最新人教A版高中数学必修二:2.1.2配套练习(含答案)
高中数学 必修二 :第2章 2.2.1-2.2.2 (人教A版必修2) Word版含答案
[A基础达标]1.能保证直线与平面平行的条件是()A.直线与平面内的一条直线平行B.直线与平面内的所有直线平行C.直线与平面内的无数条直线平行D.直线与平面内的所有直线不相交解析:选D.A不正确,因为直线可能在平面内;B不正确;C不正确,直线也可能在平面内;D正确,因为直线与平面内所有直线不相交,依据直线和平面平行的定义可得直线与平面平行.2.已知m、n是两条直线,α,β是两个平面.有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是()A.0B.1C.2 D.3解析:选B.把符号语言转换为文字语言或图形语言.可知①是面面平行的判定定理;②③中平面α、β还有可能相交,所以选B.3.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为()A.平行B.相交C.平行或相交D.可能重合解析:选C.若三点分布于平面β的同侧,则α与β平行,若三点分布于平面β的两侧,则α与β相交.4.m,n,l表示不同的直线,α,β表示不同的平面,下列命题正确的是() A.若m∥n∥l,m⊂α,n⊂α,则l∥αB.若α∩β=m,n∥m,则n∥αC.若α∥β,m⊂α,n⊂β,则m与n一定不相交D.若m⊂α,n⊂α,m∥β,n∥β,则α∥β解析:选C.A选项中,l可能在α内,故A错;B选项中,n可能在α内,故B错;C选项中,因为α∥β,所以α与β不相交,故m与n一定不相交,故C对;D选项中,α与β可能相交,故D错.综上可知选C.5.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G解析:选A.如图,因为EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG1,所以EG∥平面E1FG1,又G1F∥H1E,同理可证H1E∥平面E1FG1,又H1E∩EG=E,所以平面E1FG1∥平面EGH1.6.如图,在长方体ABCD-A1B1C1D1中,与AB平行的平面有________.答案:平面A1B1C1D1,平面DCC1D1,平面A1B1CD7.在空间四边形ABCD中,E、F分别为AB和BC上的点,且AE∶EB=CF∶FB =1∶3,则对角线AC和平面DEF的位置关系是________.答案:平行8.如图是正方体的平面展开图,在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个结论中,正确结论的序号是________.解析:以ABCD为下底面还原正方体,如图,则易判定四个结论都是正确的.答案:①②③④9.如图,在三棱柱ABC-A1B1C1中,D为BC的中点,连接AD,DC1,A1B,AC1,求证:A1B∥平面ADC1.证明:连接A1C,设A1C∩AC1=O,再连接OD.由题意知,A1ACC1是平行四边形,所以O是A1C的中点,又D是CB的中点,因此OD是△A1CB的中位线,即OD∥A1B.又A1B⊄平面ADC1,OD⊂平面ADC1,所以A1B∥平面ADC1.10.如图所示,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面P AO?解:当Q为CC1的中点时,平面D1BQ∥平面P AO.因为Q为CC1的中点,P为DD1的中点,所以QB∥P A.而QB⊄平面P AO,P A⊂平面P AO,所以QB∥平面P AO.连接DB,因为P,O分别为DD1,DB的中点,所以PO为△DBD1的中位线,所以D1B∥PO.而D1B⊄平面P AO,PO⊂平面P AO,所以D1B∥平面P AO.又D1B∩QB=B,所以平面D1BQ∥平面P AO.[B能力提升]1.(2016·济南质检)下列四个选项中能推出α∥β的是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.2. 如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A .BD ∥平面EFGH ,且四边形EFGH 是矩形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是菱形D .EH ∥平面ADC ,且四边形EFGH 是平行四边形解析:选B.由AE ∶EB =AF ∶FD =1∶4知EF 15BD ,所以EF ∥平面BCD .又H ,G 分别为BC ,CD 的中点,所以HG 12BD ,所以EF ∥HG 且EF ≠HG .所以四边形EFGH 是梯形.3.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱C 1C ,C 1D 1,D 1D ,DC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________时,就有MN ∥平面B 1BDD 1,其中N 是BC 的中点.(填上一个正确的条件即可,不必考虑全部可能的情况)解析:连接FH (图略),因为N ∉FH ,所以平面FHN ∥平面B 1BDD 1,若M ∈FH ,则MN ⊂平面FHN ,所以MN 与平面B 1BDD 1没有交点,所以MN ∥平面B 1BDD 1.答案:M ∈FH4.(选做题)如图,斜三棱柱ABC -A 1B 1C 1中,点D 1为A 1C 1上的点.当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1?解:如图,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1.连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.在△A1BC1中,点O,D1分别为A1B,A1C1的中点,所以OD1∥BC1.又因为OD1⊂平面AB1D1,BC1⊄平面AB1D1,所以BC1∥平面AB1D1.所以A1D1D1C1=1时,BC1∥平面AB1D1.。
新教材人教A版高中数学必修第二册全册课时练习(一课一练,含解析)
人教A版高中数学必修第二册全册课时练习6.1 平面向量的概念 .............................................................................................................. - 2 - 6.2.1 向量的加法运算........................................................................................................ - 5 - 6.2.2 向量的减法运算........................................................................................................ - 8 - 6.2.3 向量的数乘运算...................................................................................................... - 11 - 6.2.4 向量的数量积............................................................................................................ - 14 - 6.3.1 平面向量基本定理.................................................................................................... - 18 - 6.3.2 平面向量的正交分解及坐标表示............................................................................ - 21 - 6.3.3 平面向量加、减运算的坐标表示............................................................................ - 21 - 6.3.4 平面向量数乘运算的坐标表示.............................................................................. - 24 - 6.3.5 平面向量数量积的坐标表示.................................................................................. - 27 - 6.4 平面向量的应用........................................................................................................ - 30 -7.1.1 数系的扩充和复数的概念...................................................................................... - 34 - 7.1.2 复数的几何意义...................................................................................................... - 37 - 7.2.1 复数的加、减运算及其几何意义.......................................................................... - 39 -7.2.2 复数的乘、除运算.................................................................................................. - 43 -8.1.1 棱柱、棱锥、棱台的结构特征................................................................................ - 46 - 8.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征................................................ - 49 - 8.2 立体图形的直观图........................................................................................................ - 51 - 8.3.1 棱柱、棱锥、棱台的表面积和体积...................................................................... - 55 - 8.3.2 圆柱、圆锥、圆台、球的表面积和体积.............................................................. - 59 - 8.4.1 平面 ......................................................................................................................... - 62 - 8.4.2 空间点、直线、平面之间的位置关系.................................................................. - 66 - 8.5.1 直线与直线平行...................................................................................................... - 69 - 8.5.2 直线与平面平行...................................................................................................... - 73 - 8.5.3 平面与平面平行...................................................................................................... - 76 - 8.6.1 直线与直线垂直...................................................................................................... - 80 - 8.6.2 直线与平面垂直...................................................................................................... - 85 -8.6.3平面与平面垂直 ....................................................................................................... - 89 -9.1.1简单随机抽样 ........................................................................................................... - 94 - 9.1.2 分层随机抽样 ............................................................................................................. - 96 - 9.1.3 获取数据的途径 ......................................................................................................... - 96 - 9.2.1总体取值规律的估计 ............................................................................................. - 100 - 9.2.2 总体百分位数的估计 ............................................................................................... - 105 - 9.2.3 总体集中趋势的估计 ............................................................................................... - 105 -9.2.4 总体离散程度的估计 ............................................................................................... - 105 -10.1.1有限样本空间与随机事件.................................................................................... - 110 - 10.1.2事件的关系和运算 ............................................................................................... - 112 - 10.1.3古典概型 ............................................................................................................... - 115 - 10.1.4概率的基本性质 ................................................................................................... - 118 - 10.2事件的相互独立性 .................................................................................................. - 121 - 10.3频率与概率 .............................................................................................................. - 126 -6.1 平面向量的概念一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量. 【答案】D2.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0【解析】根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a |或-a|a |,故④也是错误的.【答案】D3.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →【解析】由平面几何知识知,AD →与BC →方向不同, 故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →; PE →与PF →的模相等而方向相反,故PE →≠PF →. EP →与PF →的模相等且方向相同,∴EP →=PF →.【答案】D4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形 B .矩形 C .菱形 D .等腰梯形【解析】由BA →=CD →,知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB →|=|AD →|,所以四边形ABCD 为菱形. 【答案】C 二、填空题5.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.【解析】因为正方形的对角线长为22,所以|OA →|= 2. 【答案】 2 6.如图,四边形ABCD 是平行四边形,E ,F 分别是AD 与BC 的中点,则在以A 、B 、C 、D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.【解析】因为AB ∥EF ,CD ∥EF ,所以与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →. 【答案】BA →,CD →7.给出下列命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中所有正确命题的序号为________.【解析】AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 方向相同;b =c ,则|b |=|c |,且b 与c 方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确;对于④,当b =0时,a 与c 不一定平行,故④不正确. 【答案】②③ 三、解答题8.在如图的方格纸(每个小方格的边长为1)上,已知向量a . (1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么.【解析】(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如下图所示. (2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如下图所示.9.一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变了方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解析】(1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).10.如图,在△ABC 中,已知向量AD →=DB →,DF →=EC →,求证:AE →=DF →.证明:由DF →=EC →,可得DF =EC 且DF ∥EC , 故四边形CEDF 是平行四边形,从而DE ∥FC . ∵AD →=DB →,∴D 为AB 的中点. ∴AE →=EC →,∴AE →=DF →.6.2.1 向量的加法运算一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( )A.AB →B.BC →C.CD →D.DA →【解析】因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A. 【答案】A2.设a 表示“向东走5 km”,b 表示“向南走5 km”,则a +b 表示( ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2 km 【解析】如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 【答案】D3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定【解析】如果a 和b 方向相同,则它们的和的方向应该与a (或b )的方向相同;如果它们的方向相反,而a 的模大于b 的模,则它们的和的方向与a 的方向相同. 【答案】A4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →【解析】设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则OP 与OQ 之间的对角线对应的向量即向量a =OP →+OQ →,由a 和FO →长度相等,方向相同,得a =FO →,即OP →+OQ →=FO →. 【答案】C 二、填空题5.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.【解析】由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 【答案】06.化简(AB →+MB →)+(BO →+BC →)+OM →=________.【解析】原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 【答案】AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 【解析】在菱形ABCD 中,连接BD , ∵∠DAB =60°,∴△BAD 为等边三角形, 又∵|AB →|=1,∴|BD →|=1,|BC →+CD →|=|BD →|=1. 【答案】1 三、解答题8.如图,已知向量a 、b ,求作向量a +b .【解析】(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1); (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2); (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).9.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量: (1)OA →+OC →; (2)BC →+FE →.【解析】(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.【解析】如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N. 所以|OA →|=|OC →|cos 30°=1503(N), |OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算一、选择题1.下列运算中正确的是( ) A.OA →-OB →=AB → B.AB →-CD →=DB → C.OA →-OB →=BA → D.AB →-AB →=0【解析】根据向量减法的几何意义,知OA →-OB →=BA →,所以C 正确,A 错误;B 显然错误;对于D ,AB →-AB →应该等于0,而不是0.【答案】C2.下列四式中不能化简为PQ →的是( ) A.AB →+(PA →+BQ →) B .(AB →+PC →)+(BA →-QC →) C.QC →-QP →+CQ → D.PA →+AB →-BQ →【解析】D 中,PA →+AB →-BQ →=PB →-BQ →=PB →+QB →不能化简为PQ →,其余选项皆可. 【答案】D3.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A.CB → B.BC → C.CD → D.DC →【解析】在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →. 【答案】C4.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( ) A .a -b +c B .b -(a +c ) C .a +b +c D .b -a +c【解析】DC →=DA →+AB →+BC →=a -b +c . 【答案】A 二、填空题5.EF →+DE →-DB →=________.【解析】EF →+DE →-DB →=EF →+BE →=BF →. 【答案】BF →6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.【解析】若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线同向,所以|a -b |=2. 【答案】0 27.设点M 是线段BC 的中点,点A 在直线BC 外,且|BC →|=4,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.【解析】以AB ,AC 为邻边作平行四边形ACDB ,由向量加减法几何意义可知,AD →=AB →+AC →,CB →=AB →-AC →,∵|AB →+AC →|=|AB →-AC →|,平行四边形ABCD 为矩形,∴|AD →|=|CB →|,又|BC →|=4,M 是线段BC 的中点, ∴|AM →|=12|AD →|=12|BC →|=2.【答案】2 三、解答题8.如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解析】方法一:如图①,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .方法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .9.化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解析】(1)方法一 原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 方法二 原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →. (2)方法一 原式=DB →-DC →=CB →.方法二 原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 10.如图,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解析】由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=a +d +e . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .6.2.3 向量的数乘运算一、选择题1.4(a -b )-3(a +b )-b 等于( ) A .a -2b B .a C .a -6b D .a -8b【解析】原式=4a -4b -3a -3b -b =a -8b .2.点C 在直线AB 上,且AC →=3AB →,则BC →等于( ) A .-2AB → B.13AB →C .-13AB →D .2AB →【解析】如图,AC →=3AB →,所以BC →=2AB →. 【答案】D3.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A .-1或3 B. 3 C .-1或4 D .3或4【解析】因为向量m a -3b 与a +(2-m )b 共线,且向量a ,b 是两个不共线的向量,所以m =-32-m ,解得m =-1或m =3. 【答案】A 4.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=( ) A .a +34bB.34a +14bC.14a +14bD.14a +34b 【解析】AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .【答案】D5.已知|a |=4,|b |=8,若两向量方向同向,则向量a 与向量b 的关系为b =________a . 【解析】由于|a |=4,b =8,则|b |=2|a |,又两向量同向,故b =2a . 【答案】26.点C 在线段AB 上,且AC CB =32,则AC →=________AB →,BC →=________AB →.【解析】因为C 在线段AB 上,且AC CB =32,所以AC →与AB →方向相同,BC →与AB →方向相反,且AC AB =35,BC AB =25,所以AC →=35AB →,BC →=-25AB →. 【答案】35 -257.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 【解析】由a =λb ,得|a |=|λb |=|λ||b |.∵|a |=3,|b |=5, ∴|λ|=35,即λ=±35.【答案】±35三、解答题 8.计算(1)13(a +2b )+14(3a -2b )-12(a -b ); (2)12⎣⎢⎡⎦⎥⎤3a +2b-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a . 【解析】(1)原式=⎝ ⎛⎭⎪⎫13+34-12a +⎝ ⎛⎭⎪⎫23-12+12b =712a +23b . (2)原式=12⎝ ⎛⎭⎪⎫73a +b -76⎝ ⎛⎭⎪⎫a +37b =76a +12b -76a -12b =0. 9.已知E ,F 分别为四边形ABCD 的对角线AC ,BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.【解析】如图所示,取AB 的中点P ,连接EP ,FP .在△ABC 中,EP 是中位线, 所以PE →=12BC →=12a .在△ABD 中,FP 是中位线,所以PF →=12AD →=-12DA →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF →=-12a -12b =-12(a +b ).10.