高中数学必修五全套教案

合集下载

高中数学 人教A版必修五全册电子教案(含课程纲要))

高中数学   人教A版必修五全册电子教案(含课程纲要))

(1)课内即时评价:对学生个体与群体的课堂纪律、学习态度、 参与程度、方法效果等方面的表现随堂作出及时评价,学段末综合每 个学生的表现,按等级 A、B、C 作出定性评价。 (2)课后自主学习与作业评价:对学生个体课后学习的主动自觉 性、完成学习任务的程度、书面作业的数量和质量、单元达标测试等 及时反馈评价,学段末综合每个学生的表现,按等级 A、B、C 作出定 性评价。 3、 研究性学习评价:按学校评价办法执行。 (四) 学分授予: 1、 原则:有以下三种情况之一者,不授予学分 (1) 出勤率不足百分之九十; (2) 学习状态评定等级为 C; (3) 学段末达标测试成绩达不到合格线。 2、学段末学科成绩以定性与定量两种方式告知本人和家长。 (五) 学段末教学达标测评 1、 量标测试重点: (1) 实际问题的建模与求解能力; (2) 推理运算能力; (3) 方程与数形结合的思想方法; (4) 正弦定理、余弦定理、等差数列、等比数列、一元二次不等 式的解法,二元一次不等式组表示平面区域的画法、线形规划的基本 思想方法。 2、 量标测试命题双向细目表
第 4 页,共 10 页 郑州市第二中学
11
简单线形规划
理解(操作、会、初步应 用)
6
12
基本不等式
理解(探索、会、初步应 用)
5
13 14
学段末复习
理解、掌握、应用 课时合计
6 54
(二)重点、难点分析 1、 解三角形 (1) 重点: (a) 正弦定理、余弦定理及三角形的度量; (b) 测量和计算实际问题。 (2) 难点: (a) 探索正弦定理、余弦定理; (b) 正弦定理、余弦定理的灵活应用和实际应用。 2、 数列 (1) 重点: (a) 等差、等比数列的概念、通项公式、求和公式; (b) 概念、公式、性质的应用。 (2) 难点: (a) 探求等差、等比数列前 n 项和公式; (b) 有关知识的灵活应用; (c) 数列建摸。 3、 不等式

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。

通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。

第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。

通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。

第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。

通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。

第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。

通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。

第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。

通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。

高中数学必修五课件整书全套

高中数学必修五课件整书全套
双曲线的标准方程和一般方程
掌握双曲线的标准方程和一般方程,能够根据不同的条件选择合适的方程形式解决问题。
抛物线及其性质
抛物线的定义和方程
通过平面内与一个定点和一条定直线距离相 等的点的轨迹定义抛物线,并推导其标准方 程。
抛物线的几何性质
探讨抛物线的对称性、顶点、焦点、准线等几何性 质,并理解其在实际问题中的应用。
回顾三角函数的定义、性质、图像和 变换,以及三角函数在实际问题中的
应用。
不等式与线性规划
总结不等式的性质、解法和应用,以 及线性规划问题的建模和求解方法。
数列与数学归纳法
复习数列的概念、通项公式、求和公 式,以及数学归纳法在证明数列问题 中的应用。
概率与统计
回顾概率的基本概念、事件的概率计 算、随机变量的分布和期望,以及统 计中的数据处理和分析方法。
07
概率统计初步
随机事件与概率
随机事件的定义与性质
了解随机事件的概念,掌握随机事件 的基本性质,如互斥事件、对立事件 等。
概率的定义与性质
古典概型与几何概型
掌握古典概型和几何概型的定义和计 算方法,能够运用古典概型和几何概 型解决简单的实际问题。
理解概率的定义,掌握概率的基本性 质,如非负性、规范性、可加性等。
高中数学必修五课件 整书全套
目录
• 绪论 • 数列与数学归纳法 • 不等式与不等式组 • 圆锥曲线与方程 • 空间向量与立体几何 • 导数与微分初步 • 概率统计初步 • 复习与总结
01
绪论
教材简介
本教材是高中数学必修五课程的配套课件,涵盖 01 了课程的所有知识点和教学要求。
课件内容以章节为单位,包括教学目标、知识点 02 讲解、例题分析、练习题等多个部分。

高中数学必修五教案(8篇)

高中数学必修五教案(8篇)

