求二次函数解析式的基本方法及练习题

合集下载

求二次函数解析式-综合题-练习+答案

求二次函数解析式-综合题-练习+答案

求二次函数解析式:综合题例1 已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式.分析:本题可以利用抛物线的一般式来求解,但因A(-1,0)、B(1,0)是抛物线与x轴的交点,因此有更简捷的解法.如果抛物线y=ax2+bx+c与x轴(即y=0)有交点(x1,0),(x2,0).那么显然有∴x1、x2是一元二次方程ax2+bx+c=0的两个根.因此,有ax2+bx+c=a(x-x1)(x-x2)∴抛物线的解析式为y=a(x-x1)(x-x2) (*)(其中x1、x2是抛物线与x轴交点的横坐标)我们将(*)称为抛物线的两根式.对于本例利用两根式来解则更为方便.解:∵抛物线与x轴交于A(-1,0)、B(1,0)∴设抛物线的解析式为y=a(x+1)(x-1)又∵抛物线过M(0,1),将x=0,y=1代入上式,解得a=-1∴函数解析式为y=-x2+1.说明:一般地,对于求二次函数解析式的问题,可以小结如下:①三项条件确定二次函数;②求二次函数解析式的一般方法是待定系数法;③二次函数的解析式有三种形式:究竟选用哪种形式,要根据具体条件来决定.例2 由右边图象写出二次函数的解析式.分析:看图时要注意特殊点.例如顶点,图象与坐标轴的交点.解:由图象知抛物线对称轴x=-1,顶点坐标(-1,2),过原点(0,0)或过点(-2,0).设解析式为y=a(x+1)2+2∵过原点(0,0),∴a+2=0,a=-2.故解析式为y=-2(x+1)2+2,即y=-2x2-4x.说明:已知顶点坐标可以设顶点式.本题也可设成一般式y=ax2+bx+c,∵过顶点(-1,2)和过原点(0,0),本题还可以用过点(0,0),(-2,0)而设解析式为y=a(x+2)·x再将顶点坐标(1,2)代入求出a.例3 根据下列条件求二次函数解析式.(1)若函数有最小值-8,且a∶b∶c=1∶2∶(-3).(2)若函数有最大值2,且过点A(-1,0)、B(3,0).(3)若函数当x>-2时y随x增大而增大(x<-2时,y随x增大而减小),且图象过点(2,4)在y轴上截距为-2.分析:(1)由a∶b∶c=1∶2∶(-3)可将三个待定系数转化为求一个k.即设a=k,b=2k,c=-3k(2)由抛物线的对称性可得顶点是(1,2)(3)由函数性质知对称轴是x=-2 解:(1)设y=ax2+bx+c ∵a∶b∶c=1∶2∶(-3)∴设a=k,b=2k,c=-3k ∵有最小值-8∴解析式y=2x2+4x-6(2)∵图象过点A(-1,0)、B(3,0),A、B两点均在x 轴上,由对称性得对称轴为x=1.又函数有最大值2,∴顶点坐标为(1,2),∴设解析式为y=a(x-1)2+2.(3)∵函数当x>-2时y随x增大而增大,当x<-2时y 随x增大而减小∴对称轴为x=-2设y=a(x+2)2+n∵过点(2,4)在y轴上截距为-2,即过点(0,-2)说明:题(3)也可设成y=ax2+bx+c,得:题(2)充分利用对称性可简化计算.例4 已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式.分析:此例题给出了三个条件,但实际上要看到此题还有隐含条件,如利用A点关于对称轴x=-1对称的对称点A′(1,0),因此可以把问题的条件又充实了,又如已知顶点M到x轴的距离为2,对称轴为x=-1,因此又可以找顶点坐标为(-1,±2),故可利用顶点坐标式求出函数的解析式,此题的解法不唯一,下面分别介绍几种解法.解法(一):∵抛物线的对称轴是x=-1,顶点M到x轴距离为2,∴顶点的坐标为M(-1,2)或M′(-1,-2).故设二次函数式y=a(x+1)2+2或y=a(x+1)2-2又∵抛物线经过点A(-3,0)∴0=a(-3+1)2+2或0=a(-3+1)2-2所求函数式是解法(二):根据题意:设函数解析式为y=ax2+bx+c ∵点A(-3,0)在抛物线上∴0=9a-3b+c ①又∵对称轴是x=-1∵顶点M到x轴的距离为2解由①,②,③组成的方程组:∴所求函数的解析式是:解法(三):∵抛物线的对称轴是x=-1又∵图象经过点A(-3,0)∴点A(-3,0)关于对称轴x=-1对称的对称点A′(1,0)∴设函数式为y=a(x+3)(x-1)把抛物线的顶点M的坐标(-1,2)或(-1,-2)分别代入函数式,得2=a(-1+3)(-1-1)或-2=a(-1+3)(-1-1)解关于a的方程,得∴所求函数式为:说明:比较以上三种解法,可以看出解法(一)和解法(三)比解法(二)简便.M点到x轴的距离为2,纵坐标可以是2,也可以是-2,不要漏掉一解.例5 已知抛物线y=x2-6x+m与x轴有两个不同的交点A 和B,以AB为直径作⊙C,(1)求圆心C的坐标.(2)是否存在实数m,使抛物线的顶点在⊙C上,若存在,求出m的值;若不存在,请说明理由.分析:(1)根据抛物线的对称性,由已知条件AB是直径圆心应是抛物线的对称轴与x轴的交点.(2)依据圆与抛物线的对称性知,抛物线的顶点是否在⊙C上,需要看顶点的纵坐标的绝对值是否等于⊙C的半径长,依据这个条件,列出关于m的方程,求出m值后再由已知条件做出判断.解:(1)∵y=x2-6x+m=(x-3)2+m-9∴抛物线的对称轴为直线x=3∵抛物线与x轴交于A和B两点,且AB是⊙C的直径,由抛物线的对称性∴圆心C的坐标为(3,0)(2)∵抛物线与x轴有两个不同交点∴△=(-b)2-4m>0,∴m<9设A(x1,0),B(x2,0)∵抛物线的顶点为P(3,m-9)解得:m=8或m=9∵m<9,∴m=9舍去∴m=8∴当m=8时,抛物线的顶点在⊙C上.说明“存在性”问题是探索性问题的主要形式.解答这类问题的基本思路是:假设“存在”—→演绎推理—→得出结论(合理或矛盾).例6 已知抛物线y=ax2+bx+c,其顶点在x轴的上方,它与y轴交于点C(0,3),与x轴交于点A及点B(6,0).又知方程:ax2+bx+c=0(a≠0)两根平方和等于40.(1)求抛物线的解析式;(2)试问:在此抛物线上是否存在一点P,在x轴上方且使S△PAB=2S△CAB.如果存在,求出点P的坐标;如果不存在,说明理由.分析:求解析式的三个条件中有一个是由方程的根来得到系数的关系式,通过解方程组求出系数也就得到解析式.第(2)问中问是否存在那么假设存在进行推理,从而判断存在或不存在.解:(1)由题设条件得∴抛物线顶点为(2,4).又A点坐标为(-2,0),而△ABC与△PAB同底,且当P点位于抛物线顶点时,△PAB面积最大.显然,S△PAB=16<2S△ABC=2×12=24.故在x轴上方的抛物线上不存在点P使S△PAB=2S△CAB.例7 在一块底边长为a,高为h的三角形的铁板ABC上,要截出一块矩形铁板EFGH,使它的一边FG在BC边上,矩形的边EF等于多长时,矩形铁板的面积最大.分析:问题问“矩形的边EF等于多长时,矩形铁板的面积最大”,所以题目的目标是矩形面积(S)而自变量就是EF的长(x),因此问题的关键就是用EF(x)表示矩形面积S,这就要用EF表示出EH.解:设内接矩形EFGH中,AM⊥BC,∵EH∥BC,设EF=x(0<x<h)则AN=h-x设矩形EFGH的面积为S说明:解决联系实际的问题,又与几何图形有关就应综合应用几何、代数知识,利用相似成比例列出函数式再求最值.例8 二次函数y=ax2+bx-5的图象的对称轴为直线x=3,图象与y轴相交于点B,(1)求二次函数的解析式;(2)求原点O到直线AB的距离.分析:为直线x=3,来求系数a,b.注意根与系数关系定理的充分应用.为求原点O到直线AB的距离要充分利用三角形特征和勾股定理.解: (1)如图,由已知,有∴(x1+x2)2-2x1x2=26,∴a=-1.∴解析式为y=-x2+6x-5=-(x-3)2+4.(2)∵OB=5,OC=4,AC=3,∴△AOB为等腰三角形,作OD⊥AB于D,说明:有部分学生把二次函数的顶点坐标记错,也有的学生不会用“根与系数的关系”,得不出解析式.有不少学生没有发现△AOB是等腰三角形,若发现为等腰三角形,OD 是底边AB的高,利用勾股定理就迎刃而解了.发生错误的原因,没记熟抛物线的顶点坐标公式,有的学生记下来了,但与两个根如何综合使用发生了问题,有些学生求点O到直线AB的距离,没有分析出图形与数量关系,其实△AOB是等腰三角形,知道这一性质求OD的数据就方便多了.纠正错误的办法,加强抛物线顶点坐标的学习、顶点坐标与巧用“根与系数的关系”的学习;另外,也要加强寻找特殊点的学习.一般说,无论多难的题目,总是有解题规律的.在几何图形中,经过认真分析,有的题目总含等边三角形、等腰三角形、直角三角形.例9 设A,B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点,当△MAB为等腰直角三角形时,求k的值.分析:首先按题意画出图形,再运用抛物线的对称性挖掘题中的隐含条件,来解答本题,得出解后要分析解的合理性进行取舍.解:∵抛物线与x轴有两个相异交点,故△>0,即(-2)2-4·(-3)k>0,解关于k的不等式,得根据题意,作出图象,如图设N为对称轴与x轴的交点,由抛物线的对称性知,N 为AB中点.∵∠AMB=Rt∠,且MN的长即为M点的纵坐标,又设A点坐标(x1,0),B点坐标(x2,0),则有解关于k的方程,得∴k=0.说明:本题有一个重要的隐含条件,即要使抛物线与x 轴有两个相异交点,应首先满足△>0.(2)本题要求学生会运用抛物线的对称性观察图形,联想直角三角形斜边上的中线等于斜边的一半这个重要定理,找到等量关系,列出关于k的方程,如果没有这种灵活运用定理的能力,将得不到关于k的方程,难以求解.例10 某商场将进货单价为18元的商品,按每件20元销售时,每日可销售100件,如果每提价1元(每件),日销售量就要减少10件,那么把商品的售出价定为多少时,才能使每天获得的利润最大?每天的最大利润是多少?分析:此题主要涉及两个量,即售出价和每天获得的利润.而每天获得的利润是随着售出价的改变而改变的,所以要找到二者的函数关系式,应把售出价设为自变量,把每天获得的利润看作是售出价的函数.这样,再根据已知条件,就可列出二者的函数关系式.解:设该商品的售出价定为x元/件时,每天可获得y 元的利润.即每件提价(x-20)(元),每天销售量减少10(x-20)(件),也就是每天销售量为[100-10(x-20)](件),每件利润(x-18)(元)根据题意,得:y=(x-18)[100-(x-20)×10]=-10x2+480x-5400=-10(x-24)2+360.(20≤x≤30)y是x的二次函数∵a=-10<0,20≤24≤30∴当x=24时,y有最大值为360.答:每件售出价为24元时,才能使每天获得的利润最大,每天的最大利润是360元.例11 改革开放后,不少农村用上了自动喷灌设备,如图所示,设水管AB高出地面1.5米,在B处有一个自动旋转的喷水头,一瞬间,喷出的水流呈抛物线状,喷头B与水流最高点C的连线与水平面成45°角,水流的最高点C比喷头B高出2米,在所建的坐标系中,求水流的落地点F到A 点的距离是多少?分析:要求点F到A点的距离,也就是求A、F两点横坐标的差.又A点横坐标为0,所以只需求出F点横坐标.F 点在抛物线上是抛物线与x轴的交点,所以要根据已知条件,求出抛物线的解析式.解:过C点作CD⊥Ox于D,BE⊥CD于E,则有CE=BE =2,AB=DE=1.5,则B(0,1.5),C(2,3.5).∵C为抛物线的最高点,例12 如图,这是某空防部队进行射击训练时在平面直角坐标系中的示意图.地导弹运行达到距地面最大高度3千米时,相应的水平距离为4千米(即图中E点).(1)若导弹运行轨道为一抛物线,求抛物线的解析式;(2)说明按(1)中轨道运行的导弹能否击中目标C的理由.分析:题中的实际条件转化成数学意义就是已知抛物线的顶点E,而且过点D求抛物线的解析式以及判断C是否在曲线上.解:(1)设抛物线的解析式为y=a(x-4)2+3(2)设C(x0,y0),过C点作CB⊥Ox,垂足为B.在Rt△OBC 和Rt△ABC中,OA=1,例13 已知函数y1=-x2+b1x+c1与x轴相交于原点O(0,0)和点A(4,0),若函数y2=-x2+b2x+c2,(b1≠b2)也经过点A,且y1与y2的顶点所在直线平行于x轴.(1)求两个函数的解析式.(2)当x为何值时,y1<y2.分析:解答第(1)题的关键是求y2的解析式,由题意可知a1=a2=-1,因此可以判断两条抛物线的形状和开口方向都相同,再利用y1与y2的顶点所在直线平行于x轴,可判断出y1和y2在x轴上截得的线段长相等,从而求出y2与x轴另一个交点B(8,0),由A,B点都是抛物线与x轴交点,可设解析式为y=a(x-x1)(x-x2)形式解:(1)∵y1=-x2+b1x+c1过点O(0,0),A(4,0)∴0=0+0+c1 ∴c1=00=-16+4b1+0 ∴b1=4∴函数y1=-x2+4x∵a1=a2=-1∴两条抛物线的形状,开口方向相同.又∵y1与y2的顶点所在直线平行于x轴∴y1与y2的顶点纵坐标相等∵b1≠b2,y1与y2都经过A(4,0)点∴y2与x轴的另一个交点是点B(8,0)y2=-(x-4)(x-8)=-x2+12x-32注:以上求y2的解析式是采用数、形结合的方法,进行推理得到的,此外,也可用计算方法求到b2和c2,然后写出y2的解析式,具体解法如下:∵y1的顶点是(2,4)y1与y2的顶点所在直线平行于x轴∴y1与y2的顶点纵坐标相等,y2又过点A(4,0)∵b1=4,而b1≠b2 ∴b′2=4(舍去)∴y2=-x2+12x-32解:(2)若要使y1<y2只要使-x2+4x<-x2+12x-32即可解不等式,得x>4∴当x>4时,y1<y2例14 m是怎样的数值时,二次函数y=(m-2)x2-4mx+2m-6的图象与x轴的负方向交于两个不同点.分析:二次函数的图象与x轴的负方向交于两个不同点的条件是二次项系数不为零,判别式大于零,两根之和小于零,两根之积大于0.(所谓两根是这个函数对应的一元二次方程的两根)解:设二次函数与x轴两交点的横坐标为x1,x2.要使它的图象与x轴两交点都在x轴的负方向上,应满足不等式组:解得1<m<2.答:当1<m<2时,二次函数y=(m-2)x2-4mx+2m-6的图象与x轴的负方向交于两个不同点.对二次函数式中的m不知代表什么,也无从下手求m.当抛物线与x轴相交时,y=0,两个交点的横标即为方程的两个根,两个根在原点的左方,列不出算式,不知道列出这种算式与“根与系数的关系”有关.总之有不少学生没有掌握二次函数与一元二次方程的内在联系而解题失败.发生错误的原因,不知道在一元二次函数式中的m其实质是参数.一元二次方程的根在直角坐标系x轴上的分布理论如何表达,许多学生不清楚.解不等式功底不深厚也会发生错误.纠正错误的办法,加强一元二次函数式的学习,m属于实数,任给m一个数值,就存在一条具体数值的抛物线,给出m的数值是无穷的,随着m值的不同也产生了不同的抛物线,可用“抛物线族”这个名词去表达本题的一元二次函数表达式所勾勒的抛物线是无穷无尽的.另外也要加强方程理论、根与系数关系、根的判别式的学习.例15 已知抛物线l:y=x2-(k-2)x+(k+1)2.(1)证明:不论k取何值,抛物线l的顶点总在抛物线y=3x2+12x+9上;(2)要使抛物线y=x2-(k-2)x+(k+1)2和x轴有两个不同的交点A,B,求k的取值范围;(3)当(2)中的A,B间距离取得最大值时,设这条抛物线顶点为C,求此时的k值和∠ACB的度数.分析:把l的顶点坐标用k的代数式表示分别代入y=3x2+12x+9的左、右后能使两边相等说明顶点在抛物线y=3x2+12x+9上.抛物线与x轴交点的情况就是相应一元二次方程有无实根的情况.AB间距离又可列出反的二次函数.解:∴左边=右边,所以不论k取何值,抛物线l的顶点总在抛物线y=3x2+12x+9上.(2)欲使抛物线l与x轴有两个交点,则△>0,即△=[-(k-2)]2-4(k+1)2=-3k2-12k>0,解之,-4<k<0.(3)当-4<k<0时,抛物线l与x轴有两个不同的交点A,B,设A(x1,0),B(x2,0),且x1>x2,x1+x2=k-2,x1x2=(k+1)2,说明:不明白“不论k取何值,抛物线l的顶点总在抛物线y=3x2+12x+9”上这句话的意思,实质上就是方程与曲线的关系,点在曲线上,即点的坐标满足曲线的方程;将抛物线顶点坐标的表达式代入抛物线函数式左右相等,即达到(1)提问;不知道抛物线与x轴相交,是△>0,无法运算而失败;不知道用“根与系数的关系”以及截距公式,不会巧用“根与系数的关系”,求不出最大值,因而求不出y=ax2+bx+c(a≠0)的a,b,c,使该题后面的提问无法进行;在x轴与抛物线顶点所构造出的三角形中,求边长时没有绝对值的概念、正切函数值不熟悉而求不出∠ACB=60°.发生错误的原因,本题是综合题,而且是中考的考题,要顺利而正确地回答出本题所有答案,从初一至初三所学的数学知识应该牢固掌握,第一问求出抛物线顶点坐标表达式,将表达式代入(1)的函数式,若相等,即满足了函数式的要求,按初中阶段属于验根的手段,按高中就是曲线与方程的关系了.这个不难的问题为什么学生束手无策呢?只是用文字表示了顶点坐标,很抽象,不易理解.本题的难度之一是出现了“k”,这个“k”其本质起到了参数作用.有些精品文档。

