麦克斯韦方程组
麦克斯韦方程组解释
麦克斯韦方程组解释
麦克斯韦方程组是电磁学的基本方程组,描述了电磁场的运动规律和相互作用。
这个方程组由四个方程组成,包括:
1. 电场线方程:高斯定理,即电场中的垂直于电荷分布方向的电场线密度必须相等。
2. 磁场线方程:法拉第电磁感应定律,即当一个闭合电路的一部分与一个磁体相互作用时,磁体周围会出现磁场。
3. 光速方程:洛伦兹变换,即光速在任何参考系中保持不变。
4. 散度方程:麦克斯韦方程,描述了电场和磁场的散度和动量张量之间的关系。
这些方程描述了电磁场的运动规律和相互作用,包括电场、磁场、光速和动量这四个维度的相互作用。
这些方程在很多领域都有广泛应用,如无线通信、光学、电磁场计算等。
麦克斯韦方程
麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一套偏微分方程。
它们描述了电场、磁场、电荷密度和电流密度之间的关系。
它包含四个方程:电荷如何产生电场的高斯定理;不存在的磁单极子的高斯定律;电流与变化的电场如何产生磁场的麦克斯韦安培定律以及变化的磁场如何产生电场的法拉第电磁感应定律。
从麦克斯韦方程中,我们可以推断出光波是电磁波。
麦克斯韦方程和洛伦兹力方程构成了经典电磁学的完整组合。
1865年,麦克斯韦建立了由20个方程和20个变量组成的原始方程
麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一套偏微分方程。
它们描述了电场、磁场、电荷密度和电流密度之间的关系。
它包含四个方程:电荷如何产生电场的高斯定理;不存在的磁单极子的高斯定律;电流与变化的电场如何产生磁场的麦克斯韦安培定律以及变化的磁场如何产生电场的法拉第电磁感应定律。
详细介绍
麦克斯韦方程是英国物理学家麦克斯韦在19世纪建立的描述电场和磁场的四个基本方程。
麦克斯韦方程
麦克斯韦方程
微分形式的方程通常称为麦克斯韦方程。
在麦克斯韦方程组中,电场和磁场是一个整体。
方程组系统而完整地推广了电磁场的基本规律,预测了电磁波的存在。
核心理念
麦克斯韦的旋涡电场和位移电流假说的核心思想是:变化的磁场激发旋涡电场,变化的电场激发旋涡磁场;电场和磁场不是彼此孤立的,而是相互联系,相互激发,形成统一的电磁场(这也是电磁波的形成原理)。
麦克斯韦进一步整合了电场和磁场的所有定律,建立了完整的电磁场理论体系。
电磁理论体系的核心是麦克斯韦方程组。
麦克斯韦方程组
一.麦克斯韦方程组的积分形式
磁场
静电场 电 场 感生
电场
一般 电场
高斯定理
SBdS0
环路定理
Hdl
L
S(j D t )dS
SD (1)dSS内 q0V dV
D(2)dS0 S
D D (1 )D (2)
SDdSVdV
E(1)dl 0 L
E(2)dl
B dS
L
t
E E (1 )E (B 2)
解:1) E72 si0 1n50 t ,
D7200 si1n5 0t
jD d d D t 7 2 15 0 00 c1 o50 s t (A m -2)
2)作如图r=0.01m的环路,
由安培环路定理:
L HdlSjDdS
r
L jD
H2rjD r2 Hj2 D r3.6 0150 0co 15 s0 t
变化电场和极化 电荷的微观运动
无焦耳热, 在导体、电介质、真空 中均存在
共同点
都能激发磁场
P334 问题:比较导体、介质中 j0 ,数jD量级
三. 安培环路定理的推广
1. 全电流 I全I0ID
对任何电路,全电流总是连续的
D
(j )dS0
S1S2
t
I S1
S 2
S
L
2 1K
2. 推广的安培环路定理
大家好
1
§ 11.3 位移电流
对称性
随时间变化的磁场 感生电场(涡旋电场) 随时间变化的电场 磁场
麦克斯韦提出又一重要假设:位移电流
一.问题的提出
稳恒磁场的安培环路定理:
Hdl L
I0
(L内)
世界第一公式:麦克斯韦方程组
世界第一公式:麦克斯韦方程组麦克斯韦方程组,是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
在英国科学期刊《物理世界》发起的“最伟大公式”中,麦克斯韦方程组力压勾股定理,质能转换公式,名列第一。
这里,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。
1力、能、场、势经典物理研究的一个重要对象就是力force。
比如牛顿力学的核心就是F=ma这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。
但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。
很多时候,从能量的角度出发反而问题会变得简单很多。
能量energy说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。
分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。
在电磁学里,我们通过力定义出了场field的概念。
我们注意到洛仑兹力总有着F=q(E+v×B)的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。
那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。
也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。
麦克斯韦方程组
麦克斯韦方程组维基百科,自由的百科全书麦克斯韦方程组(Maxwell's equations)是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组偏微分方程,描述电场、磁场与电荷密度、电流密度之间的关系。