高中数学必修五教案(8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学必修五教案(8篇)作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,借助教案可以更好地组织教学活动。

高中数学必修五教案全集

高中数学必修五教案全集

高中数学必修五教案全集
教学目标:
1. 理解一次函数的定义及其特点;
2. 掌握一次函数的求解方法;
3. 能够应用一次函数解决实际问题。

教学重点难点:
1. 了解一次函数的定义和特点;
2. 掌握一次函数的求解方法;
3. 能够灵活应用一次函数解决实际问题。

教学内容:
1. 一次函数的定义和表示形式;
2. 一次函数的性质及图像特点;
3. 一次函数的求解方法;
4. 一次函数在实际生活中的应用。

教学过程:
1. 讲解一次函数的定义及表示形式,引导学生理解一次函数的概念;
2. 分析一次函数的性质及图像特点,帮助学生掌握一次函数的基本特点;
3. 演示一次函数的求解方法,让学生掌握如何求解一次函数;
4. 结合实际问题,引导学生应用一次函数解决实际问题。

教学方法:
1. 示范教学法;
2. 课堂讨论法;
3. 问题解决法;
4. 案例分析法;
教学工具:
1. 教学课件;
2. 教学板书;
3. 教学练习题;
4. 实际应用案例;
教学评价:
1. 课堂作业评价;
2. 学生课堂表现评价;
3. 实际应用案例成果评价。

高中数学必修五全套教案

高中数学必修五全套教案
如何将代数方程与几何图形相结合,通过代数方法解决几何问题,以及如何利用几何性质简化代数方程。
难点
重点
已知直线经过点(2,3)且与x轴、y轴分别交于A、B两点,如果|AB| = 10,求直线的方程。
例题1
已知圆心在原点且与直线x + 2y - 4 = 0相切,求圆的方程。
例题2
已知椭圆经过点(2,3)和(4,6),求椭圆的标准方程。
CHAPTER
第三章 不等式
03
总结词:巩固基础
详细描述:回顾不等式的基本性质和解题方法,包括比较法、综合法和分析法等。
总结词:知识串联
详细描述:将不等式与其他数学知识进行串联,如函数、数列和解析几何等,加深对不等式的理解和应用。
总结词:概念辨析
详细描述:对不等式中的一些易混淆概念进行辨析,如“大于”、“小于”、“不小于”、“不大于”等,帮助学生准确把握概念。
空间几何图形的分类
空间几何图形具有许多性质,如对称性、平行性、垂直性等,这些性质在解决实际问题中有着广泛的应用。
空间几何图形的性质
理解空间几何图形的性质和特点,掌握三维图形的表示方法。
重点
难点
解决方法
如何将平面几何的知识迁移到立体几何中,理解三维空间的概念。
通过实例和图形的演示,帮助学生建立空间想象能力,理解三维图形的结构和特点。
01
02
03
04
CHAPTER
第五章 解析几何初步
05
直线方程
回顾直线的点斜式、斜截式、两点式和截距式方程,理解各种方程的适用场景和优缺点。
圆的标准方程
掌握圆的标准方程,理解圆心和半径对圆的影响。
椭圆、双曲线和抛物线的标准方程与几何性质

高中数学必修五教案全

高中数学必修五教案全

高中数学必修五教案全
授课对象:高中生
教学内容:数学必修五
教学目标:通过本课程的学习,学生能够掌握平面向量的概念及运算,能够解决与平面向量相关的数学问题
教学时长:2课时
教学步骤:
第一课时:
1. 引入平面向量的概念,讲解平面向量的定义及性质
2. 介绍平面向量的加法和减法,进行相关例题的讲解
3. 练习平面向量的加法和减法,让学生掌握运算方法
第二课时:
1. 讲解平面向量的数量积和向量积的定义及性质
2. 介绍平面向量的数量积和向量积的计算方法,进行相关例题的讲解
3. 练习平面向量的数量积和向量积,让学生掌握运算方法
4. 总结本节课的内容,强化学生对平面向量的理解
教学评估:
1. 在课堂上解答学生提出的问题,检查学生对平面向量的理解程度
2. 布置相关练习题,让学生独立完成并交作业
3. 下节课前进行解答和讲解,检查学生的学习情况
教学反思:
通过本节课的教学,学生应该能够初步掌握平面向量的相关概念及运算方法,为以后更深入的学习打下基础。

