食品中蛋白质的测定
食品中蛋白质
蛋白质的含量一般是按照总氮量乘上一个合适的
蛋白质换算系数来求得的。这个系数决定于物质中蛋 白质的含氮量。蛋白质的含氮量一般为15—17%,平 均值为16%左右。所以只要测出样品(鸡蛋、青豆、 肉、玉米等)中的含氮量,再乘以换算系数,就可计 算出样品中的蛋白质含量。
(g); m------试样的质量或体积(g或mL) F------氮换算为蛋白质的系数。一般食物为6.25;乳制品为6.38;
面粉为5.70;玉米、高梁为6.24;花生为5.46;米为5.95;大 豆及其制品为5.71;肉与肉制品为6.25;大麦、小米、燕麦、 裸麦为5.83;芝麻、向日葵为5.30。 计算结果保留三位有效数字。
至液体呈蓝绿色澄清透明后,再继续加热0.5-1h,取下放冷, 小心加20ml水,移入100ml容量瓶中,并用少量水洗涤烧瓶,洗 液并入容量瓶,再加水至刻度,混匀备用。同时做试剂空白试验。
消化装置
加入试剂的作用:
K2SO4的作用:作为增温剂,提高溶液沸点;加速 对有机物的分解作用。 CuSO4的作用:作为催化剂。还可以作消化终点指 示剂:当完全消化后,反应停止,变为兰色。浓硫 硫酸的作用:硫酸使有机物脱水,并破坏有机物, 使有机物中的C、H氧化为CO2和H2O蒸汽逸出,而 蛋白质则分解氮,与硫酸结合成硫酸铵,留在酸性 溶液中。
5.2 蒸馏:
(1)仪器的洗涤:仪器应先经一般洗涤,再经水蒸汽洗涤。 洗涤方法:先煮沸蒸汽发生器,器中盛有2/3体积的用几滴硫酸 酸化过的水,样品杯中也加入2/3体积蒸馏水进行水封。关闭反 应管下的管夹使蒸汽通过反应室的插管进入反应室,再由冷凝 管下端逸出(可在冷凝管下口放一个准备好的盛有硼酸-指示剂 的锥形瓶,观察锥形瓶中的溶液是否基本上不变色,可证明蒸 馏器内部已洗涤干净) 。 排废:用右手轻提样品杯中棒状玻塞,使水流入反应室的同时, 立即用左手捏紧橡皮管,以断气源,盖好玻塞。由于反应室外 层中蒸汽冷缩、压力降低,反应室内废液通过反应室中插管自 动抽到反应室外壳中。再在样品杯中加入2/3体积蒸馏水,反复 三次。关闭夹子再使蒸汽通过全套蒸馏仪1~3min,可进行蒸 馏。
实验十一食品中蛋白质的测定
色素结合法
– 在蛋白质的侧链中,有许多酸性基团或碱性 基团,它们可以使蛋白质的溶液呈现碱性或
酸性;而且,它们还有吸附碱性色素或酸性
色素能力,并与对应的色素生成“蛋白质-
色素”的沉淀。据此,可用色素结合法对蛋
白质用比色法作定量分析。
– 此法是近年来发展比较快的蛋白质定量分析
方法的种类
• 比色法包括:
»双缩脲法 »紫外分光光度法 »色素结合法
比色法的基本要求
– 由于是用比色法测定蛋白质的含量,而比色 法的测定液必须是真溶液,故要求采用此类
方法的样品,其蛋白质是可溶的(对测试时
使用的溶剂而言)。
– 在一般情况下,蛋白质的溶解是速度是比较
低
– 的,所以在进行样品预处理时应做剧烈振荡, 从而使蛋白质充分地溶液于溶剂中。 – 要求用与待测样品具有同源蛋白质的标准制 作标准曲线!!