已知e ,f 为两个不共线的向量,若四边形ABCD 满足AB →=e +2f ,BC →=-4e -f ,CD →=-5e -3f .(1)用e 、f 表示AD →;(2)证明:四边形ABCD 为梯形.【解析】(1)AD →=AB →+BC →+CD →=(e +2f )+(-4e -f )+(-5e -3f )=(1-4-5)e +(2-1-3)f =-8e -2f .(2)证明:因为AD →=-8e -2f =2(-4e -f )=2BC →, 所以AD →与BC →方向相同,且AD →的长度为BC →的长度的2倍, 即在四边形ABCD 中,AD ∥BC ,且AD ≠BC , 所以四边形ABCD 是梯形.6.2.4 向量的数量积一、选择题1.若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12【解析】m ·n =|m ||n |cos θ=4×6×cos 45°=24×22=12 2. 【答案】B2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |=( ) A .12 B .3 C .6 D .3 3【解析】a ·b =|a ||b |cos 135°=-122,又|a |=4,解得|b |=6. 【答案】C3.已知向量a ,b 满足|a |=2,|b |=3,a ·(b -a )=-1,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2【解析】因为|a |=2,a ·(b -a )=-1, 所以a ·(b -a )=a ·b -a 2=a ·b -22=-1, 所以a ·b =3.又因为|b |=3,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=32×3=12.又θ∈[0,π],所以θ=π3. 【答案】C4.若a ·b >0,则a 与b 的夹角θ的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫π2,πC.⎝⎛⎦⎥⎤π2,π D.⎝ ⎛⎭⎪⎫π2,π 【解析】因为a ·b >0,所以cos θ>0,所以θ∈⎣⎢⎡⎭⎪⎫0,π2.【答案】A 二、填空题5.如图所示,在Rt△ABC 中,∠A =90°,AB =1,则AB →·BC →的值是________.【解析】方法一 AB →·BC →=|AB →||BC →|cos(180°-∠B )=-|AB →||BC →|cos∠B =-|AB →||BC→|·|AB →||BC →|=-|AB →|2=-1.方法二 |BA →|=1,即BA →为单位向量,AB →·BC →=-BA →·BC →=-|BA →||BC →|cos∠B ,而|BC →|·cos∠B =|BA →|,所以AB →·BC →=-|BA →|2=-1. 【答案】-16.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为________.【解析】设a 与b 的夹角为θ,cos θ=a ·b |a |·|b |=21×4=12,又因为θ∈[0,π],所以θ=π3. 【答案】π37.已知|a |=3,向量a 与b 的夹角为π3,则a 在b 方向上的投影为________.【解析】向量a 在b 方向上的投影为|a |cos θ=3×cos π3=32.【答案】32三、解答题8.已知|a |=3,|b |=4,a 与b 的夹角为120°,求: (1)a 2-b 2;(2)(2a -b )·(a +3b ).【解析】(1)a 2-b 2=|a |2-|b |2=32-42=-7.(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5|a ||b |·cos 120°-3|b |2=2×32+5×3×4×⎝ ⎛⎭⎪⎫-12-3×42=-60. 9.(1)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |,|3a +b |;(2)已知|a |=|b |=5,且|3a -2b |=5,求|3a +b |的值;(3)如图,已知在▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.【解析】(1)a ·b =|a ||b |cos π3=5×5×12=252,∴|a +b |=a +b 2=|a |2+2a ·b +|b |2=25+2×252+25=53,|a -b |=a -b2=|a |2+|b |2-2a ·b =25=5, |3a +b |=3a +b2=9a 2+b 2+6a ·b =325=513.(2)∵|3a -2b |2=9|a |2-12a ·b +4|b |2=9×25-12a ·b +4×25=325-12a ·b ,又|3a -2b |=5,∴325-12a ·b =25,则a ·b =25.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9×25+6×25+25=400.故|3a +b |=20. (3)设AB →=a ,AD →=b ,则|a |=3,|b |=1,a 与b 的夹角θ=π3.∴a ·b =|a ||b |cos θ=32.又∵AC →=a +b ,DB →=a -b , ∴|AC →|=AC →2=a +b 2=a 2+2a ·b +b 2=13,|DB →|=DB →2=a -b2=a 2-2a ·b +b 2=7.∴AC =13,BD =7.10.已知|a |=2|b |=2,且向量a 在向量b 方向上的投影为-1. (1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 【解析】(1)由题意知|a |=2,|b |=1. 又a 在b 方向上的投影为|a |cos θ=-1, ∴cos θ=-12,∴θ=2π3.(2)易知a ·b =-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)∵λa +b 与a -3b 互相垂直,∴(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, ∴λ=47.6.3.1 平面向量基本定理一、选择题1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 【解析】∵a +b =3e 1-e 2, ∴c =2(a +b ).∴a +b 与c 共线. 【答案】B2.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a【解析】如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD→-AB →=2b -a . 【答案】B3.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 【解析】如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 【答案】D4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45【解析】∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.【答案】C 二、填空题5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.【解析】因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【答案】36.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.【解析】AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b . 【答案】2a -b7.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.【解析】BE →=BC →+CE →=AD →-12AB →=b -12a .【答案】b -12a三、解答题8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .【解析】因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC→=b ,试用a ,b 将MN →、NP →、PM →表示出来. 【解析】NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 【解析】(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1 4. (2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN ,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( ) A .(1,-2) B .(7,6) C .(5,0) D .(11,8)【解析】因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8). 【答案】D2.已知向量a =(-1,2),b =(1,0),那么向量3b -a 的坐标是( ) A .(-4,2) B .(-4,-2) C .(4,2) D .(4,-2)【解析】3b -a =3(1,0)-(-1,2)=(4,-2).【答案】D3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6) D .(2,0)【解析】b =(3,2)-2a =(3,2)-(2,4)=(1,-2). 【答案】A4.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【解析】由平面向量基本定理知①正确;若a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.【答案】A 二、填空题5.在平面直角坐标系内,已知i 、j 是两个互相垂直的单位向量,若a =i -2j ,则向量用坐标表示a =________.【解析】由于i ,j 是两个互相垂直的单位向量,所以a =(1,-2). 【答案】(1,-2)6.如右图所示,已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,则向量OA →的坐标为________.【解析】设点A (x ,y ),则x =|OA →|·cos 60°=43cos 60°=23,y =|OA →|·sin 60°=43sin 60°=6,即A (23,6),所以OA →=(23,6). 【答案】(23,6)7.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.【解析】易得AB →=(2,0),由a =(x +3,x 2-3x -4)与AB →相等得⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0,解得x =-1.【答案】-1 三、解答题8.如图,取与x 轴、y 轴同向的两个单位向量i ,j 作为基底,分别用i ,j 表示OA →,OB →,AB →,并求出它们的坐标.【解析】由图形可知,OA →=6i +2j ,OB →=2i +4j ,AB →=-4i +2j ,它们的坐标表示为OA →=(6,2),OB →=(2,4),AB →=(-4,2).9.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c . (1)求p 的坐标 ;(2)若以a ,b 为基底,求p 的表达式.【解析】(1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3). (2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),所以⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,所以⎩⎪⎨⎪⎧λ=-212,μ=-15,所以p =-212a -15b .10.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →a ,OB →=b ,OC →=c ,且|a |=2,|b|=1,|c |=3,试用a ,b 表示c .【解析】如图,以O 为原点,OA →为x 轴的非负半轴建立平面直角坐标系,由三角函数的定义,得B (cos 150°,sin 150°),C (3cos 240°,3sin 240°). 即B ⎝ ⎛⎭⎪⎫-32,12,C ⎝ ⎛⎭⎪⎫-32,-332,又∵A (2,0), 故a =(2,0),b =⎝ ⎛⎭⎪⎫-32,12,c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),∴⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=⎝⎛⎭⎪⎫2λ1-32λ2,12λ2,∴⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,∴⎩⎨⎧λ1=-3,λ2=-33,∴c =-3a -33b .6.3.4 平面向量数乘运算的坐标表示一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)【解析】由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),解得m =-4,所以b =(-2,-4),所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 【答案】C2.已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2【解析】a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0,解得λ=12,故选A.【答案】A3.已知A (1,-3),B ⎝ ⎛⎭⎪⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1) D .(-9,-1) 【解析】设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝ ⎛⎭⎪⎫8,12-(1,-3)=⎝ ⎛⎭⎪⎫7,72,AC →=(x ,y )-(1,-3)=(x -1,y +3),所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C. 【答案】C4.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1),若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3【解析】向量OA →=(3,-4),OB →=(6,-3), ∴AB →=(3,1),∵OC →=(2m ,m +1),AB →∥OC →, ∴3m +3=2m ,解得m =-3,故选D.【答案】D 二、填空题5.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.【解析】因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 【答案】16.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.【解析】①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确. 【答案】①③④7.已知向量a =(1,2),b =(1,λ),c =(3,4).若a +b 与c 共线,则实数λ=________. 【解析】因为a +b =(1,2)+(1,λ)=(2,2+λ),所以根据a +b 与c 共线得2×4-3×(2+λ)=0,解得λ=23.【答案】23三、解答题8.已知a =(x,1),b =(4,x ),a 与b 共线且方向相同,求x . 【解析】∵a =(x,1),b =(4,x ),a ∥b . ∴x 2-4=0,解得x 1=2,x 2=-2.当x =2时,a =(2,1),b =(4,2),a 与b 共线且方向相同; 当x =-2时,a =(-2,1),b =(4,-2),a 与b 共线且方向相反. ∴x =2.9.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). ∵AE →=13AC →,∴AE →=⎝ ⎛⎭⎪⎫23,23,∵BF →=13BC →,∴BF →=⎝ ⎛⎭⎪⎫-23,1.∵AE →=(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,∴E ⎝ ⎛⎭⎪⎫-13,23,∵BF →=(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,∴F ⎝ ⎛⎭⎪⎫73,0, ∴EF →=⎝ ⎛⎭⎪⎫83,-23.又∵4×⎝ ⎛⎭⎪⎫-23-83×(-1)=0,∴EF →∥AB →. 10.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 【解析】(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.6.3.5 平面向量数量积的坐标表示一、选择题1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .6【解析】依题意得6-m =0,m =6,选D. 【答案】D2.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2【解析】a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1. 【答案】C3.已知a ,b 为平面向量,且a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665【解析】∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13, ∴cos〈a ,b 〉=165×13=1665.【答案】C4.已知向量a =(-1,2),b =(3,1),c =(k,4),且(a -b )⊥c ,则k =( ) A .-6 B .-1 C .1 D .6【解析】∵a =(-1,2),b =(3,1),∴a -b =(-4,1),∵(a -b )⊥c ,∴-4k +4=0,解得k =1. 【答案】C 二、填空题5.a =(-4,3),b =(1,2),则2|a |2-3a ·b =________. 【解析】因为a =(-4,3),所以2|a |2=2×(-42+32)2=50.a ·b =-4×1+3×2=2.所以2|a |2-3a ·b =50-3×2=44. 【答案】446.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.【解析】由题意得,m a -b =(m +1,-m ),根据向量垂直的充要条件可得1×(m +1)+0×(-m )=0,所以m =-1.【答案】-17.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.【解析】c =(m +4,2m +2),|a |=5,|b |=25, 设c ,a 的夹角为α,c ,b 的夹角为θ,又因为cos α=c ·a |c ||a |,cos θ=c ·b |c ||b |,由题意知c ·a |a |=c ·b |b |,即5m +85=8m +2025. 解得m =2. 【答案】2 三、解答题8.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.【解析】(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0,即x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), |a -b |=|(1,0)-(3,0)|=|(-2,0)|=2. 当x =-2时,a =(1,-2),b =(-1,2), |a -b |=|(1,-2)-(-1,2)|=|(2,-4)|=2 5.9.已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1). (1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.【解析】(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,∴a ·b =1,故cos θ=a ·b |a |·|b |=22,∵θ∈[0,π], ∴θ=π4.10.在△PQR 中,PQ →=(2,3),PR →=(1,k ),且△PQR 的一个内角为直角,求k 的值. 【解析】(1)当∠P 为直角时,PQ ⊥PR , ∴PQ →·PR →=0,即2+3k =0,∴k =-23.(2)当∠Q 为直角时,QP ⊥QR ,易知QP →=(-2,-3),QR →=PR →-PQ →=(-1,k -3). 由QP →·QR →=0,得2-3(k -3)=0,∴k =113.(3)当∠R 为直角时,RP ⊥RQ ,易知RP →=(-1,-k ),RQ →=PQ →-PR →=(1,3-k ). 由RP →·RQ →=0,得-1-k (3-k )=0,∴k =3±132.综上所述,k 的值为-23或113或3+132或3-132.6.4 平面向量的应用一、选择题1.已知三个力F 1=(-2,-1),F 2=(-3,2),F 3=(4,-3)同时作用于某物体上的一点,为使物体保持平衡,现加上一个力F 4,则F 4等于( ) A .(-1,-2) B .(1,-2) C .(-1,2) D .(1,2)【解析】F 4=-(F 1+F 2+F 3)=-[(-2,-1)+(-3,2)+(4,-3)]=(1,2). 【答案】D2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24 B .-24C.34 D .-34【解析】由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.【答案】B3.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/s D .12 m/s【解析】由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如右图. ∴小船在静水中的速度大小|v |=102+22=104=226 (m/s). 【答案】B4.在△ABC 中,AB =3,AC 边上的中线BD =5,AC →·AB →=5,则AC 的长为( ) A .1 B .2 C .3 D .4【解析】因为BD →=AD →-AB →=12AC →-AB →,所以BD →2=⎝ ⎛⎭⎪⎫12AC →-AB →2=14AC →2-AC →·AB →+AB →2,即14AC →2=1,所以|AC →|=2,即AC =2. 【答案】B 二、填空题5.如图所示,一力作用在小车上,其中力F 的大小为10牛,方向与水平面成60°角,当小车向前运动10米时,力F 做的功为________焦耳. 【解析】设小车位移为s ,则|s |=10米,W F =F ·s =|F ||s |·cos 60°=10×10×12=50(焦耳).【答案】506.若AB →=3e ,DC →=5e ,且|AD →|=|BC →|,则四边形ABCD 的形状为________. 【解析】由AB →=3e ,DC →=5e ,得AB →∥DC →,AB →≠DC →,又因为ABCD 为四边形,所以AB ∥DC ,AB ≠DC . 又|AD →|=|BC →|,得AD =BC , 所以四边形ABCD 为等腰梯形. 【答案】等腰梯形7.某同学骑电动车以24 km/h 的速度沿正北方向的公路行驶,在点A 处测得电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处,测得电视塔S 在电动车的北偏东75°方向上,则点B 与电视塔的距离是________ km.【解析】如题图,由题意知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,∴∠ASB =45°,由正弦定理知BS sin 30°=AB sin 45°,∴BS =AB ·sin 30°sin 45°=32(km). 【答案】3 2 三、解答题 8.如图所示,在正方形ABCD 中,P 为对角线AC 上任一点,PE ⊥AB ,PF ⊥BC ,垂足分别为E ,F ,连接DP ,EF ,求证:DP ⊥EF .证明:方法一 设正方形ABCD 的边长为1,。
最新人教A版高中数学必修二2-2-1课时同步检测习题(含解析)
2-2-1直线与平面平行地判定一、选择题1.下列命题中正确地是( )A.如果一条直线与一个平面不相交,它们一定平行B.一条直线与一个平面平行,它就与这个平面内地任何直线平行C.一条直线与另一条直线平行,它就与经过该直线地任何平面平行D.平面α外地一条直线a与平面α内地一条直线平行,则a∥α2.已知直线l∥直线m,m⊂平面α,则直线l与平面α地位置关系是( )A.相交B.平行C.在平面α内D.平行或在平面α内3.已知两条相交直线a、b,a∥平面α,则b 与α地位置关系( )A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.直线a、b是异面直线,直线a和平面α平行,则直线b和平面α地位置关系是( ) A.b⊂αB.b∥αC.b与α相交D.以上都有可能5.圆台地底面内地任意一条直径与另一个底面地位置关系是( )A.平行B.相交C.在平面内D.不确定6.五棱台ABCDE-A1B1C1D1E1中,F,G分别是AA1和BB1上地点,且AFFA1=BGGB1,则FG与平面ABCDE地位置关系是( )A.平行B.相交C.异面D.FG在平面ABCDE内7.在空间四边形ABCD中,E,F分别是AB和BC上地点,若AE:EB=CF:FB=1:2,则对角线AC和平面DEF地位置关系是( )A.平行B.相交C.在平面内D.异面8.给出下列结论:(1)平行于同一条直线地两条直线平行;(2)平行于同一条直线地两个平面平行;(3)平行于同一平面地两条直线平行;(4)平行于同一个平面地两个平面平行.其中正确地个数为( )A.1个B.2个C.3个D.4个9.如图,在正方体ABCD-A1B1C1D1中,E、F分别是棱BC、C1D1地中点,则EF与平面BB1D1D地位置关系是( )A.EF∥平面BB1D1DB.EF与平面BB1D1D相交C.EF⊂平面BB1D1DD.EF与平面BB1D1D地位置关系无法判断10.如图,在三棱柱ABC-A1B1C1中,点D为AC 地中点,点D1是A1C1上地一点,若BC1∥平面AB1D1,则A1D1D1C1等于( )A.12B.1 C.2 D.3二、填空题11.若直线a∥直线b,则过a且与b平行地平面有____个.12.若直线a,b异面,则经过a且平行于b地平面有________个.13.如图,在正方体ABCD-A1B1C1D1中,M是A1D1地中点,则直线MD与平面A1ACC1地位置关系是______.直线MD与平面BCC1B1地位置关系是________.14.如下图(1),已知正方形ABCD,E,F分别是AB,CD地中点,将△ADE沿DE折起,如图(2)所示,则BF与平面ADE地位置关系是________.三、解答题15.如图,在三棱锥P-ABC中,点O、D分别是AC、PC地中点.求证:OD∥平面PAB.16.如图,已知A1B1C1-ABC是三棱柱,D是AC 地中点.证明:AB1∥平面DBC1.17.如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC地中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4,PA=43,求异面直线PA与MN所成地角地大小.18.已知四面体ABCD中,M、N分别是三角形ABC和三角形ACD地重心,求证:(1)MN∥面ABD;(2)BD∥面CMN.[分析] 首先根据条件画出图形,如图所示.证明线面平行最常用地方法是利用判定定理,要证MN ∥面ABD,只要证明MN平行于面ABD内地某一条直线即可.根据M、N分别为△ABC、△ACD地重心地条件,连接CM、CN并延长分别交AB、AD于G、H,连接GH.若有MN∥GH,则结论可证.或连接AM、AN并延长交BC、CD于E、F,连接EF,若有MN∥EF,EF ∥BD,结论可证.详解答案1[答案] D[解析] 根据线面平行地定义及判定定理来确定D正确.2[答案] D3[答案] D[解析] ∵a,b相交,∴a,b确定一个平面为β,如果β∥α,则b∥α,如果β不平行α,则b与α相交.4[答案] D[解析] 可构建模型来演示,三种位置关系都有可能.5[答案] A[解析] 圆台底面内地任意一条直径与另一个底面无公共点,则它们平行.[解析] ∵AFFA1=BGGB1,∴FG∥AB,又FG⊄平面ABCDE,AB⊂平面ABCDE,∴FG∥平面ABCDE.7[答案] A[解析] 如图,由AEEB =CFFB,得AC∥EF.又EF⊂平面DEF,AC⊄平面DEF,∴AC∥平面DEF.[解析] 由公理4知(1)正确,正方体ABCD-A1B1C1D1中,DD1∥平面ABB1A1,DD1∥平面BB1C1C,但两个平面相交,故(3)错;同样在正方体ABCD-A1B1C1D1中,A1B1与B1C1都与平面ABCD平行,故(3)错;(4)正确,故选B.9[答案] A[证明] 取D1B1地中点O,连OF,OB,∵OF綊12B1C1,BE綊12B1C1,∴OF綊BE,∴四边形OFEB为平行四边形,∴EF∥BO ∵EF⊄平面BB1D1D,BO⊂平面BB1D1D,∴EF∥平面BB1D1D,故选A.[解析] 连A1B交AB1于O,则O为A1B地中点,∵BG∥平同AB1D1,∴BG∥OD1∴D1为A1G地中点即A1D1D1G=1.11[答案] 无数[解析] 在a上任取一点P,过P作与b异面地直线c,则a与c确定一个平面α,由于直线c能作无数条,则平面α有无数个,又a∥b,b⊄α,a⊂α,∴b∥α.12[答案] 1[解析] 如图所示,在a上任取一点P,过P 仅能作一条直线b′∥b,由于a与b′相交,则a 与b′确定一个平面α,则b∥α.13[答案] 相交平行[解析] 因为M是A1D1地中点,所以直线DM与直线AA1相交,所以DM与平面A1ACC1有一个公共点,所以DM与平面A1ACC1相交.取B1C1中点M1,MM1綊C1D1,C1D1綊CD∴DMM1C为平行四边形,∴DM綊CM1∴DM∥平面BCC1B1.14[答案] 平行[解析] ∵E,F分别为AB,CD地中点,∴EB =FD.又∵EB∥FD,∴四边形EBFD为平行四边形,∴BF∥ED.∵DE⊂平面ADE,而BF⊄平面ADE,∴BF∥平面ADE.15[证明] ∵点O、D分别是AC、PC地中点,∴OD∥AP.∵OD⊄平面PAB,AP⊂平面PAB.∴OD∥平面PAB.16[证明] ∵A1B1C1-ABC是三棱柱,∴四边形B1BCC1是平行四边形.连接B1C交BC1于点E,则B1E=EC.在△AB1C中,∵AD=DC,∴DE∥AB1.又AB1⊄平面DBC1,DE⊂平面DBC1,∴AB1∥平面DBC1.17[解析] (1)取PD地中点H,连接AH,NH,∵N是PC地中点,∴NH綊12DC.由M是AB地中点,且DC綊AB,∴NH綊AM,即四边形AMNH为平行四边形.∴MN∥AH.由MN⊄平面PAD,AH⊂平面PAD,∴MN∥平面PAD.(2)连接AC并取其中点O,连接OM、ON,∴OM綊12BC,ON綊12PA.∴∠ONM就是异面直线PA与MN所成地角,由MN=BC=4,PA=43,得OM=2,ON=2 3. ∴MO2+ON2=MN2,∴∠ONM=30°,即异面直线PA与MN成30°地角.18[证明] (1)如图所示,连接CM、CN并延长分别交AB、AD于G、H,连接GH、MN.∵M、N分别为△ABC、△ACD地重心,∴CMCG=CNCH.∴MN∥GH.又GH⊂面ABD,MN⊄面ABD,∴MN∥面ABD.(2)由(1)知,G、H分别为AB、AD地中点,∴GH∥BD,又MN∥GH,∴BD∥MN,又BD⊄平面CMN,∴BD∥平面CMN.。