在教学中要注重实际应用,让学生了解平面向量在生活中的作用,激发学生学习的兴趣,提高学生的学习积极性。

高中数学必修5整套教案

高中数学必修5整套教案

高中数学必修5整套教案教学目标:学生能够区分和应用直线和平面的基本概念,理解直线和平面之间的关系。

教学重点:直线与平面的定义、性质和关系。

教学难点:平面的方程和直线与平面的交点问题。

教学过程:一、导入讨论:通过展示一些实际生活中的直线和平面的例子,引出直线和平面的概念。

二、概念讲解:介绍直线和平面的定义、特点和性质,并让学生做一些相关的练习。

三、直线与平面的关系:讲解直线和平面之间的关系,并通过实际例子辅助理解。

四、实例分析:解决一些直线与平面的交点问题,让学生能够灵活应用所学知识。

五、练习训练:设计一些练习题让学生巩固所学知识,提高解题能力。

六、总结反思:总结本课内容,让学生自主总结所学知识,并提出问题和思考。

第二课:圆的基本概念教学目标:学生能够掌握圆的相关概念和性质,理解圆的作图和计算方法。

教学重点:圆的定义、圆周率及相关概念。

教学难点:圆的作图及相关计算题目。

教学过程:一、导入讨论:通过展示圆的相关图片,引入圆的概念。

二、概念讲解:介绍圆的定义、性质和相关概念,并让学生做一些相关的练习。

三、圆的作图:讲解圆的作图方法和相关计算技巧,让学生能够灵活运用。

四、圆周率的应用:介绍圆周率的概念和计算方法,通过实例计算巩固所学知识。

五、练习训练:设计一些练习题让学生巩固所学知识,提高解题能力。

六、总结反思:总结本课内容,让学生自主总结所学知识,并提出问题和思考。

第三课:三角形的基本概念教学目标:学生能够掌握三角形的相关概念和性质,理解三角形的分类和计算方法。

教学重点:三角形的定义、分类及性质。

教学难点:三角形的作图及相关计算题目。

教学过程:一、导入讨论:通过展示三角形的相关图片,引入三角形的概念。

二、概念讲解:介绍三角形的定义、性质和分类,并让学生做一些相关的练习。

三、三角形的作图:讲解三角形的作图方法和相关计算技巧,让学生能够灵活运用。

四、三角形的应用:介绍三角形的应用知识和计算方法,通过实例计算巩固所学知识。

高中数学必修5教案全

高中数学必修5教案全

高中数学必修5教案全教学目标:学生能正确理解直线方程的概念,掌握直线方程的求解方法,能够应用直线方程解决实际问题。

教学重点和难点:直线方程的概念和求解方法。

教学准备:黑板、彩色粉笔、教学PPT教学过程:一、导入:通过讲述直线在几何中的重要性,引出直线方程的概念。

二、讲解直线方程的定义和性质,引导学生认识直线方程的基本形式。

三、示范解题步骤,并进行例题讲解,让学生掌握直线方程的求解方法。

四、让学生自主练习,巩固所学内容。

五、讨论解题思路,引导学生探讨直线方程在实际问题中的应用。

六、总结本节课的重点,梳理直线方程的知识结构。

教案二:数列与数列的求和教学目标:学生能正确理解数列的概念,掌握数列的通项公式和求和公式,能够应用数列解决实际问题。

教学重点和难点:数列的概念、通项公式和求和公式。

教学准备:黑板、彩色粉笔、教学PPT教学过程:一、导入:通过举例引导学生认识数列的概念。

二、讲解数列的概念和性质,引导学生掌握数列的通项公式和求和公式。

三、示范解题步骤,并进行例题讲解,让学生掌握数列的求解方法。

四、让学生自主练习,巩固所学内容。

五、讨论解题思路,引导学生探讨数列在实际问题中的应用。

六、总结本节课的重点,梳理数列和数列的求和的知识结构。

教案三:平面向量教学目标:学生能正确理解平面向量的概念,掌握平面向量的加减乘除运算规则,能够应用平面向量解决实际问题。

教学重点和难点:平面向量的概念、运算规则。

教学准备:黑板、彩色粉笔、教学PPT教学过程:一、导入:通过引导学生思考向量的概念,引出平面向量的概念。

二、讲解平面向量的定义和性质,引导学生掌握平面向量的加减乘除运算规则。

三、示范解题步骤,并进行例题讲解,让学生掌握平面向量的运算方法。

四、让学生自主练习,巩固所学内容。

五、讨论解题思路,引导学生探讨平面向量在实际问题中的应用。

六、总结本节课的重点,梳理平面向量的知识结构。

以上为高中数学必修5教案全范本,希望对您有所帮助。

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)高中数学必修五教案篇一教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。