⑤ 当样品消化液不易澄清透明时,可将凯氏烧瓶冷 却,加入30%过氧化氢 2—3 m1 后再继续加热消化。
⑥ 若取样量较大,如干试样超过5 g 可按每克试样5 m1的比例增加硫酸用量。如硫酸缺少,过多的硫酸 钾会引起氨的损失,这时会形成硫酸氢钾,而不与 氨作用,因此当硫酸被过多底物消耗掉或样品中脂 肪含量过高时,要添加硫酸。
白质含量的食品为标准样(称之与待测样
具有同源蛋白质的标样),在其适合的 条件下测定吸光度并制备标准吸收曲线。
在相同条件下测同源的待测样品的光密
度,然后从标准吸收曲线上查蛋白质的 含量。
特点: (1)消化装置用优质玻璃制成的凯氏消化瓶, 红外线加热的消化炉。 (2)快速:一次可同时消化8个样品,30分钟可 消化完毕。 (3)自动:自动加碱蒸馏,自动吸收和滴定, 自动数字显示装置。可计算总氮百分含量并记 录,12分钟完成1个样。
[精品]食品中蛋白质的测定实验报告
[精品]食品中蛋白质的测定实验报告
实验原理:
蛋白质是组成细胞的主要成分之一,也是组成食物的重要营养成分之一。
蛋白质在酸性条件下,能与双氨基苯酚(Folin-Ciocalteu试剂)反应,在蓝色复合物的形成下吸光度增加。
利用这一现象可以测定蛋白质的含量。
实验步骤:
1. 食品的预处理
取适量的食品,如鸡蛋、瘦肉、豆腐等,先将食品在研钵中打碎,然后加入适量的蒸馏水,混合均匀,并将混合液倒入过滤纸筒中,收集澄清液并备用。
2. 制备标准曲线
取不同浓度的牛血清蛋白标准溶液(0.1ug/mL、0.2ug/mL、0.4ug/mL、0.6ug/mL、0.8ug/mL),各加入1mL NaOH(0.1mol/L)及2.5mL双氨基苯酚溶液,室温下混合放置,15min后加入 2mLNa2CO3溶液(0.2mol/L),混合均匀,最后用蒸馏水定容至25mL。
利用分光光度计测定吸光度值,制备标准曲线。
3. 测定样品
4. 计算样品中蛋白质的含量
根据标准曲线求出样品中蛋白质的含量。
实验结果:
样品 | 吸光度值 | 蛋白质含量(g/100g)
---|---|---
鸡蛋 | 0.21 | 12.56
瘦肉 | 0.55 | 20.00
豆腐 | 0.45 | 8.90
通过该实验,我们成功地测定了食品中蛋白质的含量,结果表明瘦肉的蛋白质含量最高,豆腐的蛋白质含量最低。
这有助于我们选择更健康的食物。
同时,我们还注意到样品的吸光度值与蛋白质含量呈正相关,这也说明了利用双氨基苯酚对蛋白质进行测定的可行性。
食品中蛋白质含量测定解释
食品中蛋白质含量测定解释食品中蛋白质含量测定解释导言:蛋白质是组成生物体的重要营养成分之一,对于人体健康具有重要意义。
蛋白质在体内起着结构构建、调节代谢、免疫防御以及传递信息的作用。
因此,了解食品中蛋白质的含量对于人们合理膳食以及健康管理具有重要意义。
本文将详细介绍食品中蛋白质含量的测定方法,以及各种方法的原理和操作步骤。
一、食品中蛋白质的测定方法1. 总氮测定法总氮测定法是一种常用的测定食品中蛋白质含量的方法。
因为蛋白质是由氮元素组成的,所以通过测定食品中的总氮含量,可以近似地计算出蛋白质的含量。
总氮测定法的常用方法有几种:凯氏方法、微量法、Kjeldahl 法等。
凯氏方法是一种经典的总氮测定方法,其原理是利用硫酸的氧化性将蛋白质中的氨基酸氧化为硝酸盐离子,然后用硫化汞与硝酸盐反应生成化合物,通过光度计或滴定法测定硝酸盐离子的含量,从而计算出总氮含量。
微量法是一种便捷而精确的总氮测定方法,其原理是根据样本中亚硝酸根离子的发色反应,利用光度计测定亚硝酸根离子的含量,从而计算出总氮含量。
Kjeldahl 法是一种金标准的总氮测定方法,其原理是将蛋白质样品加入硫酸中加热,使蛋白质氮转化为氨气,然后利用盐酸滴定法测定氨气的含量,从而计算出总氮含量。
2. 生物化学方法生物化学方法是一种直接测定食品中蛋白质含量的方法。
这种方法利用蛋白质与某些特定试剂在特定条件下发生反应产生可测定的物质,从而得到蛋白质含量的测定结果。
常用的生物化学方法有低里氏法和酪蛋白试剂法。
低里氏法是一种常用的测定尿液中蛋白质含量的方法,但也可以应用于食物中蛋白质的测定。
该方法利用琼脂胶的胶体颗粒状结构吸附蛋白质,然后根据蛋白质与琼脂胶的吸附量的差异来测定蛋白质的含量。
酪蛋白试剂法是一种用于测定食品中蛋白质含量的简单而有效的方法。
该方法基于酪蛋白与碱性染料(如亚甲基蓝)之间的络合反应,通过测定络合物的吸光度来计算样品中蛋白质的含量。
3. 免疫学方法免疫学方法是一种基于蛋白质与特定抗体之间的免疫反应测定蛋白质含量的方法。
食品中蛋白质含量测定
实验一食品中蛋白质含量测定(凯氏定氮法)一、目的与要求1、学习凯氏定氮法测定蛋白质的原理。
2、掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸馏、滴定及蛋白质含量计算等。
二、实验原理1、消解:蛋白质是含氮的化合物。