最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)
最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
高中数学 第二章 等式与不等式 2.1.2 一元二次方程的解集及其根与系数的关系练习(含解析)新人教
2.1.2 一元二次方程的解集及其根与系数的关系最新课程标准:(1)从函数观点看一元二次方程.(2)会结合一元二次函数的图像,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.知识点一 b 2-4ac (Δ)的取值与根的个数间的关系b 2-4ac (Δ)根的情况b 2-4ac >0方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,即x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2ab 2-4ac =0 方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,即x 1=x 2=-b2ab 2-4ac <0方程ax 2+bx +c =0(a ≠0)无实数根若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两个根,则x 1+x 2=-ba ,x 1x 2=c a. 状元随笔 应用一元二次方程的根与系数的关系时,常有以下变形: (1)x 21+x 22=(x 21+2x 1x 2+x 22)-2x 1x 2=(x 1+x 2)2-2x 1x 2; (2)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2;(3)|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2; (4)1x 1+1x 2=x 1+x 2x 1x 2; (5)x 2x 1+x 1x 2=x 22+x 21x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2. [基础自测]1.方程x 2-23kx +3k 2=0的根的情况是( ) A .有一个实数根 B .有两个不相等的实数根 C .有两个相等的实数根 D .没有实数根解析:Δ=(-23k )2-12k 2=12k 2-12k 2=0. 答案:C2.已知x 1,x 2是关于x 的方程x 2+bx -3=0的两根,且满足x 1+x 2-3x 1x 2=5,那么b 的值为( )A .4B .-4C .3D .-3解析:由题知x 1+x 2=-b ,x 1x 2=-3, 则x 1+x 2-3x 1x 2=-b -3×(-3)=5, 解得b =4. 答案:A3.若代数式x 2-6x +5的值是12,则x 的值为( ) A .7或-1 B .1或-5 C .-1或-5 D .不能确定解析:由题意得x 2-6x +5=12,x 2-6x +5-12=0,x 2-6x -7=0,∴x =6±36+282, 解得x 1=-1,x 2=7.故选A. 答案:A4.已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则1x 1+1x 2=________.解析:因为x 1,x 2是方程x 2-2x -1=0的两个根, 所以x 1+x 2=2,x 1x 2=-1, 所以1x 1+1x 2=x 1+x 2x 1x 2=-2.答案:-2题型一 方程根个数的判断及应用[经典例题]例1 若关于x 的不等式x -a2<1的解集为x <1,试判断关于x 的一元二次方程x 2+ax +1=0的根的情况.【解析】 解不解式x -a 2<1,得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,所以一元二次方程的根的判别式Δ=a 2-4=-4<0,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.先求出a 再判断根的个数状元随笔 (1)解一元一次不等式,利用解集求a.(2)Δ=a 2-4,利用Δ>0,Δ=0,Δ<0的情况讨论根的情况. 方法归纳对于一元二次方程ax 2+bx +c =0(a ≠0),有(1)当Δ>0时,方程有两个不相等的实数根x 1,2=-b ±b 2-4ac2a ;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-b 2a; (3)当Δ<0时,方程没有实数根.跟踪训练1 已知关于x 的一元二次方程3x 2-2x +k =0,根据下列条件,分别求出k 的X 围.(1)方程有两个不相等的实数根; (2)方程有两个相等的实数根. 解析:Δ=(-2)2-4×3k =4(1-3k ). (1)因为方程有两个不相等的实数根, 所以Δ>0,即4(1-3k )>0, 所以k <13.(2)因为方程有两个相等的实数根, 所以Δ=0,即4(1-3k )=0, 所以k =13.题型二 直接应用根与系数的关系进行计算[教材P 50例2]例2 已知一元二次方程2x 2+3x -4=0的两根为x 1与x 2,求下列各式的值: (1)x 21+x 22; (2)|x 1-x 2|.【解析】 由一元二次方程根与系数的关系,得x 1+x 2=-32,x 1x 2=-2.(1)由上有x 21+x 22=(x 1+x 2)2-2x 1x 2=⎝ ⎛⎭⎪⎫-322-2×(-2)=254. (2)因为(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-322-4×(-2)=414,所以|x 1-x 2|=(x 1-x 2)2=412. 教材反思在求含有一元二次方程两根的代数式的值时,利用根与系数的关系解题可起到化难为易、化繁为简的作用.在计算时,要先根据原方程求出两根之和与两根之积,再将代数式变形为局部含有两根之和与两根之积的形式,然后代入求值.跟踪训练2 已知一元二次方程x 2+3x -1=0的两根分别是x 1,x 2,请利用根与系数的关系求:(1)x 21+x 22; (2)1x 1+1x 2.解析:根据一元二次方程根与系数的关系,得x 1+x 2=-3,x 1x 2=-1. (1)x 21+x 22=(x 1+x 2)2-2x 1x 2=(-3)2-2×(-1)=11. (2)1x 1+1x 2=x 1+x 2x 1x 2=-3-1=3.题型三 应用根与系数的关系求字母系数的值或X 围[经典例题]例3 已知关于x 的方程x 2-(k +1)x +14k 2+1=0,根据下列条件,求出k 的值.(1)方程两实根的积为5;(2)方程的两实根x 1,x 2,满足|x 1|=x 2.【解析】Δ=[-(k +1)]2-4×⎝ ⎛⎭⎪⎫14k 2+1=2k -3,Δ≥0,k ≥32.(1)设方程的两个根为x 1,x 2,x 1x 2=14k 2+1=5,k 2=16,k =4或k =-4(舍).(2)①若x 1≥0,则x 1=x 2,Δ=0,k =32.方程为x 2-52x +2516=0,x 1=x 2=54>0满足.②若x 1<0,则x 1+x 2=0,即k +1=0,k =-1. 方程为x 2+54=0而方程无解,所以k ≠-1,所以k =32.方法归纳利用一元二次方程根与系数的关系求待定字母的值时,务必注意根与系数的关系的应用前提条件,即Δ≥0.跟踪训练3 (1)关于x 的方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( )A .-2或3B .3C .-2D .-3或2(2)已知:方程2x 2-(k +1)x +k +3=0的两根之差为1,则k 的值为________. 解析:(1)∵x 1+x 2=m +6,x 1x 2=m 2,x 1+x 2=x 1x 2, ∴m +6=m 2, 解得m =3或m =-2.∵方程x 2-(m +6)x +m 2=0有两个相等的实数根, ∴Δ=b 2-4ac =[-(m +6)]2-4m 2=-3m 2+12m +36=0, 解得m =6或m =-2. ∴m =-2.(2)设x 1,x 2为方程的两个根,则⎩⎪⎨⎪⎧x 1+x 2=k +12x 1x 2=k +32,|x 1-x 2|=1,⎝⎛⎭⎪⎫k +122-2(k +3)=1,k =9或k =-3.检验当k =9或k =-3时,Δ≥0成立. 答案:(1)C (2)-3或9课时作业一、选择题1.已知关于x 的一元二次方程3x 2+4x -5=0,下列说法正确的是( ) A .方程有两个相等的实数根 B .方程有两个不相等的实数根 C .方程没有实数根 D .方程的根的情况无法确定解析:∵Δ=42-4×3×(-5)=76>0, ∴方程有两个不相等的实数根.故选B. 答案:B2.若关于x 的一元二次方程x 2+2(m -1)x +m 2=0的两个实数根分别为x 1,x 2,且x 1+x 2>0,x 1x 2>0,则m 的取值X 围是( )A .m ≤12B .m ≤12且m ≠0C .m <1D .m <1且m ≠0解析:∵Δ=[2(m -1)]2-4m 2=-8m +4≥0,∴m ≤12,∵x 1+x 2=-2(m -1)>0,x 1x 2=m 2>0,∴m <1,m ≠0.综上,m ≤12且m ≠0.故选B.答案:B3.关于x 的一元二次方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数,则a 的值为( )A .2B .0C .1D .2或0解析:根据根与系数的关系,得-(a 2-2a )=0,解得a 1=0,a 2=2,∵当a =2时,原方程为x 2+1=0,无解,∴a =0.答案:B4.若关于x 的一元二次方程x 2+2(k -1)x +k 2-1=0有实数根,则k 的取值X 围是( ) A .k ≥1 B.k >1 C .k <1 D .k ≤1解析:∵关于x 的一元二次方程x 2+2(k -1)x +k 2-1=0,有实数根,∴Δ=b 2-4ac =4(k -1)2-4(k 2-1)=-8k +8≥0,解得k ≤1.故选D. 答案:D 二、填空题5.已知代数式7x (x +5)+10与代数式9x -9的值互为相反数,则x =________. 解析:根据题意,得7x (x +5)+10+9x -9=0, 整理得7x 2+44x +1=0,∵a =7,b =44,c =1,∴Δ=442-28=1 908, ∴x =-44± 1 90814=-22±3537.答案:-22±35376.已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 21-x 22=10,则a =________.解析:由题知:x 1+x 2=5,x 1x 2=a . 因为x 21-x 22=(x 1+x 2)(x 1-x 2)=10, 所以x 1-x 2=2,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=25-4a =4,所以a =214.答案:2147.关于x 的一元二次方程(m -5)x 2+2x +2=0有实数根,则m 的最大整数值是________. 解析:∵关于x 的一元二次方程(m -5)x 2+2x +2=0有实数根,∴Δ=4-8(m -5)>0,且m -5≠0,解得m <5.5,且m ≠5,∴m 的最大整数值是4.答案:4 三、解答题 8.解下列方程: (1)x 2=25x -2; (2)(3x +2)(x +3)=x +14.解析:(1)整理成一般式,得x 2-25x +2=0, ∵a =1,b =-25,c =2,∴Δ=20-4×1×2=12>0, 则x 1=5+3,x 2=5- 3.(2)方程整理得3x 2+10x -8=0,∵a =3,b =10,c =-8, ∴Δ=100+96=196,∴x 1=23,x 2=-4.9.若关于x 的方程x 2+2x -m +1=0没有实数根,试说明关于x 的方程x 2+mx +12m =1一定有实数根.解析:∵方程x 2+2x -m +1=0没有实数根,∴此方程的判别式Δ=22-4×1×(-m +1)<0,解得m <0.而方程x 2+mx +12m =1的根的判别式Δ′=m 2-4×1×(12m -1)=m 2-48m +4, ∵m <0,∴m 2>0,-48m >0.∴m 2-48m +4>0,即Δ′>0, ∴方程x 2+mx +12m =1有两个不等的实数根,即一定有实数根.[尖子生题库]10.已知关于x 的一元二次方程x 2-(2k -1)x +k 2+k -1=0有实数根. (1)求k 的取值X 围;(2)若此方程的两个实数根x 1,x 2满足x 21+x 22=11,求k 的值.解析:(1)因为关于x 的一元二次方程x 2-(2k -1)x +k 2+k -1=0有实数根.所以Δ≥0,即[-(2k -1)]2-4×1×(k 2+k -1)=-8k +5≥0, 解得k ≤58.(2)由题知x 1+x 2=2k -1,x 1x 2=k 2+k -1,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(2k -1)2-2(k 2+k -1)=2k 2-6k +3. 因为x 21+x 22=11,所以2k 2-6k +3=11, 解得k =4或k =-1, 因为k ≤58,所以k =-1.。
高中数学 (知识导学+例题解析+达标训练)2.1.2 空间中直线与直线之间的位置关系 新人教A版必修
空间中直线与直线之间的位置关系知识导学:(1)理解异面直线的概念、空间中两条直线的位置关系及画法;(2)理解异面直线所成角的定义、X 围及应用,进一步培养空间想象能力.一、基础知识:1、平面的基本性质:2、不同在任何一个平面内的两条直线叫做异面直线.3、空间两条直线的位置关系:空间两直线{⎧⎪⎨⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有共公点.b a ba αβαO a'b a(1) (2) (3)1A1C 4、异面直线所成的角:已知两条异面直线a与b,经过空间任一点O作直线a’//a,b’//b,直线a’与b’所成的锐角(或直角)叫做异面直线a与b所成的角.异面直线所成的角的X围:(0︒,90]︒.如果两条异面直线所成的角是直角,叫做这两条直线互相垂直.注意:两条直线互相垂直,有共面垂直与异面垂直两种情形.二、例题解析:例1、在空间四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则:(1)四边形EFGH是__________四边形;(2)若AC=BD,则四边形EFGH是_______;(3)若AC=BD,且AC⊥BD,则四边形EFGH是_______________。
例2、如图,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,求EF和AB所成的角.例3、在正方体ABCD—A1B1C1D1中,(1)与直线A1B异面的棱有(2)与直线CC1垂直的棱有____________________________;(3)直线A1B和CC1的夹角是______度;A1B和B1C的夹角是______度;(4)与直线A1B的夹角为60°的所有面对角线有__________________。
三、达标训练:1、关于异面直线下列说法正确的是()A.不相交的两条直线是异面直线B.分别在两个平面内的两条直线是异面直线C.没有公共点的两条直线是异面直线D.既不相交也不平行的两条直线是异面直线2、给出三个命题:②若两条直线都与第三条直线垂直,则这两条直线互相平行;③若两条直线都与第三条直线平行,则这两条直线互相平行。
最新人教版高中数学第2章2.2.1同步练习
高中数学人教A 版选2-1 同步练习1.若P 是以F 1、F 2为焦点嘚椭圆x 225+y 29=1上一点,则三角形PF 1F 2嘚周长等于( ) A .16 B .18C .20D .不确定解析:选B.由椭圆嘚定义知2a =10,2c =225-9=8,所以三角形PF 1F 2嘚周长等于10+8=18. 2.已知椭圆嘚焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆嘚方程为( ) A.x 24+y 23=1 B.x 24+y 2=1C.y 24+x 23=1D.y 24+x 2=1解析:选A.c =1,a =12()(2+1)2+0+(2-1)2+0=2,∴b 2=a 2-c 2=3.∴椭圆嘚方程为x 24+y 23=1.3.已知椭圆嘚焦点是F 1(-1,0),F 2(1,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|嘚等差中项,则椭圆嘚方程为__________. 解析:由题设知|PF 1|+|PF 2|=2|F 1F 2|=4,∴2a =4,2c =2,∴b =3, ∴椭圆嘚方程为x 24+y 23=1.答案:x 24+y 23=14.椭圆x 24+y 2m=1嘚焦距为2,则m 等于__________. 解析:∵2c =2,∴c =1.当椭圆嘚焦点在x 轴上时,由4-m =1得m =3;当椭圆嘚焦点在y 轴上时,由m -4=1得m =5.答案:3或5[A 级 基础达标] 1.若椭圆x 216+y 2b2=1过点(-2,3),则其焦距为( ) A .25 B .23C .45D .43解析:选D.将点(-2,3)代入椭圆方程求得b 2=4,于是焦距2c =216-4=4 3.2.已知a =13,c =23,则该椭圆嘚标准方程为( ) A.x 213+y 212=1B.x 213+y 225=1或x 225+y 213=1C.x 213+y 2=1D.x 213+y 2=1或x 2+y 213=1解析:选D.由a 2=b 2+c 2,∴b 2=13-12=1.分焦点在x 轴和y 轴上写标准方程.3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上嘚椭圆,则实数a 嘚取值范围是( ) A .a>3 B .a<-2C .a>3或a<-2D .a>3或-6<a<-2解析:选D.由于椭圆焦点在x 轴上,∴⎩⎨⎧a 2>a +6a +6>0⇔⎩⎨⎧(a +2)(a -3)>0a>-6 ⇔a>3或-6<a<-2.故选D.4.椭圆嘚两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2嘚面积最大为12,则椭圆方程为__________. 解析:S △PF 1F 2=12×8b =12,∴b =3.又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆嘚标准方程为x 225+y 29=1.答案:x 225+y 29=15.(2012·烟台高二检测)已知椭圆嘚方程是x 2a 2+y 225=1(a>5),它嘚两个焦点分别为F 1,F 2,且|F 1F 2|=8,弦AB 过F 1,则△ABF 2嘚周长为__________.解析:由已知c =4,∴a =b 2+c 2=41.根据椭圆定义可得:△ABF 2嘚周长为4a =441.答案:4416.求适合下列条件嘚椭圆嘚标准方程:(1)椭圆上一点P(3,2)到两焦点嘚距离之和为8;(2)椭圆两焦点间嘚距离为16,且椭圆上某一点到两焦点嘚距离分别等于9和15. 解:(1)①若焦点在x 轴上, 可设椭圆嘚标准方程为x 2a 2+y 2b 2=1(a>b>0).由题意知2a =8,∴a =4,又点P(3,2)在椭圆上, ∴916+4b 2=1,得b 2=647. ∴椭圆嘚标准方程为x 216+y 2647=1.②若焦点在y 轴上,设椭圆嘚标准方程为: y 2a 2+x 2b 2=1(a>b>0),∵2a =8,∴a =4.又点P(3,2)在椭圆上, ∴416+9b 2=1,得b 2=12.∴椭圆嘚标准方程为y 216+x 212=1. 由①②知椭圆嘚标准方程为x 216+y 2647=1或y 216+x 212=1.(2)由题意知,2c =16,2a =9+15=24,∴a =12,c =8,∴b 2=80. 又焦点可能在x 轴上,也可能在y 轴上,∴所求方程为 x 2144+y 280=1或y 2144+x 280=1.[B 级 能力提升] 7.(2012·宜宾质检)“m>n>0”是“方程mx 2+ny 2=1表示焦点在y 轴上嘚椭圆”嘚( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析:选C.m>n>0⇒1n >1m >0⇒方程mx 2+ny 2=1表示焦点在y 轴上嘚椭圆;反之,若方程mx 2+ny 2=1表示焦点在y 轴上嘚椭圆,则m>n>0. 8.已知椭圆x 23+y 24=1嘚两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( ) A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形 解析:选B.由椭圆定义知|MF 1|+|MF 2|=2a =4,且已知|MF 1|-|MF 2|=1,所以|MF 1|=52,|MF 2|=32.又|F 1F 2|=2c =2.所以有|MF 1|2=|MF 2|2+|F 1F 2|2.因此∠MF 2F 1=90°,△MF 1F 2为直角三角形. 9.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1、F 2连线嘚夹角为直角,则|PF 1||PF 2|=__________. 解析:两焦点嘚坐标分别为F 1(-5,0)、F 2(5,0),由PF 1⊥PF 2,得|PF 1|2+|PF 2|2=|F 1F 2|2=100. 而|PF 1|+|PF 2|=14,∴(|PF 1|+|PF 2|)2=196,100+2|PF 1|·|PF 2|=196,|PF 1||PF 2|=48.答案:48 10.已知椭圆8x 281+y 236=1上一点M 嘚纵坐标为2. (1)求M 嘚横坐标; (2)求过M 且与x 29+y 24=1共焦点嘚椭圆嘚方程.解:(1)把M 嘚纵坐标代入8x 281+y 236=1,得8x 281+436=1,即x 2=9.∴x =±3.即M 嘚横坐标为3或-3.(2)对于椭圆x 29+y 24=1,焦点在x 轴上且c 2=9-4=5,故设所求椭圆嘚方程为x 2a 2+y 2a 2-5=1(a 2>5), 把M 点坐标代入得9a 2+4a 2-5=1,解得a 2=15. 故所求椭圆嘚方程为x 215+y 210=1.11.(创新题)已知椭圆中心在原点,两焦点F 1、F 2在x 轴上,且过点A(-4,3).若F 1A ⊥F 2A ,求椭圆嘚标准方程. 解:设所求椭圆嘚标准方程为x 2a 2+y 2b 2=1(a>b>0).设焦点F 1(-c ,0),F 2(c ,0).∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0,而F 1A →=(-4+c ,3),F 2A →=(-4-c ,3),∴(-4+c)·(-4-c)+32=0,∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2|= (-4+5)2+32+ (-4-5)2+32 =10+90=410.∴a =210,∴b 2=a 2-c 2=(210)2-52=15. ∴所求椭圆嘚标准方程为x 240+y 215=1.。
高中数学第二章2.1指数函数2.1.2指数函数及其性质(二)学案(含解析)新人教A版必修1
2.1.2 指数函数及其性质(二)学习目标 1.掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断.2.能借助指数函数的性质比较大小.3.会解简单的指数方程、不等式.知识点一 不同底指数函数图象的相对位置思考 y =2x与y =3x都是增函数,都过点(0,1),在同一坐标系内如何确定它们两个的相对位置?答案 经描点观察,在y 轴右侧,2x<3x,即y =3x图象在y =2x上方,经(0,1)点交叉,位置在y 轴左侧反转,y =2x在y =3x图象上方.梳理 一般地,在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:(1)在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.(2)指数函数y =a x与y =⎝ ⎛⎭⎪⎫1a x (a >0且a ≠1)的图象关于y 轴对称.知识点二 比较幂的大小思考 若x 1<x 2,则1x a 与2xa (a >0且a ≠1)的大小关系如何? 答案 当a >1时,y =a x在R 上为增函数,所以12,x xa a < 当0<a <1时,y =a x在R 上为减函数,所以12.x xa a > 梳理 一般地,比较幂大小的方法有:(1)对于同底数不同指数的两个幂的大小,利用指数函数的单调性来判断;(2)对于底数不同指数相同的两个幂的大小,利用指数函数的图象的变化规律来判断; (3)对于底数不同指数也不同的两个幂的大小,则通过中间值来判断. 知识点三 解指数方程、不等式 简单指数不等式的解法(1)形如af (x )>ag (x )的不等式,可借助y =a x的单调性求解;(2)形如a f (x )>b 的不等式,可将b 化为以a 为底数的指数幂的形式,再借助y =a x的单调性求解;(3)形如a x >b x 的不等式,可借助两函数y =a x ,y =b x的图象求解. 知识点四 与指数函数复合的函数单调性 思考 112xy ⎛⎫=⎪⎝⎭的定义域与y =1x 的定义域是什么关系?112xy ⎛⎫= ⎪⎝⎭的单调性与y =1x 的单调性有什么关系?答案 由于y =a x(a >0且a ≠1)的定义域为R ,故112xy ⎛⎫=⎪⎝⎭的定义域与y =1x 的定义域相同,故研究112xy ⎛⎫=⎪⎝⎭的单调性,只需在y =1x 的定义域内研究.若设0<x 1<x 2,则1x 1>1x 2,121111,22x x ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭不等号方向的改变与y =⎝ ⎛⎭⎪⎫12x ,y =1x 的单调性均有关.梳理 一般地,有形如y =a f (x )(a >0,且a ≠1)函数的性质(1)函数y =af (x )与函数y =f (x )有相同的定义域.(2)当a >1时,函数y =a f (x )与y =f (x )具有相同的单调性;当0<a <1时,函数y =af (x )与函数y =f (x )的单调性相反.1.y =21-x是R 上的增函数.( × )2.若0.1a>0.1b,则a >b .( × )3.a ,b 均大于0且不等于1,若a x=b x,则x =0.( × )4.由于y =a x(a >0且a ≠1)既非奇函数,也非偶函数,所以指数函数与其他函数也组不成具有奇偶性的函数.( × )类型一 解指数方程 例1 解下列方程.(1)81×32x=⎝ ⎛⎭⎪⎫19x +2;(2)22x +2+3×2x-1=0.考点 指数方程的解法题点 指数方程的解法解 (1)∵81×32x=⎝ ⎛⎭⎪⎫19x +2,∴32x +4=3-2(x +2),∴2x +4=-2(x +2), ∴x =-2. (2)∵22x +2+3×2x-1=0,∴4×(2x )2+3×2x-1=0.令t =2x(t >0),则方程可化为4t 2+3t -1=0, 解得t =14或t =-1(舍去).∴2x=14,解得x =-2.反思与感悟 (1)af (x )=b 型通常化为同底来解.(2)解指数方程时常用换元法,用换元法时要特别注意“元”的范围.转化为解二次方程,用二次方程求解时,要注意二次方程根的取舍. 跟踪训练1 解下列方程. (1)33x -2=81;(2)5x=325; (3)52x-6×5x+5=0. 考点 指数方程的解法 题点 指数方程的解法 解 (1)∵81=34,∴33x -2=34,∴3x -2=4,解得x =2.(2)∵5x=325,23255,x ∴=∴x 2=23,解得x =43. (3)令t =5x,则t >0,原方程可化为t 2-6t +5=0, 解得t =5或t =1,即5x=5或5x=1, ∴x =1或x =0.类型二 指数函数单调性的应用 命题角度1 比较大小例2 比较下列各题中两个值的大小.(1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1. 考点 指数幂的大小比较 题点 比较指数幂大小解 (1)∵1.7>1,∴y =1.7x在(-∞,+∞)上是增函数. ∵-2.5>-3,∴1.7-2.5>1.7-3.(2)方法一 ∵1.7>1.5,∴在(0,+∞)上,y =1.7x的图象位于y =1.5x的图象的上方. 而0.3>0,∴1.70.3>1.50.3.方法二 ∵1.50.3>0,且1.70.31.50.3=⎝ ⎛⎭⎪⎫1.71.50.3,又1.71.5>1,0.3>0,∴⎝ ⎛⎭⎪⎫1.71.50.3>1,∴1.70.3>1.50.3. (3)∵1.70.3>1.70=1,0.83.1<0.80=1, ∴1.70.3>0.83.1.反思与感悟 当两个数不能利用同一函数的单调性作比较时,可考虑引入中间量,常用的中间量有0和±1.跟踪训练2 比较下列各题中的两个值的大小. (1)0.8-0.1,1.250.2;(2)⎝ ⎛⎭⎪⎫1π-π,1; (3)0.2-3,(-3)0.2. 考点 指数幂的大小比较 题点 比较指数幂大小解 (1)∵0<0.8<1,∴y =0.8x在R 上是减函数. ∵-0.2<-0.1,∴0.8-0.2>0.8-0.1,即0.8-0.1<1.250.2.(2)∵0<1π<1,∴函数y =⎝ ⎛⎭⎪⎫1πx 在R 上是减函数.又∵-π<0,∴⎝ ⎛⎭⎪⎫1π-π>⎝ ⎛⎭⎪⎫1π0=1,即⎝ ⎛⎭⎪⎫1π-π>1.(3)0.2-3=⎝ ⎛⎭⎪⎫210-3=⎝ ⎛⎭⎪⎫15-3=53,210.2105(3)(3)3,-=-=1135333,5125 3.∴<==>1330.2535,(3).-∴<>-即0.2命题角度2 解指数不等式 例3 解关于x 的不等式:a 2x +1≤ax -5(a >0,且a ≠1).考点 指数不等式的解法 题点 指数不等式的解法 解 ①当0<a <1时,∵a2x +1≤ax -5,∴2x +1≥x -5,解得x ≥-6. ②当a >1时,∵a2x +1≤ax -5,∴2x +1≤x -5,解得x ≤-6.综上所述,当0<a <1时,不等式的解集为{x |x ≥-6};当a >1时,不等式的解集为{x |x ≤-6}.反思与感悟 解指数不等式的基本方法是先化为同底指数式,再利用指数函数单调性化为常规的不等式来解,注意底数对不等号方向的影响. 跟踪训练3 已知(a 2+a +2)x >(a 2+a +2)1-x,则x 的取值范围是________.考点 指数不等式的解法 题点 指数不等式的解法答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 ∵a 2+a +2=⎝ ⎛⎭⎪⎫a +122+74>1,∴(a 2+a +2)x >(a 2+a +2)1-x⇔x >1-x ⇔x >12.∴x ∈⎝ ⎛⎭⎪⎫12,+∞. 