数字推理八大解题方法要点
公务员行测中的数字推理与解题技巧
公务员行测中的数字推理与解题技巧数字推理是公务员行测中的重要内容之一,它需要考生运用逻辑思维和数学知识进行推理和解题。
本文将介绍一些数字推理的基本方法和解题技巧,帮助考生更好地应对公务员行测中的数字推理题。
一、数字推理的基本方法在解决数字推理题时,考生首先需要明确题目给出的数字序列或者关系,并找到其中的规律。
下面介绍几种常见的数字推理方法。
1. 数列推理数列推理题是公务员行测中常见的题型,它要求考生根据已知的数字序列,推断出接下来的数字。
解决这类题目的关键在于找到数列中数字的变化规律。
常见的数列规律有等差数列和等比数列。
其中,等差数列的每个数字之间的差值相等,等比数列的每个数字之间的比值相等。
通过观察数列中数字间的关系,找出变化规律,即可准确推测出下一个数字。
2. 数字关系推理数字关系推理题要求考生从一组数字中找出相互之间的关系,进而推断出缺失的数字。
解决这类题目需要考生具备较强的逻辑思维能力。
常见的数字关系有加减乘除、平方立方等运算关系;还有数字的奇偶、大小关系等。
考生需要仔细观察数字间的变化规律,找出其中的逻辑关系,才能正确推断出缺失的数字。
3. 数字排列与组合推理数字排列与组合推理题要求考生从一组数字排列或者组合中找出符合一定条件的数字。
解决这类题目需要考生熟练掌握排列组合的知识。
在排列与组合的题目中,数字的顺序、重复与否等都可能是解题的关键。
考生需要根据题目给出的条件,灵活运用排列组合的规则,准确地确定符合条件的数字。
二、数字推理解题技巧除了掌握数字推理的基本方法,考生还可以借助一些解题技巧,提高解决数字推理题的效率。
1. 注意整体和局部在解决数字推理题时,考生既要关注数字序列的整体规律,又要注意其中的局部规律。
有时候,数字序列的整体规律并不明显,但是通过观察数字间的局部规律,也可以推断出接下来的数字。
2. 多角度观察考生要习惯从不同的角度观察数字推理题。
有时候,单一的数学运算规律并不能完全解释题目中的数字关系,此时考生可以从逻辑思维、几何形状等其他角度出发,寻找隐藏的规律。
数字推理答题技巧(公开版)
数字推理答题技巧施久亮解题突破五大要诀――抓住数列的阿喀琉斯之踵一、先加减,后乘除,根据数字大小变化的规律判断属于何种数列类型1、数字快速增减的2、数字平稳增减的3、数字高低起伏的4、数字非常接近的二、分析项数,确定关键项,注意项与项之间关系,注意数列的级数(确定是几项关联、几级数列或组合还是间隔)1、项数低于或等于5项的2、项数为6项的3、项数大于6项的4、项数超多的三、抓住关键项,分析敏感数字1、平方数、立方数及其相邻数2、0、1及其相邻数以及常见变化3、基本数列4、分数题注意通分后的变化,关注小分子分母项四、找准起步点1、特别注意1、2项之间的关系五、寻找薄弱环节,确定关键数字,一举突破1、数列的不和谐部分、与众不同部分2、敏感数字,如0或1及其附近数3、从选项中找突破口基本功练习一、心算练习二、数字基础三、熟练基本数列四、中央及浙江真题练习数字推理基础一、基本数列(加减乘除)1、加减法数列差的几种形式:等差(常数):3例1:2 5 8 11 14自然顺序数:1、2、3、4、5例1:2 3 5 8 12 17平方数或立方数例1:5 6 10 19 45 70加减法单项数列1、2、3、4、5加减法双项数列2 3 5 8 13 21 例1:56,79,129,202,325 ()例2:3,-1,5,1,()A.3B.7.C.25D.64加减法三项数列例1:1 2 4 7 13 24 ()例2:1 4 3 5 2 6 4 7 ()2、乘除法数列乘除法单项数列乘除法双项数列例1:3,4,12,48,()A 96B 36C 192D 5763、加减法和乘除法混合数列例1:16 17 36 111 448 ( )例2:5,( ),39,60,105.A.10B.14C.25D.30例3:-2 ,-1, 1, 5 () 29A.17B.15C.13D.11例4:172,84,40,18,()例5:-1,0,1,2,9,()A.11B.82C.729D.730例6:3, 7, 16, 107,()A.1707B.1704C.1086D.1072二、数列的组合和延伸一级数列二级数列三级数列间隔组合数列分段组合数列对称组合数列三、题目类型1、单项数列例1:27 16 5 ()1/7例2:1\7 1\26 1\63 1\124 ( )例3:-1,0,27,()。
数字推理八大解题方法
数字推理八大解题方法逐差法:指原数列相邻两项逐级做差。
、逐商法是指原数列相邻两项逐级做商,进而推出数列规律的方法。
对于单调性明显,倍数关系明显或者增幅较大的数列,应当优先采用逐商法。
其中,单调性明显,即可以表现为通常意义上所指的单调性,也可以表现为正负交替出现,但是绝对值具有单调性。
使用逐商法之后,需要重点注意做商后得到的商值数列和余数数列的规律。
根据其表现形式的不同可以分为如下四种情况:商同、余同,商同、余不同,商不同、余同和商不同、余不同。