心理体验,产生热爱数学的情感。

教学重点:等差数列前n项和的公式。

教学难点:等差数列前n项和的公式的灵活运用。

教学方法:启发、讨论、引导式。

教具:现代教育多媒体技术。

教学过程一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。

提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。

(教师观察学生的表情反映,然后将此问题缩小十倍)。

我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10。

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

高中数学必修五教案优秀8篇

高中数学必修五教案优秀8篇

高中数学必修五教案优秀8篇新课标高中数学必修5教案篇一知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。

过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。

情感态度价值观:通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。

通过探索得到两角差的余弦公式以及公式的灵活运用两角差余弦公式的推导过程预习自学案一、知识链接1、写出的三角函数线:2、向量,的数量积,①定义:②坐标运算法则:3、,,那么是否等于呢?下面我们就探讨两角差的余弦公式二、教材导读1、、两角差的余弦公式的推导思路如图,建立单位圆O(1)利用单位圆上的三角函数线设则又OM=OB+BM=OB+CP=OA_____ +AP_____=从而得到两角差的余弦公式:____________________________________(2)利用两点间距离公式如图,角的终边与单位圆交于A( )角的终边与单位圆交于B( )角的终边与单位圆交于P( )点T( )AB与PT关系如何?从而得到两角差的余弦公式:____________________________________(3)利用平面向量的知识用表示向量,=(,) =(,)则。

=设与的夹角为①当时:=从而得出②当时显然此时已经不是向量的夹角,在范围内,是向量夹角的补角。

我们设夹角为,则 + =此时 =从而得出2、两角差的余弦公式____________________________三、预习检测1、利用余弦公式计算的值。

2、怎样求的值你的疑惑是什么?______________________________________________________________________________________________________________ 探究案例1. 利用差角余弦公式求的值。

例2.已知,是第三象限角,求的值。

训练案一、基础训练题1、2、¬¬¬¬¬¬¬¬¬¬¬3、二、综合题-------------------------------------------------- 高中数学学习方法技巧总结篇二基础很重要,保持耐心多巩固要学好数学,最关键的是要有一个好的基础。

(完整版)高中数学人教版必修5全套教案(最新整理)

(完整版)高中数学人教版必修5全套教案(最新整理)

C
由向量的加法可得 AB AC CB

j AB j ( AC CB)
A
B
∴ j AB j AC j CB
j
j
AB
cos900 A0
j
CB
cos900 C

csin
A asin C
,即
a sin
A
c sinC
同理,过点 C 作 j BC ,可得
nC
k k
0 ;
或 a k si nA ,b k si nB ,c k si nC ( k 0)
(2)正弦定理的应用范围:
①已知两角和任一边,求其它两边及一角;
②已知两边和其中一边对角,求另一边的对角。
Ⅴ.课后作业
第 10 页[习题 1.1]A 组第 1(1)、2(1)题。
●板书设计
●授后记
(由学生总结)若 ABC 中,C= 900 ,则 cosC 0 ,这时 c2 a2 b2
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
[例题分析]
例 1.在 ABC 中,已知 a 2 3 , c 6 2 , B 600 ,求 b 及 A ⑴解:∵ b2 a2 c2 2accosB
践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合
情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识
间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点
正弦定理的探索和证明及其基本应用。
●教学难点
已知两边和其中一边的对角解三角形时判断解的个数。
C 1800 (A B)
1800 (32.00 81.80)