初中数学-二次函数的解析式(练习题)

初中数学-二次函数的解析式(练习题)

第十课 二次函数的解析式一、知识点:二次函数的三种表示方式:⑴ 一般式:____________________________________;⑵ 顶点式:____________________________________;⑶ 交点式:____________________________________.二、例题例1 已知二次函数的最大值为2,图象的顶点在直线1+=x y 上,并且图象经过点)1,2(,求此二次函数的解析式.例2 已知二次函数的图象过点)0,3(-、)0,1(,且顶点到x 轴的距离等于2,求此二次函数的表达式.例3 已知二次函数的图象的顶点为)18,2(-,它与x 轴的两个交点之间的距离为6,求该函数的解析式.例4 已知二次函数的图像关于直线3=y 对称,最大值是0,在y 轴上的截距是1-,求这个二次函数的解析式.变式 已知y 是x 的二次函数,当2=x 时,4-=y ,当4=y 时,x 恰为方程0822=--x x 的根,求这个函数的解析式.例5 求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位.例6 求把二次函数y =2x 2-4x +1的图象关于下列直线对称后所得到图象对应的函数解析式:(1)直线x =-1; (2)直线y =1.三、练习:1.填空:(1)已知二次函数的图象经过点)2,1(-,)3,0(-,)6,1(--,则它的解析式是__________.(2)已知二次函数当3=x 时,函数有最小值5,且经过点)11,1(,则它的解析式是__________.(3)已知二次函数的图像与x 轴的两交点间的距离是8,且顶点为)5,1(M ,则它的解析式是________.(4)函数4)1(2+--=x y 的图象向左平移2个单位,向下平移3个单位后的图象的解析式是_______.(5)函数3)3(22-+-=x y 的图象关于直线1-=x 对称的图象对应的解析式为______________.2. 已知二次函数c bx ax y ++=2的图像经过点)1,1(--,其对称轴为2-=x ,且在x 轴上截得的线段长为22,求函数的解析式.3. 已知二次函数25)21(2+-=x a y 的最大值为25,且方程025)21(2=+-x a 两根的立方和为19,求函数表达式.4. 已知二次函数22-+-=m mx x y 。

第7讲 待定系数法求二次函数的解析式(基础课程讲义例题练习含答案)

第7讲 待定系数法求二次函数的解析式(基础课程讲义例题练习含答案)

待定系数法求二次函数的解析式—知识讲解(基础)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式. 【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax 2+bx+c(a ≠0),由题意得:⎪⎩⎪⎨⎧-=++-=++-=+-53939c b a c b a c b a 解得⎪⎩⎪⎨⎧-==-=531c b a∴所求的二次函数的解析式为y=-x 2+3x-5.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0). 举一反三:【变式】(秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c ,把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ; ∴抛物线的对称轴x=﹣=﹣=﹣.2.(•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2), 设此二次函数的解析式为y=a (x ﹣1)2﹣2, 把点(2,3)代入解析式,得: a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2. 【总结升华】本题已知顶点,可设顶点式. 举一反三:【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x 轴的另一个交点坐标为(40),. 3.(•丹阳市校级模拟)抛物线的图象如图,则它的函数表达式是 .当x时,y >0.【思路点拨】观察可知抛物线的图象经过(1,0),(3,0),(0,3),可设交点式用待定系数法得到二次函数的解析式.y >0时,求x 的取值范围,即求抛物线落在x 轴上方时所对应的x 的值. 【答案】y=x 2﹣4x +3.x <1,或x >3 【解析】解:观察可知抛物线的图象经过(1,0),(3,0),(0,3), 由“交点式”,得抛物线解析式为y=a (x ﹣1)(x ﹣3), 将(0,3)代入, 3=a (0﹣1)(0﹣3), 解得a=1.故函数表达式为y=x 2﹣4x +3.由图可知当x <1,或x >3时,y >0.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y 轴交于点C .(1)求二次函数解析式; (2)求△ABC 的面积. 【答案与解析】(1)设抛物线解析式为(2)(4)y a x x =+-(a ≠0),将(3,5)代入得5(32)(34)a =+-,∴ 1a =-.∴ (2)(4)y x x =-+-. 即228y x x =-++.(2)由(1)知C(0,8), ∴ 1(42)8242ABC S =+⨯=△. 【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.待定系数法求二次函数的解析式—巩固练习(基础)【巩固练习】一、选择题1. (•厦门校级模拟)已知一条抛物线经过E (0,10),F (2,2),G (4,2),H (3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为( ) A .E ,F B .E ,G C .E ,H D .F ,G 2.二次函数225y x x =+-有( )A .最小值-5B .最大值-5C .最小值-6D .最大值-63.把抛物线y=3x 2先向上平移2个单位再向右平移3个单位,所得的抛物线是( )A . y=3(x -3)2+2B .y=3(x+3)2+2C .y=3(x -3)2-2D . y=3(x+3)2-24.如图所示,已知抛物线y =2x bx c ++的对称轴为x =2,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数2y x x =+的图象向右平移a(a >0)个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D .46.若二次函数2y ax bx c =++的x 与y 的部分对应值如下表:x -7 -6 -5 -4 -3 -2 Y-27-13-3353则当x =1时,y 的值为 ( )A .5B .-3C .-13D .-27二、填空题7.抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为____ ____.第7题 第10题8.(•河南)已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx +c 上两点,该抛物线的顶点坐标是 .9.已知抛物线222y x x =-++.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数2y x bx c =++的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是____ ____.11.已知二次函数2y ax bx c =++ (a ≠0)中自变量x 和函数值y 的部分对应值如下表:x (3)2- -1 12- 0 12 1 32 … y…54- -294- -254- 074…则该二次函数的解析式为_____ ___.12.已知抛物线2y ax bx c =++的顶点坐标为(3,-2),且与x 轴两交点间的距离为4,则抛物线的解析式为___ _____.三、解答题13.根据下列条件,分别求出对应的二次函数解析式. (1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点; (3)已知抛物线与x 轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y =-2x+2分别与x 轴、y 轴交于点A ,B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,∠BAC =90°,求过A 、B 、C 三点的抛物线的解析式.15.(•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.【答案与解析】 一、选择题 1.【答案】C .【解析】∵F (2,2),G (4,2), ∴F 和G 点为抛物线上的对称点, ∴抛物线的对称轴为直线x=3, ∴H (3,1)点为抛物线的顶点,设抛物线的解析式为y=a (x ﹣3)2+1, 把E (0,10)代入得9a +1=10,解得a=1, ∴抛物线的解析式为y=(x ﹣3)2+1.2.【答案】C ;【解析】首先将一般式通过配方化成顶点式,即2225216y x x x x =+-=++-2(1)6x =+-,∵ a =1>0,∴ x =-1时,6y =-最小. 3.【答案】A ; 4.【答案】D ;【解析】∵ 点A ,B 均在抛物线上,且AB 与x 轴平行, ∴ 点A 与点B 关于对称轴x =2对称, 又∵ A(0,3),∴ AB =4,y B =y A =3, ∴ 点B 的坐标为(4,3). 5.【答案】B ;【解析】抛物线的平移可看成顶点坐标的平移,2y x x =+的顶点坐标是11,24⎛⎫-- ⎪⎝⎭,232y x x =-+的顶点坐标是31,24⎛⎫-⎪⎝⎭,∴ 移动的距离31222a ⎛⎫=--= ⎪⎝⎭.6.【答案】D ;【解析】此题如果先用待定系数法求出二次函数解析式,再将x =1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x =-4和x =-2时,函数值均为3,由此可知对称轴为x =-3,再由对称性可知x =1的函数值必和x =-7的函数值相等,而x =-7时y =-27.∴ x =1时,y =-27. 二、填空题7.【答案】223y x x =-++;【解析】由图象知抛物线与x 轴两交点为(3,0),(-1,0),则(1)(3)y x x =-+-. 8.【答案】(1,4). 【解析】∵A (0,3),B (2,3)是抛物线y=﹣x 2+bx +c 上两点,∴代入得:,解得:b=2,c=3, ∴y=﹣x 2+2x +3 =﹣(x ﹣1)2+4, 顶点坐标为(1,4), 故答案为:(1,4). 9.【答案】(1)x =1;(1,3);【解析】代入对称轴公式2b x a =-和顶点公式24,24b ac b aa ⎛⎫-- ⎪⎝⎭即可.10.【答案】12x ≥; 【解析】将(-1,0),(1,-2)代入2y x bx c =++中得b =-1, ∴ 对称轴为12x =,在对称轴的右侧,即12x ≥时,y 随x 的增大而增大. 11.【答案】22y x x =+-;【解析】此题以表格的形式给出x 、y 的一些对应值.要认真分析表格中的每一对x 、y 值,从中选出较简单的三对x 、y 的值即为(-1,-2),(0,-2),(1,0),再设一般式2y ax bx c =++, 用待定系数法求解.设二次函数解析式为2y ax bx c =++(a ≠0),由表知2,2,0.a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩ 解得1,1,2.a b c =⎧⎪=⎨⎪=-⎩∴ 二次函数解析式为22y x x =+-. 12.【答案】21(3)22y x =--; 【解析】由题意知抛物线过点(1,0)和(5,0). 三、解答题13.【答案与解析】(1)∵ 顶点是(1,2),∴ 设2(1)2y a x =-+(a ≠0).又∵ 过点(2,3),∴ 2(21)23a -+=,∴ a =1. ∴ 2(1)2y x =-+,即223y x x =-+. (2)设二次函数解析式为2y ax bx c =++(a ≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得1,1,13,a b c c a b c ++=-⎧⎪=⎨⎪-+=⎩ 解得5,7, 1.a b c =⎧⎪=-⎨⎪=⎩故所求的函数解析式为2571y x x =-+.(3)由抛物线与x 轴交于点(1,0),(3,0),∴ 设y =a(x-1)(x-3)(a ≠0),又∵ 过点(0,-3), ∴ a(0-1)(0-3)=-3,∴ a =-1,∴ y =-(x-1)(x-3),即243y x x =-+-.14.【答案与解析】过C 点作CD ⊥x 轴于D .在y =-2x+2中,分别令y =0,x =0,得点A 的坐标为(1,0),点B 的坐标为(0,2). 由AB =AC ,∠BAC =90°,得△BAO ≌△ACD , ∴ AD =OB =2,CD =AO =1, ∴ C 点的坐标为(3,1).设所求抛物线的解析式为2(0)y ax bx c a =++≠,则有0,9312,a b c a b c c ++=⎧⎪++=⎨⎪=⎩,解得5,61762.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴ 所求抛物线的解析式为2517266y x x =-+.(15.【答案与解析】 解:(1)由已知得:C (0,4),B (4,4),把B 与C 坐标代入y=﹣x 2+bx+c 得:,解得:b=2,c=4,则解析式为y=﹣x 2+2x+4;(2)∵y=﹣x 2+2x+4=﹣(x ﹣2)2+6,∴抛物线顶点坐标为(2,6),则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.。

求二次函数解析式的三种方法

求二次函数解析式的三种方法

求二次函数解析式的三种方法一、已知任意三点求解析式用一般式,即2(0)y ax bx c a =++≠。

方法是:把三点坐标分别代入一般式,得到关于a 、b 、c 的三元一次方程组,求出a 、b 、c 的值,即可得到二次函数的解析式。

例1、如图,抛物线经过A 、B 、C 三点,顶点为D ,且与x 轴的另一个交点为E ,求抛物线的解析式x分析:观察图像,点A 、B 、C 、E 的坐标已知,在其中任选三点,将它们的坐标代入一般式,即可求出抛物线的解析式解:设抛物线的解析式为2y ax bx c =++,由图像可知,抛物线经过点A (-1,0)、B (0,3)、C (2,3)三点,所以03423a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得123a b c =-⎧⎪=⎨⎪=⎩,所以抛物线的解析式为23y x x =-++二、已知顶点或最大(小)值求解析式用顶点式,即2()(0)y a x h k a =-+≠方法是:先将顶点坐标(h ,k )或最大(小)值代入顶点式,再把另一点的坐标代入求出a ,即可得抛物线的解析式例2、已知二次函数2y ax bx c =++的顶点为(-2,1),且过点(2,7),求二次函数的解析式分析:本题提供的是一般式,若用一般式求解比较繁琐,若设顶点式,则只需求一个待定系数即可。