【核心矢口识】商同、余不同是指对原数列做商后得到的商信歡列为當数列,於救刃则呈现出一定的亲见障.其中,杀数数列可以是當见的基就敌列,也可以是基刊数列的变形.乩闾不同、冷同【核心知识】崗不同、金同罡指对原煎列徴裔后得到册發数数列淘常第勿裔值数列则呈现出一定的规律•其中裔值数列可収是常见的基础数列•也可以是基础数列的变形.【核心知识】丽同余雨是指賤列噓后輕胸商数列和余狀不是常敎列,各白呈现出某沖规律耳口商值数列和余数数列即可漩常见谑臟称也可以是基臓列的变啟【按I阑识】加和法是指对碟数列进匸求利从而得到数叨规律胶方丸对于(1}負關关系不胡呈;住倍葩关系不朋显;(3擞字差别幅度不犬的数列;应勃诜使用兀和扯-对于符细]和法奠用原則的数列,优;先对其进行匹项求和,两项求和后无日胆规萍时,再对其进行三互哀和阪全项求和.【核硼】两项求和,是指对原数列相緬项进行逐次求和,从而得到数列的规衛具中,得到的和值数列既可以是基鹼列,也可以是与殿列相关B®列.【檢谀识]三或乩是指対质数列馆邻三龜行逐玄沏9从而得到数列的规淳【核谀识】全项求和,是指依次对软列每-项之前的所有赃行求和,从而得到数列的规律.【核心知识】累枳法是指求取融列各项的乘积,进而得到数列规律的方法•对于(1庠调关系明显;(2賂数关系明显;(3蘇积倾向册数列;应该优先采用累积法•对干符合累积法使用觌的数列,优删船砸项求积,两项求躺元明魏律时,再对其进行三项求积以能项求积.【核悯识】两匝求积,是指逐谀求取原数列相邻两项的乘积,从而得到数列的规律•乘积后得到的数列既可以是基础数列,也可以是与原数列相关的数列.L三銅【骯赧】三顶求和是指徹桶藤则E邻三项娠祝从碉驗列帧箒【核朋识】全项求积,是指依次求顋数列每-项之前的所有项的乘积,从而得到数船规律.【松沁】拆分法是指将数列的甸项分解成两韶分或考多部分的乘积或加和的形轧根据分解后的各部分对应元養之间的规律来寻求数列关系的方法.具中,在公务员考翩字推理部分常黜讖拆分法和位数拆分法.【帥识】因数分解法,是指对霖列中的每一个元素都由因数分解将其分解为两琳通过分析分【核心知识】对于具有明显指数特征(基于数字敏感和数形敬感)或看幅度变化校快的数列,优先考解霜指数拆分法,将其化为多次方式aXb-+加如22 = 2X3*4)的形式,通过寻a、b、m、n 之间的关系进行求解•拆分时主要是绕多次方数的和、差、倍数的形式展的,通常数列中会有两个或多个指数特征非常明显怖数字,一般都是以这些数字为突破口的数字推理部分而言,在使用该方法时,主要从以下两个方面进行考虑.数列的各顼均与基础的多欢方敦比做近对于数列中各项均与基础的多次方数比较接近的题U,解题的关键是首先要确定出修m的变化规律•所谓基础凶多次方数,即可以化为扩形式的数字.【核心知识】位数拆分法,解思义,就是指将狮原数列每一项的数字分拆成若干纵通过拆分后各酬应数字之间的规律来寻求原数列规律的方法•对于多位数(位数不少于三位)酸出现’或馥列的幅度觌无明显规律的数列,可以考虑使用位数拆分法•拆分后,各软i应数字之间的关系一腿过加和或看倍姒系表则来.【核测】分组法,解思义,就是将原数列按照-定K)分组方式分为两部分或多盼,根据分组后各那分内部或各部分之间的关系来推求数列关系的一种方法。
行测数字推理题技巧
行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。
通过观察规律,可以将下一个数字或者数字序列进行
推理。
2.数字运算:在数字推理题中,经常出现的是数字的运算关系。
可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。
3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。
4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。
5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。
可以通过这些限制条件进行推理。
6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。
7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。
数字推理:八大类数列及变式总结
数字推理:八大类数列及变式总结数字推理:八大类数列及变式总结数字推理的题目通常状况下是给出一个数列,但整个数列中缺少一个项,要求仔细观察这个数列各项之间的关系,判断其中的规律。
解题关键:1、培养数字、数列敏感度是应对数字推理的关键。
2、熟练掌握各类基本数列。
3、熟练掌握八大类数列,并深刻理解“变式”的概念。
4、进行大量的习题训练,自己总结,再练习。
下面是八大类数列及变式概念。
例题是帮助大家更好的理解概念,掌握概念。
虽然这些理论概念是从教材里得到,但是希望能帮助那些没有买到教材,那些只做大量习题而不总结的朋友。
最后跟大家说,做再多的题,没有总结,那样是不行的。
只有多做题,多总结,然后把别人的理论转化成自己的理论,那样做任何的题目都不怕了。
一、简单数列自然数列:1,2,3,4,5,6,7,……奇数列:1,3,5,7,9,……偶数列:2,4,6,8,10,……自然数平方数列:1,4,9,16,25,36,……自然数立方数列:1,8,27,64,125,216,……等差数列:1,6,11,16,21,26,……等比数列:1,3,9,27,81,243,……二、等差数列1,等差数列:后一项减去前一项形成一个常数数列。
例题:12,17,22,27,(),37解析:17-12=5,22-17=5,……2,二级等差数列:后一项减去前一项形成一个新的数列是一个等差数列。
例题1:9,13,18,24,31,()解析:13-9=4,18-13=5,24-18=6,31-24=7,……例题2.:66,83,102,123,()解析:83-66=17,102-83=19,123-102=21,……3,二级等差数列变化:后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