它含有的四个方程分别为:电荷是如何产生电场的高斯定理;论述了磁单极子的不存在的高斯磁定律;电流和变化的电场是怎样产生磁场的麦克斯韦-安培定律,以及变化的磁场是如何产生电场的法拉第电磁感应定律。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程共同形成了经典电磁学的完整组合。
1865年,麦克斯韦建立了最初形式的方程,由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
当代使用的数学表达式是由奥利弗·赫维赛德和约西亚·吉布斯于1884年使用矢量分析的形式重新表达的。
概论麦克斯韦方程组乃是由四个方程共同组成的。
它们分别为▪高斯定律描述电场是怎样由电荷生成的。
更详细地说,通过任意闭合表面的电通量与这闭合表面内的电荷之间的关系。
▪高斯磁定律表明,通过任意闭合表面的磁通量等于零,或者,磁场是一个螺线矢量场。
换句话说,类比于电荷的磁荷,又称为磁单极子,实际并不存在于宇宙。
▪法拉第电磁感应定律描述含时磁场怎样生成电场。
许多发电机的运作原理是法拉第电磁感应定律里的电磁感应效应:机械地旋转一块条形磁铁来生成一个含时磁场,紧接着生成一个电场于附近的导线。
▪麦克斯韦-安培定律阐明,磁场可以用两种方法生成:一种是靠电流(原本的安培定律),另一种是靠含时电场(麦克斯韦修正项目)。
这个定律意味着一个含时磁场可以生成含时电场,而含时电场又可以生成含时磁场。
这样,理论上允许电磁波的存在,传播于空间。
▪一般表述在这段落里,所有方程都采用国际单位制。
若改采其它单位制,经典力学的方程形式不会改变;但是,麦克斯韦方程组的形式会稍微改变,大致形式仍旧相同,只有不同的常数会出现于方程的某些位置。
麦克斯韦方程组
麦克斯韦方程组麦克斯韦方程组是描述电磁场的四个基本方程,由苏格兰物理学家詹姆斯·克拉克·麦克斯韦在19世纪提出。
这四个方程求解了电磁场的本质,对于描述电磁波的传播以及电磁现象的研究起着重要的作用。
麦克斯韦方程组的第一个方程是高斯定律,它描述了电荷对电场产生的影响。
它的数学表达式为:∮E·dA = ε0∫ρdV其中,∮E·dA表示电场在截面A上的面积分,ε0为真空中的介电常数,ρ为电场中的电荷密度。
第二个方程是法拉第电磁感应定律,它描述了磁场通过闭合回路所产生的感应电场。
数学上可以表示为:∮B·dl = μ0(I + ε0d(∫E·dA)/dt)其中,∮B·dl表示磁场在环路l上的线积分,μ0为真空中的磁导率,I为环路中的电流强度,d(∫E·dA)/dt表示时间的变化率。
第三个方程是安培定律,它描述了环路中通过的电流对磁场产生的影响。
数学上可以表示为:∮B·dl = μ0I其中,∮B·dl表示磁场在环路l上的线积分,μ0为真空中的磁导率,I为环路中的电流强度。
最后一个方程是法拉第电磁感应定律的推广形式,也被称为麦克斯韦-安培定律。
它描述了变化的电场对磁场产生的影响,以及变化的磁场对电场产生的影响。
数学上可以表示为:∮E·dl = - d(∫B·dA)/dt其中,∮E·dl表示电场在环路l上的线积分,∮B·dA表示磁场通过闭合曲面的通量,d(∫B·dA)/dt表示时间的变化率。
麦克斯韦方程组是电磁学的基础,它描述了电荷和电流对电磁场产生的影响,以及电场和磁场对电荷和电流产生的影响。
通过这四个方程,我们可以推导出电磁波的存在和传播,解释电磁感应现象,研究电磁场的性质。
麦克斯韦方程组的研究也对电磁学的发展做出了巨大的贡献。
麦克斯韦方程组的理论和实验研究为电磁学的发展奠定了基础。
麦克斯韦方程组
Idl
dF
Idl
dF
F l dF l Idl B
B
B
例 求 如图不规则的平 面载流导线在均匀磁场中所受 的力,已知 B 和 I . 解 取一段电流元 Idl
y
dF
Idl
B
I dF Idl B o dFx dF sin BIdl sin dFy dF cos BIdl cos
0 di 0dr di dq dr , dB 2 2 a b 2r 4r 0 a b 0 ln B dB dr 4 a 4r a
(2)磁矩 m ,dq旋转 产生的磁矩
1 dm r di r 2 dr 2 a b 1 1 2 (a b) 3 a 3 m dm r dr 6 2 a (3)若 a >> b, 求 Bo 及 m 。 若 a>>b , AB 可看成点电荷i 2 q 2 b 1 2 0i 0b 2 a b. B0 , m a i 2 2a 4a
利用安培环路定理求无限长均匀密绕载流直螺线管 的磁场
例 5 有一无限长圆柱形导体和一无限长薄圆筒形导
体,都通有沿轴向均匀分布的电流,它们的磁导率都 为 0, 外半径都为R。今取长为 l,宽为 2R的矩形平面 ABCD 和 A`B`C`D`, AD及A`D` 正好在圆柱的轴线上。 问通过ABCD的磁通量大小是多少?通过A`B`C`D的磁 通量是多少?
(x R )2 2
Idl
r
B
dB
p *
o
R
I
B
dB
麦克斯韦方程组ppt课件.ppt
5. 是经典物理 — 近代物理桥梁 创新物理概念(涡旋电场、位移电流) 严密逻辑体系 简洁数学形式(P 337 微分形式)
正确科学推论(两个预言)
麦氏方程不满足伽利略变换 相对论建立
“我曾确信,在磁场中作用于一个运动电荷 的 力不过是一种电场力罢了,正是这种确信或多或 少直接地促使我去研究狭义相对论 .”
导体中自由电子-“电子气”; 电介质分子 - 电偶极子 ; 磁介质分子 -分子电流; 点电荷、均匀带电球面、无限长带电直线、 无限大带电平面…... 无限长载流直线、无限大载流平面、长直螺旋管 ……
四.了解实际应用 静电屏蔽、磁屏蔽 尖端放电 电子感应加速器、涡流 磁聚焦 产生匀强电场、匀强磁场的方法 霍尔效应分辨半导体类型 …...