食品与浓硫酸在催化剂作用下共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵而留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。
因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。
NH2(CH2)2COOH+13H2SO4=(NH4)2SO4+6CO2+12SO2+16H2O浓硫酸将有机物炭化后为碳、氢与氮,将形成的碳氧化:2H2SO4+C(Δ)=CO2+2H2O+2SO2↑生成的二氧化硫将氧化态的氮还原为氨而自身被氧化为三氧化硫,氨随之与硫酸反应生成硫酸铵,H2SO4+2NH3=(NH4)2SO4在消解试验中,为了加速蛋白质的分解,缩短消解时间,常常加入下列物质:(1)硫酸钾:一般浓硫酸的沸点为340℃,但加入硫酸钾后,硫酸不断分解,水不断溢出引起硫酸钾浓度不断增加,沸点因此而增加。
K2SO4+H2SO4=KHSO4KHSO4(Δ)=K2SO4+H2O↑+SO3但硫酸钾浓度不能太大,否则消化温度过高会引起铵盐的热分解而释放出氨,(NH4)2SO4(Δ)=(NH4)2SO4+NH3↑2KSO4(Δ)=2H2O+2NH3↑+2SO3↑除了可以添加硫酸钾之外,也可以加入硫酸钠、氯化钾等以提高溶液温度,但效果要差于硫酸钾。
(2)硫酸铜:硫酸铜可以催化反应。
可以采用的催化剂除了硫酸铜外,还可以加入氧化汞、汞、硒粉以及二氧化钛等,但考虑效果、价格以及污染等原因外,最常用的还是硫酸铜,同时可以加入少量的过氧化氢、次氯酸钾等作为氧化剂以加速有机物的氧化,反应机理为:2CuSO4(Δ)= Cu2SO4+O2↑+SO2↑C+CuSO4(Δ)= Cu2SO4+CO2↑+SO2↑H2SO4+Cu2SO4(Δ)= 2CuSO4+2H2O↑+SO2↑此反应不断进行,如溶液没有褐色生成(Cu2SO4颜色)而呈现清澈的蓝绿色,说明有机物已经全部被消解完毕。
食品中蛋白质含量测定(凯氏定氮法)
实验:食品中蛋白质含量测定(凯氏定氮法)一、目的与要求1、学习凯氏定氮法测定蛋白质的原理。
2、掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸馏、滴定及蛋白质含量计算等。
二、实验原理蛋白质是含氮的化合物。
食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。
三、仪器与试剂(一)试剂(所有试剂均用不含氨的蒸馏水配制)1、硫酸铜(CuSO4·5H20)2、硫酸钾3、浓硫酸(密度为1.8419g/L)4、2%硼酸溶液(20g/L)5、40%氢氧化钠溶液(400g/L)6、0.01mol/L盐酸标准滴定溶液。
7、混合指示试剂:0.1%甲基红乙醇溶液1份,与0.1%溴甲酚绿乙醇溶液5份临用时混合。
(二)仪器微量定氮蒸馏装置:如图3-所示。
图3-微量凯氏定氮装置1、电炉;2、水蒸气发生器(2L平底烧瓶);3、螺旋夹a;4、小漏斗及棒状玻璃塞(样品入口处);5、反应室;6、反应室外层;7、橡皮管及螺旋夹b;8、冷凝管;9、蒸馏液接收瓶。
四、实验步骤1、样品消化称取样品约0.3g(±0.001g),移入干燥的100mL凯氏定氮烧瓶中,加入0.2g硫酸铜和6g硫酸钾,稍摇匀后瓶口放一小漏斗,加入20mL浓硫酸,将瓶以450角斜支于有小孔的石棉网上,使用万用电炉,在通风橱中加热消化,开始时用低温加热,待内容物全部炭化,泡沫停止后,再升高温度保持微沸,消化至液体呈蓝绿色澄清透明后,继续加热0.5h,取下放冷,小心加20mL水,放冷后,无损地转移到100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,加水定容至刻度,混匀备用,即为消化液。
一般消解温度都设在240度及240度以上,如果想快速消解可以适当提高温度甚至可以用最大温度进行消解试剂空白实验:取与样品消化相同的硫酸铜、硫酸钾、浓硫酸,按以上同样方法进行消化,冷却,加水定容至100mL,得试剂空白消化液。
食品中蛋白质含量的测定
❖ 5.滴定
❖ 用 0.1mol/L 盐酸标准滴定溶液滴定收集液至 刚刚出现紫红色为终点。 同一试样做两次平 行试验,同时做空白试验。
❖ 6.计算 ❖ 计算比较简单,此处不再做详细的叙述。
❖ 计算结果允许差:
同一样品两次测定值之差: 蛋白质含量小 于1%时,不得超过平均值的 10%;
蛋白质含量大于或等于 1%时,每 100g 样 品不得超过 5g。
四.国标法中凯氏定氮法测量的优缺点 分析
❖ 1.优点: ❖ 干扰少
❖ 操作较为简单,可同时测定多个样品
❖ 可用于所有动、植物食品的分析及各种加工 食品的分析,可应用于各类食品中蛋白质含 量测定
❖ 2.缺点:
❖ 太粗略,不准确
❖ 费时,需 8~10小时
❖ 凯氏定氮法只是一个氧化还原反应,把低价 氮氧化并转为氨盐来测定,而不能把高价氮 还原为氮盐Байду номын сангаас形式,所以不可以测出物质中 所有价态的氮含量.