例题1:0,1,4,13,40,()解析:1-0=1,4-1=3,13-4=9,40-13=27,……公比为3的等比数列例题2:20,22,25,30,37,()解析:22-20=2,25-22=3,30-25=5,37-30=7,…….二级为质数列4,三级等差数列及变化:后一项减去前一项形成一个新的数列,再在这个新的数列中,后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
各种数字推理题解题技巧
各种数字推理题解题技巧一、解题前的准备1.熟记各种数字的运算关系。
如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。
这是迅速准确解好数字推理题材的前提。
常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-14413-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29……(4)开方关系:4-2,9-3,16-4……以上四种,特别是前两种关系,每次考试必有。
所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。
当看到这些数字时,立刻就能想到平方立方的可能性。
熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。
如 216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。
2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。
根号运算掌握简单规律则可,也不难。
3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。
二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。
又分为等差、移动求和或差两种。
(1)等差关系。
这种题属于比较简单的,不经练习也能在短时间内做出。
建议解这种题时,用口算。
12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。
行测数字推理题技巧
行测数字推理题技巧
行测数字推理题是考验考生逻辑思维和数学能力的一个考试科目,一般都需要考生通过对数字规律的发现和推理来解决问题。
以下是一
些数字推理题的解题技巧。
1. 对于数字序列,首先需要看清楚序列中数字的规律是否有明
显的特点,比如数字之间的间隔、加减乘除等关系。
如果可以找到规律,就可以依据规律进行数学计算,得出答案。
2. 对于数字图形,需要先观察数字的排列顺序是否有规律,以
及数字之间的关系是什么。
然后需要分析图形中各个数字的位置和数量,通过计算来找出规律。
例如,可以统计数字在图形中出现的次数
及其位置,通过计算得出结果。
3. 对于数字的大小比较题,需要注意数字之间大小的差异和数
量的关系。
例如,如果题目中有两个数列,并且一个数列的数字都比
另一个数列的数字小,那么很可能需要找到两个数列之间数字的关系,例如倍数、比率、权重等等。
4. 对于数字的逻辑推理题,需要注意确定一些基本前提,以及
从基本前提中推出一些相关结论的能力。
例如如果已知不等式关系,
则需要基于此推断出更多的不等式关系,进而解题。
总之,通过对数字之间的关系和规律进行分析,发现规律,再通
过计算或逻辑推理求解问题,可以有效提高数字推理题的解题能力。
行测数字推理之解题技巧(精华版)
数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。
如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。
(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。
如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。
)6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。
数字推理全方法介绍(绝对经典)
数字推理全方法介绍写在前面的话1、希望能给数字推理比较弱的同学帮助2、做数推,重点不是怎么做,而是:“你怎么会想到这种做法?思路在哪?突破口呢?”3、只要你认真看完这个帖子,你的数字推理一定会有进步4、例子来源于真题5、觉得好一定要顶,让更多的人能来交流言归正传(一)等差、倍数关系介绍要学会观察变化趋势(1)数变化很大,一般和乘法和次方有关。
如:2,5,13, 35,97 ()-------------A*2+1 3 9 27 81=B又如:1,1,3,15,323,()---------------数跳很大,考虑是次方和乘法。