高中数学必修五全套教案

高中数学必修五全套教案

高中数学必修五全套教案教案一:立体几何教学目标:学生掌握立体几何中的基本概念和定理,能够运用这些知识解决实际问题。

教学内容:平行四边形、立体图形的体积和表面积计算、空间直角坐标系等。

教学步骤:1. 引入立体几何的基本概念,让学生认识平行四边形、立方体、棱锥等图形。

2. 教授计算立体图形的体积和表面积的方法,包括长方体、正方体等常见图形的计算。

3. 练习题:让学生做一些相关的计算题目,巩固所学知识。

4. 拓展练习:让学生在实际情境中应用所学知识,解决实际问题。

教学评价:通过课堂练习和作业,检验学生对立体几何的掌握程度,及时纠正错误,提高学生的学习兴趣。

教案二:三角函数教学目标:学生掌握三角函数的基本概念和性质,能够灵活运用三角函数解决实际问题。

教学内容:三角函数的定义、性质、图像、变化规律、基本三角恒等式等。

教学步骤:1. 引入三角函数的概念,让学生了解正弦、余弦、正切等三角函数的定义和性质。

2. 教授三角函数的图像及变化规律,让学生熟练掌握三角函数的变化趋势。

3. 教授基本三角恒等式的应用方法,让学生学会如何灵活运用。

4. 拓展练习:让学生在更加复杂的题目中练习,提高解决问题的能力。

教学评价:通过课堂表现和考试评分,检验学生对三角函数的理解和运用能力,及时纠正错误,提高学生的学习兴趣。

教案三:概率与统计教学目标:学生掌握概率与统计的基本概念和方法,能够应用这些知识解决实际问题。

教学内容:概率的定义、性质、计算方法、统计的基本概念、频数分布表等。

教学步骤:1. 引入概率与统计的基本概念,让学生了解随机事件、概率、频数等概念。

2. 教授概率的计算方法,包括古典概率、几何概率等,让学生掌握不同方法的应用。

3. 教授统计的基本方法,包括频数分布表、直方图、折线图等,让学生熟练掌握数据的统计与分析。

4. 拓展练习:让学生在更加复杂的情境中练习,提高解决问题的能力。

教学评价:通过课堂表现和作业完成情况,检验学生对概率与统计的理解和运用能力,及时纠正错误,提高学生的学习兴趣。

高中数学必修五教案全集(48份) 人教课标版(实用教案)

高中数学必修五教案全集(48份) 人教课标版(实用教案)

高中数学必修五教案全集(48份)人教课标版(实用教案)第一章解三角形本章规划《课程标准》和教科书把“解三角形”这部分内容安排在数学必修五的第一部分,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁.教学中应加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,提高教学效益,并有利于学生对于数学知识的学习和巩固.要重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导..教学内容全章有三大节内容:第一大节:正弦定理和余弦定理,这一节通过初中已学过的三角中的边角关系,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”重点是正弦定理的概念和推导方法,体现了从特殊到一般的思想,并可以向学生提出用向量来证明正弦定理,这一点可以让学生探究.在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.设置这些问题,都是为了加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角形的方法,需要对三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力.第二大节:应用举例,在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较.对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法.学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够.针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题.第三大节:实习作业,适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题和解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果的能力,增强学生应用数学的意识和数学实践能力.教师要注意对学生实习作业的指导,包括对实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题..作用与地位本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.学习数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱.为解决此问题,教学中要用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构..学习目标本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章学习,学生应当达到以下学习目标:()通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题..重点和难点通过对三角形中边角关系的探索,证明正弦定理、余弦定理及其推论,并能应用它们解三角形..课时安排正弦定理和余弦定理(课时)应用举例(课时)实习作业(课时)本章复习(课时)人生最大的幸福,莫过于连一分钟都无法休息零碎的时间实在可以成就大事业珍惜时间可以使生命变的更有价值时间象奔腾澎湃的急湍,它一去无返,毫不流连一个人越知道时间的价值,就越感到失时的痛苦得到时间,就是得到一切用经济学的眼光来看,时间就是一种财富时间一点一滴凋谢,犹如蜡烛漫漫燃尽我总是感觉到时间的巨轮在我背后奔驰,日益迫近夜晚给老人带来平静,给年轻人带来希望不浪费时间,每时每刻都做些有用的事,戒掉一切不必要的行为时间乃是万物中最宝贵的东西,但如果浪费了,那就是最大的浪费我的产业多么美,多么广,多么宽,时间是我的财产,我的田地是时间时间就是性命,无端的空耗别人的时间,知识是取之不尽,用之不竭的。