三.实验步骤
❖ 1.试剂和溶液
所有试剂均为分析纯;水为蒸馏水或同等纯度的 水。 ❖ 硫酸铜(GB 665);硫酸钾(HG 3—920);
硫酸(GB 625); 95%乙醇(GB 679); 40%氢氧化钠溶液:称取 40g 氢氧化钠(GB629)
溶于 60mL 蒸馏水中; 4%硼酸溶液:称取 4g 硼酸(GB 628)溶于蒸馏 水中
3.1.2 液体试样:取 10~20±0.05mL 试样(使试 样中含氮 30~40mg),移入凯氏烧瓶中,蒸发至近 干。
4.2 消化 :向凯氏烧瓶中依次加入硫酸铜0.4g、硫 酸钾10g、硫酸20mL 及数粒玻璃珠。将凯氏烧瓶斜 放(45°)在电炉上,缓慢加热。待起泡停 止,内 容物均匀后,升高温度,保持液面微沸。当溶液呈 蓝绿色透明时,继续加热 0.5~1h。取下凯氏烧瓶 冷却至约 40℃,缓慢加入适量水,摇匀。冷却至室 温。
食品中蛋白质的测定方法
食品中蛋白质的测定方法GB/T14771-931 本标准规定了用凯氏定氮法测定食品中蛋白质的方法。
本标准适用于肉禽制品、豆制品、水产品、调味品、谷物制品、发酵制品、糕点、植物蛋白饮料等食品中蛋白质的测定。
2 引用标准GB 601 化学试剂滴定分析(容量分析)用标准溶液的制备3 原理以硫酸铜为催化剂,用浓硫酸消化试样,使有机氮分解为氨,与硫酸生成硫酸铵。
然后加碱蒸馏使氨逸出,用硼酸溶液吸收,再用盐酸标准滴定溶液滴定。
根据盐酸标准滴定溶液的消耗量计算蛋白质的含量。
4 试剂和溶液:所有试剂均为分析纯;水为蒸馏水或同等纯度的水。
4.1 硫酸铜(GB 665)。
4.2 硫酸钾(HG 3—920)。
4.3 硫酸(GB 625)。
4.4 40%氢氧化钠溶液:称取40g氢氧化钠(GB 629)溶于60mL蒸馏水中。
4.5 4%硼酸溶液:称取4g硼酸(GB 628)溶于蒸馏水中稀释至100mL。
4.6 0.1mol/L盐酸标准滴定溶液:按GB 601规定的方法配制与标定。
4.7 95%乙醇(GB 679)。
4.8 甲基红-次甲基蓝混合指示液:将次甲基蓝乙醇溶液(1g/L)与甲基红乙醇溶液(1g/L)按1+2体积比混合。
5 仪器、设备实验室常规仪器及下列各项:5.1 凯氏烧瓶:500mL。
5.2 可调式电炉。
5.3 蒸汽蒸馏装置:见图1和图2。
6 试样的制备6.1 固体样品:取有代表性的样品至少200g,用研钵捣碎、研细;不易捣碎、研细的样品应切(剪)成细粒;干固体样品用粉碎机粉碎。
6.2 液体样品:取充分混匀的液体样品至少200g。
6.3 粉状样品:取有代表性的样品至少200g(如粉粒较大也应用研钵研细),混合均匀。
6.4 糊状样品:取有代表性的样品至少200g,混合均匀。
6.5 固液体样品:按固、液体比例,取有代表性的样品至少200g,用组织捣碎机捣碎,混合均匀。
6.6 肉制品:取去除不可食部分、具有代表性的样品至少200g,用铰肉机至少铰两次,混合均匀。
蛋白质的测定—凯氏定氮法测定食品中蛋白质
食品中蛋白质的测定——凯氏定氮法
实验原理
• 样品与浓硫酸和催化剂一同加热消化,使蛋白质分解,其中碳和氢被氧化为 二氧化碳和水逸出样品中的有机氮转化为氨与硫酸结合成硫酸铵加碱蒸馏, 使氨蒸出,用硼酸吸收后再以标准盐酸或硫酸溶液滴定。根据标准酸消耗量 可计算出蛋白质的含量。
仪器
500ml凯 氏烧瓶
定氮蒸馏 装置
凯氏定氮法测食品中蛋白质的注意事项
(9)硼酸吸收液的温度不应超过40°C,如高于40°C可置于冷 水浴中。
(10)混合指示剂在碱性溶液中呈绿色,在中性溶液中呈灰色, 在酸性溶液中呈红色。
课后思考
• 凯氏定氮法测定 食品中蛋白质还 有哪些需要注意?
常量蒸馏按下式计算: 微量蒸馏按下式计算:
W c(V2 V1 ) 0.014 F 100 m
W c(V2 V1 ) 0.0 1 4 F 1 0 0 m 10 100
食品中蛋白质的测定——凯氏定氮法
实验步骤——计算 • 式中W—蛋白质的质量分数,%; • c—盐酸标准液的浓度,mol/L; • V1—空白滴定消耗标准液量,mL; • V2—试剂滴定消耗标准液量,mL; • m—样品质量,g; • 0.014—氮的毫摩尔质量,g/mmol; • F—蛋白质系数。
• 凯氏定氮步骤包括消化、蒸馏、 吸收、滴定、计算。
凯氏定氮法测食品中蛋白质的注意事项
(1)凯氏定氮法测定食品中蛋白质含量为粗蛋白
(2)所有试剂应用无氨蒸馏水配制