此题-------------(A+B)^2-1 =c再如:1 ,2 ,3 ,35 ()------------(a*b)^2-1=c0.4 1.6 8 56 560 ()--------4 5 7 10倍,倍数成二级等差A、2240B、3136C、4480D、784009国考真题14 20 54 76 ()A.104 B.116 C.126 D1449+525-549+5…(2)数差(数跳不大,考虑是做差)等差数列我就不说了,很简单下面说下数字变化不大,但是做差没规律怎么办?一般三种可以尝试的办法(1)隔项相加、相减(2)递推数列(3)自残(一般用得很少,真题里我好像没见过?也许是我忘了吧)09真题1,1,3,5,11,()A.8 B.13 C.21 D.32满足C-A=2 4 8 16-3,7,14,15,19,29,()A 35B 36C 40D 42------------------------------满足A+C=11 22 33 44 5521,37,42,45,62,()A 57B 69C 74D 8721+3*7=4237+4*2=4542+4*5=6245+6*2=57(3)倍数问题(二)三位数的数字推理的思路(1)数和数之间的差不是很大的时候考虑做差(2)很多三位数的数字推理题都用“自残法”如:252,261,270,279,297,()252+2+5+2=261261+2+6+1=270270+2+7+0=27909国考真题153, 179, 227, 321, 533, ( )A.789B.919C.1079D.1229150+3170+9200+27….左边等差,右边等比(三)多项项数的数字推理多项项数的数推”比如:5,24,6,20,(),15,10,()上面个数列有8项,我习惯把项数多余6项的数列叫做“多项数列”。
数字推理题的答题技巧与一般规律
数字推理题的答题技巧与一般规律1.数字推理数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。
一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。
只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。
由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。
只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。
因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。
这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。
有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。
此时,与其“卡”死在这里,不如抛开这道题先做别的题。
在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。
在做这些难题时,有一个基本思路:“尝试错误”。
很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。
行政职业能力测试中数字推理的答题技巧
行政职业能力测试中数字推理的答题技巧一、数字推理的概述数字推理是行政职业能力测试中常见的一种题型,要求通过观察数字序列的规律,推断出下一个数字或找出一个不符合规律的数字。
掌握数字推理的答题技巧对于提高行政职业能力测试的得分很有帮助。
二、数字推理的类型数字推理题可以分为几种常见的类型:1. 数列推理数列推理要求考生根据一组有规律的数字或符号,找出其中的规律并推理出下一个数字或符号。
常见的数列推理有等差数列、等比数列、斐波那契数列等。
示例题目:1, 4, 7, 10, ?答案:132. 数字顺序数字顺序题要求考生按照一定的规则重新排列给定的数字序列。
常见的规则有按照数字的大小、奇偶性或者某个特定的数字规则进行排列。
示例题目:6, 9, 3, 8, ?答案:33. 数字替换数字替换题要求考生通过观察一组数字序列的规律,找出其中一个数字需要被替换成另一个数字。
示例题目:5, 9, 15, ?, 35答案:234. 数字图形数字图形题要求考生根据给定的数字图形,找出其中的规律并推理出下一个图形。
示例题目:133355555答案:1333555553331三、数字推理的解题技巧在行政职业能力测试中,数字推理题需要考生灵活运用不同的解题技巧。
下面列举了一些常用的解题技巧:1. 观察数字之间的关系仔细观察数字之间的关系,看是否存在某种规律。
可以从数字的大小、差值、乘积等方面入手,找出其中的规律。
2. 寻找常见的数列规律数列是数字推理题中最常见的类型之一,掌握各种常见的数列规律对于解题很有帮助。
例如,等差数列的规律是相邻两个数字的差相等,等比数列的规律是相邻两个数字的比相等。
3. 利用排除法在一些复杂的数字推理题中,可以通过排除法逐个排除不符合规律的选项,直到找到符合规律的选项为止。
4. 尝试多种解题方法如果一种解题方法无法找到规律,可以尝试其他的解题方法。
多角度思考有助于发现数字之间的关系。
四、答题技巧的实践与总结通过大量的练习和实践,掌握数字推理题的答题技巧才能得心应手。
行测指导:数字推理30种解题技巧
行测指导:数字推理30 种解题技巧一、当一列数中出现几个整数,而只有一两个分数并且是几分之一的时候,这列数常常是负幂次数列。
【例】 1、4、3、1、1/5 、1/36 、()二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意察看分式数列的分子、分母是向来递加、递减或许不变,并以此为依照找到打破口,经过“约分”、“反约分”实现分子、分母的各自成规律。
【例】 1/162/132/58/74()三、当一列数比较长、数字大小比较靠近、有时有两个括号时,常常是间隔数列或分组数列。
【例】 33、32、34、31、35、30、36、29、()四、在数字推理中,当题干和选项都是个位数,且大小改动不稳准时,常常是取尾数列。
取尾数列一般拥有相加取尾、相乘取尾两种形式。