类型三 求与指数函数复合的函数的单调区间 例4 (1)求函数261712x x y ⎛⎫⎪⎝⎭-+=的单调区间;(2)求函数y =⎝ ⎛⎭⎪⎫122x -8·⎝ ⎛⎭⎪⎫12x+17的单调区间.考点 指数函数的单调性 题点 指数型复合函数的单调区间解 (1)函数261712x x y ⎛⎫ ⎪⎝⎭-+=的定义域为R .在(-∞,3]上,y =x 2-6x +17是减函数, ∴261712x x y ⎛⎫ ⎪⎝⎭-+=在(-∞,3]上是增函数.在[3,+∞)上,y =x 2-6x +17是增函数, ∴261712x x y ⎛⎫ ⎪⎝⎭-+=在[3,+∞)上是减函数.∴261712x x y ⎛⎫ ⎪⎝⎭-+=的增区间是(-∞,3],减区间是[3,+∞).(2)函数y =⎝ ⎛⎭⎪⎫122x -8·⎝ ⎛⎭⎪⎫12x+17的定义域为R .设t =⎝ ⎛⎭⎪⎫12x >0,又y =t 2-8t +17在(0,4]上单调递减,在[4,+∞)上单调递增,令⎝ ⎛⎭⎪⎫12x≤4,得x ≥-2, ∴当-2≤x 1<x 2时,12114,22x x⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭≥即4≥t 1>t 2,∴t 21-8t 1+17<t 22-8t 2+17.∴y =⎝ ⎛⎭⎪⎫122x -8·⎝ ⎛⎭⎪⎫12x+17的单调增区间是[-2,+∞).同理可得减区间是(-∞,-2].反思与感悟 复合函数单调性问题归根结底是由x 1<x 2到f (x 1)与f (x 2)的大小,再到g (f (x 1))与g (f (x 2))的大小关系问题. 跟踪训练4 求下列函数的单调区间.223(1);x x y a +-=(2)y =10.2x -1.考点 指数函数的单调性 题点 指数型复合函数的单调区间 解 (1)设y =a u ,u =x 2+2x -3,由u =x 2+2x -3=(x +1)2-4,得u 在(-∞,-1]上为减函数,在[-1,+∞)上为增函数. 当a >1时,y 关于u 为增函数; 当0<a <1时,y 关于u 为减函数,∴当a >1时,原函数的增区间为[-1,+∞),减区间为(-∞,-1]; 当0<a <1时,原函数的增区间为(-∞,-1],减区间为[-1,+∞). (2)已知函数的定义域为{x |x ≠0}. 设y =1u -1,u =0.2x ,易知u =0.2x为减函数. 而根据y =1u -1的图象可知在区间(-∞,1)和(1,+∞)上,y 是关于u 的减函数, ∴原函数的增区间为(-∞,0)和(0,+∞).1.下列大小关系正确的是( ) A .0.43<30.4<π0B .0.43<π0<30.4C .30.4<0.43<π0D .π0<30.4<0.43考点 指数幂的大小比较 题点 比较指数幂大小 答案 B解析 0.43<0.40=π0=30<30.4. 2.方程42x -1=16的解是( )A .x =-32B .x =32C .x =1D .x =2考点 指数方程的解法 题点 指数方程的解法 答案 B 解析 ∵42x -1=42,∴2x -1=2,x =32.3.函数211()2x f x -⎛⎫= ⎪⎝⎭的单调递增区间为( )A .(-∞,0]B .[0,+∞)C .(-1,+∞)D .(-∞,-1)考点 指数函数的单调性 题点 指数型复合函数的单调区间 答案 A解析 ∵211()2x f x -⎛⎫= ⎪⎝⎭,0<12<1,∴f (x )的单调递增区间为u (x )=x 2-1的单调递减区间,即(-∞,0].4.设0<a <1,则关于x 的不等式22232223x x x x a a -++->的解集为________.考点 指数不等式的解法 题点 指数不等式的解法 答案 (1,+∞)解析 ∵0<a <1,∴y =a x在R 上是减函数, 又∵22232223x x x x aa -++->,∴2x 2-3x +2<2x 2+2x -3,解得x >1. 5.f (x )=2x+2-x的奇偶性是________. 考点 与指数函数相关的函数的奇偶性 题点 与指数函数相关的函数的奇偶性 答案 偶函数解析 f (x )的定义域为R .f (-x )=2-x +2-(-x )=2x +2-x =f (x ),∴f (x )为偶函数.1.比较两个指数式值的大小的主要方法(1)比较形如a m与a n的大小,可运用指数函数y =a x的单调性.(2)比较形如a m与b n的大小,一般找一个“中间值c ”,若a m<c 且c <b n,则a m<b n;若a m>c 且c >b n ,则a m >b n .2.解简单指数不等式问题的注意点(1)形如a x>a y的不等式,可借助y =a x的单调性求解.如果a 的值不确定,需分0<a <1和a >1两种情况进行讨论.(2)形如a x>b 的不等式,注意将b 化为以a 为底的指数幂的形式,再借助y =a x的单调性求解. (3)形如a x>b x 的不等式,可借助图象求解. 3.(1)研究y =a f (x )型单调区间时,要注意a >1还是0<a <1.当a >1时,y =af (x )与f (x )单调性相同. 当0<a <1时,y =af (x )与f (x )单调性相反.(2)研究y =f (a x)型单调区间时,要注意a x属于f (u )的增区间还是减区间.一、选择题1.设x <0,且1<b x <a x,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b考点 指数不等式的解法 题点 指数不等式的解法 答案 B解析 ∵1<b x<a x,x <0,∴0<a <1,0<b <1. 当x =-1时,1b <1a,即b >a ,∴0<a <b <1.2.函数y =a x在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( ) A .6B .1C .3D.32考点 指数函数的最值题点 根据指数函数的最值求底数 答案 C解析 函数y =a x在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3. 3.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的关系为( ) A .m +n <0 B .m +n >0 C .m >nD .m <n考点 指数不等式的解法 题点 指数不等式的解法 答案 D 解析 ∵0<5-12<1,∴f (x )=a x=⎝ ⎛⎭⎪⎫5-12x 在R 上单调递减, 又∵f (m )>f (n ),∴m <n ,故选D. 4.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]考点 指数函数的单调性 题点 指数型复合函数的单调区间 答案 B解析 由f (1)=19得a 2=19,所以a =13(a =-13舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增, 所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 故选B.5.设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2考点 指数幂的大小比较 题点 比较指数幂大小 答案 D 解析 40.9=21.8,80.48=21.44,⎝ ⎛⎭⎪⎫12-1.5=21.5, 根据y =2x 在R 上是增函数, 得21.8>21.5>21.44,即y 1>y 3>y 2,故选D.6.设f (x )=|3x-1|,c <b <a 且f (c )>f (a )>f (b ),则下列关系式中一定成立的是( ) A .3c≤3bB .3c >3bC .3c+3a>2D .3c+3a<2考点 指数函数性质的综合应用 题点 指数函数的综合问题 答案 D解析 f (x )=|3x-1|的图象如下.由c <b <a 且f (c )>f (a )>f (b )可知c ,b ,a 不在同一个单调区间上. 故有c <0,a >0.∴f (c )=1-3c,f (a )=3a-1.∴f (c )>f (a ),即1-3c >3a -1,3c +3a <2.7.已知函数f (x )=x (e x +a e -x )(x ∈R ),若f (x )是偶函数,记a =m ,若f (x )是奇函数,记a =n ,则m +2n 的值为( )A .0B .1C .2D .-1考点 与指数函数相关的函数的奇偶性题点 与指数函数相关的函数的奇偶性答案 B解析 当f (x )是偶函数时,f (x )=f (-x ),即x (e x +a e -x )=-x (e -x +a e x ),即(1+a )(e x +e -x )x =0,因为上式对任意实数x 都成立,所以a =-1,即m =-1.当f (x )是奇函数时,f (x )=-f (-x ),即x (e x +a e -x )=x (e -x +a e x ),即(1-a )(e x -e -x)x =0,因为上式对任意实数x 都成立,所以a =1,即n =1,所以m +2n =1.8.若存在正实数x 使2x (x -a )<1,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞) 考点 指数函数的单调性题点 根据指数函数的单调性求参数的取值范围答案 D解析 由2x (x -a )<1,得a >x -12x (x >0), 令f (x )=x -12x ,即a >f (x )有解,则a >f (x )min ,又f (x )在(0,+∞)上是增函数, ∴f (x )>f (0)=-1,∴a >-1.故选D.二、填空题 9.函数f (x )=⎝ ⎛⎭⎪⎫13245x x --的单调递减区间是________. 考点 指数函数的单调性题点 指数型复合函数的单调区间答案 (2,+∞)解析 函数由f (t )=⎝ ⎛⎭⎪⎫13t ,t (x )=x 2-4x -5复合而成,其中f (t )=⎝ ⎛⎭⎪⎫13t 是减函数,t (x )=x 2-4x -5在(-∞,2)上是减函数,在(2,+∞)上是增函数.由复合函数的单调性可知,函数的单调递减区间为(2,+∞).10.某驾驶员喝酒后血液中的酒精含量f (x )(mg/mL)随时间x (h)变化的规律近似满足解析式f (x )=⎩⎪⎨⎪⎧ 5x -2,0≤x ≤1,35·⎝ ⎛⎭⎪⎫13x ,x >1.规定驾驶员血液中的酒精含量不得超过0.02mg/mL ,据此可知,此驾驶员至少要过______h 后才能开车.(精确到1h)考点 指数函数的实际应用题点 指数函数的实际应用答案 4解析 当0≤x ≤1时,125≤5x -2≤15,此时不宜开车;由35·⎝ ⎛⎭⎪⎫13x ≤0.02,可得x ≥3.10.故至少要过4h 后才能开车.11.若4x +2x +1+m >1对一切实数x 成立,则实数m 的取值范围是__________.考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题答案 [1,+∞)解析 4x +2x +1+m >1等价于(2x )2+2·2x +1>2-m ,即(2x +1)2>2-m .∵2x ∈(0,+∞), ∴2x +1∈(1,+∞),∴2-m ≤1,解得m ≥1.三、解答题12.已知函数f (x )=2a ·4x -2x-1.(1)当a =1时,解不等式f (x )>0;(2)当a =12,x ∈[0,2]时,求f (x )的值域. 考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题解 (1)当a =1时,f (x )=2·4x -2x -1. f (x )>0,即2·(2x )2-2x -1>0,解得2x >1或2x <-12(舍去), ∴x >0,∴不等式f (x )>0的解集为{x |x >0}.(2)当a =12时,f (x )=4x -2x -1,x ∈[0,2].设t =2x,∵x ∈[0,2],∴t ∈[1,4].令y =g (t )=t 2-t -1(1≤t ≤4),画出g (t )=t 2-t -1(1≤t ≤4)的图象(如图),可知g (t )min =g (1)=-1,g (t )max =g (4)=11,∴f (x )的值域为[-1,11].13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,(1)写出f (x )的单调区间;(2)求不等式f (x )<-12的解集. 考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题解 (1)∵f (x )是定义在R 上的奇函数,∴f (0)=0. f (x )在[0,+∞)上是增函数,∴f (x )在(-∞,+∞)上是增函数.(2)f (x )<-12=-f (1)=f (-1), 由(1)知f (x )在R 上是增函数,∴x <-1.即f (x )<-12的解集为(-∞,-1). 四、探究与拓展14.设f (x )满足f (x )=f (4-x ),且当x >2时,f (x )是增函数,则a =f (1.10.9),b =f (0.91.1),c =f (2)的大小关系是________.(按由大到小排列)考点 指数幂的大小比较题点 比较指数幂大小答案 b >a >c解析 ∵f (x )=f (4-x ),∴f (x )关于x =2对称.又∵f (x )在(2,+∞)上是增函数,∴f (x )在(-∞,2)上是减函数.又∵1.10.9>1,0<0.91.1<1,∴0.91.1<1.10.9<2,∴f (0.91.1)>f (1.10.9)>f (2),即b >a >c .15.已知函数f (x )=3x +k ·3-x 为奇函数.(1)求实数k 的值;(2)若关于x 的不等式f (9221ax x --)+f (1-3ax -2)<0只有一个整数解,求实数a 的取值范围. 考点 指数函数性质的综合应用题点 指数函数的综合问题解 (1)显然f (x )的定义域为R .∵f (x )是奇函数,∴f (x )+f (-x )=3x +k ·3-x +3-x +k ·3x=(k +1)(3x +3-x )=0对一切实数x 都成立,∴k =-1.(2)由(1)可知f (x )为R 上的增函数,又f (x )是奇函数,∴f (9221ax x --)+f (1-3ax -2)<0⇒9221ax x --<3ax -2-1⇒3224ax x -<3ax -2⇒2ax 2-4x <ax -2 ⇒(ax -2)(2x -1)<0.当a ≤0时,显然不符合题意;当a >0时,由不等式只有一个整数解,可知不等式的解集为⎝ ⎛⎭⎪⎫12,2a ,且1<2a ≤2⇒1≤a <2, ∴实数a 的取值范围是[1,2).。
新课标高中数学人教A版必修2精讲精练讲解与习题答案
第1练 §1.1.1柱、锥、台、球的结构特征【第1练】 1~5 DCDDC ; 6.23 4l ; 7. 14cm .8. 解:设长方体的长、宽、高分别为a 、b 、c ,则 2()11 4()24 ab bc ac a b c ++= ìí ++= î ,而对角线长22222 ()2226115 l a b c a b c ab bc ac =++=++---=-= .9. 解:(1)是棱柱,并且是四棱柱. 因为以长方体相对的两个面作底面都是全等的四边形,其余各面都是矩形,且四条侧棱互相平行,符合棱柱定义.(2)截面BCNM 的上方部分是三棱柱 11 BB B CC M - ,下方部分是四棱柱 11 ABMA DCND - .10. 解:把原料切割出所需的两种长方体而没有余料,只有 两种切法, 见图(Ⅰ)和(Ⅱ). 切法(Ⅰ)切割出12个第一种长方体和 6个第二种长方体,切法(Ⅱ)切割出5个第一种长方体和18个第 二种长方体.取 3 块原料,2 块按切法(Ⅰ)切割,1 块按切法(Ⅱ)切割.得 到 29 个第一种长方体和 30 个第二种长方体.因此,取 90 块原 料, 其中60块按切法(Ⅰ)切割,30块按切法(Ⅱ)切割, 共得到 870个第一种长方体和900个第二种长方体. 至 此,没产生任何余料,但还差 30 个第一种长方体.再取 2 块原料,按切法(Ⅲ)切割(见图),得 30 个第一种长 方体.每块原料剩下12×3×0.1的余料.因此,为了得到这两种长方体各 900个,至少需 90+2=92块原料.此时,材料的利用率为 (3120.1)20.21199.9 (312 3.1)92 3.192´´´ -=-»%´´´´ 第2练 §1.1.2 简单组合体的结构特征【第2练】 1~5 ACDBC ;6. 23R ;7. ①③④⑤.8. 解:作截面,利用相似三角形知识,设正方体的棱长为x ,则 x h x a h - = ,解得 ahx a h=+ 9. 解:上、下底面正方形的边长为 1 S 、 2 S ,此棱台对角面、过两相对斜高的截面都是等腰梯形,则侧棱长为 2221 22 () 22 l S S h =-+ g g = 22 21 1 () 2S S h -+ ;斜高为 'h = 2122() 22 S S h -+ =2221 1 () 4S S h -+ .10. 解:(1)通过观察各几何体后,得到下表:图号 顶点数 棱数 面数①8 12 6 ②6 9 5 ③8 12 6 ④8 13 7 ⑤10 15 7 (2)由特殊到一般,归纳猜想得到:顶点数V +面数F -棱数E =2;(3)该木块的顶点数为10,面数为7, 棱数为15,有10+7—15=2,与(2)中归纳的数量关系式“V +F —E =2”相符.第3练 §1.2.2 空间几何体的三视图【第3练】 1~5 DADDD ; 6. 球、圆柱、圆锥等; 7. 100π,1010 8. 解:依次从每个几何体的三个方向得到三视图,再与已知三视图比较,所 以依次为C 、A 、D 、B.9. 解:该零件由一个长方体和一个半圆柱体拼接而成,并挖去了一个与该半 圆柱同心的圆柱,这个几何体的三视图如图所示.在视图中,被挡住的轮廓线画成虚线,尺寸线用细实线标出;Φ表示直径,R 表示半径;单位不注明时 按mm 计10. 解:(1)所要正方体个数为7、8、9、10、11都行. (2)最少7个,其俯视图样子不唯一,如下图.最多11个,其俯视图如右图.(图中数字表示在该处的小正方体的个数)第4练 §1.2.3 空间几何体的直观图【第4练】 1~5 BCBBB ; 6. 4 2 ; 7. ①③ 8. 解:(1)画法:如图,按如下步骤完成.第一步 , 作水平放 置的正方形的直观图 ABCD , 使 45, BAD Ð= o 2,1 AB cm AD cm == .第二步,过A 作z ¢轴,使 90 BAz ¢ Ð= o . 分别过点 ,, B C D 作z ¢轴的 平行线, 在z ¢轴及这组平行线上分别截取 2 AA BB CC DD cm ¢¢¢¢ ==== .第三步,连接 ,,, A B B C C D D A ¢¢¢¢¢¢¢¢,所得图形就是正方体的直观图. (2)画法:如图,按如下步骤完成.第一步,在已知的圆O 中取直径AB 所在的直线为x 轴,与AB 垂直的半径OD 所在的直线为y 轴,画出对应的x ¢轴和 y ¢轴,使 45 x O y ¢¢¢ Ð= o.第二步,在x ¢轴上取O A OA O B OB ¢¢¢¢ == , ,在 y ¢轴上取 1 2 O C OC ¢¢= , 1' 2O D OD ¢= . 第三步,圆的直观图是椭圆,把A B C D¢¢¢¢ , , , 连成椭圆,即得到圆O 的直观图. 9. 解:如图,建立直角坐标系xoy ,在x 轴上取 ''1 OA O A cm == ; 在y 轴上取 2''22 OB O B cm == ;在过点B 的x 轴的平行线上取 ''1 BC B C cm == . 连接O,A,B,C 各点,即得到了原图形.由作法可知,OABC 为平行四边形, 22 813() OC OB BC cm =+=+= ,∴ 平行四边形OABC 的周长为(31)28() cm +´= , 面积为 2 12222() cm ´= . 10. 解:该几何体类似棱台,先画底面矩形,中心轴,然后上底面矩形,连线 即成.(1) 画法: 如图, 先画轴, 依次画x’、 y’、 z’轴, 三轴相交于点O’, 使 45 x O y ¢¢¢ Ð= o,'90 x O z ¢¢ Ð= o. 在z’轴上取 "8 O O cm ¢ = , 再画x”、y” 轴.在坐标系x’O’y’中作直观图ABCD , 使得AD =20cm , AB =8cm ; 在坐标系x’’O’’y’’ 中作直观图A’B’C’D’,使得A’D’=12cm ,A’B’=4cm .连接AA’、BB’、CC’、DD’,即得到所求直观图.(2)如右图所示,延长正视图、侧视图的两腰,设两个交点到下底面的距离分别为h 、h’.根据相似比,分别有 128 20 h h - = 、 8'816'h h - = ,解得 20,'16 h h == .由 ' h h ¹ 可知,各侧棱延长不交于一点. 所以,该几何体不是棱台.第5练 §1.3.1 柱体、锥体、台体的表面积【第5练】 1~5 BAAAC ;6. 22 ;7. 22:5 .8. 解:一个侧面如右图,易知 1885 2a - == , 22 13512 h =-= .1 111111 1 3 11 11 11 1 133则 2188 612936() 2S cm + =´´= 侧面积 , 2 1 88sin 60)6963() 2 S cm =´´´°´= 上底 ( , 2 1 188sin 60)64863() 2S cm =´´´°´= 下底 (1 . 所以,表面积为 293696348639365823 cm ++=+ () 9. 解:设圆柱的底面半径为r ,则 r H x R H - = ,解得 Rr R x H =- .∴ 圆柱的表面积 22 2 2()2()() R R RS R x R x x Hx x H H Hp p p =-+-=- .由S 是x 的二次函数, ∴ 当 2 H x = 时,S 取得最大值 2RHp .于是,当圆柱的高是已知圆锥高的一半时,它的表面积最大,最大面积为 2RHp .10. 解:设放入正方体后水深为h cm .当放入正方体后,水面刚好与正方体相平时,由2520102520101010 a ´´=´´+´´ ,解得 8 a = . 当放入正方体后,水面刚好与水箱相平时,由2520302520101010 a ´´=´´+´´ ,解得 28 a = .所以, 当0<a ≤8时,放入正方体后没有被水淹没,则252025201010 h a h ´´=´´+´´ ,得 5 4a h = . 当828 a <£ 时,放入正方体后被水淹没, 则25202520101010 h a ´´=´´+´´ ,解得 2 h a =+ . 当2830 a <£ 时,放入正方体后水箱内的水将溢出,这时 30 h = .综上可得,当 5(08) 42 (828) 30 (2830) a a h a a a ì <£ ï ï=+<£ í ï <£ ï î.第6练 §1.3.1 柱体、锥体、台体的体积【第6练】 1~5 DBBAB ; 6. 31 cm ; 7.'''PA PB PC PA PB PC×× ×× . 8. 解:由题意有 22401600 S cm == 上 ( ) , 22 603600() S cm == 下 ,( ) ( )117600 1600160036003600 333 V h S S S S h h =++=´+´+= g 下 下 上 上 .∴ 7600 19000075() 3h h cm =Þ= . 即油槽的深度为75cm .9. 解:设水面圆半径为r , 水深为h , 则有 1213517125h r - == - , 解得h =7, r =13.于是雨水体积为V = 22 7(12121313)1094.333pp ´´+´+= , 降雨量为 1094.33 172 pp»3.787(cm ) ,所以降雨量约为37.9mm .10. 解:如果按方案一,仓库的底面直径变成16m ,则仓库的体积231 1116256 ()4() 3323V Sh m p p ==´´´= .如果按方案二,仓库的高变成8m ,则仓库的体积 23 2 1112288()8() 3323 V Sh m p p ==´´´= .(2)如果按方案一,仓库的底面直径变成16m ,半径为8 m . 棱锥的母线长为 22 8445 l =+= ,则仓库的表面积 2 1 845325() S m p p =´´= .如果按方案二,仓库的高变成8m ,棱锥的母线长为 22 8610 l =+= ,则仓库的表面积 22 61060() S m p p =´´= 。
人教版高中数学(必修2)全套训练习题含答案
高中数学必修二训练集锦目录:数学2(必修)数学2(必修)第一章:空间几何体[ 基础训练A组] 数学2(必修)第一章:空间几何体[ 综合训练B 组] 数学2(必修)第一章:空间几何体[ 提高训练C 组] 数学2(必修)第二章:点直线平面[ 基础训练A组] 数学2(必修)第二章:点直线平面[ 综合训练B 组] 数学2(必修)第二章:点直线平面[ 提高训练C 组] 数学2(必修)第三章:直线和方程[ 基础训练A组] 数学2(必修)第三章:直线和方程[ 综合训练B 组] 数学2(必修)第三章:直线和方程[ 提高训练C 组] 数学2(必修)第四章:圆和方程[ 基础训练A组] 数学2(必修)第四章:圆和方程[ 综合训练 B 组] 数学 2(必修)第四章:圆和方程 [ 提高训练 C 组]33 3 ( 数 学 2 必 修 ) 第 一 章 空 间 几 何 体[ 基础训练 A 组] 一、选择题1 . 有 一 个 几 何 体 的 三 视 图 如 下 图 所 示 , 这 个 几 何 体 应 是 一 个 ()A . 棱 台B . 棱 锥C . 棱 柱 D. 都 不 对主 视 图左 视 图俯 视 图2 . 棱 长 都 是 1 的 三 棱 锥 的 表 面 积 为 ()A .B .2 C .3 D.43 . 长 方 体 的 一 个 顶 点 上 三 条 棱 长 分 别 是 3,4 ,5 , 且 它 的 8 个 顶 点 都 在同 一 球 面 上 , 则 这 个 球 的 表 面 积 是 ( )A . 2 5B . 5 0C . 1 2 5D . 都 不 对4 . 正 方 体 的 内 切 球 和 外 接 球 的 半 径 之 比 为 ()A .: 1 B . : 2C . 2 :D . 35 . 在 △ A B C 中 , AB 2 , B C 1 . 5 , AB C1 2 0 ,若 使 绕 直 线 B C 旋 转 一 周 ,则 所 形 成 的 几 何 体 的 体 积 是 ( )9 7 5 3 A .B .C .D.22226 . 底 面 是 菱 形 的 棱 柱 其 侧 棱 垂 直 于 底 面 , 且 侧 棱 长 为 5 , 它 的 对 角 线 的 长分 别 是 9 和 1 5 , 则 这 个 棱 柱 的 侧 面 积 是 ( ) A . 1 3 0B . 1 4 0C . 1 5 0D . 1 6 0二、填空题1 . 一 个 棱 柱 至 少 有 _____ 个 面 , 面 数 最 少 的 一 个 棱 锥 有 ________个 顶 点 ,顶 点 最 少 的 一 个 棱 台 有________条 侧 棱 。
最新【精品】人教a版高中数学必修2一课一练全册汇编含答案名师优秀教案
【精品】人教a版高中数学必修2一课一练全册汇编含答案人教A版高中数学必修2《一课一练》全册汇编含答案《1.1 空间几何体的结构》一课一练1《1.1 空间几何体的结构》一课一练2《1.2 空间几何体的三视图》一课一练1《1.2 空间几何体的直观图》一课一练2《1.3 柱体、锥体、台体的体积》一课一练2《1.3 柱体、锥体、台体的表面积》一课一练1《2.1 直线与平面、平面与平面位置关系》一课一练2《2.1 空间中直线与直线之间的位置关系》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练2《2.2 直线、平面平行的判定及其性质》一课一练3《2.2 直线、平面平行的判定及其性质》一课一练4《2.3 直线、平面垂直的判定及其性质》一课一练1《2.3 直线、平面垂直的判定及其性质》一课一练2《2.3 直线、平面垂直的判定及其性质》一课一练3《2.3 直线、平面垂直的判定及其性质》一课一练4《3.1 直线的倾斜角与斜率》一课一练1《3.1 直线的倾斜角与斜率》一课一练2《3.2 直线的方程》一课一练1《3.2 直线的方程》一课一练2《3.2 直线的方程》一课一练3《3.2 直线的方程》一课一练4《3.2 直线的方程》一课一练5《3.2 直线的方程》一课一练6《3.3 直线的交点坐标与距离公式》一课一练1《3.3 直线的交点坐标与距离公式》一课一练2《4.1 圆的方程》一课一练1《4.1 圆的方程》一课一练2《4.1 圆的方程》一课一练3《4.1 圆的方程》一课一练4《4.2 直线、圆的位置关系》一课一练1《4.2 直线、圆的位置关系》一课一练2《4.3 空间直角坐标系》一课一练1《4.3 空间直角坐标系》一课一练2- 1 -人教A版高中数学必修2《一课一练》新课标高一数学同步测试(1)—1.1空间几何体本试卷分第?卷和第?卷两部分.共150分.第?卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)(1(直线绕一条与其有一个交点但不垂直的固定直线转动可以形成 ( )A(平面 B(曲面 C(直线 D(锥面 2(一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成 ( )A(棱锥 B(棱柱 C(平面 D(长方体 3(有关平面的说法错误的是 ( )A(平面一般用希腊字母α、β、γ…来命名,如平面α…B(平面是处处平直的面C(平面是有边界的面D(平面是无限延展的4(下面的图形可以构成正方体的是 ( )A B C D5(圆锥的侧面展开图是直径为a的半圆面,那么此圆锥的轴截面是 ( )A(等边三角形 B(等腰直角三角形C(顶角为30?的等腰三角形 D(其他等腰三角形6(A、B为球面上相异两点,则通过A、B两点可作球的大圆有 ( )A(一个 B(无穷多个 C(零个 D(一个或无穷多个 7(四棱锥的四个侧面中,直角三角最多可能有 ( )A(1 B(2 C(3 D(4 8(下列命题中正确的是 ( )A(由五个平面围成的多面体只能是四棱锥B(棱锥的高线可能在几何体之外C(仅有一组对面平行的六面体是棱台D(有一个面是多边形,其余各面是三角形的几何体是棱锥9(长方体三条棱长分别是AA′=1,AB=2,AD=4,则从A点出发,沿长方体的表面到C′的最短矩离是 ( )2937 A(5 B(7 C( D( 10(已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则 ( )A,B,C,D,F,E A( B( ACBFDE,,,,,C( D(它们之间不都存在包含关系 CABDFE,,,,,第1页共127页人教A版高中数学必修2《一课一练》第?卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11(线段AB长为5cm,在水平面上向右平移4cm后记为CD,将CD沿铅垂线方向向下移动3cm后记为C′D′,再将C′D′沿水平方向向左移4cm记为A′B′,依次连结构成长方体ABCD—A′B′C′D′.?该长方体的高为 ;?平面A′B′C′D′与面CD D′C′间的距离为 ;?A到面BC C′B′的距离为 .12(已知,ABCD为等腰梯形,两底边为AB,CD且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体. 13(下面是一多面体的展开图,每个面内都给了字母,请根据要求回答问题: ?如果A在多面体的底面,那么哪一面会在上面 ;?如果面F在前面,从左边看是面B,那么哪一个面会在上面 ;?如果从左面看是面C,面D在后面,那么哪一个面会在上面 .14(长方体ABCD—ABCD中,AB=2,BC=3, 1111AA=5,则一只小虫从A点沿长方体的表面爬到C点的最短距离是 ( 11三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分) 15((12分)根据图中所给的图形制成几何体后,哪些点重合在一起(16((12分)若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台,此命题是否正确,说明理由(第2页共127页人教A版高中数学必修2《一课一练》17((12分)正四棱台上,下底面边长为a,b,侧棱长为c,求它的高和斜高( 18((12分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1?4,母线长10cm.求:圆锥的母长(19((14分)已知正三棱锥S-ABC的高SO=h,斜高SM=n,求经过SO的中点且平行于底面的截面?ABC的面积( 11120((14分)有在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF 及EF第3页共127页人教A版高中数学必修2《一课一练》把?ADE、?CDF和?BEF折起,使A、B、C三点重合,重合后的点记为P.问:?依据题意制作这个几何体;?这个几何体有几个面构成,每个面的三角形为什么三角形;?若正方形边长为a,则每个面的三角形面积为多少(参考答案(一)一、DBCCA DDBAB二、11(?3CM?4CM?5CM; 12(圆锥、圆台、圆锥; 13(?F?C?A; 14(5( 2三、15(解:J与N,A、M与D,H与E,G与F,B与C.16(解:未必是棱台,因为它们的侧棱延长后不一定交于一点,如图,用一个平行于楔形底面的平面去截楔形,截得的几何体虽有两个面平行,其余各面是梯形,但它不是棱台,所以看一个几何体是否棱台,不仅要看是否有两个面平行,其余各面是否梯形,还要看其侧棱延长后是否交于一点.小结:棱台的定义,除了用它作判定之外,至少还有三项用途:?为保证侧棱延长后交于一点,可以先画棱锥再画棱台;?如果解棱台问题遇到困难,可以将它还原为棱锥去看,因为它是由棱锥截来的;?可以利用两底是相似多边形进行有关推算.,,,,,,OOBB,OOEE和BEEB17(分析:棱台的有关计算都包含在三个直角梯形及两个直角三角形,,,,OBEOBE和中,而直角梯形常需割成一个矩形和一个直角三角形对其进行求解,所以要熟悉两,,,,底面的外接圆半径()内切圆半径()的差,特别是正三、正四、正六棱台. OB,OBOE,OE略解: hOOBFhEEBG,,,,,,,,,,21BF,(b,a)BG,(b,a)22122222?h,c,(b,a),2c,(b,a)22112222hcbacba,,,,,,,()()4 42第4页共127页人教A版高中数学必修2《一课一练》l,圆台上、下底半径为. 18(解:设圆锥的母线长为rR,l,10r?,lRl,101 ?,l440?,lcm()340 答:圆锥的母线长为cm. 332219(解:设底面正三角形的边长为a,在RT?SOM中SO=h,SM=n,所以OM=,又MO=a,即n,l66332222222a=,,截面面积为3(n,l)( n,l?s,a,33(n,l),ABC44320(解:?略(?这个几何体由四个面构成,即面DEF、面DFP、面DEP、面EFP.由平几知识可知DE=DF,?DPE=?EPF=?DPF=90?,所以?DEF为等腰三角形,?DFP、?EFP、?DEP为直角三角形.325a,EF=2a,所以,S=a。