解:设二次函数为2(2)1y a x =++,把点(2,7)代入解析式,得27(22)1a =++,解得12a =,所以二次函数的解析式为21(2)12y x =++,即21212y x x =++ 三、已知与x 轴两交点坐标求解析式用交点式,即12()()(0)y a x x x x a =--≠ 方法是:将抛物线与x 轴两个交点的横坐标1x 、2x 代入交点式,然后将抛物线上另一点的坐标代入求出a,即可得抛物线的解析式例3、已知变量y是x的二次函数,且函数图像如图,在x轴上截得的线段AB长为4个单位,又知函数图像顶点坐标为P(3,-2),求这个函数的解析式分析:因为函数图像在x轴上截得的线段AB长为4个单位,且函数图像顶点坐标为P (3,-2),根据图像可知,图像与x轴的两个交点的坐标分别为A(1,0)、B(5,0),然后利用交点式即可求出二次函数的解析式解:因为函数图像顶点坐标为P(3,-2),在x轴上截得的线段AB长为4个单位,所以抛物线与x轴的交点分别为A(1,0)、B(5,0),设所求二次函数解析式为(1)(5)y a x x=--。

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。

下面将详细介绍这四种方法。

方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。

对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。

1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。

其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。

所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。

方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。

1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。

完整版)二次函数求解析式专题练习题

完整版)二次函数求解析式专题练习题

完整版)二次函数求解析式专题练习题1.已知抛物线经过点A(1,1),求这个函数的解析式。

解析式为y = ax^2 + bx + c,代入点A得1 = a + b + c。

因为抛物线是二次函数,所以需要三个点才能确定解析式。

无法确定解析式。

2.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式。

设解析式为y = ax^2 + bx + c,代入顶点坐标得3 = 4a - 2b + c,代入过点(1,0)得0 = a + b + c。

解得a = -1,b = 1,c = 0,所以解析式为y = -x^2 + x。

3.抛物线过顶点(2,4)且过原点,求抛物线的解析式。

因为过顶点,所以解析式为y = a(x - 2)^2 + 4.因为过原点,所以代入(0,0)得0 = 4a - 4,解得a = 1.所以解析式为y = (x -2)^2 + 4.4.若一抛物线与x轴两个交点间的距离为8,且顶点坐标为(1,5),则它们的解析式为。

设解析式为y = ax^2 + bx + c,因为顶点坐标为(1,5),所以解析式为y = a(x - 1)^2 + 5.设两个交点的横坐标为p和q,且p < q,则有8 = |(p - 1)(q - 1)|/4,化简得4p + 4q = pq - 4.因为顶点在抛物线的对称轴上,所以p + q = 2.解得p = -2,q = 8.代入顶点坐标得a = 1/9.所以解析式为y = (x - 1)^2/9 + 5.5.已知二次函数当x = -1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式。

设解析式为y = ax^2 + bx + c,因为在x轴上截得线段长为4,所以有b^2 - 4ac = 16.因为当x = -1时有最小值-4,所以有a < 0.代入最小值得-4 = a - b + c。

解得a = -1,b = 4,c = -1.所以解析式为y = -x^2 + 4x - 1.6.抛物线经过(0,0)和(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式。

求二次函数的解析式--专题练习题-含答案

求二次函数的解析式--专题练习题-含答案

求二次函数的解析式专题练习题姓名:班级:1.如图,在平面直角坐标系xOy中,正方形OABC的边长为2,点A,C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A,B和D(4,-23 ),求抛物线的解析式.2.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(-1,0),点C(0,5),D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.3.已知一个二次函数,当x=1时,y有最大值8,其图象的形状、开口方向与抛物线y=-2x2相同,则这个二次函数的解析式是( )A.y=-2x2-x+3 B.y=-2x2+4C.y=-2x2+4x+8 D.y=-2x2+4x+64.已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.2x …-4 -3 -2 -1 0 …y …-5 0 3 4 3 …(2)画出此函数图象;(3)结合函数图象,当-4<x≤1时,写出y的取值范围.6.已知一个二次函数的图象经过点A(-1,0),B(3,0)和C(0,-3)三点;(1)求此二次函数的解析式;(2)对于实数m,点M(m,-5)是否在这个二次函数的图象上?说明理由.7.已知抛物线在x轴上截得的线段长是4,对称轴是x=-1,且过点(-2,-6),求该抛物线的解析式.8.已知y=x2+bx+c的图象向右平移2个单位长度,再向下平移3个单位长度,得到的图象对应的函数解析式为y=x2-2x-3.(1)b=____,c=____;(2)求原函数图象的顶点坐标;(3)求两个图象顶点之间的距离.9.如图,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式.10.如图,抛物线与x轴交于A,B两点,与y轴交于C点,点A的坐标为(2,0),点C的坐标为(0,3),它的对称轴是直线x=-1 2 .(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.答案:1. 解:y=16x2-13x-22. 解:(1)y=-x2+4x+5(2)y=-x2+4x+5=-(x-2)2+9,则M点坐标为(2,9),可求直线MC的解析式为y=2x+5(3)把y=0代入y=2x+5得2x+5=0,解得x=-52,则E点坐标为(-52,0),把y=0代入y=-x2+4x+5得-x2+4x+5=0,解得x1=-1,x2=5,则B点坐标为(5,0),所以S△MCB =S△MBE-S△CBE=12×152×9-12×152×5=153. D4. 解:∵函数的最大值是2,则此函数顶点的纵坐标是2,又顶点在y=x+1上,那么顶点的横坐标是1,设此函数的解析式是y=a(x-1)2+2,再把(2,1)代入函数中可得a(2-1)2+2=1,解得a=-1,故函数解析式是y=-(x-1)2+2,即y=-x2+2x+15. 解:(1)由表知,抛物线的顶点坐标为(-1,4),设y=a(x+1)2+4,把(0,3)代入得a(0+1)2+4=3,解得a=-1,∴抛物线的解析式为y=-(x+1)2+4,即y=-x2-2x+3(2)图象略(3)-5<y≤46. 解:(1)设二次函数的解析式为y=a(x+1)(x-3),由于抛物线的图象经过C(0,-3),则有-3=a(0+1)(0-3),解得a=1,∴二次函数的解析式为y=(x+1)(x -3),即y=x2-2x-3(2)由(1)可知y=x2-2x-3=(x-1)2-4,则y的最小值为-4>-5,因此无论m 取何值,点M都不在这个二次函数的图象上7. 解:∵抛物线的对称轴为x=-1,在x轴上截得的线段长为4,∴抛物线与x 轴的交点坐标为(-3,0),(1,0),设抛物线解析式为y=a(x+3)(x-1),把(-2,-6)代入得a·(-2+3)·(-2-1)=-6,解得a=2,所以抛物线解析式为y=2(x+3)(x-1),即y=2x2+4x-68. (1) 2 0(2)(-1,-1)(3)由平移知两个图象顶点之间的距离=22+32=139. y=-x2+2x+310. 解:(1)y=-12x2-12x+3(2)由y=0得-12(x+12)2+258=0,解得x1=2,x2=-3,∴B(-3,0).①当CM=BM时,∵BO=CO=3,即△BOC是等腰直角三角形,∴当M点在原点O时,△MBC是等腰三角形,∴M点坐标为(0,0);②当BC=BM时,在Rt△BOC中,BO=CO=3,由勾股定理得BC=OC2+OB2=32,∴BM=32,∴M点坐标(32-3,0).综上所述,M点坐标为(32-3,0)或(0,0)。

求二次函数解析式的五种常见类型

求二次函数解析式的五种常见类型
A B = A N 2 + B N 2 = 4 2 + 4 2 = 42 ,
因此AM+OM的最小值为4 2 .
返回
方法2 利用顶点式求二次函数解析式
4.在平面直角坐标系内,二次函数图象的顶点为A(1,
-4),且过点B(3,0),求该二次函数的解析式.
解:∵二次函数图象的顶点为A(1,-4),
∴设y=a(x-1)2-4.
x2+4x. 解得a=- .
解:把A(-2,-4),O(0,0),B(2,0)三
故y=(x-1)2-4,即y=x2-2x-3.
点的坐标代入y=ax +bx+c, 方法1 利用一般式求二次函数解析式
由函数的基本形式求二次函数解析式)
2
当x=0时,y=-1;
4 a- 2 b+ c= - 4, a = - 1 , 即y=-x2+4x-3.
解法三:∵抛物线的顶点坐标为(-2,4),与x轴的一个交点坐标为(1,0), 解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
设抛物线的解析式为y=a(x-2)2,
OM的最小值. 由函数的基本形式求二次函数解析式)
解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
返回
2.一个二次函数,当自变量x=-1时,函数值y=2; 当x=0时,y=-1;当x=1时,y=-2.那么这个 二次函数的解析式为____y_=__x_2-__2_x_-__1____.
返回
3.如图,在平面直角坐标系中,抛 物线y=ax2+bx+c经过A(-2, -4),O(0,0),B(2,0)三点.
组,得 (2)将抛物线C1向左平移3个单位长度,可使所得的抛物线C2经过坐标原点.如图,所求抛物线C2对应的函数解析式为y=x(x+4),即y=

求二次函数解析式专项练习60题(含解析)

求二次函数解析式专项练习60题(含解析)