3. 比较
起源
传导电流 I 0
载流子宏观 定向运动
只在导体中存在
特点
并产生焦耳热
位移电流 I d
变化电场和极化 电荷的微观运动
无焦耳热, 在导体、电介质、真空 中均存在
共同点
都能激发磁场
P334 问题:比较导体、介质中 j0 , 数jD量级
三. 安培环路定理的推广
1. 全电流 I全 I0 ID
三.必须掌握的基本方法:
1)微元分析和叠加原理
dq dE E
dI B
dU U
Pm
Id l F ;
dS e ,m;
dA F dr A;
2)用求通量和环流的方法描述空间矢量场,求解 具有某些对称性的场分布。
用静电场的高斯定理求电场强度; 用稳恒磁场的安培环路定理求磁感应强度; 迁移到引力场……
方程
实验基础
SD
dS
麦克斯韦方程组
D=εE
B=μH
对于正弦时变场,可以使用复矢量将电磁场定律表示为复数形式。 麦克斯韦方程组复数形式:
▽·������ = −������������������(9) ������ =εE(10) B =μH(11) ������ = ������������ +������′(12)
在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数, 在求解时,不必再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面 采用复数形式的电磁场定律是较为方便的。 麦克斯韦方程组的意义: (一)经典场论是 19 世纪后期麦克斯韦在总结电磁学三大实验定律并把它与力学 模型进行类比的基础上创立起来的。 但麦克斯韦的主要功绩恰恰使他能够跳出经 典力学框架的束缚:在物理上以"场"而不是以"力"作为基本的研究对象,在数学 上引入了有别于经典数学的矢量偏微分运算符。 这两条是发现电磁波方程的基础。 这就是说, 实际上麦克斯韦的工作已经冲破经典物理学和经典数学的框架,只是 由于当时的历史条件, 人们仍然只能从牛顿的经典数学和力学的框架去理解电磁 场理论。 (二) 我们从麦克斯韦方程组的产生,形式,内容和它的历史过程中可以看到: 第一,物理对象是在更深的层次上发展成为新的公理表达方式而被人类所掌握, 所以科学的进步不会是在既定的前提下演进的, 一种新的具有认识意义的公理体 系的建立才是科学理论进步的标志。第二,物理对象与对它的表达方式虽然是不 同的东西,但如果不依靠合适的表达方法就无法认识到这个对象的“存在” 。第 三, 我们正在建立的理论将决定到我们在何种层次的意义上使我们的对象成为物 理事实,,这正是现代最前沿的物理学所给我们带来的困惑。 (三) 麦克斯韦方程组揭示了电场与磁场相互转化中产生的对称性优美, 这种优美 以现代数学形式得到充分的表达。但是,我们一方面应当承认,恰当的数学形式 才能充分展示经验方法中看不到的整体性(电磁对称性);另一方面,我们也不应 当忘记,这种对称性的优美是以数学形式反映出来的电磁场的统一本质。因此, 我们应当认识到应在数学的表达方式中"发现"或"看出" 了这种对称性, 而不是从 物理数学公式中直接推演出这种本质。
麦克斯韦方程
• 什么是位移电流?
– 电场随时间变化形成的“电流”
– Maxwell对位移电流的认识
Maxwell 认为:电流由两个部分组成,一部分为传导
电流,另一部分他称之为位移电流 ,即总电流密度:
J总 J传导 J位移 J Jd
第二项 推广的法拉第电磁感应定律
Faraday电磁感应定律
E B t
Faraday 从1820年开始探索磁场产 生电场的可能性,1831年实验发现, 当穿过闭合线圈的磁通量发生变化 时,闭合导线中有感应电流产生, 感应电流方向总是以激发磁通量对 抗原磁通量的改变
D的法向边界条件
把积分Maxwell方程组应 D d S dV
用到图所表示的两媒质交 S
V
界面的扁平圆盘。让h→0,
得到:
( D1 D2 ) nˆ s
B的法向边界条件
把积分Maxwell方程组应 用到图所表示的两媒质交 界面的扁平圆盘。h→0, 得到:
S BdS 0
( B1 B2 ) nˆ s
l
H
dl
S
J
D t
d
S
nˆ
(
H1
H2
)
Nˆ
Js
Nˆ
nˆ ( H1 H2 ) J s
E的切向分量的边界条件
在介质分界面两侧,选 取如图所示的积环路, 并且宽度趋于0;利用 推广的法拉第电磁感应 定律可以得到:
l
E
dl
S
B t
d
S
nˆ ( E1 E2 ) 0
nˆ ( E1 E2 ) 0
E B t
进一步的实验还证明: 只要闭合曲线内磁通 量发生变化,感应的电场不仅存在于导体回 路上,同样存在于非导体回路上,并满足:
麦克斯伟方程组
所以谈不上产生焦耳热
24
如果, I 0 0 这时全电流定律为 E 表示变化的电场 B d r d S 0 0 t 产生磁场 L S 与涡旋电场的环路定理比较
B E dl dS L S t
二者非常对称 表示变化的磁场 产生电场
s1
s2
K
○
0 J 0 ds 0 J 0 ds B d r
L
9
S1
J 0 dS J 0 dS
S2
S1
S2
显然这与实际相矛盾 由图知
S1
J 0 dS i
S1
J 0 dS J 0 dS 0
4
2. 磁场的高斯定理
在一般情况下,磁场可以由
传导电流和变化的电场激发
B B稳恒 B位移
B稳 恒 和 B位 移 都是涡旋场
在任何磁场中,通过任何封闭曲面的磁通量总等于0
B dS 0
S
5
3. 电场的环路定理 在一般情况下,电场可以由
自由电荷和变化的磁场产生
第十一章 麦克斯韦电磁理论与电磁波
§1 麦克斯韦方程组
一.麦克斯韦方程组 二.位移电流(8.5 与变化电场相联系的磁场)
三. 全电流定律
作业:
1
小结
电现象和磁现象
实验定律 场量 场的性质
q内i (1) E dS 0 S (1) E dr 0 L (1) B dS 0
S
J 0 dS
S
是单位时间流入 S的电荷量,
R
麦克斯韦方程组
§11.3 麦克斯韦方程组主要内容:一与变化电场相联系的磁场二麦克斯韦方程组三电磁波麦克斯韦在分析电磁感应现象后,提出了“涡旋电场”的概念,总结出变化磁场激发电场所遵循的规律。
从对称性考虑,变化的电场会不会激发磁场呢?在分析传导电流激发磁场所遵循的安培环路定理后,他又提出“位移电流”假说,对安培环路定理进行了修改和扩充,总结出变化电场激发磁场所遵循的规律,并在此基础上用一组方程概括了电磁场的全部规律。