【例】 6、7、3、0、3、3、6、9、5、()五、当一列数都是几十、几百或许几千的“清一色”整数,且大小改动不稳准时,常常是与数位有关的数列。
【例】 448、516、639、347、178、()六、幂次数列的实质特点是:底数和指数各自成规律,而后再加减修正系数。
关于幂次数列,考生要成立起足够的幂数敏感性,当数列中出现 6?、 12?、 14?、 21?、 25?、 34?、 51?、312?,就优先考虑 43、112(53)、 122、63、44、73、83、55。
【例】 0、9、26、65、124、()七、在递推数列中,当数列选项没有显然特点时,考生要注意察看题干数字间的倍数关系,常常是一项推一项的倍数递推。
【例】 118、60、32、20、()八、假如数列的题干和选项都是整数且数字颠簸不大时,不存在其余显然特点时,优先考虑做差多级数列,其次是倍数递推数列,常常是两项推一项的倍数递推。
【例】 0、6、24、60、120、()九、当题干和选项都是整数,且数字大小颠簸很大时,常常是两项推一项的乘法或许乘方的递推数列。
【例】 3、7、16、107、()十、当数列选项中有两个整数、两个小数时,答案常常是小数,且一般是经过乘除来实现的。
数字推理
命题原理
1.单数字转化 这一原理是从数列的单个数字角度进行分析,将每一个 数字进行转化。 例如:1,4,9,16,25,(36)。 分析这一数列,可以发现1=1² ;4=2² ;9=3² ;16=4² ; 25=5² ;36=6² 。 单数字转化的三个角度: ①转化成幂数列 ②对数字进行因式拆解 ③两者的组合
二、数字推理
数字推理主要是考察对数字和运算的敏感程度,本质 上是考察对出题者的出题思路的把握。因为在数字推 理中的规律并非“客观规律”,而是出题者的“主观规 律”。我们在备考过程中,不能仅从数字本身进行思 考,还必须深入地理解出题者的思路与规律。
(一)数字推理的主要内容
命题原理 ①单数字转化 ②多数字组合 解题方式 ①一个核心 ②四个基本点
例题 1.5,5,5,12,5,() A.3 B.1 C.24 D.26
【答案】D 【解析】 此题的题干数字对解题的提示作用不大,思路不明的时候还是从 相邻两项之差入手,相邻两项之差依次是3.5,0,7,﹣7,这几 个数的特征和规律也是很不明显,再次做差得到﹣3.5,7,﹣14, 可以看出是公比为﹣2的等比数列,此题便得到了解决。 等差数列的变式情况很多,上题即是一个三级等差数列变式,由 于第三级数列是一个正负交替的等比数列,所以题干数字并没有 表现出明显的递增和递减趋势,这一类题难度较大。 在思路不明的情况下,分析相邻两项之差是很重要的方法。
模板 所谓“模板”,是指专为公务员考试“数学运算”量身定造的、 注重最终结果而省略中间思维过程的解题方法。譬如用平均分段 法解决典型年龄问题,用相应“口诀”解答星期日期问题、乘方 尾数问题、同余问题、典型统筹问题,用特殊公式解裂项相加问 题、两集合容斥原理问题、时钟追及问题等等。 技巧 如果会用“十字交叉法”,你可以跳过方程直接口算出答案;如 果会用“代入排除法”,你可以回避很多复杂计算和公式,过程 的简单将让你意想不到;如果会用“数字特性法”,利用肉眼直 接区分选项的尾数、大小、奇偶、因子、倍数、余数等特征。总 之,“数学运算”特有的“客观单选”性让技巧的发挥有了充分 的空间和余地。
行测数字推理题技巧
行测数字推理题技巧数字推理题是公务员考试中常见的题型之一,包含数字序列、数字关系、数字分类等多种形式。
数字推理题不仅考察了考生的数学能力,更重要的是考察了考生的逻辑思维和推理能力。
本文将从四个方面为大家介绍数字推理题的技巧和方法。
一、数字序列题数字序列题是指给出一组数字序列,要求考生根据规律推断出下一个数字或者缺失的数字。
数字序列题考察的是考生的数学能力和逻辑推理能力。
下面介绍一些数字序列题的常见规律和解题方法。
1.等差数列等差数列是指每一项与前一项之差相等的数列,例如1、3、5、7、9……。
在等差数列中,每一项与前一项之差都相等,这个差值称为公差。
在数字序列题中,等差数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公差,然后根据公差推断出下一项或者缺失的项。
2.等比数列等比数列是指每一项与前一项之比相等的数列,例如1、2、4、8、16……。
在等比数列中,每一项与前一项之比都相等,这个比值称为公比。
在数字序列题中,等比数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公比,然后根据公比推断出下一项或者缺失的项。
3.斐波那契数列斐波那契数列是指第一项和第二项都为1,从第三项开始,每一项都是前两项之和的数列,例如1、1、2、3、5、8……。
在斐波那契数列中,每一项都是前两项之和,这个规律称为递推关系。
在数字序列题中,斐波那契数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是根据递推关系推断出下一项或者缺失的项。
二、数字关系题数字关系题是指给出一组数字之间的关系,要求考生根据这些关系推断出其他数字之间的关系。
数字关系题考察的是考生的逻辑推理能力和数学能力。
下面介绍一些数字关系题的常见关系和解题方法。
1.加减乘除加减乘除是数字关系题中最为常见的关系,例如1+2=3,2-1=1,2×3=6,6÷2=3等。
在数字关系题中,加减乘除的规律通常是给出部分数字和运算符号,要求考生推断出其他数字和运算符号。
数字推理题的解题技巧大全
第一部分:数字推理题的解题技巧一、解题前的准备1.熟记各种数字的运算关系。
