核医学与分子影像

合集下载

核医学与分子影像

核医学与分子影像

Pre-clinical molecular imaging
Tumor PET image (I-124 FIAU) (gene expressed) CT image FunctionalAnatomical coregistered PET/CT images
In Vivo Proof of Concept and Optimization
正常多巴胺转运体显像
PD的多巴胺D2受体显像
Estrogen receptor imaging of breast Cancer
乳腺癌雌激素受体显像
Carcinoid 18F-DOPA
反义与基因显像 antisense & gene imaging
• 应用放射性核素标记人工合成的反义寡核苷酸 • 引入体内后与相应的靶基因结合 • 应用显像仪器观察其与病变组织中过度表达的目 标DNA或mRNA发生特异性结合过程 • 显示特异性癌基因过度表达的癌组织,从而达到 在基因水平早期、定性诊断 • 反义显像使肿瘤显像进入了基因水平,有可能成 为未来“分子影像学”的重要组成部分
Memorial Sloan Kettering Cancer Center
Imaging of tumor suppressor gene
Control
Tumor
Control
Tumor
未治疗的肿瘤动物 模型P53未激活
药物治疗后 P53激活
报告基因显像与基因治疗监测
Reporter gene imaging and gene therapy monitoring
心肌活性
Early diagnosis, staging, recurrence and metastasis, efficacy

影像核医学与分子影像复习试题(含答案)

影像核医学与分子影像复习试题(含答案)