C安培环路定理:=⋅⎰Ll d H=∑ii I ⎰⎰⋅SSd j 安培环路定律的局限性11.3.1与变化电场相联系的磁场LS 1S 2S 1:以L 为边界的任意曲面:S 2:以L 为边界的任意曲面:⎰=⋅1S CC I S d j⎰=⋅2S C0S d j? 位移电流麦克斯韦大胆假设:思路: 非稳态→q 变化→电场E.D 变化变化的电场也产生磁场!?=q 传导电流S q dSσ=⋅⎰⎰2D σ=d dq I dt=S q D dS=⋅⎰⎰22S =⎰⎰S D dSdt⋅=⎰⎰2——非稳恒情况下,安培环路定理不成立2P 12r Lσ+σ-Ep 12 r 2归纳麦克斯韦方程组的积分形式:⎰⎰⎰⎰⎰=⋅V0SVd 1S d E ρε 0S d B S=⋅⎰⎰S d tBt d d l d E SL⋅∂∂-=-=⋅⎰⎰⎰Φ]S d tDS d j [l d B SSC 0L⋅∂∂+⋅=⋅⎰⎰⎰⎰⎰μ通量11.3.2 麦克斯韦方程组麦克斯韦方程组积分形式和微分形式dVS d D V0S⎰⎰=⋅ρS d t D S d J l d H SS 0L⋅+⋅=⋅⎰⎰⎰∂∂S d t B l d E SL ⋅-=⋅⎰⎰∂∂0S d B S=⋅⎰积分形式一有限区域∇∇∇⨯∇微分形式位移电流与涡旋电场的假设导致麦克斯韦提出电磁波的预言,20年后赫兹用实验证实了电磁波的存在.电磁波的能流密度--玻印廷矢量:HE S ⨯=E xH可确定传播方向u11.3 电磁波简述一基本性质1. 电磁波是横波2. E与H同步变化(同相位)二电磁波波谱无线电波和微波:用于远洋长距离通讯。
麦克斯韦方程组
麦克斯韦方程组麦克斯韦方程组(英语:Maxwell's equations),是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。
从麦克斯韦方程组,可以推论出电磁波在真空中以光速传播,并进而做出光是电磁波的猜想。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
历史背景麦克斯韦诞生以前的半个多世纪中,人类对电磁现象的认识取得了很大的进展。
1785年,C.A.库仑(Charles A.Coulomb)在扭秤实验结果的基础上,建立了说明两个点电荷之间相互作用力的库仑定律。
1820年H.C.奥斯特(HansChristian Oersted)发现电流能使磁针偏转,从而把电与磁联系起来。
其后,A.M.安培(Andre Marie Ampere)研究了电流之间的相互作用力,提出了许多重要概念和安培环路定律。
M.法拉第(Michael Faraday)的工作在很多方面有杰出贡献,特别是1831年发表的电磁感应定律,是电机,变压器等设备的重要理论基础。
在麦克斯韦之前,关于电磁现象的学说都以超距作用观念为基础。
认为带电体、磁化体或载流导体之间的相互作用,都是可以超越中间媒质而直接进行,并立即完成的。
即认为电磁扰动的传播速度是无限大。
在那个时期,持不同意见的只有法拉第。
他认为上述这些相互作用与中间媒质有关,是通过中间媒质的传递而进行的,即主张间递学说。
麦克斯韦方程组
6. 局限性 (1)是在承认电荷连续分布基础上建立的宏观
经典理论,未和物质微观结构联系起来 . 1895年: 汤姆生发现电子 . 20 世纪初: 洛仑兹建立电磁现象微观理论
经典电子论
量子电磁理论
(2)不完全对称 ? 不存在磁单极 .
思考:如果存在磁单极,麦克斯韦方程如何修正 ?
=
∫V
ρdV
环路定理
∫r
H
L
⋅
d
r l
r
= ∫S ( j +
∂
r D
∂t
)
⋅
d
r S
∫r
E
(1)
⋅
r dl
=
0
L
∫ ∫ r
E
(2)
⋅
r dl
=
−
∂Br
⋅
r dS
L
∂t
∫ ∫ r
E
=
r E⋅
r E
(1)
+
r dl = −
r E
(2)
r
∂B
⋅
r dS
L
S ∂t
麦克斯韦方程组
积分形式
∫SDr
r ⋅ dS
=
dF r
m
Fm =
q =
vv
×
v B
v Idl
×
v
dFm
v B
v M
=
v Pm
×
v B
第12章
1. 感应电动势的计算
ε = − dψ m
dt
= − N dφm
dt
ε动 = ∫
(vv
麦克斯韦方程组
㈠麦克斯韦方程组描述无源情况下,变化电场与变化磁场之间关系的两个方程分别是t B E ∂-∂=⨯∇/t D H ∂∂=⨯∇/ (4-3-1)如果交变电磁场是时谐场,即电矢量和磁矢量可以写成如下形式:jwt r E t r E )(),(=jwt r H t r H )(),(= (4-3-2)则(4-3-1)式在无源,无损耗和各向同性的非磁介质的情况下可以写成H j E ωμ-=⨯∇E j H ωε=⨯∇ (4-3-3)式中,ε和μ分别是介质的介电常数及磁导率。
20n εε=;n 是介质的折射率;磁导率0μμ≈。
在平面波导中,存在着沿z 方向的一个行波,而在xy 平面内,由于宽度(y 方向)远大于厚度(x 方向),平板波导的光只在一个方向上(x 方向)受到限制,波导的几何结构及折射率沿y 方向是不变的。
因此,相应的光场的电矢量和磁矢量不沿y 方向变化。
上面的),(t r E 和),(t r H 可以分别写成)(),(),(z t j y x E t r E βω-=)(),(),(z t j y x H t r H βω-= (4-3-4)式中β是沿z 方向的传播常数。
将(4-3-4)式的E 与H 代入(4-3-3)式中,并展开运算,注意到0/=∂∂y ,就可以得到电磁场中各分量之间的关系x y H E ωμβ-=y z x H j x E E j ωμβ=∂∂+/z y H j x E ωμ-=∂∂/x y E H ωεβ=z y E j x H ωε=∂∂/ (4-3-5)yz x E j x H H j ωεβ-=∂∂+/以上6个方程,包含了两组独立的方程组,一组含有y E ,x H ,z H ,另一组含有y H ,x E ,z E 。
第一组因为电场只有横向分量,所以称为TE 波,第二组则是磁场只含有横向分量,所以称为TM 波。
根据这些分量的相互关系,只要知道部分分量就可以将其他分量求出。
麦克斯韦方程组三种形式
麦克斯韦方程组三种形式引言麦克斯韦方程组是描述电磁现象的基本方程组,它由四个偏微分方程组成。
这四个方程分别是法拉第电磁感应定律、高斯电磁场定律、安培环路定律和高斯磁场定律。