人教A版高中数学必修五全册教案

人教A版高中数学必修五全册教案

人教A版高中数学必修五全册教案教案:高中数学必修五全册教材:人教A版高中数学必修五教学目标:1.掌握数列概念,能够计算等差数列和等比数列的通项和前n项和;2.理解极限的概念,能够计算函数在其中一点的极限;3.理解一元一次方程、二次方程的根及其性质,能够求解一元一次方程和二次方程;4.理解函数概念,能够绘制简单的函数图像,计算函数值及函数的性质;5.掌握数学应用题的解题方法和技巧。

教学内容:第一单元数列与数学归纳法1.1数列的概念与通项的求法1.2等差数列及其求和公式1.3等比数列及其求和公式第二单元函数与极限2.1函数的概念及表示法2.2函数的图像和性质2.3极限的概念及计算第三单元一元一次方程与不等式3.1一元一次方程与方程的解3.2一元一次方程组与解的性质3.3一元一次不等式及其解第四单元二次函数与一元二次方程4.1二次函数的图像和性质4.2一元二次方程及其性质4.3一元二次方程的解法与应用第五单元测度与图形的性质5.1弧长与扇形面积5.2直线与圆的相交关系5.3平面向量的概念与性质5.4弧度制与角的变化率教学方法:1.通过讲解掌握基本概念与定理,引导学生分析例题,提高解题技巧;2.运用举一反三、归纳法,培养学生的综合运用能力和思维能力;3.坚持理论与实践相结合,通过练习和应用题,巩固知识点和技能;4.引导学生进行思考与讨论,激发学生的兴趣,培养其数学思维。

教学步骤:第一步:导入通过引入相关例子,激发学生的兴趣,预习相关内容,引起学生的思考。

第二步:知识点讲解通过课本中的例题和习题,详细讲解每个知识点的概念、公式、性质、注意事项等。

第三步:练习与讨论学生进行课后习题的练习,老师对错的例题进行解析和讲解,学生之间进行讨论和交流。

第四步:拓展与应用通过一些应用题目,让学生把所学内容应用到实际问题中,提高学生的应用能力。

第五步:总结与归纳对所学内容进行总结归纳,涵盖知识点和解题技巧,为下一节课的学习做好准备。

北师大版高中数学《必修5》全部教案

北师大版高中数学《必修5》全部教案

北师大版高中数学《必修5》全部教案第一课:集合一、教学目标1.知识与能力(1)了解集合的概念,并掌握集合的表示方式。

(2)掌握集合的运算及相关定义。

(3)能够解决集合的基本运算问题,并进行综合运用。

2.过程与方法(1)讲授与团体讨论相结合的教学方法。

(2)运用教学实例与引导学生发现法相结合的教学方法。

(3)课堂小组活动和合作探究相结合的教学方法。

3.情感与态度(1)激发学生对数学知识学习兴趣和学习积极性。

(2)培养学生合作学习能力和团队精神。

二、教学内容和学时安排1.集合的引入(1学时)(1)集合的定义和表示方式。

(2)空集、全集及其表示方法。

(3)集合间的相等和包含关系。

(1)并、交、差的定义和性质。

(2)集合运算的基本规律。

(3)集合的补集和集合恒等式。

3.集合的综合运用(2学时)(1)对集合的基本运算进行综合运用。

(2)通过具体问题分析,掌握解决问题的方法。

三、教学重点与难点1.教学重点(1)集合的基本概念和表示方式。

(2)集合运算的定义和运算规则。

2.教学难点(1)通过具体问题综合运用集合运算。

(2)分析问题并运用集合运算解决问题。

四、教学过程1.集合的引入(1学时)(1)教师引入课题,简单明了地介绍集合的定义和基本符号。

(2)通过讲解并请学生做例题,引导学生了解空集、全集和集合的相等和包含关系。

(1)教师以数字和图形为例,讲解并请学生做例题,引导学生理解集合运算并掌握基本规律。

(2)划重点,让学生掌握并背记集合的补集和集合恒等式的定义。

3.集合的综合运用(2学时)(1)教师给出综合运用的具体问题,并通过小组合作讨论的方式,引导学生分析问题,并运用集合运算解决问题。

(2)教师针对学生的解题过程和结果,进行点评总结并给予肯定与鼓励。

五、课堂训练与作业布置1.课堂练习请学生完成教材课后练习题,加强对集合的运算和综合应用。

2.作业布置请学生做完教材上的课后作业,并要求以书面形式归纳总结本节课所学的知识和运算规则。

高中数学必修5教案

高中数学必修5教案

高中数学必修5教案新课标高中数学必修5教案篇一一、教材分析1、《指数函数》在教材中的地位、作用和特点《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。