影像核医学与分子影像试题及答案四、选择题(一)A型题1.放射性核素治疗主要是利用哪种射线A.α射线B.γ射线C.B-射线D.X 射线E.正电子2.放射性核素显像最主要利用哪种射线A.α射线B.γ射线C.射线D.X射线E.俄歇电子3.以下哪一项不是放射性核素显像的特点A.较高特异性的功能显像B.动态定量显示脏器、组织和病变的血流和功能信息C.提供脏器病变的代谢信息D.精确显示脏器、组织、病变和细微结构E.本显像为无创性检查4.下面哪一项描述是正确的A. γ闪烁探测器由锗酸铋(BGO)晶体、光电倍增管和前置放大器组成B. γ照相机不可进行动态和全身显像C.SPECT是我国三级甲等医院必配的设备D.PET仪器性能不如SPECTE.液体闪烁计数器主要测量发射γ射线的放射性核素5.指出下面不正确的描述A.Roentgen发现X射线B.Becqueral发现铀盐的放射性C.Curie夫妇成功提取放射性钋和镭D.Joliot和Curie首次成功获得人工放射性核素E.Yalow和Berson开创了化学发光体外分析技术6.有关PET的描述下面哪一项不正确A.PET是正电子发射型计算机断层显像仪的英文缩写B.它是核医学显像最先进的仪器设备C.临床上主要用于肿瘤显像D.显像原理是核素发射的正电子与体内负电子作用后产生湮灭辐射发出一对能量相等方向相反的511 keV γ光子经符合探测技术而被多排探测器探测到,数据经计算机处理和图像重建后获得不同断面的断层影像E.常用放射性核素99Tc m及其标记化合物作为正电子药物7.在SPECT脏器显像中,最理想最常用的放射性核素为A.131 IB.67 GaC.99 Tc mD.125 IE.123 I8.有关高能准直成像不正确的是A.探测正电子湮灭辐射时产生的两个511 keV γ光子中的一个B.探测正电子湮灭辐射时产生的两个511 keV γ光子中的两个C.不宜进行脑和躯体肿瘤的正电子断层显像D.对判断心肌存活有较大临床价值E.是一种单光子探测方式9. 有关符合线路SPECT不正确的是A.兼备单光子和T1/2较长的正电子18F断层成像B.不适用于11C、15O、13N等超短半衰期正电子发射体的显像C.可进行脑和躯体肿瘤的正电子断层显像D.探测正电子湮灭辐射产生的两个方向相反的511 keV γ光子E.探测正电子湮灭辐射产生的两个方向相反的511 keV γ光子中的一个10.国家规定的核医学科唯一强制检定的核医学仪器为A.SPECTB. γ照相机C.肾图仪D.活度计E.井型计数器11.RIA法是谁创建的A. YalowB. BersonC.Yalow和BersonD.AngerE.Evans12.下列哪项提法是正确的A.我国1952年首次建立了胰岛素的RIA分析方法并应用于临床B.我国1962年首次建立了AFP和RIA分析方法并应用于临床C.我国1962年首次建立了胰岛素的化学发光分析方法并应用于临床D.我国1962年首次建立了胰岛素的RIA分析方法并应用于临床E. 我国1962年首次建立了CEA的RRA分析方法并应用于临床13.临床核医学的组成包括A.体外分析B.显像技术C.诊断和治疗D.核素治疗E.脏器功能测定14.核医学的定义是A.研究放射性核素的性质B.研究核素在脏器或组织中的分布C.研究核技术在疾病诊断中的应用及理论D.研究核技术在医学的应用及理论E.研究核仪器在医学的应用15.最适宜γ照相机显像的γ射线能量为A.100~300 keVB. 60~80 keVC. 511 keVD. 364 keVE. 300~400 keV16.图像融合技术的主要目的是A.提高病灶的阳性率B.了解病灶区解剖密度的变化C.了解病灶区解剖形态的变化D.了解病灶区解剖定位及其代谢活性与血流的变化E.判断病灶的大小17.脏器功能测定、脏器显像以及体外放射分析技术的共同原理是A.放射性测量B.反稀释法原理C.免疫反应D.示踪技术的原理E.运动学模型18.通过药物、运动或生理刺激干预以后,再进行的显像称为A.静态显像B.平面显像C.介入显像D.阴性显像E.阳性显像19.在注射放射性药物之前,应询问病人A.月经周期B.是否有小孩C.婚否D.是否怀孕或哺乳期E.性别20.一般认为,早期显像是指显像剂引入体内后多少时间以内的显像A.30minB.2 hC.4 hD.6 hE.8 h(二)B型题(1~3题共用备选答案)A. γ照相机B.SPECTC.PETD.井型计数器 E.活度计1.核医学最基本的显像仪器是A2.临床核医学最广泛应用的显像仪器是B3.主要用于正电子显像的仪器是C(4~8题共用备选答案)A.99 Tc mB.18 FC.131 ID.32 PE. 99 Mo4.显像检查中最常用的放射性核素是A5.治疗甲状腺疾病最常用的放射性核素是C6.纯β–射线发射体是D7.目前临床应用最广泛的正电子核素是 B8.发射β–射线时伴有γ射线的核素为 C(9~12题共用备选答案)A.功能测定仪B.污染、剂量监测仪C.γ照相机 D.活度计E.井型计数器9.肾图仪是一种 A10.主要用于血、尿等各类样品放射性相对测量的是 E11.用于测量放射性药物或试剂所含所含放射性活度的一种专用放射性计量仪器是E12.用于显像的是 C(13~15题共用备选答案)A.负荷显像B.正电子显像C.全身显像D.阴性显像E.阳性显像13.急性心肌梗死灶显像是一种E14.“冷区”显像又称为D15.检查心脑脏器的储备功能应行 A(16~20题共用备选答案)A.99 Tc m –ECDB.99 Tc m –MIBIC.99 Tc m –MAAD. 99 Tc m -MDPE. 99 Tc m -DTPA16.进行肾动态显像使用的显像剂为E17.进行脑血流灌注显像使用的显像剂为 A18.进行骨显像使用的显像剂为D19.进行肺灌注显像使用的显像剂为C20.进行心肌灌注显像使用的显像剂为B(21~24题共用备选答案)A.发明回旋加速器B.分别开始用131 I治疗甲亢和甲状腺癌C.核反应堆投产D. 99 Mo-99 Tc m发生器问世E.获得了放射性核素99 Tc m和131 I21.1957年D 22.1946年C 23.1941年和1946年B 24.1931年A(三)X型题1.以下哪些是核医学显像仪器ABCDA. γ照相机B.SPECTC.PETD.SPECT/PETE.CT2.以下哪些放射性核素可用于诊断ABCEA.99 Tc mB.18 FC.131 ID.32 PE.201 TI3.以下哪些放射性核素的标记物可用于骨转移癌的缓解疼痛治疗ABEA. 188 ReB. 89 SrC. 131 ID. 201 TIE. 151 Sm4.以下哪些不是核医学显像仪器BCEA. γ照相机B.肾图仪C.甲功仪D.SPECTE.液体闪烁计数器5.放射性药物的质量控制中,物理性质检测包括ABDA.放射性核纯度B.放射性活度C.放射性化学纯度D.颗粒度E.pH6.可以进行正电子显像的仪器有CDEA. γ照相机B. SPECTC.PETD.SPECT/PETE.符合线路SPECT7.RIA(放射免疫分析)具有的优点有 ABCDEA.灵敏度高B.特异性强C.结果准确D.应用范围广E.成本低和效益好骨骼系统自测题四、选择题 (一)A型题1.骨骼的显像主要是通过99Tc m标记的磷酸盐与骨骼之间的下列哪种作用完成的AA.化学吸附作用B.渗透作用及负离子吸附作用C.骨骼细胞的吞噬作用及代谢作用D.目前还不清楚E.主动转运2.目前常用的骨骼显像剂 BA.99Tc m-EHIDA B.99Tc m-MDP C99Tc m-HMPAO D.99Tc m -ECD E.99Tc m -DTPA3.在诊断早期骨转移瘤时 BA.X线比核素骨显像早3-6个月 B.核素骨显像比CT、X线早3-6个月C.核素骨显像与CT、X线都能早期诊断D.CT、X线能早期诊断骨转移瘤E.CT、MRI比核素骨显像早3—6个月4.不能影响骨显像的因素有BA.显像剂的剂量 B.机体的营养状态C.局部血流量D.成骨细胞活性 E.无机盐代谢程度5.股骨头缺血性坏死典型的骨显像表现为C A.“楔形”切迹 B.未看到明显改变C.“炸面圈”样改变D.股骨头呈现明显放射性分布浓聚区E.股骨头形态正常E6.三时相骨显像的三时相是指A.早期相、中期相和晚期相B.动脉相、静脉相和混合相C.动态相、中间相和静态相D.动态相、过度相和静止相E.