文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持.求二次函数解析式专项练习60题(含解析)1.已知二次函数图象的顶点坐标是(1,﹣4),且与y轴交于点(0,﹣3),求此二次函数的解析式.2.已知二次函数y=x2+bx+c的图象经过点A(﹣1,12),B(2,﹣3).(1)求这个二次函数的解析式.(2)求这个图象的顶点坐标及与x轴的交点坐标.3.在平面直角坐标系xOy中,直线y=﹣x绕点O顺时针旋转90°得到直线l,直线l与二次函数y=x2+bx+2图象的一个交点为(m,3),试求二次函数的解析式.4.已知抛物线y=ax2+bx+c与抛物线形状相同,顶点坐标为(﹣2,4),求a,b,c的值.5.已知二次函数y=ax2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:(1)求这个二次函数的解析式;x …﹣2 0 2 …y …﹣1 1 11 …6.已知抛物线y=x+(m+1)x+m,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=2.7.已知抛物线经过两点A(1,0)、B(0,3),且对称轴是直线x=2,求其解析式.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出y>0时,x的取值范围_________;(2)写出y随x的增大而减小的自变量x的取值范围_________;(3)求函数y=ax2+bx+c的表达式.9.已知二次函数y=x2+bx+c的图象经过点A(﹣2,5),B(1,﹣4).(1)求这个二次函数解析式;(2)求这个图象的顶点坐标、对称轴、与坐标轴的交点坐标;(3)画出这个函数的图象.10.已知:抛物线经过点A(﹣1,7)、B(2,1)和点C(0,1).(1)求这条抛物线的解析式;(2)求该抛物线的顶点坐标.11.若二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),且经过B(1,0)、C(2,﹣1)两点,求此二次函数的解析式.12.二次函数y=x2+bx+c的图象过A(2,3)和B(﹣1,0)两点,求此二次函数的解析式.13.已知:一抛物线y=ax2+bx﹣2(a≠0)经过点(3,4)和点(﹣1,0)求该抛物线的解析式,并用配方法求它的对称轴.14.二次函数y=2x2+bx+c的图象经过点(0,﹣6)、(3,0),求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.15.如图,抛物线y=﹣x2+5x+m经过点A(1,0),与y轴交于点B,(1)求m的值;(2)若抛物线与x轴的另一交点为C,求△CAB的面积;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.16.如图,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求这条抛物线对应函数的表达式;(2)若P点在该抛物线上,求当△PAB的面积为8时,点P的坐标.17.已知二次函数的图象经过点(0,﹣1)、(1,﹣3)、(﹣1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.18.已知:二次函数的顶点为A(﹣1,4),且过点B(2,﹣5),求该二次函数的解析式.19.已知一个二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),求这个函数的解析式.20.已知二次函数y=x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象与x轴的另一个交点.21.已知抛物线最大值为3,其对称轴为直线x=﹣1,且过点(1,﹣5),求其解析式.22.已知二次函数图象顶点坐标为(﹣2,3),且过点(1,0),求此二次函数解析式.23.已知抛物线y=﹣x2+bx+c,它与x轴的两个交点分别为(﹣1,0),(3,0),求此抛物线的解析式.24.一个二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,求这个函数的关系式.25.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(1,﹣4).(1)求这个函数的解析式;(2)求这个函数图象与x轴、y轴的交点坐标.26.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.27.已知二次函数y=ax2+bx+c,当x=0时,函数值为5,当x=﹣1或﹣5时,函数值都为0,求这个二次函数的解析式.28.已知抛物线的图象经过点A(1,0),顶点P的坐标是.(l)求抛物线的解析式;(2)求此抛物线与两坐标轴的三个交点所围成的三角形的面积.29.如图为抛物线y=﹣x2+bx+c的一部分,它经过A(﹣1,0),B(0,3)两点.(1)求抛物线的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.30.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)试求二次函数的解析式;(2)求y的最大值;(3)写出当y>0时,x的取值范围.31.已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.32.抛物线y=﹣x2+bx+c的对称轴是x=l,它与x轴有两个交点,其中的一个为(3,0),求此抛物线的解析式.33.已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).(1)求该二次函数的解析式;(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.34.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.35.二次函数的图象经过点(1,2)和(0,﹣1)且对称轴为x=2,求二次函数解析式.36.如图所示,二次函数y=﹣x2+bx+c的图象经过坐标原点O和A(4,0).(1)求出此二次函数的解析式;(2)若该图象的最高点为B,试求出△ABO的面积;(3)当1<x<4时,y的取值范围是_________.37.已知:一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点.(1)求出这个二次函数解析式;(2)利用配方法,把它化成y=a(x+h)2+k的形式,并写出顶点坐标和y随x变化情况.38.已知抛物线y=x2﹣2(k﹣2)x+1经过点A(﹣1,2)(1)求此抛物线的解析式;(2)求此抛物线的顶点坐标与对称轴.39.根据条件求下列抛物线的解析式:(1)二次函数的图象经过(0,1),(2,1)和(3,4);(2)抛物线的顶点坐标是(﹣2,1),且经过点(1,﹣2).40.已知二次函数的图象的顶点坐标为(3,﹣2)且与y轴交于(0,)(1)求函数的解析式;(2)当x为何值时,y随x增大而增大.41.已知二次函数的图象经过点(0,﹣2),且当x=1时函数有最小值﹣3.(1)求这个二次函数的解析式;(2)如果点(﹣2,y1),(1,y2)和(3,y3)都在该函数图象上,试比较y1,y2,y3的大小.42.已知二次函数y=x2+bx+c的图象经过点(0,3)、(4,3)(1)求二次函数的解析式,并在给定的坐标系中画出该函数的图象(不用列表);(2)直接写出x2+bx+c>3的解集.43.不论m取任何实数,y关于x的二次函数y=x2+2mx+m2+2m﹣1的图象的顶点都在一条直线上,求这条直线的函数解析式.44.抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,S△ABC=12,求其解析式.45.直线y=kx+b过x轴上的A(2,0)点,且与抛物线y=ax2相交于B、C两点,已知B点坐标为(1,1),求直线和抛物线所表示的函数解析式,并在同一坐标系中画出它们的图象.46.已知二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5).(1)试确定b、c的值;(2)若该二次函数的图象与x轴交于A、B两点(其中点A在点B的左侧),试求△PAB的面积.47.抛物线y=ax2﹣3ax+b经过A(﹣1,0),C(3,﹣2)两点.(1)求此抛物线的解析式;(2)求出这个二次函数的对称轴和顶点坐标.48.已知二次函数y=x2+bx+c的图象经过点A(0,4),且对称轴是直线x=﹣2,求这个二次函数的表达式.49.已知关于x的二次函数的图象的顶点坐标为(﹣4,3),且图象过点(l,﹣2).(1)求这个二次函数的关系式;(2)写出它的开口方向、对称轴.50.如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.(1)求m的值和二次函数的解析式.(2)二次函数交y轴于C,求△ABC的面积.51.若二次函数的图象的对称轴是直线x=1.5,并且图象过A(0,﹣4)和B(4,0)(1)求此二次函数的解析式;(2)求此二次函数图象上点A关于对称轴对称的点A′的坐标.52.若二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),求该二次函数的解析式.53.过点A(﹣1,4),B(﹣3,﹣8)的二次函数y1=ax2+bx+c与二次函数的图象的形状一样,开口方向相同,只是位置不同,求这个函数的解析式及顶点坐标.54.二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8).求:(1)这个二次函数的解析式;(2)试判断点A(﹣1,2)是否在此函数的图象上.55.已知二次函数y=ax2+bx+c的图象经过点(0,﹣9)、(1,﹣8),对称轴是y轴.(1)求这个二次函数的解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.56.如图,抛物线y=ax2+bx经过点A(4,0)、B(2,2),连接OB、AB.(1)求抛物线的解析式;(2)求证:△OAB是等腰直角三角形.57.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.58.已知二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.59.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标.60.已知函数y=x2+bx+c过点A(2,2),B(5,2).(1)求b、c的值;(2)求这个函数的图象与x轴的交点C的坐标;(3)求S△ABC的值.二次函数解析式60题参考答案:1.∵顶点坐标是(1,﹣4)因此,设抛物线的解析式为:y=a(x﹣1)2﹣4,∵抛物线与y轴交于点(0,﹣3)把(0,﹣3)代入解析式:﹣3=a(0﹣1)2﹣4解之得:a=1(14分)∴抛物线的解析式为:y=x2﹣2x﹣3.2.(1)把点A(﹣1,12),B(2,﹣3)的坐标代入y=x2+bx+c 得得∴y=x2﹣6x+5.(2)y=x2﹣6x+5,y=(x﹣3)2﹣4,故顶点为(3,﹣4).令x2﹣6x+5=0解得x1=1,x2=5.与x轴的交点坐标为(1,0),(5,0).3.由题意,直线l的解析式为y=x,将(m,3)代入直线l的解析式中,解得m=3.将(3,3)代入二次函数的解析式,解得,∴二次函数的解析式为4.抛物线y=ax2+bx+c 与抛物线形状相同,则a=±.当a=时,解析式是:y=(x+2)2+4=x2+x+5.即a=,b=1,c=5;当a=﹣时,解析式是:y=﹣(x+2)2+4=﹣x2﹣x+3.即a=﹣,b=﹣1,c=3.5.(1)依题意,得,解得;∴二次函数的解析式为:y=x2+3x+1.(2)由(1)知:y=x2+3x+1=(x+)2﹣,故其顶点坐标为(﹣,﹣)6.(1)∵抛物线过原点,∴0=02+(m+1)×0+m.解得m=0;(2)∵抛物线的顶点在x轴上.∴△=(m+1)2﹣4m=0.解得:m=1;(3)∵抛物线的对称轴是x=2,∴﹣=2.解得m=﹣57.∵抛物线对称轴是直线x=2且经过点A(1,0)由抛物线的对称性可知:抛物线还经过点(3,0)设抛物线的解析式为y=a(x﹣x1)(x﹣x2)(a≠0)即:y=a(x﹣1)(x﹣3)把B(0,3)代入得:3=3a∴a=1∴抛物线的解析式为:y=x2﹣4x+3.8.(1)抛物线开口向下,与x轴交于(1,0),(3,0),当y>0时,x的取值范围是:1<x<3;(2)抛物线对称轴为直线x=2,开口向下,y随x的增大而减小的自变量x的取值范围是x>2;(3)抛物线与x轴交于(1,0),(3,0),设解析式y=a(x﹣1)(x﹣3),把顶点(2,2)代入,得2=a(2﹣1)(2﹣3),解得a=﹣2,∴y=﹣2(x﹣1)(x﹣3),即y=﹣2x2+8x﹣6.9.(1)把A(﹣2,5),B(1,﹣4)代入y=x2+bx+c,得,解得b=﹣2,c=﹣3,∴二次函数解析式为y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴﹣=1,=﹣4,∴顶点坐标(1,﹣4),对称轴为直线x=1;又当x=0时,y=﹣3,∴与y轴交点坐标为(0,﹣3);y=0时,x=3或﹣1,∴与x轴交点坐标为(3,0),(﹣1,0).(3)图象如图.10.(1)设所求抛物线解析式为y=ax2+bx+c.根据题意,得,解得.故所求抛物线的解析式为y=2x2﹣4x+1.(2)∵,∴该抛物线的顶点坐标是(1,﹣1)11.∵二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),∴c=3.又∵二次函数y=ax2+bx+c的图象经过B(1,0)、C(2,﹣1)两点,∴代入y=ax2+bx+c得:a+b+c=0,①4a+2b+c=﹣1,②由①②及c=3解得∴二次函数的解析式为y=x2﹣4x+312.由题意得解得,.此二次函数的解析式为y=x2﹣1.13.把点(3,4)、(﹣1,0)代入y=ax2+bx﹣2得:解得:则抛物线的解析式是y=x2﹣x﹣2=(x ﹣)2﹣则抛物线的对称轴是:x=14.由题意得,解得.∴这个二次函数的解析式是y=2x2﹣4x﹣6.y=2(x2﹣2x)﹣6=2(x2﹣2x+1)﹣2﹣6(1分)=2(x﹣1)2﹣8.(1分)∴它的图象的顶点坐标是(1,﹣8).15.(1)根据题意,把点A的坐标代入抛物线方程得:0=﹣1+5+m,即得m=﹣4;(2)根据题意得:令y=0,即﹣x2+5x﹣4=0,解得x1=1,x2=4,∴点C坐标为(4,0);令x=0,解得y=﹣4,∴点B的坐标为(0,﹣4);∴由图象可得,△CAB的面积S=×OB×AC=×4×3=6;(3)根据题意得:①当点O为PB的中点,设点P的坐标为(0,y),(y>0)则y﹣4=0,即得y=4,∴点P的坐标为(0,4).②当AB=BP时,AB=,∴OP 的长为:﹣4,∴P(0,﹣4),∴P(0,﹣4),或(0,4)16.(1)点(1,0),(3,0)在抛物线y=﹣x2+bx+c上.则有解得:则所求表达式为y=﹣x2+4x﹣3.(2)依题意,得AB=3﹣1=2.设P点坐标为(a,b)当b>0时,×2×b=8.则b=8.故﹣x2+4x﹣3=8即x2+4x+11=0△=(﹣4)2﹣4×1×11=16﹣44=﹣28<0,方程﹣x2+4x+11=0无实数根.当b<0时,×2×(﹣b)=8,则b=﹣8故﹣x2+4x﹣3=﹣8 即﹣x2+4x﹣5=0.解得x1=﹣1,x2=5所求点P坐标为(﹣1,﹣8),(5,﹣8)17.设二次函数的解析式为y=ax2+bx+c,由题意得,解得.故二次函数的解析式为y=x2﹣3x﹣1;y=x2﹣3x﹣1=x2﹣3x+()2﹣()2﹣1=(x ﹣)2﹣,所以抛物线的顶点坐标为(,﹣).18.设此二次函数的解析式为y=a(x+1)2+4.∵其图象经过点(2,﹣5),∴a(2+1)2+4=﹣5,∴a=﹣1,∴y=﹣(x+1)2+4=﹣x2﹣2x+3.故答案为:y=﹣x2﹣2x+319.∵二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),∴,解得,∴所求的二次函数的解析式为y=x2﹣2x+3.20.(1)把A(2,0)、B(0,﹣6)代入y=x2+bx+c得,4+2b+c=0,c=﹣6,∴b=1,c=﹣6,∴这个二次函数的解析式y=x2+x﹣6;(2)令y=0,则x2+x﹣6=0,解方程得x1=2,x2=﹣3,∴二次函数图象与x轴的另一个交点为(﹣3,0).21.∵已知抛物线最大值为3,其对称轴为直线x=﹣1,∴抛物线的顶点坐标为(﹣1,3)设抛物线的解析式为:y=a(x+1)2+3,∵(1,﹣5)在抛物线y=a(x+1)2+3上,∴解得a=﹣2,∴此抛物线的解析式y=﹣2(x+1)2+322.设二次函数式为y=k(x+2)2+3.将(1,0)代入得9k+3=0,解得k=.∴所求的函数式为 y=(x+2)2+323.根据题意得,,解得,∴抛物线的解析式为y=﹣x2+2x+3;或:由已知得,﹣1、3为方程﹣x2+bx+c=0的两个解,∴﹣1+3=b,(﹣1)×3=c,解得b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.24.设二次函数的关系式为y=ax2+bx+c(a≠0),∵二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,∴点(0,0),(﹣1,﹣1),(1,9)满足二次函数的关系式,∴,解得,所以这个函数关系式是:y=4x2+5x25.(1)由题意,将A与B 代入代入二次函数解析式得:,解得:,则二次函数解析式为y=x2﹣2x﹣3;(2)令y=0,则x2﹣2x﹣3=0,即(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴与x轴交点坐标为(﹣1,0),(3,0);令x=0,则y=﹣3,∴与y轴交点坐标为(0,﹣3)26.根据题意,得,解得,;∴该二次函数的解析式为:y=x2﹣2x﹣3.27.由题意得,二次函数y=ax2+bx+c,过(0,5)(﹣1,0)(﹣5,0)三点,∴,解得a=1,b=6,c=5,∴这个二次函数的解析式y=x2+6x+528.(1)由题意,可设抛物线解析式为y=a(x ﹣)2+,把点A(1,0)代入,得a(1﹣)2+=0,解之得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣)2+,即y=﹣x2+5x﹣4;(2)令x=0,得y=﹣4,令y=0,解得x1=4,x2=1,S=×(4﹣1)×4=6.所以抛物线与两坐标轴的三个交点所围成的三角形的面积为6.29.(1)∵抛物线经过A(﹣1,0),B(0,3)两点∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)∵y=﹣x2+2x+3可化为y=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),又∵此抛物线向左平移3个单位,再向下平移1个单位,∴平移后的抛物线的顶点坐标为(﹣2,3).∴平移后的抛物线的解析式为y=﹣(x+2)2+3=﹣x2﹣4x﹣1.30.(1)∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3),∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①,把x=0,y=3代入y=﹣x2+bx+c得:c=3,把c=3代入①,解得b=2,则二次函数解析式为y=﹣x2+2x+3;(2)∵二次函数y=﹣x2+2x+3的二次项系数a=﹣1<0,∴抛物线的开口向下,则当x=﹣=﹣=1时,y有最大值,最大值为=4;(3)令二次函数解析式中的y=0得:﹣x2+2x+3=0,可化为:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,由函数图象可知:当﹣1<x<3时,y>031.∵函数的最大值是2,则此函数顶点的纵坐标是2,又顶点在y=x+1上,那么顶点的横坐标是1,设此函数的解析式是y=a(x﹣1)2+2,再把(2,1)代入函数中可得a(2﹣1)2+2=1,解得a=﹣1,故函数解析式是y=﹣x2+2x+1.32.∵﹣=﹣=1,∴b=2,又∵点(3,0)在函数上,∴﹣9+6+c=0,∴c=3,∴函数的解析式是y=﹣x2+2x+3.33.(1)设y=a(x+1)2﹣4,把点(0,﹣3)代入得:a=1,∴函数解析式y=(x+1)2﹣4或y=x2+2x﹣3;(2)∵x2+2x﹣3=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),C(0,﹣3),∴△ABC的面积=.34.(1)解:∵直线y=x+m经过A点,∴当x=2时,y=0,∴m+2=0,∴m=﹣2,∵抛物线y=x2+bx+c过A(2,0),B(5,3),∴,解得,∴抛物线的解析式为y=x2﹣6x+8;(2)由图可知,不等式ax2+bx+c≤x+m的解集为2≤x≤5;(3)解:设直线AB与y轴交于D,∵A(2,0)B(5,3),∴直线AB的解析式为y=x﹣2,∴点D(0,﹣2),由(1)知C(0,8),∴S△BCD =×10×5=25,∵S△ACD =×10×2=10,∴S△ABC=S△BCD﹣S△ACD=25﹣10=15.35.设二次函数的解析式为y=ax2+bx+c,由题意得,二次函数的图象对称轴为x=2且图象过点(1,2),(0,﹣1),故可得:,解得:.即可得二次函数的解析式为:y=﹣x2+4x﹣136.(1)由条件得解得所以解析式为y=﹣x2+4x,(2)∵该图象的最高点为B,∴点B的坐标为(2,4),∴△ABO的面积=×4×4=8,(3)∵当x=1时,y=3,∴当1<x<4时,y的取值范围是0<y<4.故答案为:0<y<4.37.(1)这个二次函数解析式y=ax2+bx+c(a≠0),把三点(﹣1,10),(1,4),(2,7)分别代入得:,解得:,故这个二次函数解析式为:y=2x2﹣3x+5;(2)y=2x2﹣3x+5=2(x2﹣x+﹣)+5=2(x ﹣)2﹣+5=2(x ﹣)2+,则抛物线的顶点坐标是(,),因为抛物线的开口向上,所以当x >时,y随x的增大而增大,当x时,y随x的增大而减小.38.(1)将A(﹣1,2)代入y=x2﹣2(k﹣2)x+1得:2=1﹣2(k ﹣2)+1,解得:k=2,则抛物线解析式为y=x2+1;(2)对于二次函数y=x2+1,a=1,b=0,c=1,∴﹣=0,=1,则顶点坐标(0,1);对称轴为直线x=0(y轴)39.(1)设抛物线的解析式是y=ax2+bx+c,把(0,1),(2,1),(3,4)代入得:,解得:,∴y=x2﹣2x+1.(2)设抛物线的解析式是:y=a(x+2)2+1,把(1,﹣2)代入得:﹣2=a(1+2)2+1,∴a=﹣,∴y=﹣(x+2)2+1,即y=﹣x2﹣x ﹣.40.(1)设函数的解析式是:y=a(x﹣3)2﹣2根据题意得:9a﹣2=,解得:a=;∴函数解析式是:y=﹣2;(2)∵a=>0 ∴二次函数开口向上又∵二次函数的对称轴是x=3.∴当x>3时,y随x增大而增大.41.(1)由题意知:抛物线的顶点坐标为(1,﹣3)设二次函数的解析式为y=a(x﹣1)2﹣3,由于抛物线过点(0,﹣2),则有:a(0﹣1)2﹣3=﹣2,解得a=1;因此抛物线的解析式为:y=(x﹣1)2﹣3.(2)∵a=1>0,∴故抛物线的开口向上;∵抛物线的对称轴为x=1,∴(1,y2)为抛物线的顶点坐标,∴y2最小.由于(﹣2,y1)和(4,y1)关于对称轴对称,可以通过比较(4,y1)和(3,y3)来比较y1,y3的大小,由于在y轴的右侧是增函数,所以y1>y3.于是y2<y3<y1.42.(1)由于二次函数y=x2+bx+c的图象经过点(0,3)、(4,3),则,解得:,∴此抛物线的解析式为:y=x2﹣4x+3.函数图象如下:(2)由函数图象可直接写出x2+bx+c>3的解集为:x<0或x>4.43.二次函数可以变形为y=(x+m)2+2m﹣1,抛物线的顶点坐标为(﹣m,2m﹣1).由,消去m,得y=﹣2x﹣1.所以这条直线的函数解析式为y=﹣2x﹣144.设直线AB的解析式为y=kx+b,∴,解得,直线AB的解析式为y=x+2,令x=0,则y=2,∴直线AB与y轴的交点坐标(0,2),∵S△ABC=12,∴C(0,﹣4),∵抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,∴,解得,∴抛物线的解析式为y=x2+x﹣445.∵直线y=kx+b过点A(2,0)和点B(1,1),∴,解得,∴直线AB所表示的函数解析式为y=﹣x+2,∵抛物线y=ax2过点B(1,1),∴a×12=1,解得a=1,∴抛物线所表示的函数解析式为y=x2.它们在同一坐标系中的图象如下所示:46.(1)∵二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5),,解得b=4,c=﹣5.∴b、c的值是4,5;(2)∵二次函数的图象与x轴交于A、B两点,(其中点A在点B 的左侧),∴A(1,0),B(﹣5,0),∴AB=6,∵P点的坐标是:(2,7),∴△PAB的面积=×6×7=2147.(1)根据题意得,解得,所以抛物线的解析式为y=﹣x﹣2;(2)y=﹣x﹣2=(x ﹣)2﹣,所以抛物线的对称轴为直线x=,顶点坐标为(,﹣)48.∵二次函数的图象过A(0,4),∴c=4,∵对称轴为x=﹣1,∴x=﹣=﹣2,解得b=4;∴二次函数的表达式为y=x2+4x+4.49.(1)∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴设该二次函数的关系式为:y=a(x+4)2+3(a≠0);又∵图象过点( l,﹣2),∴﹣2=a(1+4)2+3,解得,a=﹣;∴设该二次函数的关系式为:y=﹣(x+4)2+3;(2)由(1)知,该二次函数的关系式为:y=﹣(x+4)2+3,∴a=﹣<0,∴该抛物线的方向向下;∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴对称轴方程为:x=﹣4.50.(1)把A(﹣1,0)代入y1=﹣x+m得﹣(﹣1)+m=0,解得m=1,把A(﹣1,0)、B(2,﹣3)代入y2=ax2+bx﹣3得,解得.故二次函数的解析式为y2=x2﹣﹣2x﹣3;(2)因为C点坐标为(0,﹣3),B(2,﹣3),所以BC⊥y轴,所以S△ABC =×2×3=3.51.(1)设此二次函数的解析式为y=ax2+bx+c,把A(0,﹣4)和B(4,0),即对称轴x=1.5代入解析式得:,解得:故y=x2﹣3x﹣4;(2)∵A(0,﹣4),对称轴是x=1.5,∴A′(3,﹣4)52.∵二次函数y=ax2+bx+c的顶点坐标为(﹣,),二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),∴﹣=2,=﹣1,解得a=1,b=﹣4,∴二次函数的解析式y=x2﹣4x+353.∵二次函数y1=ax2+bx+c 与二次函数的图象的形状一样,开口方向相同,∴a=﹣2,将点A(﹣1,4),B(﹣3,﹣8)代入y1=﹣2x2+bx+c,得,解得,∴y1=﹣2x2﹣2x+4;∵y1=﹣2x2﹣2x+4=﹣2(x2+x)+4=﹣2(x+)2+,∴顶点坐标为(﹣,).故这个函数的解析式为y1=﹣2x2﹣2x+4,顶点坐标为(﹣,).54.(1)∵二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8),∴两交点的横坐标为:(1,0),(﹣7,0),且经过点(﹣3,8),∴代入解析式:y=a(x﹣1)(x+7),8=a(﹣3﹣1)×(﹣3+7),解得:a=﹣,∴y=﹣(x﹣1)(x+7);(2)∵将点A(﹣1,2)此函数的解析式,∴左边=2,右边=﹣(﹣1﹣1)(﹣1+7)=6;∴左边≠右边,∴点A(﹣1,2)不在此函数的图象上.55.(1)∵二次函数的对称轴为y轴,即x=0,∴b=0,即二次函数解析式为y=ax2+c,又二次函数的图象经过点(0,﹣9)、(1,﹣8),∴,解得:,则二次函数的解析式为y=x2﹣9;(2)由平移规律得:二次函数向右平移2个单位的解析式为:y=(x﹣2)2﹣9,即y=x2﹣4x﹣5,令x=0,解得:y=﹣5,∴C(0,﹣5),即OC=5,又平移后抛物线的顶点P的坐标为(2,9),即P的横坐标为2,则S△POC =OC•x P的横坐标=×5×2=5.56.1)解:由题意得,解得;∴该抛物线的解析式为:y=﹣x2+2x;(2)证明:过点B作BC⊥x轴于点C,则OC=BC=AC=2;∴∠BOC=∠OBC=∠BAC=∠ABC=45°;∴∠OBA=90°,OB=AB;∴△OAB是等腰直角三角形;57.(1)将A(﹣1,0)代入抛物线y=x2+bx﹣2得,×(﹣1)2﹣b﹣2=0,解得,b=﹣,则函数解析式为y=x2﹣x﹣2.配方得,y=(x ﹣)2﹣,可见,顶点坐标为(,﹣).(2)将上述抛物线先向下平移3个单位,再向右平移2个单位,可得,y=(x ﹣﹣2)2﹣﹣3=(x ﹣)2﹣=x2﹣x.58.(1)把(2,0)、(0,﹣6)代入二次函数解析式,可得,解得,故解析式是y=﹣x2+4x﹣6;(2)∵对称轴x=﹣=4,∴C点的坐标是(4,0),∴AC=2,OB=6,AB=2,BC=2,∴S△ABC =AC•OB=×2×6=6,△ABC的周长=AC+AB+BC=2+2+2.59.(1)A坐标是(﹣1,﹣1),B点的坐标是(3,﹣9),代入y=ax2﹣4x+c 得:解得:a=1,c=﹣6.则二次函数表达式是:y=x2﹣4x﹣6(2)y=x2﹣4x﹣6=(x﹣2)2﹣10,因此对称轴为直线x=2,顶点坐标为(2,﹣10)60.(1)把A(2,2),B(5,2)分别代入y=x2+bx+c,文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持. 可得,解得;(2)由b=﹣7,c=12,知y=x2﹣7x+12令y=0,得x2﹣7x+12=0,∴x=3或x=4,∴C(3,0)或C(4,0);(3)∵A(2,2)B(5,2)∴AB=|2﹣5|=3,且△ABC的AB边上的高h=2,∴S△ABC =AB•h=×3×2=311word版本可编辑.欢迎下载支持.。