这些方程描述了电场和磁场的生成、变化和互相作用的规律,对于电磁学和电磁工程具有重要的理论和实际意义。
法拉第电磁感应定律法拉第电磁感应定律是麦克斯韦方程组的第一个方程。
它描述了电磁感应现象的定量关系。
根据法拉第电磁感应定律,在一个闭合回路上,磁通量的变化会引起感应电动势的产生。
具体地,法拉第电磁感应定律可以表示为:∮E⋅dℓ=−dΦdt其中,E是电场强度,dℓ是回路元素的微小位移,Φ是穿过闭合回路的磁通量。
高斯电磁场定律高斯电磁场定律是麦克斯韦方程组的第二个方程,它描述了电场的起源和分布。
根据高斯电磁场定律,在任意一个闭合曲面上,电场通过该曲面的电通量与该曲面内的电荷之间存在一定的关系。
具体地,高斯电磁场定律可以表示为:∮E⋅dS=Q ε0其中,E是电场强度,dS是闭合曲面上的微小面积元素,Q是闭合曲面内的总电荷,ε0是真空介电常数。
安培环路定律安培环路定律是麦克斯韦方程组的第三个方程,它描述了磁场的起源和分布。
根据安培环路定律,在任意一个闭合回路上,磁场强度沿回路的环路积分与该回路内的电流之间存在一定的关系。
具体地,安培环路定律可以表示为:∮B⋅dℓ=μ0I其中,B是磁场强度,dℓ是回路元素的微小位移,I是通过闭合回路的电流,μ0是真空磁导率。
高斯磁场定律高斯磁场定律是麦克斯韦方程组的第四个方程,它描述了磁场的起源和分布。
根据高斯磁场定律,在任意一个闭合曲面上,磁感应强度通过该曲面的磁通量是零。
具体地,高斯磁场定律可以表示为:∮B⋅dS=0其中,B是磁场强度,dS是闭合曲面上的微小面积元素。
总结麦克斯韦方程组是电磁学的基础,它描述了电磁现象的定量关系和规律。
其中,法拉第电磁感应定律描述了磁场引起电动势的产生,高斯电磁场定律描述了电场的起源和分布,安培环路定律描述了磁场的起源和分布,高斯磁场定律描述了磁场的起源和分布。
麦克斯韦方程组(彩图完美解释版)
麦克斯韦方程组关于热力学的方程,详见“麦克斯韦关系式”.麦克斯韦方程组(英语:Maxwell's equations)是英国物理学家麦克斯韦在19世纪建立的描写电磁场的根本方程组.它含有四个方程,不但分别描写了电场和磁场的行动,也描写了它们之间的关系.麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描写电场与磁场的四个根本方程.在麦克斯韦方程组中,电场和磁场已经成为一个不成朋分的整体.该方程组体系而完全地归纳分解了电磁场的根本纪律,并预言了电磁波的消失.麦克斯韦提出的涡旋电场和位移电流假说的焦点思惟是:变更的磁场可以激发涡旋电场,变更的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们互相接洽.互相激发构成一个同一的电磁场(也是电磁波的形成道理).麦克斯韦进一步将电场和磁场的所有纪律分解起来,建立了完全的电磁场理论体系.这个电磁场理论体系的焦点就是麦克斯韦方程组.麦克斯韦方程组,是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描写电场.磁场与电荷密度.电流密度之间关系的偏微分方程.从麦克斯韦方程组,可以推论出光波是电磁波.麦克斯韦方程组和洛伦兹力方程是经典电磁学的基本方程.从这些基本方程的相干理论,成长消失代的电力科技与电子科技.麦克斯韦1865年提出的最初情势的方程组由20个等式和20个变量构成.他在1873年测验测验用四元数来表达,但未成功.如今所运用的数学情势是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量剖析的情势从新表达的.麦克斯韦方程组的地位麦克斯韦方程组在电磁学中的地位,如同牛顿活动定律在力学中的地位一样.以麦克斯韦方程组为焦点的电磁理论,是经典物理学最引以骄傲的成就之一.它所揭示出的电磁互相感化的完善同一,为物理学家建立了如许一种信心:物资的各类互相感化在更高层次上应当是同一的.别的,这个理论被广泛地运用到技巧范畴.1845年,关于电磁现象的三个最根本的试验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已成长成“电磁场概念”.场概念的产生,也有麦克斯韦的一份功绩,这是当时物理学中一个巨大的创举,因为恰是场概念的消失,使当时很多物理学家得以从牛顿“超距不雅念”的约束中摆脱出来,广泛地接收了电磁感化和引力感化都是“近距感化”的思惟.1855年至1865年,麦克斯韦在周全地审阅了库仑定律.安培—毕奥—萨伐尔定律和法拉第定律的基本上,把数学剖析办法带进了电磁学的研讨范畴,由此导致麦克斯韦电磁理论的诞生.麦克斯韦方程组的积分情势:(1)描写了电场的性质.电荷是若何产生电场的高斯定理.(静电场的高斯定理)电场强度在一关闭曲面上的面积分与关闭曲面所包抄的电荷量成正比.电场 E (矢量)经由过程任一闭曲面的通量,即对该曲面的积分等于4π乘以该曲面所包抄的总电荷量.静电场(见电场)的根本方程之一,它给出了电场强度在随意率性关闭曲面上的面积分和包抄在关闭曲面内的总电量之间的关系.依据库仑定律可以证实电场强度对随意率性关闭曲面的通量正比于该关闭曲面内电荷的代数和经由过程随意率性闭合曲面的电通量等于该闭合曲面所包抄的所有电荷量的代数和与电常数之比.电场强度对随意率性关闭曲面的通量只取决于该关闭曲面内电荷的代数和,与曲面内电荷的散布情形无关,与关闭曲面外的电荷亦无关.在真空的情形下,Σq是包抄在关闭曲面内的自由电荷的代数和.当消失介质时,Σq应懂得为包抄在关闭曲面内的自由电荷和极化电荷的总和.在静电场中,因为天然界中消失着自力的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;高斯定理反应了静电场是有源场这一特征.凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚.正电荷是电力线的泉源,负电荷是电力线的尾闾.高斯定理是从库仑定律直接导出的,它完全依附于电荷间感化力的二次方反比律.把高斯定理运用于处在静电均衡前提下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是磨练库仑定律的重要办法.对于某些对称散布的电场,如平均带电球的电场,无穷大平均带电面的电场以及无穷长平均带电圆柱的电场,可直接用高斯定理盘算它们的电场强度.电位移对任一面积的能量为电通量,因而电位移亦称电通密度.