血流相、血池相和延迟相7.多种恶性肿瘤可发生骨转移,其中以哪些恶性肿瘤发生骨转移最为常见 CA.肝癌、胃癌、肠癌B.甲状腺癌、肾上腺癌、肾癌C.肺癌、乳腺癌、前列腺癌D.卵巢癌、宫颈癌、绒癌E.脑肿瘤、骨肿瘤、垂体肿瘤8.早期诊断骨转移瘤的首选方法是 DA.X线拍片 B.CT检查 C.MR检查D.核素骨显像 E.超声检查9.一般当局部钙量的变化大于多少时,X线片才开始显示异常BA.10%-30% B.30%-50% C.50%-70% D.70%-90%E.>90%lO.骨质疏松症主要分为EA.先天性骨质疏松症和后天性骨质疏松症 B.早期性骨质疏松症和晚期性骨质疏松症C.早发性骨质疏松症和晚发性骨质疏松症 D.一过性骨质疏松症和永久性骨质疏松症E.原发性骨质疏松症和继发性骨质疏松症11.四时相骨显像中的延迟骨显像检查时间是在注射显像剂后 BA.36~48 h B.24 h C.16 h D.12 h E.8 h12.患者双肾多发结石5年,腰腿痛1个月,骨显像诊断为代谢性骨病,血化验项目 D 最重要的是A.肝功能 B.肾功能 C.TSH D.PTH(甲状旁腺素) E.ACTHl3.在病理情况下,造成骨病灶处放射性异增高的因素哪个是错的DA.血供增多 B.无机盐代谢增强 C.成骨细胞活跃 D.有关酶的活性降低E.新骨形成14.骨转移瘤在骨显像中,哪种表现适宜用放射性核素治疗 CA.放射性减低区 B.放射性缺损区 C.放射性增高区 D.放射性分布正常E.无放射性增高15.椎体压缩性骨折的好发部位是 DA.上腰椎 B.下颈椎 C.下胸椎 D.胸椎12和腰椎1、2 E.下腰椎16.有关代谢性骨病的骨显像典型表现,哪项是错误的 CA.颅骨和下颌骨放射性增加 B.中轴骨放射性增加C.多条肋骨上的热区呈线性排列 D.“领带”征 E.肾淡影17.肺性肥大性骨关节病的好发部位是BA.长骨骨端 B.长骨皮质 C.扁骨 D.椎体E.椎弓根18.骨髓炎的好发部位是AA.长骨骨端 B.长骨皮质 C.扁骨 D.椎体 E.椎弓根19.一般不引起超级影像的疾病是EA.肾性骨病B.骨软化症C.甲旁亢D.骨转移 E.多发性骨髓瘤20.对骨显像孤立性放射性热区的良恶性鉴别中,起决定作用的检查是 EA.B超 B.X线 C.CT D.MR E.骨活检21.关于骨盆局部骨显像的方法,哪项不正确BA.检查前最好排空尿袋 B.检查前空腹C.怀疑病人有污染,则病人应换衣服,必要时清洗污染部位 D.膀胱增大影响盆内结构,必要时可考虑导尿E.有些情况下,可将一块铅皮放在膀胱22.当全身骨显像不能辨别病灶来自肩胛骨或肋骨时,需加做的特殊体位是BA.胸部前位像 B.胸部双臂抬高后位像C.胸部前斜位像 D.胸部后斜位像 E.胸部后位像23.当全身骨显像不能辨别病灶来自腰椎椎体或椎弓根时,需加做的特殊体位 D A.腰椎后位像 B.腰椎前位像 c.胸部后位像D.腰椎后斜位像 E.腰椎前斜位像24.目前骨显像中常用的正电子核素是EA.68Ge B.1231 C.150 D.76Br E.18F(二)B型题(1—2题共用备选答案)A.血流相 B.全身显像 C.血池相 D.局部显像 E.断层显像1.反映的是较大血管的血流灌注和通畅情况A2.反映的是软组织的血液分布状况 C(3~5题共用备选答案)A.成人各大关节放射性异常浓聚 B.骨骼多发性放射性异常浓聚C.小关节放射性异常浓聚 D.胸椎多发性放射性分布稀疏E.血流相、血池相、延迟相均表现为放射性分布增加3.原发性骨肿瘤的核素骨显像特点E4.多发骨转移瘤常见的核素骨显像特征B5.类风湿性疾病常见的核素骨显像特征C(6—8题共用备选答案)A.各个关节对称性放射性分布浓聚 B.骨骼见多发性、形态不规则的放射性浓聚区C.骨骼影像对称,放射性分布无异常浓聚和稀疏D.髋关节呈“炸面圈”样改变E.全身性放射性分布稀疏6.正常成人全身骨显像表现C7.正常儿童全身骨显像表现A8.股骨头缺血性坏死的骨显像表现D(9~11题共用备选答案)A.125 I B.153Gd C.X线 D.131I E.99Tc m9.SPA使用的放射源A10.DPA使用的放射源 B11.DXA使用的放射源 C(三)X型题1.四时相骨显像包括哪些ACDEA.血流相 B.断层显像 C.延迟相 D.延迟到24 h的骨静态显像 E.血池相2.不同时期股骨头缺血性坏死的影像特点可为ABCEA.放射性分布稀疏 B.放射性分布缺损C.“炸面圈”征 D.“楔形”切迹 E.放射性浓聚3.原发性恶性骨肿瘤骨显像的表现ABCD A.血流灌注明显增加 B.血池相放射性分布增加 C.延迟相局部放射性分布增加D.除原发灶外其它骨骼可显示为正常 E.所有骨骼影像未见异常4.骨显像的注意事项包括ABCDEA.受检者注射显像剂后应尽量多饮水B.显像前受检者应尽量排空膀胱C.受检者排尿时应避免污染衣裤或体表D.显像前应去除受检者身体上的金属物品E.对于疼痛严重而不能平卧的病人应给予镇痛剂 5.骨转移瘤的好发部位为 BCDA.长管状骨 B.脊柱 C.肋骨 D.骨盆 E.手、足骨6.股骨头缺血性坏死主要可由以下哪些情况引起ADEA.骨折 B.长期劳累 C.长期活动 D.长期大量应用激素 E.长期慢性饮酒7.代谢性骨病的一般影像特征包括ABCDE A.全身骨放射性对称性增加B.颅骨和下颌骨的明显放射性浓集C.肋软骨连接处呈串珠状 D.胸骨呈‘‘领带”样聚集 E.肾影不清晰8.骨矿物质含量及骨密度测定方法有ABCE A.单光子吸收测定法B.双光子吸收测定法C.双能X线吸收测定法 D.激光吸收测定法 E.定量CT测定法消化系统自测题四、选择题(一)A型题1、儿童胃肠道出血病灶定位诊断时,首选的无创检查方法是 CA、十二指肠反流显像B、异位胃黏膜显像C、99Tc-RBC 胃肠道出血显像D、胃肠道X线动脉造影E、51Cr-RBC胃肠道出血造影2、肝脏海绵状血管瘤典型的医学影象表现是CA、赶血池显像呈部分填充B、赶血池显像未见填充C、赶血池显像呈过度填充D、肝实质显像呈放射性分布浓聚E、肝脏肿瘤阳性显像呈放射性浓聚3、先天性胆道闭锁的肝胆显影象特点是DA、肝脏影象出现和消退延缓B、肠道内放射性出现延迟C、胆囊显影明显延缓D、胆系和肠道内始终不出现放射性E、肝脏和胆囊影像始终不出现4、肝胆显像时进食脂肪餐的目的是 CA、改善胆道影像质量B、不使泌尿系统显影C、了解胆囊收缩功能D、黄疸的鉴别诊断E、防止肝胆摄取放射性过多而影响胆道显影效果5、胃肠道出血显影的目的是 AA、确定出血部位B、了解出血原因C、测定胃肠出血的量D、判断预后情况E、完全替代创伤性的X线胃肠动脉造影检查6、首选那种肿瘤标志物的测定对原发肝细胞癌的诊断最有意义 BA、铁蛋白B、甲胎蛋白C、PSAD、CA19-9E、β2-MG7、为了提高检出小肠出血的灵敏度,可在消化道出血显影前使用什末药物AA、胰高血糖素B、红霉素C、吗叮呤D、胰岛素E、西沙比利8、异位胃黏膜显像诊断梅克尔憩室需要的患者准备包括 DA、清洁口腔B、服用抗生素C、灌肠作肠道准备 D、禁食4小时E、口服灭吐灵9、那种显像检查前不能服用KCLO4 CA、肝胆动态显像B、胃肠道出血显像C、异位胃黏膜显像D、肝血池显像E、脾显像10、胃食管反流显像反流指数至少超过多少判断为胃食管反流DA、1%B、2%C、3%D、4%E、5%11、十二指肠胃反流显像常用的显像剂为CA、99Tc m-硫胶体B、99Tc m-RBCC、99Tc m-EHIDAD、99Tc m-DTPAE、99Tc m-o4-12、检测间歇性消化道出血最好使用何种显像剂CA、99Tc m-硫胶体B、99Tc m-RBCC、99Tc m-EHIDAD、99Tc m-DTPAE、99Tc m-o4-13、肝动脉灌注显像的正常影像是 DA、肝脏影像较双肾影先出现B、肝脏影像较脾脏影先出现C、肝脏影像与双肾影同时出现D、肝脏影像迟于脾脏影出现E、肝脏影像与脾脏影同时出现14、肝胶体显像的采集方法是AA、静脉注射后即刻作动态显像B、静脉注射后10min作动态显像C、静脉注射后10min作静态显像D、皮下注射后10min作动态显像E、皮下注射后10min作静态显像15、静脉注射肝胆显像剂后可被肝内何种细胞摄取DA、肝单核吞噬细胞B、胆管细胞C、血管上皮细胞D、肝细胞E、转移性肿瘤细胞16、静脉注射肝实质显像剂后可被肝内何种细胞摄取AA、肝单核吞噬细胞。