二次函数解析式的8种求法

二次函数解析式的8种求法

二次函数解析式的8种求法二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉:一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = .解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1由m 2–2m –1 = 2得m =-1 或m =3∴ m = 3 .二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 .分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一)三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.解:Θ253212++=χχy = ()23212-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的.这两类题目多出现在选择题或是填空题目中四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得:40542a b c a b c a b c -=++⎧⎪=-+⎨⎪=-+⎩ 解得:⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y2、设二次函数解析式为:y = a ( x – h )2 + k ,Θ 图象顶点是(-2,3)∴h =-2,k =3,依题意得:5=a ( -1 + 2)2+3,解得:a =2∴y = 2( x +2)2 + 3=11822++x x3、设二次函数解析式为:y = a ( x – 1χ) ( x – 2χ).Θ图像与x 轴交于(-2,0),(4,0)两点,∴1χ=-2,2χ=4依题意得:-29= a ( 1 +2) ( 1– 4) ∴a =21 ∴ y = 21 ( x +1) ( x – 4)=223212--x χ. 七、翻折型(对称性):已知一个二次函数c b a ++=χχγ2,要求其图象关于x 轴对称(也可以说沿x 轴翻折);y 轴对称及经过其顶点且平行于x 轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y = a ( x – h )2 + k 的形式.(1)关于x 轴对称的两个图象的顶点关于x 轴对称,两个图象的开口方向相反,即a 互为相反数.(2)关于y 轴对称的两个图象的顶点关于y 轴对称,两个图象的形状大小不变,即a 相同.(3)关于经过其顶点且平行于x 轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,即a 互为相反数.例6 已知二次函数5632+-=x x y ,求满足下列条件的二次函数的解析式:(1)图象关于x 轴对称;(2)图象关于y 轴对称;(3)图象关于经过其顶点且平行于x 轴的直线对称.解:5632+-=x x y 可转化为2)1(32+-=x y ,据对称式可知 ①图象关于x 轴对称的图象的解析式为2)1(32---=x y ,即:5632-+-=x x y . ②图象关于y 轴对称的图象的解析式为:2)1(32++=x y ,即:5632++=x x y ;③图象关于经过其顶点且平行于x 轴的直线对称的图象的解析式为2)1(32+--=x y ,即1632++-=x x y .八、数形结合数形结合式的二次函数的解析式的求法,此种情况是融代数与几何为一体,把代数问题转化为几何问题,充分运用三角函数、解直角三角形等来解决问题,只要充分运用有关几何知识求出解析式中的待定系数,以达到目的.例7、如图,已知抛物线c b y ++-=χχ271和x 轴正半轴交与A 、B 两点,AB =4,P 为抛物线上的一点,他的横坐标为-1,∠PAO =45ο,37cot =∠PBO .()1求P 点的坐标;()2求抛物线的解析式.解: 设P 的坐标为(-1,y ), ∵P 点在第三象限∴y <0,过点P 作PM ⊥X 轴于点M . 点M 的坐标为(-1,0)|BM| = |BA |+ |AM|∵∠PAO =45ο∴ |PM | = |AM| = |y | =-y∵374cot =--==∠y y PM BM PBO ∴y = -3 ∴P 的坐标为(-1,-3)∴A 的坐标为(2,0)将点A 、点P 的坐标代如函数解析式⎪⎪⎩⎪⎪⎨⎧+--=-++-=c b c b 7132740 解得:87b = ; 127c =- ∴抛物线的解析式为:21812777y χχ=-+-.。

第06讲二次函数解析式的确定(5种解题方法)(原卷版)

第06讲二次函数解析式的确定(5种解题方法)(原卷版)

第06讲二次函数解析式的确定(5种解题方法)1.一般式当题目给出函数图像上的三个点时,设为一般式2y ax bx c =++(a ,b ,c 为常数,0a ≠),转化成一个三元一次方程组,以求得a ,b ,c 的值; 2.顶点式若已知抛物线的顶点或对称轴、最值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴直线x = h ,最值为当x = h 时,y 最值=k 来求出相应的系数. 3.交点式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 4.平移变换型将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2+ k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变. 5.对称变换型根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.解法一:一般式1.一个二次函数的图象经过(0,0),(﹣1,﹣1),(1,9)三点,求这个二次函数的解析式.2.已知一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点.求这个二次函数的解析式,并求出它考点精讲考点考向的开口方向、对称轴和顶点坐标.3.二次函数图象过A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC,求二次函数的表达式.4.如图所示,四边形ABCD是平行四边形,过点A、C,D作抛物线y=ax2+bx+c(a≠0),点A,B,D的坐标分别为(﹣2,0),(3,0),(0,4),求抛物线的解析式.解法二:顶点式1.设二次函数的图象的顶点坐标为(﹣2,2),且过点(1,1),求这个函数的关系式.2.已知二次函数当x=1时有最大值是﹣6,其图象经过点(2,﹣8),求二次函数的解析式.解法三:交点式1.抛物线与x轴交点的横坐标为﹣2和1,且过点(2,8),它的关系式为()A.y=2x2﹣2x﹣4 B.y=﹣2x2+2x﹣4C.y=x2+x﹣2 D.y=2x2+2x﹣42.如果二次函数y=ax2+bx+c的图象经过点(﹣1,0),(3,0),(0,﹣6),求二次函数表达式.3.如图,在平面直角坐标系中,点A的坐标为(﹣1,0),点B,点C分别为x轴,y轴正半轴上一点,其满足OC=OB=2OA.求过A,B,C三点的抛物线的表达式;4.已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点,且BC=5,求该二次函数的解析式.解法四:平移变换型1.将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,求平移后的抛物线解析式.2.将抛物线y=2x2先向下平移3个单位,再向右平移m(m>0)个单位,所得新抛物线经过点(1,5),求新抛物线的表达式及新抛物线与y轴交点的坐标.3.已知a+b+c=0且a≠0,把抛物线y=ax2+bx+c向下平移一个单位长度,再向左平移5个单位长度所得到的新抛物线的顶点是(﹣2,0),求原抛物线的表达式.4.抛物线y=x2+2x﹣3与x轴正半轴交于A点,M(﹣2,m)在抛物线上,AM交y轴于D点,抛物线沿射线AD方向平移√2个单位,求平移后的解析式.解法五:对称变换型1.已知抛物线y=﹣2x2+8x﹣7.(1)二次函数的图象与已知抛物线关于y轴对称,求它的解析式;(2)二次函数y=ax2+bx+c的图象与已知抛物线关于原点对称,求a,b,c的值.2.已知二次函数y=12x2﹣3x+1(1)若把它的图象向右平移1个单位,向下平移3个单位,求所得图象的函数表达式.(2)若把它的图象绕它的顶点旋转180°,求所得图象的函数表达式.(3)若把它绕x轴翻折,求所得图象的表达式.3.已知抛物线C1:y=59(x+2)2−5的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式.4.将抛物线C1:y=18(x+1)2﹣2绕点P(t,2)旋转180°得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.一、单选题1.(2021·上海杨浦·九年级三模)将抛物线2y x 向左平移2个单位后,所得新抛物线的解析式是( )A .22y x =-B .22y x =+C .2(2)y x =-D .2(2)y x =+2.(2021·上海九年级专题练习)将二次函数2y x 的图象向左平移1个单位,则平移后的二次函数的解析式为( ) A .21y x =-B .21y x =+C .2(1)y x =-D .2(1)y x =+3.(2021·上海)抛物线2(5)1y x =+-先向右平移4个单位,再向上平移4个单位,得到抛物线的解析式为( ) A .21884y x x =++B .224y x x =++C .21876y x x =++D .222y x x =+-4.(2021·上海静安·九年级一模)将抛物线22(1)3y x =+-平移后与抛物线22y x =重合,那么平移的方法可以是( )A .向右平移1个单位,再向上平移3个单位B .向右平移1个单位,再向下平移3个单位C .向左平移1个单位,再向上平移3个单位D .向左平移1个单位,再向下平移3个单位5.(2021·上海)如果将抛物线y =x 2+2向左平移1个单位,那么所得新抛物线的解析式为( ) A .y =(x ﹣1)2+2B .y =(x+1)2+2C .y =x 2+1D .y =x 2+36.(2010·上海浦东新·七年级竞赛)如表所示,则x 与y 的关系式为( ) x 1 2 345y 3 7 13 21 31 A .y=4x1B .y=x 2+x+1C .y=(x 2+x+1)(x1)D .非以上结论巩固提升7.(2021·上海九年级专题练习)如果A(2,n),B(2,n),C(4,n+12)这三个点都在同一个函数的图像上,那么这个函数的解析式可能是 ( ) A .2y x = B .2y x=-C .2y x =-D .2y x二、填空题8.(2011·上海浦东新区·中考模拟)请写出一个图像的对称轴为y 轴,且经过点(2,-4)的二次函数解析式,这个二次函数的解析式可以是____________9.(2021·上海九年级专题练习)用“描点法”画二次函数2y ax bx c =++的图像时,列出了如下的表格:x… 0 1 2 3 4 … 2y ax bx c =++…3- 013-…那么当5x =时,该二次函数y 的值为___________.10.(2020·崇明县大同中学九年级月考)已知二次函数的图象的顶点坐标是(﹣1,﹣6),并且该图象经过点(2,3)表达式为_______.11.(2020·上海市静安区实验中学)若函数2(1)y m x =+过点(1,4),则m=_______.12.(2020·上海市静安区实验中学九年级课时练习)已知抛物线的顶点为()1,3-,且与y 轴交于点()0,1,则抛物线的解析式为______.13.(2021·上海九年级专题练习)如果抛物线()24y m x m =++经过原点,那么该抛物线的开口方向______.(填“向上”或“向下”)14.(2021·上海九年级专题练习)如果将二次函数的图像平移,有一个点既在平移前的函数图像上又在平移后的函数图像上,那么称这个点为“平衡点”.现将抛物线1C :2(1)1y x =--向右平移得到新抛物线2C ,如果“平衡点”为(3,3),那么新抛物线2C 的表达式为______.15.(2021·上海青浦·九年级二模)如果将抛物线y =﹣x 2向下平移,使其经过点(0,﹣2),那么所得新抛物线的表达式是__________.16.(2021·上海崇明·九年级二模)如图,在平面直角坐标系xOy 中,等腰直角三角形OAB 的斜边OA 在x 轴上,且OA =4,如果抛物线y =ax 2+bx +c 向下平移4个单位后恰好能同时经过O 、A 、B 三点,那么a +b +c =_____.三、解答题17.(2021·上海宝山·九年级期中)在平面直角坐标系xOy 中,抛物线()210y ax bx a =+-≠经过点()()2,0,1,0A B -和点()3,D n -,与y 轴交于点C ,(1)求该抛物线的表达式及点D 的坐标;(2)将抛物线平移,使点C 落在点B 处,点D 落在点E 处,求ODE 的面积; (3)如果点P 在y 轴上,PCD 与ABC 相似,求点P 的坐标.18.(2021·上海宝山区·九年级三模)如图,在直角坐标平面xOy 内,点A 在x 轴的正半轴上,点B 在第一象限内,且∠OAB =90°,∠BOA =30°,OB =4.,二次函数y =﹣x 2+bx 的图象经过点A ,顶点为点C . (1)求这个二次函数的解析式,并写出顶点C 的坐标;(2)设这个二次函数图象的对称轴l 与OB 相交于点D ,与x 轴相交于点E ,求DEDC的值; (3)设P 是这个二次函数图象的对称轴l 上一点,如果△POA 的面积与△OCE 的面积相等,求点P 的坐标.19.(2021·上海)如图,在平面直角坐标系xOy 中,抛物线24y ax bx =+-与x 轴交于点()4,0A -和点()2,0B ,与y 轴交于点C .(1)求该抛物线的表达式及点C 的坐标:(2)如果点D 的坐标为()8,0-,联结AC 、DC ,求ACD ∠的正切值;(3)在(2)的条件下,点P 为抛物线上一点,当OCD CAP ∠=∠时,求点P 的坐标.20.(2017·上海杨浦区·九年级一模)在平面直角坐标系xOy 中,抛物线2221y x mx m m =-+--+交 y 轴于点为A ,顶点为D ,对称轴与x 轴交于点H . (1)求顶点D 的坐标(用含m 的代数式表示);(2)当抛物线过点(1,2),且不经过第一象限时,平移此抛物线到抛物线22y x x =-+的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.21.(2021·上海普陀区·)在平面直角坐标系xOy中(如图),已知抛物线y=12x2+bx+c与x轴交于点A(﹣2,0)、B(6,0),与y轴交于点C,点D是在第四象限内抛物线上的一个动点,直线AD与直线BC交于点E.(1)求b、c的值和直线BC的表达式;(2)设∠CAD=45°,求点E的坐标;(3)设点D的横坐标为d,用含d的代数式表示△ACE与△DCE的面积比.22.(2021·上海青浦·九年级二模)已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C,对称轴是直线x=1,顶点是点D.(1)求该抛物线的解析式和顶点D的坐标;(2)点P为该抛物线第三象限上的一点,当四边形PBDC为梯形时,求点P的坐标;(3)在(2)的条件下,点E为x轴正半轴上的一点,当tan(∠PBO+∠PEO)=52时,求OE的长.23.(2021·上海中考真题)已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q .(1)求抛物线的解析式;轴于B,以AB为斜边在其左侧作等腰直角ABC.(2)点A在直线PQ上且在第一象限内,过A作AB x①若A与Q重合,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.。