如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。
这是迅速准确解好数字推理题材的前提。
常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。
所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。
当看到这些数字时,立刻就能想到平方立方的可能性。
熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。
如 216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。
2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。
根号运算掌握简单规律则可,也不难。
3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。
二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。
又分为等差、移动求和或差两种。
(1)等差关系。
这种题属于比较简单的,不经练习也能在短时间内做出。
建议解这种题时,用口算。
12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。
破解数字推理题的12个实用小技巧
(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b (2)深一点模式,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
(3)看各数的大小组合规律,做出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。
(4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数; 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服,它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
(6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=13 2+6+9=172+8+6=163+0+2=5,∵256+13=269 269+17=286286+16=302 ∴下一个数为302+5=307。
数字推理题的解题技巧大全
一、解题前的准备
1.熟记各种数字的运算关系。 如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。这是迅速准确解好数 字推理题材的前提。常见的需记住的数字关系如下: (1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400 (2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000 (3)质数关系:2,3,5,7,11,13,17,19,23,29...... (4)开方关系:4-2,9-3,16-4...... 以上四种,特别是前两种关系,每次考试必有。所以,对这些平方立方后的数字,及这些数 字的邻居(如, 64,63,65 等)要有足够的敏感。当看到这些数字时,立刻就能想到平方立 方的可能性。熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解 题思路。如 216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不 会如此弱智,实际可能会这样 215,124,63, () 或是 217,124,65, ()即是以它们的 邻居(加减 1) ,这也不难,一般这种题 5 秒内搞定。 2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。根号运算掌 握简单规律则可,也不难。 3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。
二、解题方法
按数字之间的关系,可将数字推理题分为以下十种类型: 1.和差关系。又分为等差、移动求和或差两种。 (1)等差关系。这种题属于比较简单的,不经练习也能在短时间内做出。建议解这种题时 ,用 口算。 12,20,30,42, () 127,112,97,82, () 3,4,7,12, () ,28
公务员数字推理题解析技巧与答题思路
公务员数字推理题解析技巧与答题思路数字推理题是公务员考试中常见的一类题型,要求考生根据给定的数字序列或规律,推断出下一个数字或者填入适当的数字。
下面将介绍一些解析技巧和答题思路,帮助考生在这类题目中取得更好的成绩。
一、观察规律在解答数字推理题时,首先需要观察数字序列中的规律或者模式。
这些规律可能涉及数字间的运算、排列顺序、数字之间的关系等。
通过观察规律,可以帮助我们找到解题的突破口。
例如,给定数字序列:2, 4, 6, 8, 10,问下一个数字是多少?观察可知,该序列是一个等差数列,公差为2。
因此,下一个数字应该是12。
二、数学运算数学运算在数字推理题中经常出现,包括四则运算、平方、开方、乘方等。
对于这类题目,考生需要善用数学知识,灵活运用各种运算法则。
例如,给定数字序列:1, 3, 6, 10, 15,问下一个数字是多少?观察可知,该序列是一个递增的自然数序列。