核医学分子影像概论

核医学分子影像概论

生理 生化改变
受体变化
?
功能代谢异常
CT,MR
PET/CT MR
解剖结构异常 临床症状体征
molecular nuclear medicine
• 核医学和分子生物学技术进一步发展和相互融 合而形成的新的核医学分支。
• 应用核医学的示踪技术从分子水平认识疾病, 阐明病变组织受体密度与功能的变化、基因的 异常表达、生化代谢变化及细胞信息传导等。
• Antisense probe—carcinoma gene
(Complementary nucleotide核苷酸碱基互补)
• Enzyme—substrate
分子识别是分子核医学重要理论依据
分子核医学的重要研究领域
• 分子核医学研究的内容十分广泛,但最 重要的研究领域有两个方面: 一是受体研究,二是基因研究
放射性核素示踪技术
+ 生物技术
受体与配体 免疫学技术 基因技术 细胞功能与代谢
受体显像 受体放射分析
放射免疫显像 反义显像 基因显像
代谢显像 凋亡显像
受体功能 异常抗 基因异 显示报 代谢增高 细胞活性 分布密度 原表达 常表达 告基因 与减低 与凋亡
分子核医学起源
• 1995年Reba在美国核医学杂志“分子核医学” 增刊序言中写道:“分子生物学的进展从现在 起将生动地影响今后的医学实践”。
Micro-MRI
Gene expression
Micro-PET
Molecule-anatomy fusion imaging
Optical imaging
PET-CT
医学影像发展
Biology
分子影像为观察机体某一特定病变部 位的生化过程变化提供了一个窗口

核医学分子影像概要

核医学分子影像概要

分子影像
早期诊断 早期定性 准确分期 准确预后 更早疗效判断 了解更多生物活性
乏氧 增殖 凋亡 受体 代谢……
早期治疗 早期干预 选择准确治疗方案 早期预防治疗 及时改变治疗方案 给予更多靶向治疗
增氧 超分隔放疗 诱导凋亡 受体调理 代谢抑制……
个体化治疗
分子影像的现状及与学科关系
临床分子影像 设备:
核医学分子影像概要
章英剑 2013.5.10
1).分子影像( molecule imaging) 2).转化医学(translational medicine)实质:个体化治疗
提供的技术 分子影像诊断 分子影像指导下的治疗
影像学检查种类
光学
PET
分 子

SPECT


US(部分技术)

影 像
MR (部分技术)
各种影像的专长和分子探测的灵敏度
分子影像的三大要素
靶向物质 分子影像探针
示踪剂
探测工具
发光物质 正电子核素 单光子核素 磁性物质 含气微球
……
光学成像仪
PET SPECT MRI、MRS US 光声成像仪
高亲和力
高信号扩增
敏感、快速、高分辨率
分子影像的核心
分子影像探针(俗称显像剂)
分子影像的现状 90%用于肿瘤研究,少部分在脑神经和心脏
没有一个学科能像核医学那样 筛选、研究和推出那么多的探针
为什么要个体化治疗?
恶性肿瘤个体化差异无处不在
异质性 多中心性 变异性
肿块内部不同部位,不同的转移灶 不同的病灶 转移灶与原发灶不同
葡萄糖、蛋白质、酶、增殖、氧饱和度、受体….. 恶性、侵润、播撒、转移、复发、预后 治疗方法、治疗敏感性、治疗方法差异

影像核医学与分子影像试题及答案(4)

影像核医学与分子影像试题及答案(4)