二次函数 图像的性质 求解析式 知识点+例题+练习 (非常好 分类全面)

二次函数 图像的性质 求解析式 知识点+例题+练习 (非常好 分类全面)

1.抛物线y=ax2+bx+c中,b=4a,它的图象如图,有以下结论:①c>0;②a+b+c> 0 ③a-b+c> 0 ④b2-4ac<0 ⑤abc< 0 ;其中正确的为()AA.①②B.①④C.①②③D.①③⑤2.当b<0时,一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是()B3.二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac, 2a+b,a+b+c 四个代数式中,值为正数的有( ) B 123A.4个B.3个C.2个D.1个4.在同一坐标系中,函数y= ax2+c与y= cx(a<c)图象可能是图所示的( )AA B C D5.函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为() C 134A.1B.2C.3D.46.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()DA.①②B.②③C.②③④D.①②④7.已知抛物线y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论: ①a ,b 同号; ②当x =1和x =3时,函数值相同; ③4a +b =0; ④当y =-2时,x的值只能取0; 其中正确的个数是( )23 A .1 B .2 C .3 D .4题型八、函数解析式的求法用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.一、已知抛物线上任意三点时,通常设解析式为一般式y=ax 2+bx+c ,然后解三元方程组求解; 1.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。

《用待定系数法求二次函数的解析式》同步练习(含答案)

《用待定系数法求二次函数的解析式》同步练习(含答案)

用待定系数法求二次函数的解析式同步练习题基础题知识点1利用“三点式”求二次函数解析式1.已知二次函数y=-12x2+bx+c的图象经过A(2,0),B(0,-6)两点,则这个二次函数的解析式为______________________.2.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2y -27 -13 -3 3 5 3则此二次函数的解析式为____________________.3.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y=6;当x=1时,y=0.求这个二次函数的解析式.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标.知识点2 利用“顶点式”求二次函数解析式5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-86.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.知识点3 利用“交点式”求二次函数解析式 7.如图所示,抛物线的函数表达式是( )A .y =12x 2-x +4B .y =-12x 2-x +4C .y =12x 2+x +4D .y =-12x 2+x +48.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),则该二次函数的解析式为_______________.9.已知二次函数经过点A(2,4),B(-1,0),且在x 轴上截得的线段长为2,求该函数的解析式.中档题10.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .y =x 2-x -2B .y =-12x 2-12x +2C .y =-12x 2-12x +1D .y =-x 2+x +211.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( )A .b =2,c =4B .b =2,c =-4C .b =-2,c =4D .b =-2,c =-412.二次函数的图象如图所示,则其解析式为________________.13.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线所对应的函数关系式为________________.14.设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为___________________________________.15.如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C ,D 两点.点P 是x 轴上的一个动点.(1)求此抛物线的解析式;(2)当PA +PB 的值最小时,求点P 的坐标.16.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.综合题17.设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.参考答案基础题1.y =-12x 2+4x -6 2.y =-2x 2-12x -133.由题意,得⎩⎪⎨⎪⎧a +b +c =0,a -b +c =6,c =1,解得⎩⎪⎨⎪⎧a =2,b =-3,c =1.∴二次函数的解析式为y =2x 2-3x +1.4.(1)∵抛物线y =x 2+bx +c与x 轴交于A(-1,0),B(3,0)两点,∴⎩⎪⎨⎪⎧1-b +c =0,9+3b +c =0.解得⎩⎪⎨⎪⎧b =-2,c =-3.∴二次函数解析式是y =x 2-2x -3.(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的对称轴为x =1,顶点坐标为(1,-4). 5.D6.依题意,设y =a(x -h)2+k.将顶点坐标(4,-1)和与y 轴交点(0,3)代入,得3=a(0-4)2-1.解得a =14.∴这条抛物线的解析式为y =14(x -4)2-1.7.D 8.y =x 2-x -29.∵B(-1,0)且在x 轴上截得的线段长为2,∴与x 轴的另一个交点坐标为(1,0)或(-3,0).设该函数解析式为y =a(x -x 1)(x -x 2),把A(2,4),B(-1,0),(1,0)代入得a(2+1)(2-1)=4,解得a =43.所以y =43(x+1)(x -1).同理,把A(2,4),B(-1,0),(-3,0)代入,可以求得y =415(x +1)(x +3).∴函数的解析式为y =43(x +1)(x -1)或y =415(x +1)(x +3).中档题10.D 11.D 12.y =-x 2+2x +3 13.y =x 2-2x -3 14.y =18x 2-14x +2或y =-18x 2+34x +215.(1)∵抛物线顶点坐标为(1,4),∴设y =a(x -1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a=-1.∴抛物线的解析式为y =-(x -1)2+4,即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P.设AE 解析式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3,解得⎩⎪⎨⎪⎧k =7,b =-3.∴y AE =7x -3.∵当y =0时,x=37,∴点P 的坐标为(37,0). 16.(1)∵A(1,0),B(3,0),∴设抛物线解析式为y =a(x -1)(x -3).∵抛物线过(0,-3),∴-3=a(-1)×(-3).解得a =-1.∴y =-(x -1)(x -3)=-x 2+4x -3.∵y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1).(2)答案不唯一,如:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上. 综合题17.(1)当k =0时,y =-(x -1)(x +3),所画函数图象图略.(2)①三个图象都过点(1,0)和点(-1,4);②图象总交x轴于点(1,0);③k取0和2时的函数图象关于点(0,2)中心对称;④函数y=(x-1)[(k-1)x+(x-3)]的图象都经过点(1,0)和点(-1,4);等等.(其他正确结论也行)(3)将函数y2=(x-1)2的图象向左平移4个单位,再向下平移2个单位,得到函数y3=(x+3)2-2,∴当x =-3时,函数y3取最小值,等于-2.。

二次函数知识点及重点题练习答案解析

二次函数知识点及重点题练习答案解析
在第一象限内,图象都下凹.
答案
基础训练
1
3
1.函数 y= 的大致图象是( B ).
【解析】取值验证可知,函数
1
y= 3 的大致图象是选项
B 中的图象.
答案
解析
2
2.若二次函数 y=-2x -4x+t 的图象的顶点在 x 轴上,则 t 的值是( C ).
A.-4
B.4
C.-2
D.2
【解析】∵二次函数的图象的顶点在 x 轴上,∴Δ=16+8t=0,可
2.五种常见幂函数的图象
答案
3.幂函数的性质
(1)当 α>0 时,幂函数 y=xα 的图象过点 (0,0) 和 (1,1) ,在(0,+∞)上
是 增函数 .在第一象限内,当 α>1 时,图象下凹,当 0<α<1 时,图象上凸.
(2)当 α<0 时,幂函数 y=xα 的图象过点 (1,1) ,在(0,+∞)上是 减函数 .
4
2
∴h(m)=
-2m +
2
17 3
4
, < m ≤ 1,
4
3
-3 + 4m + 2,0 < m ≤ .
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
当 a≠0 时,f(x)图象的对称轴为直线
3-
x= ,

求二次函数的解析式专项练习60题(有答案)

求二次函数的解析式专项练习60题(有答案)

求二次函数的解析式专项练习60题(有答案)1.已知二次函数图像的顶点坐标为(1,-4),与y轴交于点(0,-3),求此二次函数的解析式。

2.已知二次函数y=x^2+bx+c的图像经过点A(-1,12)和B(2,-3)。

1)求这个二次函数的解析式。

2)求这个图像的顶点坐标及与x轴的交点坐标。

3.在平面直角坐标系xOy中,直线y=-x绕点O顺时针旋转90°得到直线l,直线l与二次函数y=x^2+bx+2的图像的一个交点为(m,3),试求此二次函数的解析式。

4.已知抛物线y=ax^2+bx+c与抛物线y=x^2+2x+3的顶点坐标相同,为(-2,4),求a,b,c的值。

5.已知二次函数y=ax^2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:x。

-2.2y。

-11.111)求这个二次函数的解析式。

2)写出这个二次函数图像的顶点坐标。

6.已知抛物线y=x^2+(m+1)x+m,根据下列条件分别求m 的值:1)若抛物线过原点;2)若抛物线的顶点在x轴上;3)若抛物线的对称轴为x=2.7.已知抛物线经过两点A(1,5)、B(-1,3),且对称轴是直线x=2,求其解析式。

8.二次函数y=ax^2+bx+c(a≠0)的图像如图所示,根据图像解答下列问题:1)写出y>0时,x的取值范围;2)写出y随x的增大而减小的自变量x的取值范围;3)求函数y=ax^2+bx+c的表达式。

9.已知二次函数y=x^2+bx+c的图像经过点A(-2,5)、B(1,-4)。

1)求这个二次函数的解析式;2)求这个图像的顶点坐标、对称轴、与坐标轴的交点坐标;3)画出这个函数的图像。

10.已知:抛物线经过点A(-1,7)、B(2,1)和点C (0,1)。

1)求这条抛物线的解析式;2)求该抛物线的顶点坐标。

11.若二次函数y=ax^2+bx+c的图像与y轴交于点A(0,3),且经过B(1,4)、C(2,-1)两点,求此二次函数的解析式。

二次函数几种解析式的求法

二次函数几种解析式的求法

二次函数的解析式求法求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考试题,总结出几种解析式的求法,供同学们学习时参考。

一、 三点型例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函数的解析式是_______。

分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2+bx+c,将三个点的坐标代入,易得a=2,b=-3,c=5 。

故所求函数解析式为y=2x 2-3x+5.这种方法是将坐标代入y=ax 2+bx+c 后,把问题归结为解一个三元一次方程组,求出待定系数 a, b , c, 进而获得解析式y=ax 2+bx+c.二、交点型例2 已知抛物线y=-2x 2+8x-9的顶点为A ,若二次函数y=ax 2+bx+c 的图像经过A 点,且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。

分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2+8x-9的顶点A (2,-1)。

将A 点的坐标代入y=ax(x-3),得到a=21∴y=21x(x-3),即 y=x x 23212 .三、顶点型例 3 已知抛物线y=ax 2+bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。

分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2+k.在本题中可设y=a(x+1)2+4.再将点(1,2)代入求得a=-21∴y=-,4)1(212++x即y=-.27212+-x x由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。

四、平移型例 4 二次函数y=x 2+bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函数,122+-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18.分析 逆用平移分式,将函数y=x 2-2x+1的顶点(1,0)先向下平移3个单位,再向右平移两个单位得原函数的图象的顶点为(3,-3)。