(2)描写了变更的磁场激发电场的纪律.磁场是若何产生电场的法拉第电磁感应定律.(静电场的环路定理)在没有自由电荷的空间,由变更磁场激发的涡旋电场的电场线是一系列的闭合曲线.在一般情形下,电场可所以库仑电场也可所以变更磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对关闭曲面的通量无进献.麦克斯韦提出的涡旋电场的概念,揭示出变更的磁场可以在空间激发电场,并经由过程法拉第电磁感应定律得出了二者的关系,上式标明,任何随时光而变更的磁场,都是和涡旋电场接洽在一路的.(3)描写了磁场的性质.阐述了磁单极子的不消失的高斯磁定律(稳恒磁场的高斯定理)在磁场中,因为天然界中没有单独的磁极消失,N极和S极是不克不及分别的,磁感线都是无头无尾的闭合线,所以经由过程任何闭合面的磁通量必等于零.因为磁力线老是闭合曲线,是以任何一条进入一个闭合曲面的磁力线确定会从曲面内部出来,不然这条磁力线就不会闭合起来了.假如对于一个闭合曲面,界说向外为处死线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到经由过程一个闭合曲面的总磁通量为0.这个纪律相似于电场中的高斯定理,是以也称为高斯定理.(4)描写了变更的电场激发磁场的纪律.电流和变更的电场是如何产生磁场的麦克斯韦-安培定律.(磁场的安培环路定理)变更的电场产生的磁场和传导电流产生的磁场雷同,都是涡旋状的场,磁感线是闭合线.是以,磁场的高斯定理仍实用.在稳恒磁场中,磁感强度H沿任何闭合路径的线积分,等于这闭合路径所包抄的各个电流之代数和.磁场可以由传导电流激发,也可以由变更电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对关闭曲面的通量无进献.麦克斯韦提出的位移电流的概念,揭示出变更的电场可以在空间激发磁场,并经由过程全电流概念的引入,得到了一般情势下的安培环路定理在真空或介质中的暗示情势,上式标明,任何随时光而变更的电场,都是和磁场接洽在一路的.合体:式中H为磁场强度,D为电通量密度,E为电场强度,B为磁通密度.在采取其他单位制时,方程中有些项将消失一常数因子,如光速c等.上面四个方程构成:描写电荷若何产生电场的高斯定律.描写时变磁场若何产生电场的法拉第感应定律.阐述磁单极子不消失的高斯磁定律.描写电流和时变电场如何产生磁场的麦克斯韦-安培定律.分解上述可知,变更的电场和变更的磁场彼此不是孤立的,它们永久亲密地接洽在一路,互相激发,构成一个同一的电磁场的整体.这就是麦克斯韦电磁场理论的根本概念.麦克斯韦方程组的积分情势反应了空间某区域的电磁场量(D.E.B.H)和场源(电荷q.电流I)之间的关系.麦克斯韦方程组微分情势:式中J为电流密度,,ρ为电荷密度.H为磁场强度,D为电通量密度,E为电场强度,B为磁通密度.上图分别暗示为:(1)磁场强度的旋度(全电流定律)等于该点处传导电流密度与位移电流密度的矢量和;(2)电场强度的旋度(法拉第电磁感应定律)等于该点处磁感强度变更率的负值;(3)磁感强度的散度处处等于零(磁通持续性道理) .(4)电位移的散度等于该点处自由电荷的体密度(高斯定理) .在电磁场的现实运用中,经常要知道空间逐点的电磁场量和电荷.电流之间的关系.从数学情势上,就是将麦克斯韦方程组的积分情势化为微分情势.上面的微分情势分别暗示:(1)电位移的散度等于该点处自由电荷的体密度(高斯定理) .(2)磁感强度的散度处处等于零(磁通持续性道理) .(3)电场强度的旋度(法拉第电磁感应定律)等于该点处磁感强度变更率的负值;(4)磁场强度的旋度(全电流定律)等于该点处传导电流密度与位移电流密度的矢量和;运用矢量剖析办法,可得:(1)在不合的惯性参照系中,麦克斯韦方程有同样的情势.(2) 运用麦克斯韦方程组解决现实问题,还要斟酌介质对电磁场的影响.例如在各向同性介质中,电磁场量与介质特征量有下列关系:在非平均介质中,还要斟酌电磁场量在界面上的边值关系.在运用t=0时场量的初值前提,原则上可以求出任一时刻空间任一点的电磁场,即E(x,y,z,t)和B(x,y,z,t).科学意义经典场论是19世纪后期麦克斯韦在总结电磁学三大试验定律并把它与力学模子进行类比的基本上创立起来的.但麦克斯韦的重要功绩恰好是他可以或许跳出经典力学框架的约束:在物理上以"场"而不是以"力"作为根本的研讨对象,在数学上引入了有别于经典数学的矢量偏微分运算符.这两条是发明电磁波方程的基本.这就是说,现实上麦克斯韦的工作已经冲破经典物理学和经典数学的框架,只是因为当时的汗青前提,人们仍然只能从牛顿的经典数学和力学的框架去懂得电磁场理论.现代数学,Hilbert空间中的数学剖析是在19世纪与20世纪之交的时刻才消失的.而量子力学的物资波的概念则在更晚的时刻才被发明,特殊是对于现代数学与量子物理学之间的不成朋分的数理逻辑接洽至今也还没有完全被人们所懂得和接收.从麦克斯韦建立电磁场理论到如今,人们一向以欧氏空间中的经典数学作为求解麦克斯韦方程组的根本办法.我们从麦克斯韦方程组的产生,情势,内容和它的汗青进程中可以看到:第一,物理对象是在更深的层次上成长成为新的正义表达方法而被人类所控制,所以科学的提高不会是在既定的前提下演进的,一种新的具有熟悉意义的正义体系的建立才是科学理论提高的标记.第二,物理对象与对它的表达方法固然是不合的器械,但假如不依附适合的表达办法就无法熟悉到这个对象的"消失".第三,我们正在建立的理论将决议到我们在何种层次的意义上使我们的对象成为物理事实,这恰是现代最前沿的物理学所给我们带来的迷惑.麦克斯韦方程组揭示了电场与磁场互相转化中产生的对称性幽美,这种幽美以现代数学情势得到充分的表达.但是,我们一方面应当承认,适当的数学情势才干充分展现经验办法中看不到的整体性(电磁对称性),但另一方面,我们也不应当忘却,这种对称性的幽美是以数学情势反应出来的电磁场的同一本质.是以我们应当熟悉到应在数学的表达方法中"发明"或"看出" 了这种对称性,而不是从物理数学公式中直接推表演这种本质.。
麦克斯韦方程
麦克斯韦方程麦克斯韦方程组(英语:Maxwell's equations),是英国物理学家詹姆斯·克拉克·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。