影像核医学与分子影像试题及答案一、单选题(25题1分/题)B1关于核医学内容不正确的是:ASPECT是单光子发射计算机断层B核医学不能进行体外检测CPET是正电子发射计算机断层D核医学可以治疗疾病E99m Tc是常用的放射性药物B2 脏器功能测定、脏器显像以及体外放射分析等其共同原理是:A 动态分布原理B 射线能使物质感光的原理C 稀释法原理D 物质转化原理E示踪技术的原理E3 图像融合的主要目的是A判断病灶大小和形态B 病灶区解剖密度的变化C 病灶区解剖形态的变化D 提高病灶的分辨率E 帮助病灶的定位C4 体内射线测量通常测量A α粒子B β粒子C γ粒子Dβ+粒子E 中子C5 核医学射线测量探头中通常包括A 射线探测器和脉冲幅度分析器B 自动控制和显示系统C、射线探测器和前置放大器D前置放大器和脉冲幅度分析器 E 脉冲幅度分析器和计数率D6 1uci表示A、每秒3.7×1010次核衰变B、每秒3.7×107次核衰变C、每秒3.7×105次核衰变 D 、每秒3.7×104次核衰变E、每秒3.7×103次核衰变B7 决定放射性核素有效半衰因素是A 粒子的射程B 物理半衰期和生物半衰期C 淋洗时间间隔D 断层重建方式E 测量系统的分辨时间A8 甲状腺I显像时用那种准直器:A高能通用平行孔准直器B低能通用平行孔准直器C低能通用高分辨率准直器D、针孔准直器E任意B9 放射性核素肝胶体显像病人准备包括A清洁口腔B 无需任何特殊准备C 空腹过夜 D 隔夜灌肠E 术前饮水E10 哪项描述肾静态显像原理是不正确的A 肾静态显像的显像剂为99m Tc(Ⅲ)二羟丁二酸B DMSA主要聚集在肾皮质,注药后10分钟肾摄取达高峰C 在1h肾摄取血中DMSA的4%-8%,其中50%固定在肾皮质D 静脉注射1h后,12%DMSA滞留于肾皮质内并保留较长时间,30%-45%排出体外E 注药后3-4h进行显像,以避免显像剂中排泄快的那一部分在肾盏肾盂和集合管内的放射性对皮质显影的干扰B11 肾图a段描述正确的是A a段为聚集段,即静脉注射示踪剂后急剧上升段Ba段为出现段,此段放射性主要来自肾外血床,80%来自肾小管上皮细胞的摄取,它的高度一定程度上反映肾血流灌注量C、a段为排泄段D、此段放射性主要来自肾内血床E、10%来自肾小管上皮细胞的摄取C12 临床上为鉴别瘤治疗的疤痕与肿瘤复发病灶,最为有效的方法是:A X-CT BMRI C 18F-FDG PETD 常规X线摄片E 超声检查D13 哪种显像剂可用于肾上腺髓质显像A131I –马尿酸B、131I –氨基酸C 、131I -6-胆固醇D、131I –MIBGE、131I- HIPC14心肌灌注显像极坐标靶心图,是根据下列那种图像制成:A 垂直长轴图像B 水平长轴图像C 短轴断层图像D 冠状断层图像E LAO30-45D15 淋巴显像目前最常用的放射性药物A 99m Tc-硫胶体B 99m Tc-HASC 99m Tc-脂质体D 9、9m Tc-右旋糖酐E 99m Tc-植酸钠D16 关于耻骨下方位骨显像描述正确的是A 疑有尾骨病变B 使用针孔准直器C 患者取仰卧位D探头置于检查床下方E双腿并拢,脚尖相对D17显像剂在病变组织内的摄取明显低于周围正常组织,此种显像是:A动态显像B、早期显像C阳性显像D阴性显像E平面显像C18 131I治疗甲亢确定剂量时,哪项是应考虑增加剂量的因素A 病程短B未经任何治疗C 结节性甲状腺肿 D Graves病E 年龄小B19 下列哪项是诊断尿路梗阻的依据:A肾脏指数>45% B半排时间>8分钟C峰时<4.5 D峰值差<30%E 分浓缩率<6%D20 骨肿瘤病灶浓聚放射性药物153Sm-ED TMP的机理是A 抗原抗体反B 配体受体结合C 肿瘤细胞特异摄取D病灶部位骨代谢活跃形成的放射性药物浓聚E 放射性药物是肿瘤细胞的代谢底物A21 对于患者的防护,核医学技术人员最关心的是A 实践的正当性与防护的最优化B 患者的年龄与体质C 配合医生做好核医学诊断和治疗D 职业人员的受照剂量E 、放射性废物的收集管理A22 18F-FDG的显像示病灶局部葡萄糖代谢率增高可能是A 脑瘤复发或残留B 、瘢痕组织C 、放疗效果良好D 、化疗效果良好E 、肿瘤坏死C23门控心血池显像时,应用下列那种显像剂图像质量最好:A 体内法标记RBCB 混合法标记RBC C 体外法标记RBC D99m Tc –HAS E、99m Tc -DTPAE放射性药物的放化纯度C24 “弹丸”注射的正确描述是A、“弹丸”不要求特定剂量下体积不超过1ml B 、“弹丸”要求特定剂量下体积随意C、“弹丸”要求特定剂量下体积不超过1mlD 、“弹丸”要求大剂量下体积尽可能超过1mlE 、“弹丸”要求特定剂量下体积尽可能大D25 静脉注射肝胆显像剂被肝的何种细胞吸收:A、肝巨噬细胞B、胆管细胞C血管上皮细胞D、肝细胞E、转移性肿瘤细胞核医学试题D 1.下列核素中,哪一种不发射β射线?A.I-131B.P-32C.Au-198D.Tc-99mA2.放射性核素衰变衰变的速度取决于____。