(3)消化过程应注意转动凯氏烧瓶,促进消化完全 (4)若样品含脂肪或糖较多时,易产生大量泡沫可采用小火或者可加入 少量辛醇、液体石蜡或硅油等消泡剂 (5)控制消化时间 ,一般消化至透明后,继续消化30min即可,但当含 有特别难以氨化的氮化合物的样品,消化时间需适当延长;
食品蛋白质测定方法
食品蛋白质测定方法食品蛋白质测定方法是用来确定食品中蛋白质含量的方法。
蛋白质是构成生物体的重要组成部分,对于人体的生长发育和维持生命活动有着重要的作用。
因此,准确测定食品中蛋白质的含量对于人类的健康和营养均衡具有重要意义。
下面将介绍几种常见的食品蛋白质测定方法。
1. 显色法测定法:显色法是一种常用的蛋白质含量测定方法,其基本原理是蛋白质与某些显色剂形成有色化合物,通过测定其吸光度或比色度来确定蛋白质的含量。
常用的显色剂有布拉德福方法中的科罗琳蓝G-250和佩鲁氏蓝S,还有比色法中的科罗琳蓝B,阿伦尼乌斯蓝等。
这些显色剂与蛋白质结合后的复合物,具有特定的吸光度或比色度,可以利用光谱或比色仪进行测定。
2. 二硫苏糖蛋白(DTNB)法:DTNB法是一种测定蛋白质含量的常用方法。
其原理是蛋白质中的半胱氨酸与DTNB反应生成黄色产物,通过测量产物的吸光度来确定蛋白质的含量。
该方法的优点是操作简单,结果可靠,适用于多种类型的蛋白质,但是对蛋白质含量较低的食品不太适用。
3. 布拉德福法:布拉德福法是一种蛋白质含量测定的经典方法。
其基本原理是蛋白质与科罗琳蓝G-250结合形成复合物,然后利用光谱仪测定复合物的吸光度来确定蛋白质的含量。
这种方法对于蛋白质的测定较准确,但需要较长的测定时间和复杂的实验步骤。
4. Bradford-Modified Lowry法:这种方法是布拉德福法的改良版,它通过在布拉德福法的基础上加入了低糖液(Lowry)试剂,来提高测定的敏感性和准确度。
该方法适用于各种类型的食品样品,且测定结果的稳定性较高。
5. 琼脂凝胶电泳法:琼脂凝胶电泳法是一种测定蛋白质分子量的方法,通过将蛋白质溶液在琼脂凝胶上进行电泳分离,然后根据蛋白质的迁移距离来确定其分子量。
该方法对于蛋白质含量较低的食品样品也适用,并且可以同时测定多种蛋白质的分子量。
以上是几种常见的食品蛋白质测定方法。
不同的方法在测定原理、操作步骤和适用范围上有所差异,选择合适的方法应根据样品性质和实验目的而定。
食品中蛋白质的测定方法
食品中蛋白质的测定方法
蛋白质的检测原理是基于食品中蛋白质含量与食品中氮含量的比例关系换算的。
如乳中蛋白质与氮含量的比值为6.38,大豆中蛋白质与氮含量的比值为5.71,普通食品中蛋白质与氮含量的比值为6.25。
因此是通过测定食品中氮含量后再根据换算系数得到食品中蛋白质含量。
蛋白质的检测方法:
1、凯氏定氮法:样品在高温浓硫酸的消化作用下,将样品中的有机氮转化为无机铵,待消化液冷却后,加入过量的碱,使无机铵转化为挥发性的氨,再将氨蒸出后,利用盐酸标准溶液滴定,最后根据消耗的盐酸标液体积推算样品中的氮含量。
2、杜马斯定氮法:样品在高纯氧中充分燃烧的过程中,将氮元素转化为氮气或氮氧化物,再经过高温铜的还原,使所有的氮转化为N2,然后利用热导检测器检测N2的含量来推算样品中氮含量。
因此杜马斯定氮法也称为杜马斯燃烧法或燃烧定氮法。
食品中蛋白质的检测方法
食品中蛋白质的检测方法
蛋白质作为人体生命活动的基础,是细胞构成和功能维持的重要组成部分。
在食品安全和营养评估中,对食品中蛋白质的检测显得尤为重要。
本文将介绍几种常用的食品中蛋白质检测方法。
一、生物化学方法
1. 琼脂糖凝胶电泳法:将待测食品样品提取出蛋白质后,通过琼脂糖凝胶电泳分离蛋白质,根据蛋白质的迁移速度和分子量来判断食品中蛋白质的种类和含量。
2. 比色法:利用食品中蛋白质与某些试剂发生化学反应,形成有色产物,通过比色计测定产物的光吸收值,进而确定食品中蛋白质的含量。
二、免疫学方法
1. 酶联免疫吸附测定法(ELISA):该方法利用特异性抗体与食品中蛋白质结合,再通过酶标记的二抗、底物和显色剂等反应,测定产生的光信号强度来确定食品中蛋白质的含量。
2. 免疫电泳法:将食品中蛋白质与特异性抗体反应后,经过电泳分离,再利用酶标记的二抗进行检测,通过测定产生的酶活性来确定食品中蛋白质的含量。
三、分子生物学方法
1. 聚合酶链式反应(PCR):该方法利用特异性引物扩增目标蛋白质的DNA序列,进而通过测定扩增产物的数量来确定食品中蛋白质的含量。
2. 荧光定量PCR:通过引入荧光标记的探针,利用PCR扩增产物的特异性结合,测定荧光信号的强度,从而确定食品中蛋白质的含量。
食品中蛋白质的检测方法多种多样,选择合适的方法可以准确快速地确定食品中蛋白质的含量。
在实际应用中,我们可以根据实验需求和条件选择适合的方法,以保证食品安全和营养评估的准确性。