从麦克斯韦方程组,可以推论出电磁波在真空中以光速传播,并进而做出光是电磁波的猜想。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦在1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
麦克斯韦方程组乃是由四个方程共同组成的:.高斯定律:该定律描述电场与空间中电荷分布的关系。
电场线开始于正电荷,终止于负电荷(或无穷远)。
计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。
更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。
..高斯磁定律:该定律表明,磁单极子实际上并不存在。
所以,没有孤立磁荷,磁场线没有初始点,也没有终止点。
磁场线会形成循环或延伸至无穷远。
换句话说,进入任何区域的磁场线,必需从那区域离开。
以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个无源场。
..法拉第感应定律:该定律描述时变磁场怎样感应出电场。
电磁感应是制造许多发电机的理论基础。
例如,一块旋转的条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭合电路因而感应出电流。
..麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠传导电流(原本的安培定律),另一种是靠时变电场,或称位移电流(麦克斯韦修正项)。
麦克斯韦的四个方程
麦克斯韦的四个方程
麦克斯韦的四个方程,也被称为麦克斯韦方程组,是电磁学的基础,
它们描述了电荷、电场、磁场、电流和电磁波之间的关系。
这四个方
程的发现是麦克斯韦在19世纪中叶的一项伟大成就,被广泛运用于电子技术和通信领域,是电磁学的基础公式。
麦克斯韦的四个方程分别是“高斯定律”、“安培定律”、“法拉第
电磁感应定律”和“电磁场的非齐次波动方程”。
高斯定律描述了电
场起源和分布,它告诉我们电场是由电荷产生的,并且与电荷的数量
和分布有关。
安培定律描述了磁场的起源和分布,它告诉我们磁场是
由电流产生的,并且与电流的数量和分布有关。
法拉第电磁感应定律
描述了电磁感应的过程,它告诉我们磁场的变化会引起电场的变化,
并且能够产生电磁感应现象。
电磁场的非齐次波动方程描述了电磁波
的传播方式和特性,它告诉我们电磁波是由电场和磁场相互作用产生的,并且在空间中以波动的形式传播。
麦克斯韦的四个方程在电磁学中起着非常重要的作用,它们不仅能够
被用来解释电磁现象,还能够指引工程师们设计电子设备和电信系统。
例如,在通信领域,它们被用来设计更加高效的无线电波天线、创建
更加精确的卫星导航系统和改善无线电信号传输技术,为人们的通信
提供更加便利的方式。
总之,麦克斯韦的四个方程是电磁学中的基础公式,它们描述了电磁波的起源和传播,被广泛应用于通信领域和电子技术中。
我们在日常生活中所使用的通信技术和设备,都离不开麦克斯韦的四个方程。
因此,深入理解和掌握这些方程对于我们的生活和工作成为十分重要的一环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场理论
式(2)对 t 求导,
时变电磁场的基本原理 W w dV (3)
t
V
t
w 1 1 ( D E B H) t t 2 2
D B E H E ( H J ) H ( E ) t t
矢量恒等式
( E H ) H ( E ) E ( H )
1.1 法拉第电磁感应定律
当与回路交链的磁通发生变化时,回路中会产生感应电 动势,这就是法拉弟电磁感应定律。
电磁感应定律:
d e dt
负号表示感应电流产生的
磁场总是阻碍原磁场的变化。
感生电动势的参考方向
4
电磁场理论
时变电磁场的基本原理
根据磁通变化的原因, e 分为三类: 1.回路不变,磁场随时间变化
22
电磁场理论
时变电磁场的基本原理
1.4 坡印廷定理和坡印廷矢量
电磁能量符合自然界物质运动过程中能量守恒 和转化定律——坡印廷定理; 坡印廷矢量是描述电磁场能量流动的物理量。 1.4.1 坡印廷定理(Poynting Theorem) 在时变场中,能量密度为 1 1 w we wm D E B H (1) 2 2 体积V内储存的能量为 1 W w dV (D E B H) dV (2) V V 2
19
微分形式
电磁场理论
J E
时变电磁场的基本原理
在各同同性媒质中,有关场矢量之间的关系用下列辅助方 程表示:
D E
B H
麦克斯韦第一、二方程是独立方程,后面两个方程可以从 中推得。
D l H dl S (J t ) dS
S
B dS 0
能量的流动。
26
电磁场理论
1.4.2
时变电磁场的基本原理 坡印廷矢量 (Poynting Vector)
定义坡印廷矢量
S EH
W/m2
表示单位时间内流过与电磁波传播方向相垂直单 位面积上的电磁能量,亦称为功率流密度,S 的方向
代表波传播的方向,也是电磁能量流动的方向。
电磁波的传播
27
电磁场理论
w 则有 ( ( E H ) E J ) t 代入式(3)得
W w dV ( E H ) dS E JdV V A V t t
24
电磁场理论
时变电磁场的基本原理
W ( E H ) dS E JdV A V t
电磁场理论
时变电磁场的基本原理
电磁场理论 麦克斯韦方程
1.1 法拉第电磁感应定律 1.2 全电流定律 1.3 电磁场的基本方程组
1.4 坡印廷定理和坡印廷矢量
2016/6/30
重庆理工大学
1
电磁场理论
时变电磁场的基本原理
在时变场中,电场与磁场都是时间和空间坐标 的函数;变化的磁场会产生电场,变化的电场会产 生磁场,电场与磁场相互依存构成统一的电磁场。 英国科学家麦克斯韦将静态场、恒定场、时变 场的电磁基本特性用统一的麦克斯韦方程组高度概 括。麦克斯韦方程组是研究宏观电磁场现象的理论 基础。
u u (t ) E , D E d d D du ( ) 位移电流密度: J d t d dt
位移电流密度 位移电流密度 位移电流密度
位移电流:
du id J dS ( ) C ic S d dt dt
S du
17
电磁场理论
时变电磁场的基本原理
中就有感应电动势。 与构成回路的材料性质无关
(甚至可以是假想回路),当回路是导体时,有感
e
应电流产生。
思考 电荷为什么会运动呢?即为什么产生感应电流呢?