第九版核医学课件核医学分子影像

第九版核医学课件核医学分子影像

核医学(第9版)
二、核医学分子影像的特点
➢ 核医学分子影像的技术和研究手段的共同理论基础就是“分子识别”。 ➢ 抗原与抗体的结合;受体与配体的结合;许多多肽类药物与相应靶细胞
的结合;反义探针与癌基因的分子识别;酶与底物的识别等。 ➢ 核医学分子影像的最大优势和特点是能够从细胞和分子水平对体内的生
物化学变化过程进行在体、无创、时空动态可视化。 ➢ 核医学分子影像相对于其他影像手段,显像剂种类繁多。
➢ 受体显像主要包括肿瘤受体显像及神经受体显像,其中神经受体显像发展 迅速,神经受体显像剂有各种放射性核素标记的靶向多巴胺受体、乙酰胆 碱受体、5-羟色胺受体等。
核医学(第9版)
PET多巴胺受体影像示踪 建立大鼠海马神经干细胞快速诱导表达内源性多巴胺D2受体的体外培养技术,构建了基于
11C-NMSP(N-甲基螺环哌啶酮,多巴胺配基)PET受体显像的神经干细胞活体示踪与评估新 方法。
➢ 关于抗体的研究是放射免疫显像的热点,其中Affibody、微型抗体、纳 米抗体是主要的研究方向。
➢ 放射免疫显像具有高特异性、高成像对比率、高血液清除速度等特点,主 要应用于乳腺癌、肺癌等肿瘤的成像。
核医学(第9版)
3. 受体显像
➢ 受体显像是利用放射性核素标记的某些配体与靶组织中高亲和力的受体产 生特异性结合,反映体内受体空间分布、密度和亲和力的一种无创性方法, 具有配体-受体结合的高特异性以及放射性探测的高敏感性。
剪切
消化
无血清NSC培养 D2的诱导表达
1.海马来源的NSC 2.含血清贴壁培养 3.添加BDNF
体外调控多巴胺D2受体表达方法
移植前 移植后 移植神经干细胞的D2示踪
D2受体持续表达的在体示踪

【核医学】分子影像PPT课件

【核医学】分子影像PPT课件

1970s
Computer assisted tomography (CT)
SPECT,Gamma camera Artificial hip and knee
replacement Balloon catheter Endoscopy Biological plant/food
当今主要的影像技术
CT US MRI Nuclear Imaging Optical Imaging
PET/CT是当今最成熟的分子影像技术
Nuclear Imaging
MRI
US
CT-corrected PET Scan Protocol
CT 18F-FDG 5-8 mCi I.V.
氧化代谢
11C-乙酸盐
特点
反映糖代谢
主要用途
用于肺癌、结肠癌、淋巴瘤、黑色素瘤、 乳腺癌、脑肿瘤等。
参与核酸合成
反映肿瘤细胞增殖,鉴别良恶性
反映氨基酸转运、代谢和蛋 脑肿瘤、头颈部肿瘤、淋巴瘤和肺癌等 白质合成速度
反映氨基酸的需求
恶性肿瘤诊断,肿瘤与炎症鉴别
参与磷酸化反应,反映肿瘤 脑肿瘤和前列腺癌诊断特异性高 细胞膜合成速度
therapeutics
1980s
PET/CT PET/MR Fusion image Optical image
21st century
Molecular
分子影像 – Molecular Imaging
分子影像是对人或其他生物的完整活体在分子和细胞水平上的生物学过
程进行可视化、特征化和量化检测的显像技术。 Molecular Imaging is a new biomedical research discipline enabling the visualization, characterization, and quantification of biologic processes taking place at the cellular and subcellular levels within intact living subjects

影像核医学与分子影像考试题库及答案(二)

影像核医学与分子影像考试题库及答案(二)

影像核医学与分子影像考试题库及答案试题一一、以下每一道考题下面有A、B、C、D、E 五个备选答案。

请从中选择一个最佳答案,并在答题卡上将相应题号的相应字母所属的方框涂黑。

1.核医学的定义是A、研究核技术在疾病诊断中的应用B、研究放射性药物在机体的代谢C、研究核素在治疗中的应用D、研究核技术在医学中的应用及其理论E、研究核技术在基础医学中的应用参考答案与解析:D 备选答案A、B、C和E 部分反映了核医学的定义,只有A最全面地描述了核医学的内容。

2.脏器功能测定、脏器显像以及体外放射分析等其共同原理是A、动态分布原理B、射线能使物质感光的原理C稀释法原理D、物质转化原理E、示踪技术的原理参考答案与解:E 示踪技术的原理是脏器功能测定、脏器显像以及体外放射分析的共同原理,故E 正确。

3.γ照相机最适宜的γ射线能量为A、40~80keVB、100~250keVC、300~400keVD、364keVE、511keV参考答案与解析:B γ照相机由准直器、NaI(Tl)晶体、光导、光电倍增管矩阵、位置电路、能量电路、显示系统和成像装置等组成。

这些硬件决定了γ照相机最适宜的γ射线能量为100~250keV。

4.显像前必须认真阅读申请单的目的是A、保证剂量准确B、确保检查项目正确C、确保检查安全D、确保结果可靠E、了解病人病情严重程度参考答案与解析:B 临床医生对核医学检查可能不了解或不准确,核医学的技师必须认真阅读申请单,确保检查项目正确。

5.图像融合的主要目的是A、判断病灶大小和形态B、病灶区解剖密度的变化C、病灶区解剖形态的变化D、提高病灶的分辨率E、帮助病灶的定位参考答案与解析:E 将核医学的代谢或血流影像与CT、MRI的解剖学形态影像进行融合,借以判断病变组织的代谢或血流变化,有助于鉴别病灶的性质,称为"图像融合"。

目前所采用的CT、MRI 设备主要用于帮助病灶的定位。

6.利用电离作用探测射线的基本方法是A、使用能产生荧光的特殊材料B、收集电离作用产生的电子-离子对作为电信号C、预先估计放射性核素的半衰期D、选择适当的断层重建滤波器E、将电离作用产生的电子-离子对逐个编号记录参考答案与解析:B 射线引起物质电离,产生电子-离子对,电子-离子对的数目与吸收的能量和物质类有关,可以收集这些电子-离子对作为电信号,由于电信号与相应的射线活度、能量、种类有一定关系,故采集和计量这些信号即可得知射线的性质和活度。

