圆上, ∴MN ⊥BP ,∴O ,M ,N 三点共线.Ruize知识分享。

相关文档
最新文档