2016/6/30
重庆理工大学
8
电磁场理论
4. 感应电场
时变电磁场的基本原理
麦克斯韦假设,变化的磁场在其周围激发着一种电场,该 电场对电荷有作用力(产生感应电流),称之为感应电场 。 在静止媒质中
B1n B2n
H 2t H1t K
折射定律
tan 1 1 tan 2 2
tan 1 1 tan 2 2
电场:
D2n D1n
E2t E1t
21
电磁场理论
时变电磁场的基本原理
当分界面上不存在自由面电流和自由面 电荷时,时变电磁场的分界面条件可简 化为
i
e Ei dl
l
i
E dl ( E ) dS
l s
B Ei t
B dS t
图 变化的磁场产生感应电场
感应电场是非保守场,电力线呈闭合曲线,变化的磁场 是产生
Ei 的涡旋源,故又称涡旋电场。
9
B t
电磁场理论
若空间同时存在库仑电场, 即 E EC Ei , 则有
d B e dS S t dt
又称为感生电动势,这是变压器工作的原理,亦称
为变压器电势。
图 感生电动势
5
电磁场理论
时变电磁场的基本原理
2.磁场不变,回路切割磁力线
d e (ν B ) dl l dt
称为动生电动势,这是 发电机工作原理,亦称 为发电机电势。
28
电磁场理论
坡印廷矢量
时变电磁场的基本原理
U I S EH ez r ln(b / a ) 2πr
流入内外导体间的横截面A 的功率为
P S dA
A
b a
UI 2πrdr UI 2 2πr ln(b / a)
电源提供的能量全部被负载吸收。 电磁能量是通过导体周围的介质传播的,导线只 起导向作用。
图 动生电动势
6
电磁场理论
时变电磁场的基本原理
实际上,运动回路中产生感应电动势的原因,同样 是回路中的磁通发生变化。
7
电磁场理论
时变电磁场的基本原理
3. 磁场随时间变化,回路切割磁力线
d B e (ν B) dl dS l S t dt
实验表明:只要与回路交链的磁通发生变化,回路
2
电磁场理论
时变场的知识结构框图:
高斯定律 电磁感应定律
时变电磁场的基本原理
磁通连续性原理 全电流定律 Maxwell方程组
坡印廷定理与坡印廷矢量 正弦电磁场 分界面上衔接条件
3
动态位A ,
达朗贝尔方程
电磁辐射、传输线及波导
电磁场理论
电磁感应定律(Faraday’s Law)
时变电磁场的基本原理
18
电磁场理论
5 .3 电磁场的基本方程组
积分形式
时变电磁场的基本原理
全电流定律:麦克斯韦第 一方程,表明传导电流和 变化 的电场都能产生磁场。
电磁感应定律:麦克斯韦 第二方程,表明电荷和变 化的磁场都能产生电场。 磁通连续性原理:表明 磁场是无源场 , 磁力线 总是闭合曲线。 高斯定律:表明电荷以 发散的方式产生电场 (变化的磁场以涡旋的形 式产生电场)。
在时变场中,根据电荷守恒原理,有
12
电磁场理论
应用散度定理,可得
时变电磁场的基本原理
这就是时变场的电流连续性方程 传导电流不再保持连续。
13
电磁场理论
2.位移电流
时变电磁场的基本原理
在时变场中,传导电流不再保持连续。
可以看作是一种电流密度,记为 全电流密度为
位移电流密度
14
电磁场理论
3.全电流定律
时变电磁场的基本原理
根据位移电流的假设,麦克斯韦将安培环路定理推广到 时变场,得到全电流定律的微分形式
应用斯托克斯定理,得到全电流定律的积分形式
变化的电场能产生磁场。 变化的电场也看成一种电流。
15
电磁场理论
时变电磁场的基本原理
有时候在全电流中还需要考虑不导电空间电荷运动形成的运流电流。运流 电流密度为
若体积内含有电源,则 J ( E Ee ) , 将E J / Ee 代入上式第二项, 整理得
( E H ) dS
S
V
Ee J dV
V
J2 W dV t
坡印廷定理
物理意义:体积V内电源提供的功率,减去电阻 消耗的热功率,减去电磁能量的增加率,等于穿出 闭合面 S 的电磁功率。
25
电磁场理论
坡印廷定理
时变电磁场的基本原理
S
( E H ) dS Ee J dV
V
V
J2 W dV t
在恒定场中,场量是动态平衡下的恒定量,能 量守恒定律为:
( E H ) dS
S
V
Ee JdV
J2
V
dV
恒定场中的坡印廷定理 注意:磁铁与静电荷产生的磁场、电场不构成
E1 sin 1 E2 sin 2
1 E1 cos 1 E2 cos 2 H1 sin 1 H 2 sin 2 1 H1 cos 1 2 H 2 cos 2
2
1
tan 1 1 tan 2 2 tan 1 1 tan 2 2
电容本身是不可能传导电流的,但接入电容器的闭合电路并 不就是等于断开了电路。 电容器仍然起到了传递相互作用的作用。这种相互作用体 现在电容器的充电与放电的过程中。无论是充电还是放电,在 电容器的极板之间的空间中出现了变化的电场,这个变化电场 通过储存和放出能量来响应电路中的电流变化。 如果我们考虑这个变化电场的电通量的时间变化率,就会发 现总是和电路中的电流大小相等。而电位移矢量的时间变化率 的方向总是和电路中的电流的方向一致,那么我们很自然地就 可以把这个变化的电场看成一种等效的电流,而整个电路的电 流就没有因为电容的缘故而断开,而是仍然保持连续性。这个 等效的电流就是位移电流。