进一步观察可知,每一项是前一项加上一个自然数。
这表明每一项与自然数之间存在着一种关系,即前一项加上当前自然数等于当前项。
因此,下一个数字应该是15加上下一个自然数,即20。
三、几何图形有些数字推理题中给出的数字序列可能是几何图形中的数字。
考生需要观察图形的形状、结构以及数字之间的关系,从而找到规律。
例如,给定数字序列:1, 4, 9, 16, 25,问下一个数字是多少?观察可知,该序列是平方数的序列,每一项都是前一项的平方。
因此,下一个数字应该是36。
四、逻辑推理逻辑推理是数字推理题中经常遇到的一种情况。
通过观察数字序列中的逻辑关系,可以帮助我们推断出下一个数字的值。
例如,给定数字序列:1, 3, 6, 10, 15,问下一个数字是多少?观察可知,该序列中的每一项可以通过将前一项加上一定的数字得到。
进一步观察可知,每一项与与它的位置数相等的数之和等于当前项。
因此,下一个数字应该是15加上下一个位置数,即21。
五、试错法在解答数字推理题时,有时候需要进行试错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字推理八大解题方法【真题精析】例1.2,5,8,11,14,( )A.15 B.16 C.17 D.18[答案]C[解析]数列特征明显单调且倍数关系不明显,优先采用逐差法。
差值数列是常数列。
如图所示,因此,选C。
【真题精析】例1、(2006·国考A类)102,96,108,84,132,( )A.36 B.64 C.70 D.72[答案]A[解析]数列特征明显不单调,但相邻两项差值的绝对值呈递增趋势,尝试采用逐差法。
差值数列是公比为-2的等比数列。
如图所示,因此,选A。
【真题精析】例1.(2009·江西)160,80,40,20,( )A.B.1 C.10 D.5[答案]C[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。
商值数列是常数列。
如图所示,因此,选C【真题精析】例1、2,5,13,35,97,( )A.214 B.275 C.312 D.336[答案]B[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。
商值数列是数值为2的常数列,余数数列是J2-I:h为3的等比数列。
如图所示,因此,选B。
【真题精析】例1、(2009·福建)7,21,14,21,63,( ),63A.35 B.42 C.40 D.56[答案]B[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。
商值数列是以为周期的周期数列。
如图所示,因此,选B。
【真题精析】例1.8,8,12,24,60,( )A.90 B.120 C.180 D.240[答案]C[解析]逐商法,做商后商值数列是公差为0.5的等差数列。
【真题精析】例1. -3,3,0,3,3,( )A.6 B.7 C.8 D.9[答案]A[解析]数列特征:(1)单调关系不明显;(2)倍数关系不明显;(3)数字差别幅度不大。
优先采用加和法。
【真题精析】例1、(2008·湖北B类)2,3,5,10,20,( )A.30 B.35 C 40 D.45[答案]C[解析]数列特征明显单调且倍数关系不明显,优先做差后得到结果选项中不存在;则考虑数列特征:(1)倍数关系不明显;(2)数字差别幅度不大,采用加和法。
还是无明显规律。
再仔细观察发现,2+3=5,2+3+5=10,2+3+5+10=20。
因此原数列未知项为2+3+5+10+20=40。
此数列为全项和数列,其规律为:前面所有项相加得后一项。
如图所示,因此,选C。
【真题精析】例1、1,2,2,4,8,32,( )A.64 B.128 C.160 D.256[答案]D[解析]数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。
优先采用累积法。
【真题精析】例1、1,1,2,2,4,16,( )A.32 B.64 C.128 D.256[答案]C[解析]数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。
积后无明显规律,尝试三项求积。
即从第四项起,每一项都是前面三项的乘积。
因此,选C。
【真题精析】例1、(2008·河北)1,2,2,4,16,( )A.64 B.128 C.160 D.256[答案]D[解析]数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。
优先采用累积法。
做积后无明显规律。
仔细观察发现,1×2=2,1×2×2=4,1×2×2×4=16,1×2×2×4×16=(256)。
此数列是全项积数列,从第三项起,每一项都是前面所有项的乘积。
因此,选D。
【真题精析】例1. (2007·国考)0,2,10,30,( )A.68 B.74 C.60 D.70[答案]A[解析]数列项数较少,做一次差后无明显规律,不能继续做差,因此考虑使用因数分解将原数列化为如下形式:分别观察由0,1,2,3和1,2,5,10组成的数列,前者是公差为1的等差数列,后者做一次差后得到奇数数列,推断其第五项分别为4和17,故所填数字应为4X17=68,答案为A。
【真题精析】例1. 1,2,5,10,17,( )A.24 B.25 C.26 D.27[答案]C[解析]此题的突破口建立在“数字敏感”的基础之上。
由数字5,10,17,联想到5=4+1,10=9+1, 17=16+1,故可以判定此数列由多次方数构造而成。