2020版人教A版高中数学必修二导练课件:2.1.2 空间中直线与直线之间的位置关系
第十二页,编辑于星期日:一点 十二分。
题型二 公理4及等角定理的应用 [例2] 在如图所示的正方体ABCD-A1B1C1D1中,E,F,E1,F1分别是棱AB,AD, B1C1,C1D1的 中点,
求证:(1)EF E1F1;
证明:(1)连接 BD,B1D1, 在△ABD 中, 因为 E,F 分别为 AB,AD 的中点,
因为AB⊥BC,AB=BC,
所以∠ACB=45°, 所以异面直线AC与B1C1所成的角为45°. 故选B.
第二十七页,编辑于星期日:一点 十二分。
(2)在正方体 ABCD-A1B1C1D1 中,E 为棱 CC1 的中点,则异面直线 AE 与 CD 所成角 的余弦值为( )
(A)- 2 3
(B) 5 3
(C) 2 3
(D) 2 5 5
(2)∠EA1F=∠E1CF1.
证明:(2)取 A1B1 的中点 M, 连接 F1M,BM, 则 MF1 B1C1, 又 B1C1 BC, 所以 MF1 BC. 所以四边形 BMF1C 为平行四边形, 因此,BM∥CF1.
因为 A1M= 1 A1B1,BE= 1 AB,
2
2
第十五页,编辑于星期日:一点 十二分。
“异面”.
答案:(1)平行 (2)异面 (3)相交 (4)异面
第八页,编辑于星期日:一点 十二分。
方法技巧
(1)判定两条直线平行或相交的方法 判定两条直线平行或相交可用平面几何的方法去判断,而两条直线平行也可以 用公理4判断.
(2)判定两条直线是异面直线的方法
①定义法:由定义判断两直线不可能在同一平面内. ②重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点 的直线是异面直线.用符号语言可表示为A∉α,B∈α,l⊂α,B∉l⇒AB与l是 异面直线(如图).
高中数学 2.1空间点、直线、平面之间的位置关系 新人教A版必修2
公理 3 作用:判定两个平面是否相交的依据。
精品课件
例1、用符号表示下列图形中点、直线、平 面之间的关系。
解 :左边的图中, α∩β=l,a∩α=A,a∩β=B。 右边的图中, α∩β=l,a α,b β, a∩l=P,b∩l=P。
精品课件
新疆 王新敞
奎屯
求证: P 在直线 BD 上新疆 王新敞 奎屯
A
P EH
D
G
B
C
F
精品课件
证明:∵ EH FG P ,∴ PEH , P FG , ∵ E, H 分别属于直线 AB, AD , ∴ EH 平面 ABD,∴ P 平面 ABD, 同理: P 平面 CBD , 又∵平面 ABD 平面 CBD BD ,
集合中“∈”的符号只能用于点与直线,点与平面的关系,“ ”和“∩”的符号只能
用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用
几何语言.(平面α外的直线 a)表示 a (平面α外的直线 a)表示 a 或 a A.
精品课件
问题4:如果直线l与平面α有一个公共点P,直线l是否在平面α内? 直线l不一定在平面α内。
答案:(1)×(2)√(3)×(4)√
精品课件
2.①一条直线与一个平面会有几种位置关系
.
②如图所示,两个平面、,若相交于一点,则会发生什么现象.
③几位同学的一次野炊活动,带去一张折叠方桌,不小心弄坏了桌脚,
有一生提议可将几根一样长的木棍,在等高处用绳捆扎一下作桌脚(如图
所示),问至少要几根木棍,才可能使桌面稳定?
(5)
直线在平面内
aα
直线与平面相交
新教材人教A版高中数学必修第二册全册课时练习(一课一练,含解析)
人教A版高中数学必修第二册全册课时练习6.1 平面向量的概念 .............................................................................................................. - 2 - 6.2.1 向量的加法运算........................................................................................................ - 5 - 6.2.2 向量的减法运算........................................................................................................ - 8 - 6.2.3 向量的数乘运算...................................................................................................... - 11 - 6.2.4 向量的数量积............................................................................................................ - 14 - 6.3.1 平面向量基本定理.................................................................................................... - 18 - 6.3.2 平面向量的正交分解及坐标表示............................................................................ - 21 - 6.3.3 平面向量加、减运算的坐标表示............................................................................ - 21 - 6.3.4 平面向量数乘运算的坐标表示.............................................................................. - 24 - 6.3.5 平面向量数量积的坐标表示.................................................................................. - 27 - 6.4 平面向量的应用........................................................................................................ - 30 -7.1.1 数系的扩充和复数的概念...................................................................................... - 34 - 7.1.2 复数的几何意义...................................................................................................... - 37 - 7.2.1 复数的加、减运算及其几何意义.......................................................................... - 39 -7.2.2 复数的乘、除运算.................................................................................................. - 43 -8.1.1 棱柱、棱锥、棱台的结构特征................................................................................ - 46 - 8.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征................................................ - 49 - 8.2 立体图形的直观图........................................................................................................ - 51 - 8.3.1 棱柱、棱锥、棱台的表面积和体积...................................................................... - 55 - 8.3.2 圆柱、圆锥、圆台、球的表面积和体积.............................................................. - 59 - 8.4.1 平面 ......................................................................................................................... - 62 - 8.4.2 空间点、直线、平面之间的位置关系.................................................................. - 66 - 8.5.1 直线与直线平行...................................................................................................... - 69 - 8.5.2 直线与平面平行...................................................................................................... - 73 - 8.5.3 平面与平面平行...................................................................................................... - 76 - 8.6.1 直线与直线垂直...................................................................................................... - 80 - 8.6.2 直线与平面垂直...................................................................................................... - 85 -8.6.3平面与平面垂直 ....................................................................................................... - 89 -9.1.1简单随机抽样 ........................................................................................................... - 94 - 9.1.2 分层随机抽样 ............................................................................................................. - 96 - 9.1.3 获取数据的途径 ......................................................................................................... - 96 - 9.2.1总体取值规律的估计 ............................................................................................. - 100 - 9.2.2 总体百分位数的估计 ............................................................................................... - 105 - 9.2.3 总体集中趋势的估计 ............................................................................................... - 105 -9.2.4 总体离散程度的估计 ............................................................................................... - 105 -10.1.1有限样本空间与随机事件.................................................................................... - 110 - 10.1.2事件的关系和运算 ............................................................................................... - 112 - 10.1.3古典概型 ............................................................................................................... - 115 - 10.1.4概率的基本性质 ................................................................................................... - 118 - 10.2事件的相互独立性 .................................................................................................. - 121 - 10.3频率与概率 .............................................................................................................. - 126 -6.1 平面向量的概念一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量. 【答案】D2.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0【解析】根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a |或-a|a |,故④也是错误的.【答案】D3.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →【解析】由平面几何知识知,AD →与BC →方向不同, 故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →; PE →与PF →的模相等而方向相反,故PE →≠PF →. EP →与PF →的模相等且方向相同,∴EP →=PF →.【答案】D4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形 B .矩形 C .菱形 D .等腰梯形【解析】由BA →=CD →,知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB →|=|AD →|,所以四边形ABCD 为菱形. 【答案】C 二、填空题5.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.【解析】因为正方形的对角线长为22,所以|OA →|= 2. 【答案】 2 6.如图,四边形ABCD 是平行四边形,E ,F 分别是AD 与BC 的中点,则在以A 、B 、C 、D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.【解析】因为AB ∥EF ,CD ∥EF ,所以与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →. 【答案】BA →,CD →7.给出下列命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中所有正确命题的序号为________.【解析】AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 方向相同;b =c ,则|b |=|c |,且b 与c 方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确;对于④,当b =0时,a 与c 不一定平行,故④不正确. 【答案】②③ 三、解答题8.在如图的方格纸(每个小方格的边长为1)上,已知向量a . (1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么.【解析】(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如下图所示. (2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如下图所示.9.一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变了方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解析】(1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).10.如图,在△ABC 中,已知向量AD →=DB →,DF →=EC →,求证:AE →=DF →.证明:由DF →=EC →,可得DF =EC 且DF ∥EC , 故四边形CEDF 是平行四边形,从而DE ∥FC . ∵AD →=DB →,∴D 为AB 的中点. ∴AE →=EC →,∴AE →=DF →.6.2.1 向量的加法运算一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( )A.AB →B.BC →C.CD →D.DA →【解析】因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A. 【答案】A2.设a 表示“向东走5 km”,b 表示“向南走5 km”,则a +b 表示( ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2 km 【解析】如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 【答案】D3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定【解析】如果a 和b 方向相同,则它们的和的方向应该与a (或b )的方向相同;如果它们的方向相反,而a 的模大于b 的模,则它们的和的方向与a 的方向相同. 【答案】A4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →【解析】设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则OP 与OQ 之间的对角线对应的向量即向量a =OP →+OQ →,由a 和FO →长度相等,方向相同,得a =FO →,即OP →+OQ →=FO →. 【答案】C 二、填空题5.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.【解析】由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 【答案】06.化简(AB →+MB →)+(BO →+BC →)+OM →=________.【解析】原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 【答案】AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 【解析】在菱形ABCD 中,连接BD , ∵∠DAB =60°,∴△BAD 为等边三角形, 又∵|AB →|=1,∴|BD →|=1,|BC →+CD →|=|BD →|=1. 【答案】1 三、解答题8.如图,已知向量a 、b ,求作向量a +b .【解析】(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1); (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2); (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).9.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量: (1)OA →+OC →; (2)BC →+FE →.【解析】(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.【解析】如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N. 所以|OA →|=|OC →|cos 30°=1503(N), |OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算一、选择题1.下列运算中正确的是( ) A.OA →-OB →=AB → B.AB →-CD →=DB → C.OA →-OB →=BA → D.AB →-AB →=0【解析】根据向量减法的几何意义,知OA →-OB →=BA →,所以C 正确,A 错误;B 显然错误;对于D ,AB →-AB →应该等于0,而不是0.【答案】C2.下列四式中不能化简为PQ →的是( ) A.AB →+(PA →+BQ →) B .(AB →+PC →)+(BA →-QC →) C.QC →-QP →+CQ → D.PA →+AB →-BQ →【解析】D 中,PA →+AB →-BQ →=PB →-BQ →=PB →+QB →不能化简为PQ →,其余选项皆可. 【答案】D3.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A.CB → B.BC → C.CD → D.DC →【解析】在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →. 【答案】C4.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( ) A .a -b +c B .b -(a +c ) C .a +b +c D .b -a +c【解析】DC →=DA →+AB →+BC →=a -b +c . 【答案】A 二、填空题5.EF →+DE →-DB →=________.【解析】EF →+DE →-DB →=EF →+BE →=BF →. 【答案】BF →6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.【解析】若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线同向,所以|a -b |=2. 【答案】0 27.设点M 是线段BC 的中点,点A 在直线BC 外,且|BC →|=4,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.【解析】以AB ,AC 为邻边作平行四边形ACDB ,由向量加减法几何意义可知,AD →=AB →+AC →,CB →=AB →-AC →,∵|AB →+AC →|=|AB →-AC →|,平行四边形ABCD 为矩形,∴|AD →|=|CB →|,又|BC →|=4,M 是线段BC 的中点, ∴|AM →|=12|AD →|=12|BC →|=2.【答案】2 三、解答题8.如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解析】方法一:如图①,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .方法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .9.化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解析】(1)方法一 原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 方法二 原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →. (2)方法一 原式=DB →-DC →=CB →.方法二 原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 10.如图,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解析】由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=a +d +e . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .6.2.3 向量的数乘运算一、选择题1.4(a -b )-3(a +b )-b 等于( ) A .a -2b B .a C .a -6b D .a -8b【解析】原式=4a -4b -3a -3b -b =a -8b .2.点C 在直线AB 上,且AC →=3AB →,则BC →等于( ) A .-2AB → B.13AB →C .-13AB →D .2AB →【解析】如图,AC →=3AB →,所以BC →=2AB →. 【答案】D3.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A .-1或3 B. 3 C .-1或4 D .3或4【解析】因为向量m a -3b 与a +(2-m )b 共线,且向量a ,b 是两个不共线的向量,所以m =-32-m ,解得m =-1或m =3. 【答案】A 4.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=( ) A .a +34bB.34a +14bC.14a +14bD.14a +34b 【解析】AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .【答案】D5.已知|a |=4,|b |=8,若两向量方向同向,则向量a 与向量b 的关系为b =________a . 【解析】由于|a |=4,b =8,则|b |=2|a |,又两向量同向,故b =2a . 【答案】26.点C 在线段AB 上,且AC CB =32,则AC →=________AB →,BC →=________AB →.【解析】因为C 在线段AB 上,且AC CB =32,所以AC →与AB →方向相同,BC →与AB →方向相反,且AC AB =35,BC AB =25,所以AC →=35AB →,BC →=-25AB →. 【答案】35 -257.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 【解析】由a =λb ,得|a |=|λb |=|λ||b |.∵|a |=3,|b |=5, ∴|λ|=35,即λ=±35.【答案】±35三、解答题 8.计算(1)13(a +2b )+14(3a -2b )-12(a -b ); (2)12⎣⎢⎡⎦⎥⎤3a +2b-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a . 【解析】(1)原式=⎝ ⎛⎭⎪⎫13+34-12a +⎝ ⎛⎭⎪⎫23-12+12b =712a +23b . (2)原式=12⎝ ⎛⎭⎪⎫73a +b -76⎝ ⎛⎭⎪⎫a +37b =76a +12b -76a -12b =0. 9.