通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

2、教学目标、重点和难点通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

二、教法设计由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:1、创设问题情景。

高中数学必修五全套学案

高中数学必修五全套学案

※ 知识拓展
在△ ABC 中,

2
a
2
b
2
c ,则角
C 是直角;
若 a2 b2 c 2 ,则角 C 是钝角;

2
a
2
b
2
c ,则角 C 是锐角.
学习评价
※ 自我评价 你完成本节导学案的情况为(
).
A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测 (时量: 5 分钟 满分: 10 分) 计分 :
从余弦定理,又可得到以下推论:
2
2
2
bca
cos A


2bc

[ 理解定理 ] (1)若 C= 90 ,则 cosC
,这时 c2 a2 b2
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.
(2)余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角就可以求出第三边;
②已知三角形的三条边就可以求出其它角.
b,
sin A sin B
同理可得 c
b,
sin C sin B
从而 a
b
c .
sin A sin B sin C
类似可推出,当 ABC 是钝角三角形时,以上关系式仍然成立.请你试试导
.
角三
新知 : 正弦定理
在一个三角形中,各边和它所对角的
a
b
c.
sin A sin B sin C
的比相等,即
试试 :
学习评价
※ 自我评价 你完成本节导学案的情况为(
).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测 (时量: 5 分钟 满分: 10 分) 计分 :

高中数学必修5教案

高中数学必修5教案

高中数学必修5教案一、教学目标1.熟练掌握函数、一次函数和二次函数的概念及相关性质;2.掌握函数的基本性质和变化规律;3.理解函数图象的特点,能够正确描述和分析函数图象的变化趋势;4.掌握一次函数和二次函数的应用能力,能够解决实际问题。

二、教学重点和难点1.函数的基本性质和变化规律的理解和应用;2.函数图象的描述和分析;3.一次函数和二次函数的应用解题。

三、教学内容和安排1. 函数的基本性质和变化规律1.1 函数的定义和性质•函数的定义•定义域和值域•函数的性质:单调性、奇偶性、周期性1.2 函数的图象及其变化趋势•函数图象的基本性质•函数图象的平移、伸缩和翻转•函数图象的变化趋势分析2. 一次函数2.1 一次函数的定义和性质•一次函数的定义•一次函数的图象和性质•一次函数的解析式2.2 一次函数的应用•线性方程与一次函数的关系•直线的斜率和截距•一次函数在实际问题中的应用3. 二次函数3.1 二次函数的定义和性质•二次函数的定义•二次函数的图象和性质•二次函数的解析式3.2 二次函数的应用•二次函数的顶点、轴对称和最值•二次函数在实际问题中的应用四、教学方法和策略1.合作学习:以小组合作的方式进行问题解决和讨论,激发学生的参与度和思考能力;2.示范导学:通过实例引导学生掌握函数定义、性质和应用;3.案例分析:结合实际生活中的问题,让学生运用所学数学知识解决问题。

五、教学评价方式1.课堂参与表现:学生在课堂上积极回答问题、参与讨论的表现;2.作业质量:学生完成的课后作业的完成度和准确性;3.案例分析:学生在应用题解析中的表现。

六、教学资源1.教材:《高中数学必修5》;2.多媒体教具:投影仪、电脑。

七、教学反思本节课主要讲解了高中数学必修5中的函数、一次函数和二次函数的概念、性质以及应用。

通过合作学习、示范导学和案例分析的教学方法,激发了学生的学习兴趣,并通过实际问题的解决培养了学生的应用能力。

在教学过程中,学生的参与度和思考能力有所提升,但仍需注意学生的活跃程度和课堂纪律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin b B c =,又sin 1cC c==, 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B (图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin abAB=sin cC=等价于sin sin abAB=,sin sin cbCB=,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。

解:根据三角形内角和定理,0180()=-+C A B000180(32.081.8)=-+066.2=; 根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;根据正弦定理,00sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A评述:对于解三角形中的复杂运算可使用计算器。