平方数列的底数是自然数列。
如上所示,因此,选C。
【真题精析】例1. (2009·天津)187,259,448,583,754,( )A.847 B.862 C.915 D.944[答案]B[解析]原数列单调关系明显,倍数关系不明显,优先使用逐差法无明显规律;观察数列特征:多位数连续出现,幅度变化无明显规律,考虑位数拆分。
对原数列各数位进行求和:1+8+7=16,2+5+9=16,4+4+8=16,5+8+3=16,7+5+4=16,(8+6+2=16),原数列中所有项各位数字相加之和为16。
因此,选B。
【真题精析】例1.[答案]A[解析]数列中大部分为非最简分数,优先考虑将其约分变为最简分数。
得到常数列。
如上所示,因此,选A。
【真题精析】例1、[答案]A[解析]数列中有两项的分母相同,且为另外两项的倍数。
因此,先进行通分将各项的分母统一为12。
得到的分子数列为质数列。
如上所示,因此,选A。
【真题精析】例1、[答案]B[解析]数列特征不明显,由联想到中间的2可化成。
此时,各项的分子分母表现出一定的单调性,因此考虑将反约分化为。
根据该思路,将原数列进行变形。
分子数列、分母数列都是自然数列。
如上所示,因此,选B。
【真题精析】例1、[答案]C[解析]分别分析各项的整数部分与分数部分。
整数部分为平方数列,分数部分是公比为的等比数列,如上所示,故未知项为81+1=82,因此,选C。
【真题精析】例1、[答案]C[解析]数列的二、三、六项分别出现,因此考虑将一、四项拆分出带有根号的式子。
【真题精析】例1. (2010·江西)3,3,4,5,7,7,11,9,( ),( )A.13,11 B.16,12 C.18,11 D.17,13[答案]C[解析]数列较长,数字变化幅度不大,并且有两个未知项,优先进行交叉分组。
【真题精析】例1、(2007·河北)1,2,2,6,3,15,3,21,4,( )A.46 B.20 C.12[答案]D[解析]数列不具有单调性,变化幅度不大且数列较长,优先使用多元素分组法。
由于相邻两项之间具有明显的倍数关系,故考虑两两分组。
得到质数列。
如图所示,因此,选D。
【真题精析】例1、8,6,10,11,12,7,( ),24,28A.15 B.14 C.9 D.18[答案]B[解析]数列单调关系和倍数关系均不明显,变化幅度不大,项数较多,优先采用多元素分组法。
交叉及分段分组都没有明显的规律,尝试采用对称分组法。
对称分组后组内求和,得到公差为6的等差数列。
如图所示,因此,选B。
【真题精析】例1、1,2,3,7,16,( )A.66 B.65 C.64 D.63[答案]B[解析]基于“数形敏感”,由数列的三、四、五项可以得出。
经过验证有:2,故该数列的通项为因此,所填数字为,答案为B。
【真题精析】例1、2,12,36,80,( )A.100 B.125 C.150 D.175[答案]C[解析]基于“数字敏感”,数列的第四项80可以拆分成,第三项可以拆分成36=,基于“数列敏感”,可以推测数列是由平方数列和立方数列相加得到,经过验证有2=1+1,,故数列的通项公式为。
因此,所求数字为150,答案选C。
【真题精析】例1、6,12,36,102,( ),3A.24 B.71 C.38 D.175[答案]A[解析]数列各项都可以被3整除。
公务员行测指导:30种数字推理解题技巧 2012-01-21 来源:学宝教育国家公务员考试网2【字体:大中小】一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、()A.1/92B.1/124C.1/262D.1/343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ( )A 19/3B 8C 39D 32三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、()A. 33B. 37C. 39D. 41四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、()A.4B.3C.2D.1五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )A.163B.134C.785D.896六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )A. 165B. 193C. 217D. 239七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
【例】118、60、32、20、( )A.10B.16C.18D.20八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。
【例】0、6、24、60、120、()A.180B.210C.220D.240九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。
【例】3、7、16、107、 ( )A.1707B.1704C.1086D.1072十、当数列选项中有两个整数、两个小数时,答案往往是小数,且一般是通过乘除来实现的。
当然如果出现了两个正数、两个负数诸如此类的标准配置时,答案也是负数。
【例】2、13、40、61、()A.46.75B.82C. 88.25D.121十一、数字推理如果没有任何线索的话,记得要选择相对其他比较特殊的选项,譬如:正负关系、整分关系等等。