求二次函数的解析式专项练习题有答案ok

求二次函数的解析式专项练习题有答案ok

求二次函数解析式专项练习60题(有答案)1.已知二次函数图象的顶点坐标是(1,﹣4),且与y轴交于点(0,﹣3),求此二次函数的解析式.2.已知二次函数y=x2+bx+c的图象经过点A(﹣1,12),B(2,﹣3).(1)求这个二次函数的解析式.(2)求这个图象的顶点坐标及与x轴的交点坐标.3.在平面直角坐标系xOy中,直线y=﹣x绕点O顺时针旋转90°得到直线l,直线l与二次函数y=x2+bx+2图象的一个交点为(m,3),试求二次函数的解析式.4.已知抛物线y=ax2+bx+c与抛物线形状相同,顶点坐标为(﹣2,4),求a,b,c的值.5.已知二次函数y=ax2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:(1)求这个二次函数的解析式;(2)写出这个二次函数图象的顶点坐标.x …﹣2 0 2 …y …﹣1 1 11 …6.已知抛物线y=x2+(m+1)x+m,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=2.7.已知抛物线经过两点A(1,0)、B(0,3),且对称轴是直线x=2,求其解析式.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出y>0时,x的取值范围_________;(2)写出y随x的增大而减小的自变量x的取值范围_________;(3)求函数y=ax2+bx+c的表达式.9.已知二次函数y=x2+bx+c的图象经过点A(﹣2,5),B(1,﹣4).(1)求这个二次函数解析式;(2)求这个图象的顶点坐标、对称轴、与坐标轴的交点坐标;(3)画出这个函数的图象.10.已知:抛物线经过点A(﹣1,7)、B(2,1)和点C(0,1).(1)求这条抛物线的解析式;(2)求该抛物线的顶点坐标.11.若二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),且经过B(1,0)、C(2,﹣1)两点,求此二次函数的解析式.12.二次函数y=x2+bx+c的图象过A(2,3)和B(﹣1,0)两点,求此二次函数的解析式.13.已知:一抛物线y=ax2+bx﹣2(a≠0)经过点(3,4)和点(﹣1,0)求该抛物线的解析式,并用配方法求它的对称轴.14.二次函数y=2x2+bx+c的图象经过点(0,﹣6)、(3,0),求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.15.如图,抛物线y=﹣x2+5x+m经过点A(1,0),与y轴交于点B,(1)求m的值;(2)若抛物线与x轴的另一交点为C,求△CAB的面积;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.16.如图,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求这条抛物线对应函数的表达式;(2)若P点在该抛物线上,求当△PAB的面积为8时,点P的坐标.17.已知二次函数的图象经过点(0,﹣1)、(1,﹣3)、(﹣1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.18.已知:二次函数的顶点为A(﹣1,4),且过点B(2,﹣5),求该二次函数的解析式.19.已知一个二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),求这个函数的解析式.20.已知二次函数y=x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象与x轴的另一个交点.21.已知抛物线最大值为3,其对称轴为直线x=﹣1,且过点(1,﹣5),求其解析式.22.已知二次函数图象顶点坐标为(﹣2,3),且过点(1,0),求此二次函数解析式.23.已知抛物线y=﹣x2+bx+c,它与x轴的两个交点分别为(﹣1,0),(3,0),求此抛物线的解析式.24.一个二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,求这个函数的关系式.25.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(1,﹣4).(1)求这个函数的解析式;(2)求这个函数图象与x轴、y轴的交点坐标.26.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.27.已知二次函数y=ax2+bx+c,当x=0时,函数值为5,当x=﹣1或﹣5时,函数值都为0,求这个二次函数的解析式.28.已知抛物线的图象经过点A(1,0),顶点P的坐标是.(l)求抛物线的解析式;(2)求此抛物线与两坐标轴的三个交点所围成的三角形的面积.29.如图为抛物线y=﹣x2+bx+c的一部分,它经过A(﹣1,0),B(0,3)两点.(1)求抛物线的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.30.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)试求二次函数的解析式;(2)求y的最大值;(3)写出当y>0时,x的取值范围.31.已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.32.抛物线y=﹣x2+bx+c的对称轴是x=l,它与x轴有两个交点,其中的一个为(3,0),求此抛物线的解析式.33.已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).(1)求该二次函数的解析式;(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.34.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.35.二次函数的图象经过点(1,2)和(0,﹣1)且对称轴为x=2,求二次函数解析式.36.如图所示,二次函数y=﹣x2+bx+c的图象经过坐标原点O和A(4,0).(1)求出此二次函数的解析式;(2)若该图象的最高点为B,试求出△ABO的面积;(3)当1<x<4时,y的取值范围是_________.37.已知:一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点.(1)求出这个二次函数解析式;(2)利用配方法,把它化成y=a(x+h)2+k的形式,并写出顶点坐标和y随x变化情况.38.已知抛物线y=x2﹣2(k﹣2)x+1经过点A(﹣1,2)(1)求此抛物线的解析式;(2)求此抛物线的顶点坐标与对称轴.39.根据条件求下列抛物线的解析式:(1)二次函数的图象经过(0,1),(2,1)和(3,4);(2)抛物线的顶点坐标是(﹣2,1),且经过点(1,﹣2).40.已知二次函数的图象的顶点坐标为(3,﹣2)且与y轴交于(0,)(1)求函数的解析式;(2)当x为何值时,y随x增大而增大.41.已知二次函数的图象经过点(0,﹣2),且当x=1时函数有最小值﹣3.(1)求这个二次函数的解析式;(2)如果点(﹣2,y1),(1,y2)和(3,y3)都在该函数图象上,试比较y1,y2,y3的大小.42.已知二次函数y=x2+bx+c的图象经过点(0,3)、(4,3)(1)求二次函数的解析式,并在给定的坐标系中画出该函数的图象(不用列表);(2)直接写出x2+bx+c>3的解集.43.不论m取任何实数,y关于x的二次函数y=x2+2mx+m2+2m﹣1的图象的顶点都在一条直线上,求这条直线的函数解析式.44.抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,S△ABC=12,求其解析式.45.直线y=kx+b过x轴上的A(2,0)点,且与抛物线y=ax2相交于B、C两点,已知B点坐标为(1,1),求直线和抛物线所表示的函数解析式,并在同一坐标系中画出它们的图象.46.已知二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5).(1)试确定b、c的值;(2)若该二次函数的图象与x轴交于A、B两点(其中点A在点B的左侧),试求△PAB的面积.47.抛物线y=ax2﹣3ax+b经过A(﹣1,0),C(3,﹣2)两点.(1)求此抛物线的解析式;(2)求出这个二次函数的对称轴和顶点坐标.48.已知二次函数y=x2+bx+c的图象经过点A(0,4),且对称轴是直线x=﹣2,求这个二次函数的表达式.49.已知关于x的二次函数的图象的顶点坐标为(﹣4,3),且图象过点(l,﹣2).(1)求这个二次函数的关系式;(2)写出它的开口方向、对称轴.50.如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.(1)求m的值和二次函数的解析式.(2)二次函数交y轴于C,求△ABC的面积.51.若二次函数的图象的对称轴是直线x=1.5,并且图象过A(0,﹣4)和B(4,0)(1)求此二次函数的解析式;(2)求此二次函数图象上点A关于对称轴对称的点A′的坐标.52.若二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),求该二次函数的解析式.53.过点A(﹣1,4),B(﹣3,﹣8)的二次函数y1=ax2+bx+c与二次函数的图象的形状一样,开口方向相同,只是位置不同,求这个函数的解析式及顶点坐标.54.二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8).求:(1)这个二次函数的解析式;(2)试判断点A(﹣1,2)是否在此函数的图象上.55.已知二次函数y=ax2+bx+c的图象经过点(0,﹣9)、(1,﹣8),对称轴是y轴.(1)求这个二次函数的解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.56.如图,抛物线y=ax2+bx经过点A(4,0)、B(2,2),连接OB、AB.(1)求抛物线的解析式;(2)求证:△OAB是等腰直角三角形.57.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.58.已知二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.59.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标.60.已知函数y=x2+bx+c过点A(2,2),B(5,2).(1)求b、c的值;(2)求这个函数的图象与x轴的交点C的坐标;(3)求S△ABC的值.二次函数解析式60题参考答案:1.∵顶点坐标是(1,﹣4)因此,设抛物线的解析式为:y=a(x﹣1)2﹣4,∵抛物线与y轴交于点(0,﹣3)把(0,﹣3)代入解析式:﹣3=a(0﹣1)2﹣4解之得:a=1(14分)∴抛物线的解析式为:y=x2﹣2x﹣3.2.(1)把点A(﹣1,12),B(2,﹣3)的坐标代入y=x2+bx+c 得得∴y=x2﹣6x+5.(2)y=x2﹣6x+5,y=(x﹣3)2﹣4,故顶点为(3,﹣4).令x2﹣6x+5=0解得x1=1,x2=5.与x轴的交点坐标为(1,0),(5,0).3.由题意,直线l的解析式为y=x,将(m,3)代入直线l的解析式中,解得m=3.将(3,3)代入二次函数的解析式,解得,∴二次函数的解析式为4.抛物线y=ax2+bx+c 与抛物线形状相同,则a=±.当a=时,解析式是:y=(x+2)2+4=x2+x+5.即a=,b=1,c=5;当a=﹣时,解析式是:y=﹣(x+2)2+4=﹣x2﹣x+3.即a=﹣,b=﹣1,c=3.5.(1)依题意,得,解得;∴二次函数的解析式为:y=x2+3x+1.(2)由(1)知:y=x2+3x+1=(x+)2﹣,故其顶点坐标为(﹣,﹣)6.(1)∵抛物线过原点,∴0=02+(m+1)×0+m.解得m=0;(2)∵抛物线的顶点在x轴上.∴△=(m+1)2﹣4m=0.解得:m=1;(3)∵抛物线的对称轴是x=2,∴﹣=2.解得m=﹣57.∵抛物线对称轴是直线x=2且经过点A(1,0)由抛物线的对称性可知:抛物线还经过点(3,0)设抛物线的解析式为y=a(x﹣x1)(x﹣x2)(a≠0)即:y=a(x﹣1)(x﹣3)把B(0,3)代入得:3=3a∴a=1∴抛物线的解析式为:y=x2﹣4x+3.8.(1)抛物线开口向下,与x轴交于(1,0),(3,0),当y>0时,x的取值范围是:1<x<3;(2)抛物线对称轴为直线x=2,开口向下,y随x的增大而减小的自变量x的取值范围是x>2;(3)抛物线与x轴交于(1,0),(3,0),设解析式y=a(x﹣1)(x﹣3),把顶点(2,2)代入,得2=a(2﹣1)(2﹣3),解得a=﹣2,∴y=﹣2(x﹣1)(x﹣3),即y=﹣2x2+8x﹣6.9.(1)把A(﹣2,5),B(1,﹣4)代入y=x2+bx+c,得,解得b=﹣2,c=﹣3,∴二次函数解析式为y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴﹣=1,=﹣4,∴顶点坐标(1,﹣4),对称轴为直线x=1;又当x=0时,y=﹣3,∴与y轴交点坐标为(0,﹣3);y=0时,x=3或﹣1,∴与x轴交点坐标为(3,0),(﹣1,0).(3)图象如图.10.(1)设所求抛物线解析式为y=ax2+bx+c.根据题意,得,解得.故所求抛物线的解析式为y=2x2﹣4x+1.(2)∵,∴该抛物线的顶点坐标是(1,﹣1)11.∵二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),∴c=3.又∵二次函数y=ax2+bx+c的图象经过B(1,0)、C(2,﹣1)两点,∴代入y=ax2+bx+c得:a+b+c=0,①4a+2b+c=﹣1,②由①②及c=3解得∴二次函数的解析式为y=x2﹣4x+312.由题意得解得,.此二次函数的解析式为y=x2﹣1.13.把点(3,4)、(﹣1,0)代入y=ax2+bx﹣2得:解得:则抛物线的解析式是y=x2﹣x﹣2=(x ﹣)2﹣则抛物线的对称轴是:x=14.由题意得,解得.∴这个二次函数的解析式是y=2x2﹣4x﹣6.y=2(x2﹣2x)﹣6=2(x2﹣2x+1)﹣2﹣6(1分)=2(x﹣1)2﹣8.(1分)∴它的图象的顶点坐标是(1,﹣8).15.(1)根据题意,把点A的坐标代入抛物线方程得:0=﹣1+5+m,即得m=﹣4;(2)根据题意得:令y=0,即﹣x2+5x﹣4=0,解得x1=1,x2=4,∴点C坐标为(4,0);令x=0,解得y=﹣4,∴点B的坐标为(0,﹣4);∴由图象可得,△CAB的面积S=×OB×AC=×4×3=6;(3)根据题意得:①当点O为PB的中点,设点P的坐标为(0,y),(y>0)则y﹣4=0,即得y=4,∴点P的坐标为(0,4).②当AB=BP时,AB=,∴OP 的长为:﹣4,∴P(0,﹣4),∴P(0,﹣4),或(0,4)16.(1)点(1,0),(3,0)在抛物线y=﹣x2+bx+c上.则有解得:则所求表达式为y=﹣x2+4x﹣3.(2)依题意,得AB=3﹣1=2.设P点坐标为(a,b)当b>0时,×2×b=8.则b=8.故﹣x2+4x﹣3=8即x2+4x+11=0△=(﹣4)2﹣4×1×11=16﹣44=﹣28<0,方程﹣x2+4x+11=0无实数根.当b<0时,×2×(﹣b)=8,则b=﹣8故﹣x2+4x﹣3=﹣8即﹣x2+4x﹣5=0.解得x1=﹣1,x2=5所求点P坐标为(﹣1,﹣8),(5,﹣8)17.设二次函数的解析式为y=ax2+bx+c,由题意得,解得.故二次函数的解析式为y=x2﹣3x﹣1;y=x2﹣3x﹣1=x2﹣3x+()2﹣()2﹣1=(x ﹣)2﹣,所以抛物线的顶点坐标为(,﹣).18.设此二次函数的解析式为y=a(x+1)2+4.∵其图象经过点(2,﹣5),∴a(2+1)2+4=﹣5,∴a=﹣1,∴y=﹣(x+1)2+4=﹣x2﹣2x+3.故答案为:y=﹣x2﹣2x+319.∵二次函数y=x2+bx+c的图象经过(1,2)、(﹣1,6),∴,解得,∴所求的二次函数的解析式为y=x2﹣2x+3.20.(1)把A(2,0)、B(0,﹣6)代入y=x2+bx+c得,4+2b+c=0,c=﹣6,∴b=1,c=﹣6,∴这个二次函数的解析式y=x2+x﹣6;(2)令y=0,则x2+x﹣6=0,解方程得x1=2,x2=﹣3,∴二次函数图象与x轴的另一个交点为(﹣3,0).21.∵已知抛物线最大值为3,其对称轴为直线x=﹣1,∴抛物线的顶点坐标为(﹣1,3)设抛物线的解析式为:y=a(x+1)2+3,∵(1,﹣5)在抛物线y=a(x+1)2+3上,∴解得a=﹣2,∴此抛物线的解析式y=﹣2(x+1)2+322.设二次函数式为y=k(x+2)2+3.将(1,0)代入得9k+3=0,解得k=.∴所求的函数式为y=(x+2)2+323.根据题意得,,解得,∴抛物线的解析式为y=﹣x2+2x+3;或:由已知得,﹣1、3为方程﹣x2+bx+c=0的两个解,∴﹣1+3=b,(﹣1)×3=c,解得b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.24.设二次函数的关系式为y=ax2+bx+c(a≠0),∵二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,∴点(0,0),(﹣1,﹣1),(1,9)满足二次函数的关系式,∴,解得,所以这个函数关系式是:y=4x2+5x25.(1)由题意,将A与B 代入代入二次函数解析式得:,解得:,则二次函数解析式为y=x2﹣2x﹣3;(2)令y=0,则x2﹣2x﹣3=0,即(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴与x轴交点坐标为(﹣1,0),(3,0);令x=0,则y=﹣3,∴与y轴交点坐标为(0,﹣3)26.根据题意,得,解得,;∴该二次函数的解析式为:y=x2﹣2x﹣3.27.由题意得,二次函数y=ax2+bx+c,过(0,5)(﹣1,0)(﹣5,0)三点,∴,解得a=1,b=6,c=5,∴这个二次函数的解析式y=x2+6x+528.(1)由题意,可设抛物线解析式为y=a(x ﹣)2+,把点A(1,0)代入,得a(1﹣)2+=0,解之得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣)2+,即y=﹣x2+5x﹣4;(2)令x=0,得y=﹣4,令y=0,解得x1=4,x2=1,S=×(4﹣1)×4=6.所以抛物线与两坐标轴的三个交点所围成的三角形的面积为6.29.(1)∵抛物线经过A(﹣1,0),B(0,3)两点∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)∵y=﹣x2+2x+3可化为y=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),又∵此抛物线向左平移3个单位,再向下平移1个单位,∴平移后的抛物线的顶点坐标为(﹣2,3).∴平移后的抛物线的解析式为y=﹣(x+2)2+3=﹣x2﹣4x﹣1.30.(1)∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3),∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①,把x=0,y=3代入y=﹣x2+bx+c得:c=3,把c=3代入①,解得b=2,则二次函数解析式为y=﹣x2+2x+3;(2)∵二次函数y=﹣x2+2x+3的二次项系数a=﹣1<0,∴抛物线的开口向下,则当x=﹣=﹣=1时,y 有最大值,最大值为=4;(3)令二次函数解析式中的y=0得:﹣x2+2x+3=0,可化为:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,由函数图象可知:当﹣1<x<3时,y>031.∵函数的最大值是2,则此函数顶点的纵坐标是2,又顶点在y=x+1上,那么顶点的横坐标是1,设此函数的解析式是y=a(x﹣1)2+2,再把(2,1)代入函数中可得a(2﹣1)2+2=1,解得a=﹣1,故函数解析式是y=﹣x2+2x+1.32.∵﹣=﹣=1,∴b=2,又∵点(3,0)在函数上,∴﹣9+6+c=0,∴c=3,∴函数的解析式是y=﹣x2+2x+3.33.(1)设y=a(x+1)2﹣4,把点(0,﹣3)代入得:a=1,∴函数解析式y=(x+1)2﹣4或y=x2+2x﹣3;(2)∵x2+2x﹣3=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),C(0,﹣3),∴△ABC的面积=.34.(1)解:∵直线y=x+m经过A点,∴当x=2时,y=0,∴m+2=0,∴m=﹣2,∵抛物线y=x2+bx+c过A(2,0),B(5,3),∴,解得,∴抛物线的解析式为y=x2﹣6x+8;(2)由图可知,不等式ax2+bx+c≤x+m的解集为2≤x≤5;(3)解:设直线AB与y轴交于D,∵A(2,0)B(5,3),∴直线AB的解析式为y=x﹣2,∴点D(0,﹣2),由(1)知C(0,8),∴S△BCD =×10×5=25,∵S△ACD =×10×2=10,∴S△ABC=S△BCD﹣S△ACD=25﹣10=15.35.设二次函数的解析式为y=ax2+bx+c,由题意得,二次函数的图象对称轴为x=2且图象过点(1,2),(0,﹣1),故可得:,解得:.即可得二次函数的解析式为:y=﹣x2+4x﹣136.(1)由条件得解得所以解析式为y=﹣x2+4x,(2)∵该图象的最高点为B,∴点B的坐标为(2,4),∴△ABO的面积=×4×4=8,(3)∵当x=1时,y=3,∴当1<x<4时,y的取值范围是0<y<4.故答案为:0<y<4.37.(1)这个二次函数解析式y=ax2+bx+c(a≠0),把三点(﹣1,10),(1,4),(2,7)分别代入得:,解得:,故这个二次函数解析式为:y=2x2﹣3x+5;(2)y=2x2﹣3x+5=2(x2﹣x+﹣)+5=2(x ﹣)2﹣+5=2(x ﹣)2+,则抛物线的顶点坐标是(,),因为抛物线的开口向上,所以当x >时,y随x的增大而增大,当x时,y随x的增大而减小.38.(1)将A(﹣1,2)代入y=x2﹣2(k﹣2)x+1得:2=1﹣2(k﹣2)+1,解得:k=2,则抛物线解析式为y=x2+1;(2)对于二次函数y=x2+1,a=1,b=0,c=1,∴﹣=0,=1,则顶点坐标(0,1);对称轴为直线x=0(y轴)39.(1)设抛物线的解析式是y=ax2+bx+c,把(0,1),(2,1),(3,4)代入得:,解得:,∴y=x2﹣2x+1.(2)设抛物线的解析式是:y=a(x+2)2+1,把(1,﹣2)代入得:﹣2=a(1+2)2+1,∴a=﹣,∴y=﹣(x+2)2+1,即y=﹣x2﹣x ﹣.40.(1)设函数的解析式是:y=a(x﹣3)2﹣2根据题意得:9a﹣2=,解得:a=;∴函数解析式是:y=﹣2;(2)∵a=>0∴二次函数开口向上又∵二次函数的对称轴是x=3.∴当x>3时,y随x增大而增大.41.(1)由题意知:抛物线的顶点坐标为(1,﹣3)设二次函数的解析式为y=a(x﹣1)2﹣3,由于抛物线过点(0,﹣2),则有:a(0﹣1)2﹣3=﹣2,解得a=1;因此抛物线的解析式为:y=(x﹣1)2﹣3.(2)∵a=1>0,∴故抛物线的开口向上;∵抛物线的对称轴为x=1,∴(1,y2)为抛物线的顶点坐标,∴y2最小.由于(﹣2,y1)和(4,y1)关于对称轴对称,可以通过比较(4,y1)和(3,y3)来比较y1,y3的大小,由于在y轴的右侧是增函数,所以y1>y3.于是y2<y3<y1.42.(1)由于二次函数y=x2+bx+c的图象经过点(0,3)、(4,3),则,解得:,∴此抛物线的解析式为:y=x2﹣4x+3.函数图象如下:(2)由函数图象可直接写出x2+bx+c>3的解集为:x<0或x>4.43.二次函数可以变形为y=(x+m)2+2m﹣1,抛物线的顶点坐标为(﹣m,2m﹣1).由,消去m,得y=﹣2x﹣1.所以这条直线的函数解析式为y=﹣2x﹣144.设直线AB的解析式为y=kx+b,∴,解得,直线AB的解析式为y=x+2,令x=0,则y=2,∴直线AB与y轴的交点坐标(0,2),∵S△ABC=12,∴C(0,﹣4),∵抛物线y=ax2+bx+c过点A(﹣2,1),B(2,3),且与y轴负半轴交于点C,∴,解得,∴抛物线的解析式为y=x2+x﹣445.∵直线y=kx+b过点A(2,0)和点B(1,1),∴,解得,∴直线AB所表示的函数解析式为y=﹣x+2,∵抛物线y=ax2过点B(1,1),∴a×12=1,解得a=1,∴抛物线所表示的函数解析式为y=x2.它们在同一坐标系中的图象如下所示:46.(1)∵二次函数y=x2+bx+c的图象经过点P(2,7)、Q(0,﹣5),,解得b=4,c=﹣5.∴b、c的值是4,5;(2)∵二次函数的图象与x轴交于A、B两点,(其中点A在点B的左侧),∴A(1,0),B(﹣5,0),∴AB=6,∵P点的坐标是:(2,7),∴△PAB的面积=×6×7=2147.(1)根据题意得,解得,所以抛物线的解析式为y=﹣x﹣2;(2)y=﹣x﹣2=(x ﹣)2﹣,所以抛物线的对称轴为直线x=,顶点坐标为(,﹣)48.∵二次函数的图象过A(0,4),∴c=4,∵对称轴为x=﹣1,∴x=﹣=﹣2,解得b=4;∴二次函数的表达式为y=x2+4x+4.49.(1)∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴设该二次函数的关系式为:y=a(x+4)2+3(a≠0);又∵图象过点(l,﹣2),∴﹣2=a(1+4)2+3,解得,a=﹣;∴设该二次函数的关系式为:y=﹣(x+4)2+3;(2)由(1)知,该二次函数的关系式为:y=﹣(x+4)2+3,∴a=﹣<0,∴该抛物线的方向向下;∵关于x的二次函数的图象的顶点坐标为(﹣4,3),∴对称轴方程为:x=﹣4.50.(1)把A(﹣1,0)代入y1=﹣x+m得﹣(﹣1)+m=0,解得m=1,把A(﹣1,0)、B(2,﹣3)代入y2=ax2+bx﹣3得,解得.故二次函数的解析式为y2=x2﹣﹣2x﹣3;(2)因为C点坐标为(0,﹣3),B(2,﹣3),所以BC⊥y轴,所以S△ABC =×2×3=3.51.(1)设此二次函数的解析式为y=ax2+bx+c,把A(0,﹣4)和B(4,0),即对称轴x=1.5代入解析式得:,解得:故y=x2﹣3x﹣4;(2)∵A(0,﹣4),对称轴是x=1.5,∴A′(3,﹣4)52.∵二次函数y=ax2+bx+c 的顶点坐标为(﹣,),二次函数y=ax2+bx+c中,c=3,图象的顶点坐标为(2,﹣1),∴﹣=2,=﹣1,解得a=1,b=﹣4,∴二次函数的解析式y=x2﹣4x+353.∵二次函数y1=ax2+bx+c 与二次函数的图象的形状一样,开口方向相同,∴a=﹣2,将点A(﹣1,4),B(﹣3,﹣8)代入y1=﹣2x2+bx+c,得,解得,∴y1=﹣2x2﹣2x+4;∵y1=﹣2x2﹣2x+4=﹣2(x2+x)+4=﹣2(x+)2+,∴顶点坐标为(﹣,).故这个函数的解析式为y1=﹣2x2﹣2x+4,顶点坐标为(﹣,).54.(1)∵二次函数的图象与x轴的两交点的横坐标为1和﹣7,且经过点(﹣3,8),∴两交点的横坐标为:(1,0),(﹣7,0),且经过点(﹣3,8),∴代入解析式:y=a(x﹣1)(x+7),8=a(﹣3﹣1)×(﹣3+7),解得:a=﹣,∴y=﹣(x﹣1)(x+7);(2)∵将点A(﹣1,2)此函数的解析式,∴左边=2,右边=﹣(﹣1﹣1)(﹣1+7)=6;∴左边≠右边,∴点A(﹣1,2)不在此函数的图象上.55.(1)∵二次函数的对称轴为y轴,即x=0,∴b=0,即二次函数解析式为y=ax2+c,又二次函数的图象经过点(0,﹣9)、(1,﹣8),∴,解得:,则二次函数的解析式为y=x2﹣9;(2)由平移规律得:二次函数向右平移2个单位的解析式为:y=(x﹣2)2﹣9,即y=x2﹣4x﹣5,令x=0,解得:y=﹣5,∴C(0,﹣5),即OC=5,又平移后抛物线的顶点P的坐标为(2,9),即P的横坐标为2,则S△POC =OC?x P的横坐标=×5×2=5.56.1)解:由题意得,解得;∴该抛物线的解析式为:y=﹣x2+2x;(2)证明:过点B作BC⊥x轴于点C,则OC=BC=AC=2;∴∠BOC=∠OBC=∠BAC=∠ABC=45°;∴∠OBA=90°,OB=AB;∴△OAB是等腰直角三角形;57.(1)将A(﹣1,0)代入抛物线y=x2+bx﹣2得,×(﹣1)2﹣b﹣2=0,解得,b=﹣,则函数解析式为y=x2﹣x﹣2.配方得,y=(x ﹣)2﹣,可见,顶点坐标为(,﹣).(2)将上述抛物线先向下平移3个单位,再向右平移2个单位,可得,y=(x ﹣﹣2)2﹣﹣3=(x ﹣)2﹣=x2﹣x.58.(1)把(2,0)、(0,﹣6)代入二次函数解析式,可得,解得,故解析式是y=﹣x2+4x﹣6;(2)∵对称轴x=﹣=4,∴C点的坐标是(4,0),∴AC=2,OB=6,AB=2,BC=2,∴S△ABC =AC?OB=×2×6=6,△ABC的周长=AC+AB+BC=2+2+2.59.(1)A坐标是(﹣1,﹣1),B点的坐标是(3,﹣9),代入y=ax2﹣4x+c得:解得:a=1,c=﹣6.则二次函数表达式是:y=x2﹣4x﹣6(2)y=x2﹣4x﹣6=(x﹣2)2﹣10,因此对称轴为直线x=2,顶点坐标为(2,﹣10)60.(1)把A(2,2),B(5,2)分别代入y=x2+bx+c,可得,解得;(2)由b=﹣7,c=12,知y=x2﹣7x+12令y=0,得x2﹣7x+12=0,∴x=3或x=4,∴C(3,0)或C(4,0);(3)∵A(2,2)B(5,2)∴AB=|2﹣5|=3,且△ABC的AB边上的高h=2,∴S△ABC=AB?h=×3×2=3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求二次函数解析式的基本方法及练习题
二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。