基础篇核医疗分子影像讲义

基础篇核医疗分子影像讲义
基础篇核医 疗分子影像
第五章
核医学分子影像
作者 : 田梅
单位 : 浙江大学医学院附属第二医院
第一节 分子影像与核医学分子影像的概念 第二节 核医学分子影像的应用实例 第三节 核医学分子影像与影像组学
重点难点
掌握 分子影像与核医学分子影像的概念、特点 及主要内容
熟悉 核医学分子影像的主要临床应用
第二节
核医学分子影像的应用实例
• 核医学(第9版)
一、核医学分子影像在精准医学中的支撑作用
美国医学界在2011年首次提出精准医学(precision medicine)的概念。 精准医疗计划是指根据患者的临床信息和人群队列信息,应用现代遗传技术、
分子影像技术、生物信息技术,结合患者的生活环境和方式,实现精准的疾 病分类及诊断,制定具有个性化的疾病预防和治疗方案。 现代医学离不开先进的影像医学,分子影像是精准医学的重要标志。
• 核医学(第9版)
2. 放射免疫显像
放射免疫显像是一种将放射性核素标记某些特定的单克隆抗体注入体内后 特异地与相应的靶抗原结合使其显影的显像方法,具有肿瘤高亲和性。
关于抗体的研究是放射免疫显像的热点,其中Affibody、微型抗体、纳 米抗体是主要的研究方向。
放射免疫显像具有高特异性、高成像对比率、高血液清除速度等特点,主 要应用于乳腺癌、肺癌等肿瘤的成像。
凋亡显像指通过体外显像的方法检测细胞自发及诱发性凋亡的位置及程度。 凋亡显像对于肿瘤治疗疗效的监测、心脏移植排异反应监测、急性心肌梗死 与心肌炎的评价有重要价值。
• 核医学(第9版)
显像种类 代谢显像
放射免疫显像 受体显像
反义基因显像 凋亡显像 乏氧显像
核医学分子影像显像剂概览

第九版核医学课件核医学分子影像

第九版核医学课件核医学分子影像
➢ 分子靶向治疗是通过干扰肿瘤生成和生长的靶向分子达到阻断肿瘤细胞生 长的目的的治疗方法。
➢ 64Cu-DOTA标记的曲妥珠单抗PET分子影像能显影HER-2阳性乳腺癌脑转 移病灶。18F-FES PET分子影像高代谢灶往往提示ER阳性的乳腺癌原发灶 或转移灶。这些受体显像的不断发展将使无创实现乳腺癌病理分子分型在 不久的将来成为可能。
➢ 影像组学包含以下几个步骤:数据采集,病灶检测,病灶分割,特征提 取和信息挖掘。
核医学(第9版)
影像组学处理流程
核医学(第9版)
二、核医学分子影像在影像组学的应用
PET-CT将PET与CT完美融为一体,由PET提
供病灶详尽的功能与代谢等分子信息,而CT提供
病灶的精确解剖定位,一次显像可获得全身各方
核医学(第9版)
2. 质子和重离子治疗监测
质子和重离子治疗目前主要采用质 子和碳离子。重离子具有深度剂量分布 特征和横向散射优势,对癌细胞有强杀 伤作用,并对癌细胞增殖周期、细胞内 氧浓度及癌细胞的损伤修复依赖性很低, 能够有效杀死癌细胞,是目前最先进的 放射治疗技术。
各种放射线体内剂量分布
核医学(第9版)
核பைடு நூலகம்学(第9版)
3. 干细胞治疗疗效评估
➢ 干细胞治疗是把健康的干细胞移植到患者体内,以达到修复或替换受损细胞 或组织,从而达到治愈目的的治疗手段。干细胞治疗过程中,移植后干细胞 在体内的植入、分布、存活、迁移等,需要分子影像方法进行时空动态示踪 和评估。
➢ PET分子影像方法发现了体外诱导多功能干细胞(iPSC)移植后神经修复与 功能恢复的时空动态变化规律。
第五章
核医学分子影像
第一节 分子影像与核医学分子影像的概念 第二节 核医学分子影像的应用实例 第三节 核医学分子影像与影像组学

影像科技师的核医学与分子影像技术培训课件

影像科技师的核医学与分子影像技术培训课件

不同类型肿瘤核医学检查策略
01
02
03
神经内分泌肿瘤
采用生长抑素受体显像剂 进行PET/CT或PET/MR检 查,评估肿瘤负荷和转移 情况。
淋巴瘤
采用FDG PET/CT进行肿 瘤分期和疗效评估,有助 于指导治疗方案的选择和 调整。
骨转移瘤
采用骨扫描、FDG PET/CT或PET/MR等方法 ,评估骨转移的范围和程 度,指导临床治疗和随访 。
影像科技师的核医学与分子 影像技术培训课件
汇报人:
2023-12-25
• 核医学与分子影像技术概述 • 影像科技师必备基础知识 • 核医学检查方法与临床应用 • 分子影像技术在疾病诊断中应用
• 治疗过程中监测和评估方法探讨 • 未来发展趋势及挑战应对策略
01
核医学与分子影像技术概述
核医学定义及发展历程
放射性碘治疗甲亢效果评价
放射性碘治疗甲亢的原理
通过摄入放射性碘元素,利用其在甲 状腺内的聚集和释放出的β射线,破 坏甲状腺组织,减少甲状腺激素的合 成和分泌。
治疗效果评价指标
监测方法
通过定期检测血清甲状腺激素水平和 甲状腺体积变化,结合患者症状改善 情况,综合评价治疗效果。
包括甲状腺激素水平、甲状腺体积、 症状缓解程度等。
04
分子影像技术在疾病诊断中应用
基因表达异常相关疾病诊断
基因突变与疾病关系
阐述基因突变如何导致蛋白质功能异常,进而引发疾病的过程。
基因表达检测技术
介绍基因芯片、RNA测序等用于检测基因表达异常的技术。
分子影像技术在基因表达异常疾病诊断中的应用
详述PET、SPECT等分子影像技术如何应用于基因表达异常相关疾病的诊断。
人工智能在核医学中应用前景