gb5009.52010蛋白质的测定
中华人民共和国国家标准GB 5009.5—2010食品安全国家标准食品中蛋白质的测定National food safety standardDetermination of protein in foods中华人民共和国卫生部发布2010-03-26 发布2010-06-01 实施GB 5009.5—2010I前言本标准代替GB/T 5009.5-2003《食品中蛋白质的测定》、GB/T 14771-1993《食品中蛋白质的测定方法》和GB/T 5413.1-1997《婴幼儿配方食品和乳粉蛋白质的测定》。
本标准与GB/T 5009.5-2003相比主要修改如下:——在第一法中增加了自动蛋白质测定仪的方法;——增加了燃烧法,作为第三法;——修改了换算系数;——对计算结果的有效数字规定进行了修改;——增加pH计对滴定终点的判定。
本标准所代替标准的历次版本发布情况为:——GB/T 5009.5-1985、GB/T 5009.5-2003;——GB/T 14771-1993。
GB 5009.5—20101食品安全国家标准食品中蛋白质的测定1 范围本标准规定了食品中蛋白质的测定方法。
本标准第一法和第二法适用于各种食品中蛋白质的测定,第三法适用于蛋白质含量在10 g/100 g 以上的粮食、豆类、奶粉、米粉、蛋白质粉等固体试样的筛选测定。
本标准不适用于添加无机含氮物质、有机非蛋白质含氮物质的食品测定。
第一法凯氏定氮法2 规范性引用性文件本标准中引用的文件对于本标准的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本标准。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。
3 原理食品中的蛋白质在催化加热条件下被分解,产生的氨与硫酸结合生成硫酸铵。
碱化蒸馏使氨游离,用硼酸吸收后以硫酸或盐酸标准滴定溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质的含量。
4 试剂和材料除非另有规定,本方法中所用试剂均为分析纯,水为GB/T 6682 规定的三级水。
食品中蛋白质的测定
N系数(蛋白质系数)为蛋白质中氮元素百分比含量的倒数, 其物理意义可表述为:一个单位重量的氮素可构成的蛋白质的重量 单位。换句话说,假如知道了蛋白质中氮素的绝对含量,与N系数
相乘即求得蛋白质的绝对量,即:
蛋白质(绝对量)= N系数×氮素(绝对)量
9
应注意的问题:
就某一种食物而言,构成其蛋白质的种类很复杂,各种蛋白质的氮素 含量不尽相同,以构成食品蛋白质中含量最多的蛋白质为基础而设定(如 谷物以谷蛋白质为基础而设定,谷蛋白含量为16.81,其氮系数为5.95)。 现在,各国均使用FAO(联合国粮农组织)规定的氮系数:
食品中蛋白质的测定
一、概述 1、食品中的蛋白质含量及测定意义 2、蛋白质系数 3、蛋白质分析方法 二、《食品安全国家标准 食品中蛋白质的测定》 1、 GB 5009.5-2010 简介 2、第一法:凯氏定氮法(重点) 3、第二法--分光光度法、第三法—燃烧法(简介) 三、小结与思考
1
自学引导题
1、蛋白质系数是如何计算出来的? 2、蛋白质的测定方法有哪些?国家标准是哪一种方法? 3、为什么说用凯氏定氮法测出的是粗蛋白的含量?
类型的蛋白质。
2.体的酸碱平衡、水平衡的维持; 3.遗传信息的关(酶)。
5.人及动物只能从食品得到蛋白质及其分解产物,来构成自身 的蛋白质,是人体重要的营养物质
6.膳食指导的重要(营养)指标。
7.食品生产的重要工艺指标。
4
1、食品中的蛋白质含量及测定意义
常见食物中蛋白质的含量
17
蛋白质含量测定最常用的方法--凯氏定氮法
由于样品中含有少量非蛋白质用凯氏定氮 法通过测总氮量来确定蛋白质含量,包含 了核酸、生物碱、含氮类脂、卟啉、以及 含氮色素等非氮蛋白质含氮化合物,所以 这样的测定结果称为粗蛋白。
食品中蛋白质的测定方法
食品中蛋白质的测定方法一、生物化学方法生物化学法是通过测定蛋白质分解产物或检测蛋白质与一些化学试剂的反应来测定食品中蛋白质的含量。
常用的生物化学方法包括碱溶液提取法、伯努利法、生物素试验法等。
1.碱溶液提取法:该方法通过将食品样品用强碱溶液处理,使蛋白质变为溶液中的游离氮,然后用酸中和,从而测定蛋白质的含量。
这种方法操作简便、结果准确,但可能会引入一些误差。
2. 伯努利法:该方法是利用吸收波长处于280nm左右的多肽链或多肽链片段来测定蛋白质含量。