已知E ,F 分别为四边形ABCD 的对角线AC ,BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.【解析】如图所示,取AB 的中点P ,连接EP ,FP .在△ABC 中,EP 是中位线, 所以PE →=12BC →=12a .在△ABD 中,FP 是中位线,所以PF →=12AD →=-12DA →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF →=-12a -12b =-12(a +b ).10.已知e ,f 为两个不共线的向量,若四边形ABCD 满足AB →=e +2f ,BC →=-4e -f ,CD →=-5e -3f .(1)用e 、f 表示AD →;(2)证明:四边形ABCD 为梯形.【解析】(1)AD →=AB →+BC →+CD →=(e +2f )+(-4e -f )+(-5e -3f )=(1-4-5)e +(2-1-3)f =-8e -2f .(2)证明:因为AD →=-8e -2f =2(-4e -f )=2BC →, 所以AD →与BC →方向相同,且AD →的长度为BC →的长度的2倍, 即在四边形ABCD 中,AD ∥BC ,且AD ≠BC , 所以四边形ABCD 是梯形.6.2.4 向量的数量积一、选择题1.若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12【解析】m ·n =|m ||n |cos θ=4×6×cos 45°=24×22=12 2. 【答案】B2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |=( ) A .12 B .3 C .6 D .3 3【解析】a ·b =|a ||b |cos 135°=-122,又|a |=4,解得|b |=6. 【答案】C3.已知向量a ,b 满足|a |=2,|b |=3,a ·(b -a )=-1,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2【解析】因为|a |=2,a ·(b -a )=-1, 所以a ·(b -a )=a ·b -a 2=a ·b -22=-1, 所以a ·b =3.又因为|b |=3,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=32×3=12.又θ∈[0,π],所以θ=π3. 【答案】C4.若a ·b >0,则a 与b 的夹角θ的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫π2,πC.⎝⎛⎦⎥⎤π2,π D.⎝ ⎛⎭⎪⎫π2,π 【解析】因为a ·b >0,所以cos θ>0,所以θ∈⎣⎢⎡⎭⎪⎫0,π2.【答案】A 二、填空题5.如图所示,在Rt△ABC 中,∠A =90°,AB =1,则AB →·BC →的值是________.【解析】方法一 AB →·BC →=|AB →||BC →|cos(180°-∠B )=-|AB →||BC →|cos∠B =-|AB →||BC→|·|AB →||BC →|=-|AB →|2=-1.方法二 |BA →|=1,即BA →为单位向量,AB →·BC →=-BA →·BC →=-|BA →||BC →|cos∠B ,而|BC →|·cos∠B =|BA →|,所以AB →·BC →=-|BA →|2=-1. 【答案】-16.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为________.【解析】设a 与b 的夹角为θ,cos θ=a ·b |a |·|b |=21×4=12,又因为θ∈[0,π],所以θ=π3. 【答案】π37.已知|a |=3,向量a 与b 的夹角为π3,则a 在b 方向上的投影为________.【解析】向量a 在b 方向上的投影为|a |cos θ=3×cos π3=32.【答案】32三、解答题8.已知|a |=3,|b |=4,a 与b 的夹角为120°,求: (1)a 2-b 2;(2)(2a -b )·(a +3b ).【解析】(1)a 2-b 2=|a |2-|b |2=32-42=-7.(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5|a ||b |·cos 120°-3|b |2=2×32+5×3×4×⎝ ⎛⎭⎪⎫-12-3×42=-60. 9.(1)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |,|3a +b |;(2)已知|a |=|b |=5,且|3a -2b |=5,求|3a +b |的值;(3)如图,已知在▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.【解析】(1)a ·b =|a ||b |cos π3=5×5×12=252,∴|a +b |=a +b 2=|a |2+2a ·b +|b |2=25+2×252+25=53,|a -b |=a -b2=|a |2+|b |2-2a ·b =25=5, |3a +b |=3a +b2=9a 2+b 2+6a ·b =325=513.(2)∵|3a -2b |2=9|a |2-12a ·b +4|b |2=9×25-12a ·b +4×25=325-12a ·b ,又|3a -2b |=5,∴325-12a ·b =25,则a ·b =25.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9×25+6×25+25=400.故|3a +b |=20. (3)设AB →=a ,AD →=b ,则|a |=3,|b |=1,a 与b 的夹角θ=π3.∴a ·b =|a ||b |cos θ=32.又∵AC →=a +b ,DB →=a -b , ∴|AC →|=AC →2=a +b 2=a 2+2a ·b +b 2=13,|DB →|=DB →2=a -b2=a 2-2a ·b +b 2=7.∴AC =13,BD =7.10.已知|a |=2|b |=2,且向量a 在向量b 方向上的投影为-1. (1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 【解析】(1)由题意知|a |=2,|b |=1. 又a 在b 方向上的投影为|a |cos θ=-1, ∴cos θ=-12,∴θ=2π3.(2)易知a ·b =-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)∵λa +b 与a -3b 互相垂直,∴(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, ∴λ=47.6.3.1 平面向量基本定理一、选择题1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 【解析】∵a +b =3e 1-e 2, ∴c =2(a +b ).∴a +b 与c 共线. 【答案】B2.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a【解析】如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD→-AB →=2b -a . 【答案】B3.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 【解析】如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 【答案】D4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45【解析】∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.【答案】C 二、填空题5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.【解析】因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【答案】36.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.【解析】AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b . 【答案】2a -b7.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.【解析】BE →=BC →+CE →=AD →-12AB →=b -12a .【答案】b -12a三、解答题8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .【解析】因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC→=b ,试用a ,b 将MN →、NP →、PM →表示出来. 【解析】NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 【解析】(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1 4. (2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN ,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( ) A .(1,-2) B .(7,6) C .(5,0) D .(11,8)【解析】因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8). 【答案】D2.已知向量a =(-1,2),b =(1,0),那么向量3b -a 的坐标是( ) A .(-4,2) B .(-4,-2) C .(4,2) D .(4,-2)【解析】3b -a =3(1,0)-(-1,2)=(4,-2).【答案】D3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6) D .(2,0)【解析】b =(3,2)-2a =(3,2)-(2,4)=(1,-2). 【答案】A4.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【解析】由平面向量基本定理知①正确;若a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.【答案】A 二、填空题5.在平面直角坐标系内,已知i 、j 是两个互相垂直的单位向量,若a =i -2j ,则向量用坐标表示a =________.【解析】由于i ,j 是两个互相垂直的单位向量,所以a =(1,-2). 【答案】(1,-2)6.如右图所示,已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,则向量OA →的坐标为________.【解析】设点A (x ,y ),则x =|OA →|·cos 60°=43cos 60°=23,y =|OA →|·sin 60°=43sin 60°=6,即A (23,6),所以OA →=(23,6). 【答案】(23,6)7.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.【解析】易得AB →=(2,0),由a =(x +3,x 2-3x -4)与AB →相等得⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0,解得x =-1.【答案】-1 三、解答题8.如图,取与x 轴、y 轴同向的两个单位向量i ,j 作为基底,分别用i ,j 表示OA →,OB →,AB →,并求出它们的坐标.【解析】由图形可知,OA →=6i +2j ,OB →=2i +4j ,AB →=-4i +2j ,它们的坐标表示为OA →=(6,2),OB →=(2,4),AB →=(-4,2).9.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c . (1)求p 的坐标 ;(2)若以a ,b 为基底,求p 的表达式.【解析】(1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3). (2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),所以⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,所以⎩⎪⎨⎪⎧λ=-212,μ=-15,所以p =-212a -15b .10.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →a ,OB →=b ,OC →=c ,且|a |=2,|b|=1,|c |=3,试用a ,b 表示c .【解析】如图,以O 为原点,OA →为x 轴的非负半轴建立平面直角坐标系,由三角函数的定义,得B (cos 150°,sin 150°),C (3cos 240°,3sin 240°). 即B ⎝ ⎛⎭⎪⎫-32,12,C ⎝ ⎛⎭⎪⎫-32,-332,又∵A (2,0), 故a =(2,0),b =⎝ ⎛⎭⎪⎫-32,12,c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),∴⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=⎝⎛⎭⎪⎫2λ1-32λ2,12λ2,∴⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,∴⎩⎨⎧λ1=-3,λ2=-33,∴c =-3a -33b .6.3.4 平面向量数乘运算的坐标表示一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)【解析】由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),解得m =-4,所以b =(-2,-4),所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 【答案】C2.已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2【解析】a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0,解得λ=12,故选A.【答案】A3.已知A (1,-3),B ⎝ ⎛⎭⎪⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1) D .(-9,-1) 【解析】设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝ ⎛⎭⎪⎫8,12-(1,-3)=⎝ ⎛⎭⎪⎫7,72,AC →=(x ,y )-(1,-3)=(x -1,y +3),所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C. 【答案】C4.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1),若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3【解析】向量OA →=(3,-4),OB →=(6,-3), ∴AB →=(3,1),∵OC →=(2m ,m +1),AB →∥OC →, ∴3m +3=2m ,解得m =-3,故选D.【答案】D 二、填空题5.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.【解析】因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 【答案】16.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.【解析】①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确. 【答案】①③④7.已知向量a =(1,2),b =(1,λ),c =(3,4).若a +b 与c 共线,则实数λ=________. 【解析】因为a +b =(1,2)+(1,λ)=(2,2+λ),所以根据a +b 与c 共线得2×4-3×(2+λ)=0,解得λ=23.【答案】23三、解答题8.已知a =(x,1),b =(4,x ),a 与b 共线且方向相同,求x . 【解析】∵a =(x,1),b =(4,x ),a ∥b . ∴x 2-4=0,解得x 1=2,x 2=-2.当x =2时,a =(2,1),b =(4,2),a 与b 共线且方向相同; 当x =-2时,a =(-2,1),b =(4,-2),a 与b 共线且方向相反. ∴x =2.9.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). ∵AE →=13AC →,∴AE →=⎝ ⎛⎭⎪⎫23,23,∵BF →=13BC →,∴BF →=⎝ ⎛⎭⎪⎫-23,1.∵AE →=(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,∴E ⎝ ⎛⎭⎪⎫-13,23,∵BF →=(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,∴F ⎝ ⎛⎭⎪⎫73,0, ∴EF →=⎝ ⎛⎭⎪⎫83,-23.又∵4×⎝ ⎛⎭⎪⎫-23-83×(-1)=0,∴EF →∥AB →. 10.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 【解析】(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.6.3.5 平面向量数量积的坐标表示一、选择题1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .6【解析】依题意得6-m =0,m =6,选D. 【答案】D2.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2【解析】a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1. 【答案】C3.已知a ,b 为平面向量,且a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665【解析】∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13, ∴cos〈a ,b 〉=165×13=1665.【答案】C4.已知向量a =(-1,2),b =(3,1),c =(k,4),且(a -b )⊥c ,则k =( ) A .-6 B .-1 C .1 D .6【解析】∵a =(-1,2),b =(3,1),∴a -b =(-4,1),∵(a -b )⊥c ,∴-4k +4=0,解得k =1. 【答案】C 二、填空题5.a =(-4,3),b =(1,2),则2|a |2-3a ·b =________. 【解析】因为a =(-4,3),所以2|a |2=2×(-42+32)2=50.a ·b =-4×1+3×2=2.所以2|a |2-3a ·b =50-3×2=44. 【答案】446.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.。
新教材 人教A高中数学必修第二册全册各章测验及模块综合测验 精选最新配套习题含解析
人教A 必修第二册各章综合测验1、平面向量及其应用............................................................................................................ - 1 -2、复数 ................................................................................................................................. - 11 -3、立体几何初步 ................................................................................................................. - 17 -4、统计 ................................................................................................................................. - 30 -5、概率 ................................................................................................................................. - 41 - 模块综合测验 ....................................................................................................................... - 52 -1、平面向量及其应用(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.向量a =(2,-1),b =(-1,2),则(2a +b )·a =( ) A .6 B .5 C .1D .-6A [由向量数量积公式知,(2a +b )·a =(3,0)·(2,-1)=6.]2.设非零向量a ,b ,c 满足|a|=|b|=|c|,a +b =c ,则向量a ,b 的夹角为( ) A .150° B .120° C .60°D .30°B [设向量a ,b 夹角为θ, |c|2=|a +b|2=|a|2+|b|2+2|a||b|cos θ,则cos θ=-12,又θ∈[0°,180°],∴θ=120°.故选B .]3.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,则a ·b 的值为( ) A .1 B .2 C .3D .4 A [a +b =(3,k +2),∵a +b 与a 共线, ∴3k -(k +2)=0,解得k =1.]4.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若b 2+c 2-a 2=65bc ,则sin(B +C )的值为( )A .-45B .45C .-35D .35B [由b 2+c 2-a 2=65bc ,得cos A =b 2+c 2-a 22bc =35,则sin(B +C )=sin A =45.]5.已知点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值是( )A .-25B .25C .-24D .24A [因为|AB →|2+|BC →|2=9+16=25=|CA →|2, 所以∠ABC =90°,所以原式=AB →·BC →+CA →(BC →+AB →)=0+CA →·AC → =-AC →2=-25.]6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a 等于( )A .2B .1C .45D .53A [设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ), ∵AC →=2CB →,∴⎩⎨⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎨⎧x =3,y =3,∴C (3,3),又∵C 在直线y =12ax 上,所以3=12a ×3, ∴a =2.]7.如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .49B .89C .23D .43 B [∵BP →=13BD →, ∴AP →-AB →=13(AD →-AB →), ∴AP →=23AB →+13AD →,又AD →=23AC →, ∴AP →=23AB →+29AC →=λAB →+μAC →, ∴λ=23,μ=29,∴λ+μ=89.]8.已知点M 是边长为2的正方形ABCD 的内切圆内(含边界)一动点,则MA →·MB →的取值范围是( )A .[-1,0]B .[-1,2]C .[-1,3]D .[-1,4]C [建立如图所示坐标系,设M (x ,y ),其中A (-1,-1),B (1,-1),易知x 2+y 2≤1,而MA →·MB →=(-1-x ,-1-y )·(1-x ,-1-y )=x 2+(y +1)2-1,若设E (0,-1),则MA →·MB →=|ME →|2-1,由于0≤|ME →|≤2,所以MA →·MB →=|ME →|2-1的取值范围是[-1,3],故选C .] 二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.对任意向量a ,b ,下列关系式中恒成立的是( ) A .|a ·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2ACD [|a ·b |=|a |·|b |·|cos 〈a ,b 〉|≤|a |·|b |,故A 正确;由向量的运算法则知C ,D 正确;当b =-a ≠0时,|a -b |>||a |-|b ||,故B 错误.故选ACD .]10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若A =π6,a =2,c =23,则角C 的大小是( )A .π6B .π3C .5π6D .2π3BD [由正弦定理可得a sin A =c sin C ,所以sin C =c a sin A =32,而a <c ,所以A <C ,所以π6<C <56π,故C =π3或23π.]11.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足B =π3,a +c =3b ,则ac =( )A .2B .3C .12D .13AC [∵B =π3,a +c =3b , ∴(a +c )2=a 2+c 2+2ac =3b 2,①由余弦定理可得,a 2+c 2-2ac cos π3=b 2,② 联立①②,可得2a 2-5ac +2c 2=0, 即2⎝ ⎛⎭⎪⎫a c 2-5⎝ ⎛⎭⎪⎫a c +2=0,解得a c =2或a c =12.故选AC .]12.点P 是△ABC 所在平面内一点,满足|PB →-PC →|-|PB →+PC →-2P A →|=0,则△ABC 的形状不可能是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形ACD [∵P 是△ABC 所在平面内一点,且 |PB →-PC →|-|PB →+PC →-2P A →|=0, ∴|CB →|-|(PB →-P A →)+(PC →-P A →)|=0, 即|CB →|=|AC →+AB →|, ∴|AB →-AC →|=|AC →+AB →|,两边平方并化简得AC →·AB →=0,∴AC →⊥AB →,∴∠A =90°,则△ABC 一定是直角三角形.故选ACD .]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.与向量a =(1,2)平行,且模等于5的向量为________.(1,2)或(-1,-2) [因为所求向量与向量a =(1,2)平行,所以可设所求向量为(x,2x ),又因为其模为5,所以x 2+(2x )2=5,解得x =±1.因此所求向量为(1,2)或(-1,-2).]14.已知向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,点P (m ,n )在圆x 2+y 2=5上,则m +n =________,|2a +b |=________.(本题第一空2分,第二空3分)334 [因为向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,P (m ,n )在圆x 2+y 2=5上,∴⎩⎨⎧-m +2n =0,m 2+n 2=5,解得m =2,n =1,即m +n =2+1=3. ∴2a +b =(3,5),∴|2a +b |=34.]15.在△ABC 中,S △ABC =14(a 2+b 2-c 2),b =1,a =2,则c =________.1 [∵S △ABC =12ab sin C , ∴12ab sin C =14(a 2+b 2-c 2), ∴a 2+b 2-c 2=2ab sin C .由余弦定理得,2ab cos C =2ab sin C ,∴tan C =1,∴C =45°,∴c =a 2+b 2-2ab cos C =3-2=1.]16.如图所示,半圆的直径AB =2,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是________.-12 [因为点O 是AB 的中点, 所以P A →+PB →=2PO →,设|PC →|=x ,则|PO →|=1-x (0≤x ≤1), 所以(P A →+PB →)·PC →=2PO →·PC →=-2x (1-x ) =2⎝ ⎛⎭⎪⎫x -122-12. 所以当x =12时,(P A →+PB →)·PC →取到最小值-12.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求|a +b |;(2)求向量a 在向量a +b 方向上的投影. [解] (1)因为(2a -3b )·(2a +b )=61, 所以4|a |2-4a·b -3|b |2=61.因为|a |=4,|b |=3,所以a·b =-6, 所以|a +b |=|a |2+|b |2+2a·b =42+32+2×(-6)=13.(2)因为a ·(a +b )=|a |2+a·b =42-6=10,所以向量a 在向量a +b 方向上的投影为a ·(a +b )|a +b |=1013=101313.18.(本小题满分12分)如图所示,在平面直角坐标系中,|OA →|=2|AB →|=2,∠OAB=2π3,BC →=(-1,3).(1)求点B ,C 的坐标;(2)求证:四边形OABC 为等腰梯形.[解] (1)连接OB (图略),设B (x B ,y B ),则x B =|OA →|+|AB →|·cos(π-∠OAB )=52, y B =|AB →|·sin(π-∠OAB )=32,∴OC →=OB →+BC →=⎝ ⎛⎭⎪⎫52,32+(-1,3)=⎝ ⎛⎭⎪⎫32,332, ∴B ⎝ ⎛⎭⎪⎫52,32,C ⎝ ⎛⎭⎪⎫32,332. (2)证明:∵OC →=⎝ ⎛⎭⎪⎫32,332, AB →=⎝ ⎛⎭⎪⎫12,32,∴OC →=3AB →,∴OC →∥AB →. 又易知OA 与BC 不平行, |OA →|=|BC →|=2,∴四边形OABC 为等腰梯形.19.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A .