例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:根据正弦定理,sin 28sin40sin 0.8999.20==≈b A B a因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,00sin 20sin7630().sin sin40==≈a C c cm A⑵ 当0116≈B 时,00000180()180(40116)24=-+≈-+=C A B ,00sin 20sin2413().sin sin40==≈a C c cm A [补充练习]已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。

A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()2222 2c c c a b a ba ab b a b a b a b=⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1-5) 同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即 2222cos a b c bc A =+-2222cos b a c ac B =+- 2222cos c a b ab C =+-思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc222cos 2+-=a cb B ac 222cos 2+-=b ac C ba[理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

[例题分析]例1.在∆ABC 中,已知=a c 060=B ,求b 及A ⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+- =8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A例2.在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 解:由余弦定理的推论得:cos 2222+-=b c a A bc22287.8161.7134.6287.8161.7+-=⨯⨯0.5543,≈ 05620'≈A ; cos 2222+-=c a b B ca222134.6161.787.82134.6161.7+-=⨯⨯0.8398,≈ 03253'≈B ;0000180()180(56203253)''=-+≈-+C A B [补充练习]在∆ABC 中,若222a b c bc =++,求角A (答案:A=1200)Ⅳ.课时小结(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。

[随堂练习1](1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

(2)在∆ABC 中,若1a =,12c =,040C ∠=,则符合题意的b 的值有_____个。

(3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围。

(答案:(1)有两解;(2)0;(3)2x <<)2.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型。

分析:由余弦定理可知222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆ (注意:是锐角A ⇔ABC 是锐角三角形∆)解:222753>+,即222a b c >+, ∴ABC 是钝角三角形∆。

[随堂练习2](1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型。

(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。

(答案:(1)ABC 是钝角三角形∆;(2)∆ABC 是等腰或直角三角形) 2.在∆ABC 中,060A =,1b =,面积为2,求sin sin sin a b c A B C ++++的值 分析:可利用三角形面积定理111sin sin sin 222S ab C ac B bc A ===以及正弦定理sin sin abAB=sin cC==sin sin sin a b cA B C++++解:由1sin 2Sbc A ==得2c =,则2222cos a b c bc A =+-=3,即a = 从而sin sin sin a b c A B C ++++2sin aA==Ⅲ.课堂练习(1)在∆ABC 中,若55a =,16b =,且此三角形的面积S = C (2)在∆ABC 中,其三边分别为a 、b 、c ,且三角形的面积2224a b c S +-=,求角C(答案:(1)060或0120;(2)045)Ⅳ.课时小结(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; (2)三角形各种类型的判定方法; (3)三角形面积定理的应用。

Ⅴ.课后作业(1)在∆ABC 中,已知4b =,10c =,030B =,试判断此三角形的解的情况。

(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围。

(3)在∆ABC 中,060A =,1a =,2b c +=,判断∆ABC 的形状。

(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程25760x x --=的根, 求这个三角形的面积。

例1、如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5 n mile 后到达海岛B,然后从B 出发,沿北偏东32︒的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)解:在∆ABC 中,∠ABC=180︒- 75︒+ 32︒=137︒,根据余弦定理,AC=ABC BC AB BC AB ∠⨯⨯-+cos 222 =︒⨯⨯⨯-+137cos 0.545.6720.545.6722 ≈113.15 根据正弦定理,CAB BC ∠sin = ABCAC ∠sin sin ∠CAB = ACABC BC ∠sin =15.113137sin 0.54︒≈0.3255, 所以 ∠CAB =19.0︒, 75︒- ∠CAB =56.0︒答:此船应该沿北偏东56.1︒的方向航行,需要航行113.15n mile补充例2、某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x, AB=14x,AC=9,∠ACB=︒75+︒45=︒120∴(14x) 2= 92+ (10x) 2 -2⨯9⨯10xcos ︒120∴化简得32x 2-30x-27=0,即x=23,或x=-169(舍去) 所以BC = 10x =15,AB =14x =21,又因为sin ∠BAC =AB BC ︒120sin =2115⨯23=1435 ∴∠BAC =3831'︒,或∠BAC =14174'︒(钝角不合题意,舍去), ∴3831'︒+︒45=8331'︒答:巡逻艇应该沿北偏东8331'︒方向去追,经过1.4小时才追赶上该走私船.评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅳ.课时小结解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。

相关文档
最新文档