通过测定吸收光的强度来推算出蛋白质的浓度。
这种方法适用于含多肽链的样品。
3.生物素试验法:该方法是利用生物素与标记有酶的抗生素分子相结合,来测定蛋白质的含量。
这种方法非常灵敏,且测定结果稳定可靠。
二、光谱法光谱法是一种利用分子在特定波长下对光的吸收或散射来测定蛋白质含量的方法。
常用的光谱法有紫外-可见光光谱法和红外光谱法。
1. 紫外-可见光光谱法:该方法是利用蛋白质分子中芳香族化合物的吸收峰来测定蛋白质的含量。
其中,279nm波长的吸收峰对应着蛋白质的特征吸收峰。
通过测量吸光度来计算蛋白质的含量。
2.红外光谱法:该方法通过检测蛋白质分子中的功能基团振动特征来测定蛋白质的含量。
红外光谱法可以提供蛋白质的结构信息,且操作简便。
三、色度法色度法是一种利用颜色反应来测定蛋白质含量的方法。
常用的色度法包括比色法、光度法和电色谱法等。
1. 比色法:该方法是利用食品样品与其中一种试剂作用后的颜色反应来测定蛋白质的含量。
常用的试剂有布莱特试剂、Lowry试剂和比显色法等。
2. 光度法:该方法是利用针对蛋白质的特定试剂发生的光谱变化来测定蛋白质的含量。
常用的试剂有Coomassie蓝试剂,通过与蛋白质结合产生颜色反应,再通过测量吸光度来计算蛋白质的含量。
3.电色谱法:该方法是利用蛋白质的分子电荷特性来测定蛋白质的含量。
通过测定蛋白质在电场中的迁移速率来计算蛋白质含量。
综上所述,食品中蛋白质的测定方法较多,可以根据不同的食品样品和测定目的选择合适的方法,以获取准确的样品中蛋白质含量信息。
食品中蛋白质的测定方法
食品中蛋白质的测定方法?蛋白质的测定方法分为两大类:一类是利用蛋白质的共性,即含氮量,肽链和折射率测定蛋白质含量,另一类是利用蛋白质中特定氨基酸残基、酸、碱性基团和芳香基团测定蛋白质含量。
但是食品种类很多,食品中蛋白质含量又不同,特别是其他成分,如碳水化合物,脂肪和维生素的干扰成分很多,因此蛋白质的测定通常利用经典的剀氏定氮法是由样品消化成铵盐蒸馏,用标准酸液吸收,用标准酸或碱液滴定,由样品中含氮量计算出蛋白质的含量。
由于食品中蛋白质含量不同又分为凯氏定氮常量法、半微量法和微量法,但它们的基本原理都是一样的。
一凯氏定氮法我们在检验食品中蛋白质时,往往只限于测定总氮量,然后乘以蛋白质核算系数,得到蛋白质含量,实际上包括核酸、生物碱、含氮类脂、叶啉和含氮色素等非蛋白质氮化合物,故称为粗蛋白质。
(一)、常量凯氏定氮法衡量食品的营养成分时,要测定蛋白质含量,但由于蛋白质组成及其性质的复杂性,在食品分析中,通常用食品的总氮量表示,蛋白质是食品含氮物质的主要形式,每一蛋白质都有其恒定的含氮量,用实验方法求得某样品中的含氮量后,通过一定的换算系数。
即可计算该样品的蛋白质含量。
一般食品蛋白质含氮量为l6%,即1份氮素相当于6.25分蛋白质,以此为换算系数6.25,不同类的食物其蛋白质的换算系数不同.如玉米、高梁、荞麦,肉与肉制品取6.25,大米取5.95、小麦粉取5.7,乳制品取6.38、大豆及其制品取5.17,动物胶5.55。
测定原理:食品经加硫酸消化使蛋白质分解,其中氮素以氨的形式与硫酸化合成硫酸铵。
然后加碱蒸馏使氨游离,用硼酸液吸收形成硼酸铵,再用盐酸标准溶液或硫酸标准溶液滴定,根据盐酸消耗量计算出总氮量,再乘以一定的数值即为蛋白质含量,其化学反应式如下。
(1) 消化反应:有机物(含C、N、H、O、P、S等元素)+H2S04-→(NH4)2S04+C02↑+S02↑+S03+H3PO4+CO2↑(2) 蒸馏反应:(NH4)2SO4+2NAOH-→2NH3↑+2H2O+NA2SO4 2NH3+4H3BO3-→(NH4)2B4O7+5H2O(3) 滴定反应:(NH4)2B4O7+2HCH+5H2O-→2NH4CH+4H3BO3 或(NH4)2B407+H2S04+5H20-(NH4)9SO4+4H2BO2试剂与仪器:1、硫酸钾;2、硫酸铜;3、浓硫酸;4、4%硼酸溶液(饱和溶液);5、40%氢氧化钠溶液;6、混合指示剂:临用时把(溶解于95%乙醇的)0.l%甲基红溶液10毫升和(溶于95%乙醇的0).l%甲基蓝溶液5毫升混合而成;7、0.1N盐酸标准溶液或0.1N硫酸标准溶液;8、凯氏定氮仪一套。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任务:
1、请设计检验样品抽样单,并抽样,填写相关记录;
2、食品中蛋白质种类及含量是标志食品营养价值的重要指标,查阅资料,了解并下载国家标准测定蛋白质的方法。
3、凯氏定氮法测定食品中蛋白质方法原理是什么?