熟练地求出二次函数的解析式是解决二次函数问题的重要保证。

二次函数的解析式有三种基本形式:
1、一般式:y=ax 2+bx+c (a ≠0)。

2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。

3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。

求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:
1、若给出抛物线上任意三点,通常可设一般式。

2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。

3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。

探究问题,典例指津:
例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。

解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0)
依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩
⎪⎨⎧-===432c b a
∴这个二次函数的解析式为y=2x 2+3x -4。

例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。

分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。

解:依题意,设这个二次函数的解析式为y=a(x -4)2-1 (a ≠0)
又抛物线与y 轴交于点)3,0(。

∴a(0-4)2-1=3 ∴a=
4
1 ∴这个二次函数的解析式为y=41(x -4)2-1,即y=4
1x 2-2x+3。

例3、如图,已知两点A (-8,0),(2,0),以AB 为直径的半圆与y 轴正半轴交于点C 。

求经过A 、B 、C 三点的抛物线的解析式。

分析:A 、B 两点实际上是抛物线与x 轴的交点,所以可设交点式y=a(x -x 1)(x -
x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。

解:依题意,设这个二次函数的解析式为y=a(x+8)(x -又连结AC 、BC OC 2=AC·BC=8×2 ∴OC=4
即C(0,4)。

∴a(0+8)(0-2)=4 ∴a=41-
∴这个二次函数的解析式为y=41-
(x+8)(x -2),即y=4
1-x 2-23x+4。

变式练习,创新发现
1、在图的方格纸上有A 、B 、C 三点(每个小方格的边长为1个单位长度). (l )在给出的直角坐标系中分别写出点A 、B 、C 的坐标;
(2)根据你得出的A 、B 、C 三点的坐标,求图象经过这三点的二次函数 的解析式.
2、已知抛物线的顶点坐标为)1,2(,与y 轴交于点)5,0(,求这条抛物线的解析式。

3、已知抛物线过A (-2,0)、B (1,0)、C (0,2)三点。

求这条抛物线的解析式。


4. 根据下列条件求二次函数解析式.(1)若函数有最小值-8,且
a∶b∶c=1∶2∶(-3).(2)若函数有最大值2,且过点A(-1,0)、B(3,0).(3)若函数当x >-2时y 随x 增大而增大(x <-2时,y 随x 增大而减小),且图象过点(2,4)在y 轴上截距为-2.
参考答案:
1、(1)A(2,3);B(4,1);C(8,9)。

(2)y=2
1x 2-4x+9。

2、y=(x -2)2+1,即y=x 2-4x+5。

3、y=-(x+2)(x -1),即y=-x 2-x+2。

4.分析: (1)由a∶b∶c=1∶2∶(-3)可将三个待定系数转化为求一个k .即设a=k ,b=2k ,c=-3k(2)由抛物线的对称性可得顶点是(1,2)(3)由函数性质知对称轴是x=-2 解:
(1)设y=ax 2+bx+c ∵a∶b∶c=1∶2∶(-3)
∴设a=k ,b=2k ,c=-3k ∵有最小值-8
∴解析式y=2x 2+4x-6
(2)∵图象过点A(-1,0)、B(3,0),A 、B 两点均在x 轴上,由对称性得对称轴为x=1.又函数有最大值2,∴顶点坐标为(1,2),∴设解析式为y=a(x-1)2+2.
(3)∵函数当x >-2时y 随x 增大而增大,当x <-2时y 随x 增大而减小 ∴对称轴为x=-2设y=a(x+2)2+n
∵过点(2,4)在y 轴上截距为-2,即过点(0,-2)
说明:题(3)也可设成y=ax2+bx+c,得:题(2)充分利用对称性可简化计算.。

相关文档
最新文档