(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c . [解] (1)由c =3a sin C -c cos A ,及正弦定理得 3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A , 故b 2+c 2=8. 解得b =c =2.20.(本小题满分12分)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0, ①sin α+sin β=1, ②由①得,cos α=cos(π-β), 由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β. 代入sin α+sin β=1, 得sin α=sin β=12, 而α>β,所以α=5π6,β=π6.21.(本小题满分12分)如图,在△OAB 中,已知P 为线段AB 上的一点,OP →=x ·OA →+y ·OB →.(1)若BP →=P A →,求x ,y 的值;(2)若BP →=3P A →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°时,求OP →·AB →的值. [解] (1)∵BP →=P A →, ∴BO →+OP →=PO →+OA →, 即2OP →=OB →+OA →,∴OP →=12OA →+12OB →,即x =12,y =12. (2)∵BP →=3P A →,∴BO →+OP →=3PO →+3OA →, 即4OP →=OB →+3OA →,∴OP →=34O A →+14OB →.∴x =34,y =14. OP →·AB →=⎝ ⎛⎭⎪⎫34OA →+14OB →·(OB →-OA →)=14OB →·OB →-34OA →·OA →+12OA →·OB →=14×22-34×42+12×4×2×12=-9.22.(本小题满分12分)如图,我国南海某处的一个圆形海域上有四个小岛,小岛B 与小岛A 、小岛C 相距都为5 n mile ,与小岛D 相距为3 5 n mile.小岛A 对小岛B 与D 的视角为钝角,且sin A =35.(1)求小岛A 与小岛D 之间的距离和四个小岛所形成的四边形的面积; (2)记小岛D 对小岛B 与C 的视角为α,小岛B 对小岛C 与D 的视角为β,求sin(2α+β)的值.[解] (1)∵sin A =35,且角A 为钝角, ∴cos A =-1-⎝ ⎛⎭⎪⎫352=-45. 在△ABD 中,由余弦定理得:AD 2+AB 2-2AD ·AB ·cos A =BD 2. ∴AD 2+52-2AD ·5·⎝ ⎛⎭⎪⎫-45=(35)2⇒AD 2+8AD -20=0. 解得AD =2或AD =-10(舍).∴小岛A 与小岛D 之间的距离为2 n mile. ∵A ,B ,C ,D 四点共圆, ∴角A 与角C 互补.∴sin C =35,cos C =cos(180°-A )=-cos A =45. 在△BDC 中,由余弦定理得: CD 2+CB 2-2CD ·CB ·cos C =BD 2, ∴CD 2+52-2CD ·5·45=(35)2⇒CD 2-8CD -20=0, 解得CD =-2(舍)或CD =10. ∴S 四边形ABCD =S △ABD +S △BCD=12AB ·AD ·sin A +12CB ·CD ·sin C =12×5×2×35+12×5×10×35=3+15=18. ∴四个小岛所形成的四边形的面积为18平方n mile.(2)在△BDC 中,由正弦定理得:BC sin α=BD sin C ⇒5sin α=3535⇒sin α=55.∵DC 2+DB 2>BC 2, ∴α为锐角,∴cos α=255.又∵sin(α+β)=sin(180°-C )=sin C =35, cos(α+β)=cos(180°-C )=-cos C =-45. ∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=55×⎝⎛⎭⎪⎫-45+255×35=2525.2、复数(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z=11-20i,则1-2i-z等于()A.z-1B.z+1C.-10+18i D.10-18iC[1-2i-z=1-2i-(11-20i)=-10+18i.]2.3+i1+i=()A.1+2i B.1-2i C.2+i D.2-iD[3+i1+i=(3+i)(1-i)(1+i)(1-i)=3-3i+i+12=2-i.故选D.]3.若复数z满足z1-i=i,其中i为虚数单位,则z=()A.1-i B.1+iC.-1-i D.-1+iA[由已知得z=i(1-i)=i+1,则z=1-i,故选A.]4.若复数z满足i z=2+4i,则在复平面内,z对应的点的坐标是() A.(2,4) B.(2,-4)C .(4,-2)D .(4,2)C [z =2+4ii =4-2i 对应的点的坐标是(4,-2),故选C .] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i. ∴⎩⎨⎧4a =0,a 2-4=-4.解得a =0.故选B .] 6.若复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,则b =( ) A . 2 B .23 C .-23 D .2C [因为2-b i 1+2i =(2-b i )(1-2i )5=2-2b 5-4+b 5i ,又复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,所以2-2b 5=4+b 5,即b =-23.]7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( ) A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对C [设z =x +y i(x ,y ∈R ),则z 2=(x +y i)2=x 2-y 2+2xy i.∵z 2为纯虚数,∴⎩⎨⎧x 2-y 2=0,xy ≠0.∴y =±x (x ≠0).] 8.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是( ) A .(1,5) B .(1,3) C .(1,5)D .(1,3)C [由已知,得|z |=a 2+1. 由0<a <2,得0<a 2<4, ∴1<a 2+1<5.∴|z |=a 2+1∈(1,5).故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.给出下列复平面内的点,这些点中对应的复数为虚数的为()A.(3,1) B.(-2,0)C.(0,4) D.(-1,-5)ACD[易知选项A、B、C、D中的点对应的复数分别为3+i、-2、4i、-1-5i,因此A、C、D中的点对应的复数为虚数.]10.已知复数z=a+b i(a,b∈R,i为虚数单位),且a+b=1,下列命题正确的是()A.z不可能为纯虚数B.若z的共轭复数为z,且z=z,则z是实数C.若z=|z|,则z是实数D.|z|可以等于1 2BC[当a=0时,b=1,此时z=i为纯虚数,A错误;若z的共轭复数为z,且z=z,则a+b i=a-b i,因此b=0,B正确;由|z|是实数,且z=|z|知,z是实数,C正确;由|z|=12得a2+b2=14,又a+b=1,因此8a2-8a+3=0,Δ=64-4×8×3=-32<0,无解,即|z|不可以等于12,D错误.故选BC.]11.已知复数z0=1+2i(i为虚数单位)在复平面内对应的点为P0,复数z满足|z-1|=|z-i|,下列结论正确的是()A.P0点的坐标为(1,2)B.复数z0的共轭复数对应的点与点P0关于虚轴对称C.复数z对应的点Z在一条直线上D.P0与z对应的点Z间的距离的最小值为2 2ACD[复数z0=1+2i在复平面内对应的点为P0(1,2),A正确;复数z0的共轭复数对应的点与点P0关于实轴对称,B错误;设z=x+y i(x,y∈R),代入|z-1|=|z-i|,得|(x-1)+y i|=|x+(y-1)i|,即(x-1)2+y2=x2+(y-1)2,整理得,y=x ,即Z 点在直线y =x 上,C 正确;易知点P 0到直线y =x 的垂线段的长度即为P 0、Z 之间距离的最小值,结合平面几何知识知D 正确.故选ACD .]12.对任意z 1,z 2,z ∈C ,下列结论成立的是( ) A .当m ,n ∈N *时,有z m z n =z m +nB .当z 1,z 2∈C 时,若z 21+z 22=0,则z 1=0且z 2=0C .互为共轭复数的两个复数的模相等,且|z |2=|z |2=z ·zD .z 1=z 2的充要条件是|z 1|=|z 2| AC [由复数乘法的运算律知A 正确;取z 1=1,z 2=i ,满足z 21+z 22=0,但z 1=0且z 2=0不成立,B 错误;由复数的模及共轭复数的概念知结论成立,C 正确; 由z 1=z 2能推出|z 1|=|z 2|, 但|z 1|=|z 2|推不出z 1=z 2,因此z 1=z 2的必要不充分条件是|z 1|=|z 2|,D 错误.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知复数z =(5+2i)2(i 为虚数单位),则z 的实部为________. 21 [复数z =(5+2i)2=21+20i ,其实部是21.]14.a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪a +i i =2,则a =________. 3 [a +i i =(a +i )·(-i )i·(-i )=1-a i ,则⎪⎪⎪⎪⎪⎪a +i i =|1-a i|=a 2+1=2, 所以a 2=3.又a 为正实数,所以a = 3.] 15.设a ,b ∈R ,a +b i =11-7i1-2i(i 为虚数单位),则a +b 的值为________. 8 [a +b i =11-7i 1-2i =(11-7i )(1+2i )(1-2i )(1+2i )=25+15i5=5+3i ,依据复数相等的充要条件可得a =5,b =3.从而a +b =8.]16.设z 的共轭复数是z ,若z +z =4,z ·z =8,则|z |=________,z-z =________(本题第一空2分,第二空3分).22 ±i [设z =x +y i(x ,y ∈R ),则z =x -y i ,由z +z =4,z ·z =8得, ⎩⎨⎧ x +y i +x -y i =4,(x +y i )(x -y i )=8,⇒⎩⎨⎧ x =2,x 2+y 2=8,⇒⎩⎨⎧x =2,y =±2.∴|z |=2 2.所以zz =x -y i x +y i =x 2-y 2-2xy ix 2+y 2=±i.]四、简答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当m 为何值时,(1)z 是实数? (2)z 是纯虚数? [解] (1)要使复数z 为实数, 需满足⎩⎨⎧ m 2-2m -2>0,m 2+3m +2=0,解得m =-2或-1.即当m =-2或-1时,z 是实数. (2)要使复数z 为纯虚数, 需满足⎩⎨⎧m 2-2m -2=1,m 2+3m +2≠0,解得m =3.即当m =3时,z 是纯虚数.18.(本小题满分12分)已知复数z 1=1-i ,z 1·z 2+z 1=2+2i ,求复数z 2. [解] 因为z 1=1-i ,所以z 1=1+i , 所以z 1·z 2=2+2i -z 1=2+2i -(1+i)=1+i. 设z 2=a +b i(a ,b ∈R ),由z 1·z 2=1+i , 得(1-i)(a +b i)=1+i , 所以(a +b )+(b -a )i =1+i ,所以⎩⎨⎧a +b =1,b -a =1,解得a =0,b =1,所以z 2=i.19.(本小题满分12分)已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .[解] 设z =a +b i(a ,b ∈R ),则z =a -b i 且|z |=a 2+b 2=1,即a 2+b 2=1.① 因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i ,而(3+4i)z 是纯虚数, 所以3a -4b =0,且3b +4a ≠0.② 由①②联立, 解得⎩⎪⎨⎪⎧a =45,b =35,或⎩⎪⎨⎪⎧a =-45,b =-35.所以z =45-35i ,或z =-45+35i.20.(本小题满分12分)复数z =(1+i )2+3(1-i )2+i ,若z 2+az <0,求纯虚数a .[解] 由z 2+a z <0可知z 2+az 是实数且为负数. z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i 2+i =1-i.因为a 为纯虚数,所以设a =m i(m ∈R ,且m ≠0),则z 2+a z =(1-i)2+m i 1-i =-2i +m i -m 2=-m 2+⎝ ⎛⎭⎪⎫m 2-2i <0,故⎩⎪⎨⎪⎧-m2<0,m2-2=0,所以m =4,即a =4i.21.(本小题满分12分)已知等腰梯形OABC 的顶点A ,B 在复平面上对应的复数分别为1+2i ,-2+6i ,OA ∥BC .求顶点C 所对应的复数z .[解] 设z =x +y i(x ,y ∈R ),C (x ,y ), 因为OA ∥BC ,|OC |=|BA |, 所以k OA =k BC ,|z C |=|z B -z A |,即⎩⎨⎧21=y -6x +2,x 2+y 2=32+42,解得⎩⎨⎧ x 1=-5,y 1=0或⎩⎨⎧x 2=-3,y 2=4.因为|OA |≠|BC |,所以x 2=-3,y 2=4(舍去), 故z =-5.22.(本小题满分12分)已知复数z 满足(1+2i)z =4+3i. (1)求复数z ;(2)若复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. [解] (1)∵(1+2i)z =4+3i , ∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i , ∴z =2+i.(2)由(1)知z =2+i ,则(z +a i)2=(2+i +a i)2=[2+(a +1)i]2=4-(a +1)2+4(a +1)i , ∵复数(z +a i)2在复平面内对应的点在第一象限, ∴⎩⎨⎧4-(a +1)2>0,4(a +1)>0, 解得-1<a <1,即实数a 的取值范围为(-1,1).3、立体几何初步(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面给出了四个条件:①空间三个点;②一条直线和一个点;③和直线a都相交的两条直线;④两两相交的三条直线.其中,能确定一个平面的条件有()A.3个B.2个C.1个D.0个D[①当空间三点共线时不能确定一个平面;②点在直线上时不能确定一个平面;③两直线若不平行也不相交时不能确定一个平面;④三条直线交于一点且不共面时不能确定一个平面. 故以上4个条件都不能确定一个平面.] 2.在长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°D[由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.]3.已知a,b,c是直线,则下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等.其中真命题的个数为()A.0 B.3C.2 D.1D[异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确.]4.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为()A.24 cm2B.36 cm2C.72 cm2D.84 cm2C[棱柱的侧面积S侧=3×6×4=72(cm2).]5.在正方体ABCD-A1B1C1D1中,动点E在棱BB1上,动点F在线段A1C1上,O为底面ABCD的中心,若BE=x,A1F=y,则四面体O-AEF的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关B[因为V O-AEF=V E-OAF,考察△AOF的面积和点E到平面AOF的距离的值,因为BB1∥平面ACC1A1,所以点E到平面AOF的距离为定值,又AO∥A1C1,所以OA为定值,点F到直线AO的距离也为定值,即△AOF的面积是定值,所以四面体O-AEF的体积与x,y都无关,故选B.]6.如图,点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB 的中点,则EF的长是()A.1 B. 2C.22D.12B[取CB的中点D,连接ED,DF,则∠EDF(或其补角)为异面直线SB与AC所成的角,即∠EDF=90°.在△EDF中,ED=12SB=1,DF=12AC=1,所以EF=ED2+DF2= 2.]7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A-CD-B的余弦值为()A .12B .13C .33D .23C [取AC 的中点E ,CD 的中点F ,连接BE ,EF ,BF ,则EF =12,BE =22,BF =32,因为EF 2+BE 2=BF 2,所以△BEF 为直角三角形,cos θ=EF BF =33.]8.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( )A .5π12B .π3C .π4D .π6B [如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334,VABC -A 1B 1C 1=S ×PO =94, ∴PO = 3. 又AO =33×3=1, ∴tan ∠P AO =PO AO =3,∴∠P AO =π3.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题为真命题的是( )A .若两个平面有无数个公共点,则这两个平面重合B.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直C.垂直于同一条直线的两条直线相互平行D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面不垂直BD[A错,两个平面相交时,也有无数个公共点;C错,比如a⊥α,b⊂α,c⊂α,显然有a⊥b,a⊥c,但b与c也可能相交.故选BD.]10.如图,圆柱的轴截面是四边形ABCD,E是底面圆周上异于A,B的一点,则下列结论中正确的是()A.AE⊥CEB.BE⊥DEC.DE⊥平面CEBD.平面ADE⊥平面BCEABD[由AB是底面圆的直径,得∠AEB=90°,即AE⊥EB.∵圆柱的轴截面是四边形ABCD,∴AD⊥底面AEB,BC⊥底面AEB.∴BE⊥AD.又AD∩AE=A,AD,AE⊂平面ADE,∴BE⊥平面ADE,∴BE⊥DE.同理可得,AE⊥CE,易得平面BCE⊥平面ADE.可得A,B,D正确.∵AD∥BC,∴∠ADE(或其补角)为DE与CB所成的角,显然∠ADE≠90°,∴DE⊥平面CEB不正确,即C错误.故选ABD.]11.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,侧面P AD 为正三角形,且平面P AD⊥平面ABCD,则下列说法正确的是()A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P-BC-A的大小为45°D.BD⊥平面P ACABC[如图,对于A,取AD的中点M,连接PM,BM,∵侧面P AD为正三角形,∴PM⊥AD,又底面ABCD是菱形,∠DAB=60°,∴△ABD是等边三角形,∴AD⊥BM,又PM∩BM=M,PM,BM⊂平面PMB,∴AD⊥平面PBM,故A正确.对于B,∵AD⊥平面PBM,∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确.对于C,∵平面PBC∩平面ABCD=BC,BC∥AD,∴BC⊥平面PBM,∴BC⊥PB,BC⊥BM,∴∠PBM是二面角P-BC-A的平面角,设AB=1,则BM=32,PM=32,在Rt△PBM中,tan∠PBM=PMBM=1,即∠PBM=45°,故二面角P-BC-A的大小为45°,故C正确.对于D,因为BD与P A不垂直,所以BD与平面P AC不垂直,故D错误.故选ABC.]12.如图所示,在四个正方体中,l是正方体的一条体对角线,点M、N、P 分别为其所在棱的中点,能得出l⊥平面MNP的图形为()AD[如图所示,正方体ABCD-A′B′C′D′.连接AC,BD.∵M、P分别为其所在棱的中点,∴MP∥AC.∵四边形ABCD为正方形,∴AC⊥BD,∵BB′⊥平面ABCD,AC⊂平面ABCD,∴BB′⊥AC,∵AC⊥BD,BD∩BB′=B,∴AC⊥平面DBB′,∵DB′⊂平面DBB′,∴AC⊥DB′.∵MP∥AC,∴DB′⊥MP,同理,可证DB′⊥MN,DB′⊥NP,∵MP∩NP=P,MP⊂平面MNP,NP⊂平面MNP,∴DB′⊥平面MNP,即l垂直平面MNP,故A正确.故D中,由A中证明同理可证l⊥MP,l⊥MN,又∵MP∩MN=M,∴l⊥平面MNP.故D正确.故选AD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.(本题第一空2分,第二空3分)3π33π[设圆锥的底面半径为r,根据题意,得2πr=2π,解得r=1,根据勾股定理,得圆锥的高为22-12=3,所以圆锥的表面积S=12×π×22+π×12=3π,体积V=13×π×12×3=33π.]14.已知正四棱锥的侧棱长为23,侧棱与底面所成的角为60°,则该四棱锥的高为________.3[如图,过点S作SO⊥平面ABCD,连接OC,则∠SCO=60°,∴SO=sin 60°·SC=32×23=3.]15.如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.1∶24[因为D,E分别是AB,AC的中点,所以S△ADE ∶S△ABC=1∶4. 又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍,即三棱柱A1B1C1-ABC的高是三棱锥F-ADE高的2倍,所以V1∶V2=13S△ADE·hS△ABC·H=124=1∶24.]16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.36π[如图,连接OA,OB.由SA=AC,SB=BC,SC为球O的直径,知OA⊥SC,OB⊥SC.由平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,OA⊥SC,知OA⊥平面SCB.设球O的半径为r,则OA=OB=r,SC=2r,∴三棱锥S-ABC的体积V=13×⎝⎛⎭⎪⎫12SC·OB·OA=r33,即r33=9,∴r=3,∴S球表=4πr2=36π.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长为10 cm,求圆锥的母线长.[解]如图,设圆锥的母线长为l,圆台上、下底面的半径分别为r、R.因为l-10l=rR,所以l-10l=14,所以l=403cm.即圆锥的母线长为403cm.18.(本小题满分12分)如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.[证明](1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于点O,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)如图,已知三棱锥P-ABC,P A⊥平面ABC,∠ACB=90°,∠BAC=60°,P A=AC,M为PB的中点.(1)求证:PC⊥BC;(2)求二面角M-AC-B的大小.[解](1)证明:由P A⊥平面ABC,所以P A⊥BC,又因为∠ACB=90°,即BC⊥AC,P A∩AC=A,所以BC⊥平面P AC,所以PC⊥BC.(2)取AB中点O,连接MO,过O作HO⊥AC于H,连接MH,因为M是BP的中点,所以MO∥P A,又因为P A⊥平面ABC,所以MO⊥平面ABC,所以∠MHO为二面角M-AC-B的平面角,设AC=2,则BC=23,MO=1,OH=3,在Rt△MHO中,tan∠MHO=MOHO=33,所以二面角M-AC-B的大小为30°.20.(本小题满分12分)已知一个圆锥的底面半径为R,高为H, 在其中有一个高为x的内接圆柱.(1)求圆柱的侧面积;(2)x为何值时,圆柱的侧面积最大?[解](1)设圆柱的底面半径为r, 则它的侧面积为S=2πrx, rR=H-xH,解得r=R-RH x,所以S圆柱侧=2πRx-2πRH x2.(2)由(1)知S圆柱侧=2πRx-2πRH x2,在此表达式中,S圆柱侧为x的二次函数,因此,当x=H2时,圆柱的侧面积最大.21.(本小题满分12分)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.[解](1)如图,由已知AD∥BC,故∠DAP或其补角为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得AP=AD2+PD2=5,所以cos∠DAP=ADAP=55.所以异面直线AP与BC所成角的余弦值为5 5.(2)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又BC∥AD,所以PD⊥BC,又PD⊥PB,PB∩BC=B,所以PD⊥平面PBC.(3)过点D作AB的平行线交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF与平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC-BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得DF=CD2+CF2=25,在Rt△DPF中,可得sin∠DFP=PDDF=55.所以直线AB与平面PBC所成角的正弦值为5 5.22.(本小题满分12分)如图①,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图②.①②(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∵DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC.而A1F⊂平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE⊂平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C⊂平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(中点),使得A1C⊥平面DEQ.4、统计(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.对一个容量为N 的总体抽取容量为n 的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为nN ,所以p 1=p 2=p 3,故选D .]2.某公司从代理的A ,B ,C ,D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A ,B ,C ,D 四种产品的数量比是2∶3∶2∶4,则该样本中D 类产品的数量为( )A .22B .33C .40D .55C [根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D 类产品的数量为110×42+3+2+4=40.]3.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a ,b ]是其中的一组.已知该组的频率为m ,该组上的频率分布直方图的高为h ,则|a -b |等于( )A .mhB .h mC .m hD .m +hC [在频率分布直方图中小长方形的高等于频率组距,所以h =m |a -b |,|a -b |=mh ,故选C .]4.我市对上、下班交通情况作抽样调查,上、下班时间各抽取12辆机动车测其行驶速度(单位:km/h)如下表:上班时间182021262728303233353640下班时间161719222527283030323637A.28与28.5 B.29与28.5C.28与27.5 D.29与27.5D[上班时间行驶速度的中位数是28+302=29,下班时间行驶速度的中位数是27+282=27.5.]5.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为x,则()A.m e=m o=x B.m e=m o<xC.m e<m o<x D.m o<m e<xD[由条形图可知,中位数为m e=5.5,众数为m o=5,平均值为x≈5.97,所以m o<m e<x.]6.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为()A.4∶3∶1 B.5∶3∶1C.5∶3∶2 D.3∶2∶1B[体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.3,体重在[55,60]内的频率为0.02×5=0.1,∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1,故选B.]7.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64 B.54C.48 D.27B[前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32.所以a=22+32=54.故选B.]8.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是()A.85,85,85 B.87,85,86C.87,85,85 D.87,85,90C[∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.某地区经过一年的建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是()A.建设后,种植收入减少B.建设后,其他收入增加了一倍以上C.建设后,养殖收入增加了一倍D.建设后,养殖收入与第三产业收入的总和超过了经济收入的一半BCD[设建设前经济收入为a,则建设后经济收入为2a,由题图可知:种植收入第三产业收入养殖收入其他收入建设前经济收入0.6a 0.06a 0.3a 0.04a建设后经济收入0.74a 0.56a 0.6a 0.1a10.在某次高中学科竞赛中,4 000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A .成绩在[70,80)分的考生人数最多B .不及格的考生人数为1 000C .考生竞赛成绩的平均分约为70.5分D .考生竞赛成绩的中位数为75分ABC [由频率分布直方图可得,成绩在[70,80)内的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4 000×0.25=1 000,故B 正确;由频率分布直方图可得,平均分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;因为成绩在[40,70)内的频率为0.45,[70,80)的频率为0.3,所以中位数为70+10×0.050.3≈71.67,故D 错误.故选ABC .]11.甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表:班级 参加人数中位数 方差 平均数 甲 55 149 191 135 乙55151110135A .甲、乙两班学生成绩的平均数相同B .甲班的成绩波动比乙班的成绩波动大C .乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)D .甲班成绩的众数小于乙班成绩的众数ABC [甲、乙两班学生成绩的平均数都是135,故两班成绩的平均数相同,∴A 正确;s 2甲=191>110=s 2乙,∴甲班成绩不如乙班稳定,即甲班的成绩波动较大,∴B 正确;甲、乙两班人数相同,但甲班的中位数为149,乙班的中位数为151,从而易知乙班不少于150个的人数要多于甲班,∴C 正确;由题表看不出两班学生成绩的众数,∴D错误.]12.在某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是()A.平均数x≤3B.平均数x≤3且标准差s≤2C.平均数x≤3且极差小于或等于2D.众数等于1且极差小于或等于4CD[A错,举反例:0,0,0,0,2,6,6,其平均数x=2≤3,不符合指标.B错,举反例:0,3,3,3,3,3,6,其平均数x=3,且标准差s=187≤2,不符合指标.C对,若极差等于0或1,在x≤3的条件下,显然符合指标;若极差等于2且x≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3,(3)2,4,符合指标.D对,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标.故选CD.]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.下列数据的70%分位数为________.20,14,26,18,28,30,24,26,33,12,35,22.28[把所给的数据按照从小到大的顺序排列可得:12,14,18,20,22,24,26,26,28,30,33,35,因为有12个数据,所以12×70%=8.4,不是整数,所以数据的70%分位数为第9个数28.]14.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x(单位:小时)与当天投篮命中率y之间的关系:。