凯氏定氮法测定食品中蛋白质的原理是样品与浓硫酸、硫酸钾、硫酸铜一同加热消化, 使蛋白质分解, 其中碳和氢被氧化为二氧化碳和水逸出, 而样品中的有机氮转化为氨和硫酸结合成硫酸铵, 然后加碱蒸馏, 使氨蒸出,用硼酸吸收后再以标准盐酸溶液滴定, 根据标准酸消耗量可计算出蛋白质的含量。
4、对照国家标准,列出实验所需仪器与试剂
所有试剂均为分析纯,水为蒸馏水或同等纯度的水。
硫酸铜、硫酸钾、浓硫酸;40%氢氧化钠溶液:称取40g 氢氧化钠溶于60ml 蒸馏水中;4%硼酸溶液:称取4g 硼酸溶于蒸馏水中稀释至100ml;0.050mol/l 盐酸标准滴定溶液;甲基红次甲基蓝混合指示液:将次甲基蓝乙醇溶液(1g/l)与甲基红乙醇溶液(1g/l)按1∶2 体积比混合。
实验室常规仪器及下列各项:
凯氏烧瓶:500ml;可调式电炉;蒸汽蒸馏装置;绞肉机:篦孔径不超过4nm;组织捣碎机;粉碎机;研钵:玻璃或瓷质;化学消化器;凯氏定氮仪;空气滤过器
5.样品在消化过程中,应加入浓硫酸、硫酸钾及硫酸铜,试分别说清他们各自的作用。
加硫酸作用:硫酸及催化剂与样品加热消化, 使蛋白质分解, 其中C、H 形
成CO
2和H
2
O 逸出, 而蛋白质中的氮则转化成( NH4 )
2
SO4
加硫酸钾作用:在消化过程中添加硫酸钾可以提高温度加快有机物分解,它与硫酸反应生成硫酸氢钾,可提高反应温度,一般纯硫酸加热沸点330 ℃,而添加硫酸钾后,温度可达400 ℃,加速了整个反应过程。
此外,也可以加入硫酸钠,氢化钾盐类来提高沸点。
其理由随着消化过程硫酸的不断地被分解,水分的逸出而使硫酸钾的浓度增大,沸点增加。
加速了有机的分解。
但硫酸钾加入量不能太大,否则温度太高,生成的硫酸氢铵也会分解,放出氨而造成损失。
加硫酸铜作用:为了加速反应过程,还加入硫酸铜,氧化汞或硒粉作为催化剂以及加入少量过氧化氢,次氯酸钾作为氧化剂。
但为了防止污染通常使用硫酸铜。
所以有机物全部消化后,出现硫酸铜的兰绿色,它具有催化功能,还可以作为碱性反应指示剂。
6、消化过程中应注意哪些问题?如何判断样品消化达到终点。
(1)消化过程中不要用强火,特别是样品脂肪或糖含量较高时,消化过程中易产生大量泡沫,强火会使样品溢出瓶外或溅起粘附在凯氏烧瓶壁上无法消化完全而造成氮损失,因此应在开始消化时用小火加热,保持和缓沸腾,使火力集中在凯氏烧瓶底部。
(2)消化过程中要不时转动凯氏烧瓶,以便利用冷凝酸液将附在瓶壁上的固体残渣洗下并促进其消化完全。
(3)样品中脂肪含量过高时,要增加硫酸的量,因消化时脂肪消耗硫酸量大,使硫酸缺少不能生成硫酸铵造成氮损失。
(4)消化至液体澄清透明后只需继续加热0.5h 即可,加热过久,硫酸不断被分解,水分不断逸出而使硫酸钾浓度增大,沸点升高,易使已生成的铵盐发生热分解放出氨而造成损失,特别是蛋白质含量低的食品因此而无法测定。
(5)消化时,如不容易呈透明溶液,可将K氏烧瓶放冷后,加入30 %过氧化氢催化剂(2~3) ml ,促使氧化。
终点:消化至液体蓝绿色澄清透明后只需继续加热0.5h 即可
7、对照国家标准GB5009.1,列出配制0.05mol/lHCl标准液的过程。
取2mol/L 的盐酸溶液0.025L于1000ml容量瓶,然后定容即可。
8、蒸馏过程中应注意哪些问题?
(1)在蒸馏前应检查蒸馏装置的密封情况, 加氢氧化钠的漏斗要采用水封, 避免因蒸馏装置漏气造成氨的逸出而影响测定结果。
(2)蒸馏时,蒸气要均匀、充足,蒸馏中不得停火断气,否则,会发生倒吸。
(3)蒸气发生瓶内的水装至2/3 体积并且保持酸性(在蒸气发生瓶内的水中加入稀硫酸,使之呈酸性,内加甲基橙指示剂数滴,水应呈橙红色,如变黄时,应该补加酸),以防止在碱性条件水中游离氨蒸出,使结果偏大。
9、实验所用甲基红-溴甲酚绿混合指示剂,蒸馏完毕时接收平中呈现什么颜色,用盐酸滴定至终点又是什么颜色?为什么?
正常情况下, 当加入该指示剂后硼酸溶液显橙色, 蒸馏时氨气被硼酸吸收变成硼酸铵, 溶液变成蓝色。
但实验中常常会出现加入指示剂后硼酸溶液就变蓝色, 是因为配制硼酸溶液时混入碱性物质或蒸馏水偏碱性。
用盐酸滴定至终点,颜色由酒红色变成绿色。
因为此时盐酸中和了碱液。
10、在蒸汽发生瓶水中加甲基红指示剂数滴及数毫升硫酸有何作用?
数毫升硫酸,以保持水呈酸性。
加甲基红的原因是作为指示剂看加氢氧化钠的量是否中和完硫酸。
蒸馏过程中放出的氨可用一定量的标准硫酸或标准盐酸溶液进行氨的吸收,然后再用标准氢氧化钠溶液反滴定过剩的硫酸或盐酸溶液,从而计算出总氮量。
11、编写蛋白质检验的原始记录表,记载原始记录,并对数据进行分析(精密度等);
12、撰写检验报告。