(完整版)人教版高中数学必修2课后习题答案(截取自教师用书)
U Cl> l«tth <2>(3)IWHE9閒惟组介面皿的细合C C4)山一个AftlH 挖公-个興柱体得列的姐令体.2. (1> fiHfb (2)恻俺・3. 略.习K 1.1 A ftl L Cl) Ci (2) C; (3) I); (I) C.2. (1)不址台体• W 为儿何体的-MK"不郴交于-点•不址山平行I -底而-Mf谢的;⑵ ⑶ 也机台休.闪为不足山卩行于檢椎和阴的的戦曲的儿何休.3. (1) ihmWB4l 台纽令而成的向单纵合侔I(2>山四检桂HIPM 栈蒂组合而戚的简Pfll 舍体.4. wthi 心的球・il 和ft 的儿何体 厲任•个球体内邯挖决-个同心球施列的简炉如合体》.5. 制作过w 略.MfiifaM 形町以折檯戍j.休图形• ^r-ifnw 形・nm1. 材F 的儿何体址校H :・般去的几何体也址檢住:它们分别是丑"柱和三钱出2. 左側儿何体的主整结构特乐惻任和ttumift 的简单•组合体;屮网儿何体的主妄給沟待征;F 那地 一个阅n 絃九•个醐林细成的筒聯姐合体.1:郦也是一个圈林裁丿:-个iwmi 诚的简債地件体.右 侧儿何体的忙蟄结pm 址:卜部M -tau^・上部足一个■怯假去一个■林橄•个梭住的■单姐 合* «5)15 页) L (1) (2》略.2. (!) Ntttt (m«><(2> HtMT 球细成的摘单组合体(3) 网陵住巧球级嵐的而取细介体(州厮):(4) wrw 台组合・成的材单自合体(图略).3. <1)五校HI (三税图峪).(2)四个Rima 的筒单组合体(三視圏略人 4•三校枝.第习(M 19页)1. 略.2. (1) J 丨 (2) X : (3) Xi (4> 7.习JH1.2 Am1. 略.2. (I) HKHi ⑶ WKfHi3.略.L 略.<2)阀台*⑷ 用梭性与Nttm 合ift 诫的简恤合体. 5.略.3・如杠不啪,•种件案显由1S 个小止方体细合而成的简皿纽合体.N 帼空间儿何体的表舀积亏体积5・略. Bm绣习q第27页)L真、;如尺m.2.1.74 T ft.1. » m.2. yw* cm1.3.104 cm\习R 1.3 A ftlI. 780 cm*.2• r4 K *3. t¥: iQK方体的分別为“・A. «.则锻出的枝他的休积V * y * <,/H詁・辆F的儿何体的体枳v二皿:皿:“加・所以V, : V? = l » 5・4. Mt为三檢用形甞器的侧曲AAfMS/K平叙掘时・iftifti那分处刃试註形.Ktft«>W»的A. AA, 8. ift十底IMABC水平放WH4.液ifti庙为旅山已知条件知.四檢"MSdj廉K 住底rtl面枳之比为3 8 4.由[曲种状◎下敲体体积HIE 所以3X8 = 4XA. h 6. IM此• 7坯曲AMC 水f ttWlH.液rtl応为6.5. 14 359 cm:.6. I 105 500 tn1Bftt1. I吹杯的三urns•我们川ifi・奖杯的上部見“轻为4 5的幼中部凰•个科棱柱・JPH h.下辰闻址边K分別为8rm, 4 cm WB-M. ffltMlfii>l>的瀚个储血绘边长分蓟为20 cm. 8 cm的矩盼・>3购个|H佃堆边K分别为20cm、4 an的砸莎Fffift-tPMttfl・爪中上底血垦边长分别为10 cni. 8 cm的他彤.卜-底[ftl圧边氏分别为20 cm. 16 cm的距形.“梭台的為为2cm・冈此它的松血枳和体枳分别为丨m cm\ I 067 «n\2. 炎示r三倫形任克州边之和大尸第三边.3. W;设虚的左角形的M条“用边尺分別为一b.針边K为&以fiftiiABcym r谶勿軸•典余徐边&转個形破的曲而附成的儿何(4MW1W・八休枳壮皿. 同理.UtFEUMC 所住f(线为轴・其余备边旋转-则形说的盼iftilMiA的儿何休也MNtt•典体枳为扌na J b.以斜边AH所“H线为初•典余备边農转妙锻的叫血IN成的儿何休览艸#1合休.复习•考H A*H1. <l> Will (2)三恢柱成三检台8 (3 > rr • /r • n J i (5) m Jn.2. <2)饲林休(阳略”<o 轮腑状的儿何体 3/3V4* •3 798卅・衣曲枳的为3B7.体枳釣为176. •:觇图路.»• <»> Hr <2> 8i <3) 24; (4) Z4i (5> »• 48 cm\ tt cm\10.日n 的&曲1帜分別为36zm :・24nxm ;・jjcon 1.体枳分别为1 6E ‘・12xnn'・片#次cnf : =« Bm<2)衣血枳为 I 80073 cm\ 佯枳为 9 000/2 cm 1, <3)略.2. 水不金从水欄中涯出•3. 如右卅所示的正方体.眞中o ・(/分别为下底面和上联面中心.war 所线为抽.化转动过秤中BL 的轨邊U 卩圧妖接面・ 4. v -i^5rj7 <0<J <10).纷习煥12。
人教A版高中必修二试题2.1.1配套练习(含答案).doc
高中数学学习材料马鸣风萧萧*整理制作第二章点、直线、平面之间的位置关系§2.1空间点、直线、平面之间的位置关系2.1.1平面一、基础过关1.下列命题:①书桌面是平面;②有一个平面的长是50 m,宽是20 m;③平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为() A.1个B.2个C.3个D.0个2.下列图形中,不一定是平面图形的是() A.三角形B.菱形C.梯形D.四边相等的四边形3.空间中,可以确定一个平面的条件是() A.两条直线B.一点和一条直线C.一个三角形D.三个点4.已知平面α与平面β、γ都相交,则这三个平面可能的交线有() A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条5.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是________.6.已知α∩β=m,a⊂α,b⊂β,a∩b=A,则直线m与A的位置关系用集合符号表示为________.7.如图,梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.8.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明此三条直线必相交于一点.二、能力提升9.空间不共线的四点,可以确定平面的个数是() A.0 B.1 C.1或4 D.无法确定10.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是() A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合11.下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.12. 如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.三、探究与拓展13. 如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面.答案1.A 2.D 3.C 4.D5.06.A∈m7. 解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的交线.8.证明∵l1⊂β,l2⊂β,l1D∥\l2,∴l1、l2交于一点,记交点为P.∵P∈l1⊂α,P∈l2⊂γ,∴P∈α∩γ=l3,∴l1,l2,l3交于一点.9.C10.C11.③12.证明因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.13.证明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.(2)∵E,F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.。
新编人教A版高中数学必修二:2.1.2配套练习(含答案)
13. 解 如图,取 AC 的中点 P.
连接 PM 、PN,
1
1
则 PM∥ AB,且 PM= 2AB, PN∥ CD ,且 PN= 2CD ,
答案
1. D 2.C 3. B
4. D 5.平行或异面
6. (1)60 °(2)45 °
7. (1)证明 由已知 FG= GA, FH = HD ,
1
1
可得 GH 綊 2AD.又 BC 綊 2AD ,
∴ GH 綊 BC,
∴ 四边形 BCHG 为平行四边形. 1
(2) 解 由 BE 綊 2AF, G 为 FA 中点知, BE 綊 FG , ∴ 四边形 BEFG 为平行四边形, ∴ EF∥ BG.
D .∠ BAC >∠ B′ A′ C′
3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是
()
A .空间四边形
B.矩形
C .菱形
D .正方形
4.“ a、 b 为异面直线”是指: ① a∩ b= ?,且 aD ∥b;② a? 面 α,b? 面 β,且 a∩ b= ?;③ a? 面 α,b? 面 β,且 α∩β
由 (1) 知 BG 綊 CH, ∴EF ∥ CH ,
∴ EF 与 CH 共面.
又 D ∈FH , ∴ C、 D、 F 、E 四点共面.
8. 解 (1) 如图, ∵ CG∥ BF, ∴∠ EBF (或其补角 )为异面直线 BE 与 CG 所成的角,
又 △ BEF 中, ∠ EBF = 45 °,所以 BE 与 CG 所成的角为 45 °.
(新教材)人教A版高中数学必修第二册学案 立体几何导学案含含配套练习答案
8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征考点学习目标核心素养棱柱的结构特征理解棱柱的定义,知道棱柱的结构特征,并能识别直观想象棱锥、棱台的结构特征理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别直观想象应用几何体的平面展开图能将棱柱、棱锥、棱台的表面展开成平面图形直观想象问题导学预习教材P97-P100的内容,思考以下问题:1.空间几何体的定义是什么?2.空间几何体分为哪几类?3.常见的多面体有哪些?4.棱柱、棱锥、棱台有哪些结构特征?1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体类别定义图示多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的这条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴3.棱柱、棱锥、棱台的结构特征结构特征及分类图形及记法棱柱结构特征(1)有两个面(底面)互相平行(2)其余各面都是四边形(3)相邻两个四边形的公共边都互相平行记作棱柱ABCDEFA′B′C′D′E′F′分类按底面多边形的边数分为三棱柱、四棱柱…续表结构特征及分类图形及记法棱锥结构特征(1)有一个面(底面)是多边形(2)其余各面(侧面)都是有一个公共顶点的三角形记作棱锥S-ABCD 分类按底面多边形的边数分为三棱锥、四棱锥……棱台结构特征(1)上下底面互相平行,且是相似图形(2)各侧棱延长线相交于一点(或用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台)记作棱台ABCD-A′B′C′D′分类由三棱锥、四棱锥、五棱锥……截得的棱台分别为三棱台、四棱台、五棱台……(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系判断(正确的打“√”,错误的打“×”) (1)棱柱的侧面都是平行四边形.( )(2)用一个平面去截棱锥,底面和截面之间的部分叫棱台. ( ) (3)将棱台的各侧棱延长可交于一点.( ) 答案:(1)√ (2)× (3)√下面多面体中,是棱柱的有( )A .1个B .2个C .3个D .4个解析:选D.根据棱柱的定义进行判定知,这4个都满足. 下面四个几何体中,是棱台的是( )解析:选C.A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB′,CC′,DD′没有交于一点,则D项中的几何体不是棱台;很明显C项中的几何体是棱台.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1 B.2C.3 D.4解析:选D.每个面都可作为底面,有4个.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.答案:①③棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.1.下列命题中正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形解析:选D.由棱柱的定义可知,选D.2.如图所示的三棱柱ABC-A1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:截面以上的几何体是三棱柱AEF-A1HG,截面以下的几何体是四棱柱BEFC-B1HGC1.棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点1.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点解析:选C.由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.2.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④解析:选B.由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的封闭几何体,因此以四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选 B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.1.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为()解析:选A.其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.2.根据如图所示的几何体的表面展开图,画出立体图形.解:如图是以四边形ABCD为底面,P为顶点的四棱锥.其图形如图所示.1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.③④C.①②④D.①②解析:选C.根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥解析:选D.根据棱锥的定义可知该几何体是三棱锥.4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为__________cm.解析:因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为60 5=12(cm).答案:125.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体.(2)三个三棱锥,并用字母表示.解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′AB″C″,另一个多面体是B′C′C″B″BC.(2)如图②所示,三个三棱锥分别是A′ABC,B′A′BC,C′A′B′C.[A基础达标]1.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D.棱柱和棱锥的底面可以是任意多边形,故选项A、B均不正确;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱.2.具备下列条件的多面体是棱台的是()A .两底面是相似多边形的多面体B .侧面是梯形的多面体C .两底面平行的多面体D .两底面平行,侧棱延长后交于一点的多面体解析:选D.由棱台的定义可知,棱台的两底面平行,侧棱延长后交于一点. 3.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C.根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( ) A .三棱锥 B .四棱锥 C .五棱锥D .六棱锥解析:选D.由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C.C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱. 6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得). 答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱. 解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱. 答案:5 6 98.在下面的四个平面图形中,是侧棱都相等的四面体的展开图的为__________.(填序号)解析:由于③④中的图组不成四面体,只有①②可以.答案:①②9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.画出如图所示的几何体的表面展开图.解:表面展开图如图所示:(答案不唯一)[B能力提升]11.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D.如图,在五棱柱ABCDE A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共有2×5=10(条).12.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.至多有一个是直角三角形B.至多有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形解析:选C.注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图所示的长方体中,三棱锥AA1C1D1的三个侧面都是直角三角形.13.长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,从A到C1沿长方体的表面的最短距离为________.解析:结合长方体的三种展开图不难求得AC1的长分别是:32,25,26,显然最小值是3 2.答案:3 214.如图,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1FCC1E和棱柱ABF A1DCED1.[C拓展探究]15.如图,在一个长方体的容器中装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中:(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着讨论水面和水的形状.解:(1)不对,水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征考点学习目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象旋转体中的计算问题会根据旋转体的几何体特征进行相关运算直观想象、数学运算问题导学预习教材P101-P104的内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体■名师点拨(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概念轴:圆锥的轴底面:圆锥的底面和截面侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体■名师点拨(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径■名师点拨(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.判断(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.()(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)半圆绕其直径所在直线旋转一周形成球.()(4)圆柱、圆锥、圆台的底面都是圆面.()答案:(1)×(2)×(3)×(4)√下列几何体中不是旋转体的是()解析:选D.由旋转体的概念可知,选项D不是旋转体.过圆锥的轴作截面,则截面形状一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形答案:B可以旋转得到如图的图形的是()解析:选A.题图所示几何体上面是圆锥,下面是圆台,故平面图形应是由一个直角三角形和一个直角梯形构成.指出图中的几何体是由哪些简单几何体构成的.解:①是由一个圆锥和一个圆柱组合而成的;②是由一个圆柱和两个圆台组合而成的;③是由一个三棱柱和一个四棱柱组合而成的.圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(3)到定点的距离等于定长的点的集合是球.解:(1)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(2)正确.(3)错误.应为球面.简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】 A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解:(1)以AB 边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC 边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD 边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD 边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.旋转体中的计算问题如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.【解】 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm ,4r cm.过轴SO 作截面,如图所示,则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA ,所以33+l =r 4r =14.解得l =9,即圆台O ′O 的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版数学精品教学资料
2.1.2 空间中直线与直线之间的位置关系
一、基础过关
1.分别在两个平面内的两条直线间的位置关系是
( ) A .异面
B .平行
C .相交
D .以上都有可能
2.若AB ∥A ′B ′,AC ∥A ′C ′,则有
( ) A .∠BAC =∠B ′A ′C ′
B .∠BA
C +∠B ′A ′C ′=180°
C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°
D .∠BAC >∠B ′A ′C ′
3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是
( )
A .空间四边形
B .矩形
C .菱形
D .正方形 4.“a 、b 为异面直线”是指:
①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是
( ) A .①④⑤
B .①③④
C .②④
D .①⑤
5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________.
6.已知正方体ABCD —A ′B ′C ′D ′中:
(1)BC ′与CD ′所成的角为________;
(2)AD 与BC ′所成的角为________.
7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB
=90°,BC 綊12
AD , BE 綊12
F A ,
G 、
H 分别为F A 、FD 的中点. (1)证明:四边形BCHG 是平行四边形;
(2)C 、D 、F 、E 四点是否共面?为什么?
8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:
(1)BE 与CG 所成的角;
(2)FO 与BD 所成的角.
二、能力提升
9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是
( )
A .MN ≥12
(AC +BD ) B .MN ≤12(AC +BD ) C .MN =12
(AC +BD ) D .MN <12(AC +BD ) 10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( ) A .12对 B .24对 C .36对
D .48对 11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:
①AB ⊥EF ;
②AB 与CM 所成的角为60°;
③EF 与MN 是异面直线;
④MN ∥CD .
以上结论中正确的序号为________.
12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,
(1)求证:直线EF 与BD 是异面直线;
(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.
三、探究与拓展
13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、
AD 的中点,求直线AB 和MN 所成的角.
答案
1.D 2.C 3.B
4.D 5.平行或异面
6.(1)60° (2)45°
7.(1)证明 由已知FG =GA ,FH =HD ,
可得GH 綊12AD .又BC 綊12
AD , ∴GH 綊BC ,
∴四边形BCHG 为平行四边形.
(2)解 由BE 綊12
AF ,G 为F A 中点知,BE 綊FG , ∴四边形BEFG 为平行四边形,∴EF ∥BG .
由(1)知BG 綊CH ,∴EF ∥CH ,
∴EF 与CH 共面.
又D ∈FH ,∴C 、D 、F 、E 四点共面.
8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,
又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.
(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB ,
∴HD 綊FB ,
∴四边形HFBD 为平行四边形,
∴HF ∥BD ,
∴∠HFO (或其补角)为异面直线FO 与BD 所成的角.
连接HA 、AF ,易得FH =HA =AF ,
∴△AFH 为等边三角形,
又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.
9.D 10.B
11.①③
12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从
而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同
一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF
与BD 是异面直线.
(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相
交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.
13.解 如图,取AC 的中点P .
连接PM 、PN ,
则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,
所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角).
则∠MPN =60°或∠MPN =120°,
若∠MPN =60°,因为PM ∥AB ,
所以∠PMN 是AB 与MN 所成的角(或所成角的补角).
又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形,
所以∠PMN =60°,
即AB 与MN 所成的角为60°.
若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°,
即AB 与MN 所成的角为30°.
故直线AB 和MN 所成的角为60°或30°.。