核医学与分子影像技术教学设计

核医学与分子影像技术教学设计

教学目标与预期成果
教学目标
使学生掌握核医学与分子影像技术的基本理论和实践技能, 了解其在临床中的应用价值,培养学生的创新思维和解决问 题的能力。
预期成果
学生能够独立完成核医学与分子影像技术的常规检查和分析 ,具备一定的科研能力和临床实践能力,为未来从事相关领 域的工作打下基础。
02
核医学基础知识
目的
培养学生掌握核医学与分子影像 技术的基本理论和实践技能,为 未来从事相关领域的研究和临床 工作打下基础。
教学内容与方法概述
教学内容
包括核医学与分子影像技术的基本原 理、仪器设备、检查方法、临床应用 等方面的知识。
教学方法
采用理论讲授、实践操作、案例分析 等多种教学方法相结合,注重学生的 实践能力和创新思维的培养。
核医学与分子影像技术教学设计
汇报人:XX 2024-02-06
• 引言 • 核医学基础知识 • 分子影像技术及其应用 • 教学实践与案例分析 • 课程考核与评价标准 • 教学反思与改进建议
01
引言
教学背景与目的
背景
核医学与分子影像技术是医学领 域的前沿技术,对于疾病的早期 诊断和治疗具有重要意义。
综合素质表现评价
01
学生对核医学与分子影像技术的兴趣、态度和积极 性;
02
学生在课程学习过程中的参与度、合作精神和创新 意识;
03
学生的沟通能力、批判性思维和解决问题的能力。
06
教学反思与改进建议
学生对课程内容的反馈意见收集
01
定期开展问卷调查,了解学生对课程内容的兴趣点、难点和疑 惑。
02
通过课堂互动、小组讨论等方式,鼓励学生提出意见和建议。
病例分析思路与方法指导

核医学:分子影像与精准(转化)医学

核医学:分子影像与精准(转化)医学

转化医学
♣ 1992年美国《Science》:“bench to bedside”,即从 实验室到病床,简称为”B to B”,将实验室的研究 发现转化成临床使用的诊疗技术和方法。
♣ 1996年英国《Lancet》: “B to B”是双向的(twoway road),即从”bench to bedside and bedside to bench”,即”B to B to B”
分子影像学与精准医疗
诊断
预测
分子影 像学
治疗
新药
分子影像学的作用
• 分子生物学研究的工具 • 转化医学研究的桥梁 • 精准医疗的重要依托
Reporter gene HSV1-tk
分子影像监测干细胞
hERL/18F-FES reporter gene systems In Acute Myocardial Infarction rat model
18F-FDG
18F-FES
Myocardial infarction model of rats 1. 2, rat myocardial infarction model 3. TTC staining
报告基因显像
Reporter Gene: Gene whose phenotypic expression is easy to monitor.
Cell Cycle 2006, 5(23) 2748-2752
Radiotracer Reporter Gene imaging Enzyme-based Receptor-based Transporter-based
5项应用于临床
● J Experimental Medicine
● J Clinical Investigation

分子影像与核医学技术

分子影像与核医学技术

分子影像与核医学技术
分子影像和核医学技术是两种重要的医学科技,具有重要的临
床应用价值。

分子影像指的是通过利用分子生物学、生物化学和
细胞生物学等基础科学技术,实现对分子水平上生物体内各种分子、基因、蛋白质、受体等的可视化观察和定量分析;而核医学
技术则是利用放射性物质与生物体相互作用,然后通过特殊的成
像方法进行反映,以期评估生理、代谢、疾病等方面的情况。

分子影像和核医学技术的综合应用可以更清晰地描绘疾病的生
物学过程和病理学机制,为现代医学诊断和治疗提供了基础。

例如,在肿瘤的早期诊断和疾病分类方面,两者的综合应用可以有
效地识别出恶性肿瘤和良性肿瘤,从而为病人的治疗提供更加准
确的指导,对肿瘤治疗起到积极的促进作用。

另外,在心血管疾病的治疗上,分子影像和核医学技术的联合
使用,也可以从分子和细胞水平上揭示心血管病变的病理改变,
评估脑血管和冠状动脉的异常情况,同时也可以检测出冠状动脉
氧合情况的变化。

这有助于心脏病等病症的早期筛查和基因诊断,并为病人的治疗方案制定打下了基础。

分子影像和核医学技术在疾病治疗中的应用依赖于一系列高科技设备的研发和生产,其中包括核素检测仪、PET/CT等先进的影像设备。

如今,各种超声、CT、MRI等影像诊断设备层出不穷,优秀的医学技术人员正在不懈地推进技术的研发和革新,为百姓健康注入新鲜的活力。

总的来说,分子影像和核医学技术是近年来医学领域中备受瞩目的前沿技术,在临床医学和治疗中起着重要作用。

随着技术不断的发展和完善,相信这一领域将在未来更加广泛的应用领域内取得更加显著的发展和进步。

核医学:分子影像与精准(转化)医学

核医学:分子影像与精准(转化)医学

Gene Expression Analysis (Capillary Electrophoresis Technology)
活体内分子生物学过程的可视化和定量分析




分子影像技术三要素
• 靶点: • 探针: 生物兼容、穿透生理屏障
高特异、高亲和力,信号放大
• 仪器:灵敏度高、分辨率好
分子成像靶点:细胞膜+细胞内+细胞间质
无创、活体功能性显 像方法。
脑神经受体显像
(一)原理、显像剂与显像方法:
核医学显像原理三段论
靶器官或组织+生理/生化功能+核素示踪技术(显像剂)
脑多巴胺能神经神经显像

脑β淀粉样蛋白(老年斑)显像
(一)原理、显像剂与显像方法:
核医学显像原理三段论
靶器官或组织+生理/生化功能+核素示踪技术(显像剂)
Gambhir SS, Molecular Imaging of PET Reporter Gene Expression, Molecular Imaging II, Handbook of Experimental Pharmacology,P 281
核素报告基因显像
酶底物系统
HSV1-tk/FIAU(FHBG) reporter gene/reporter probe system
分子探针
配 体
标 记 物
分子影像各种技术方法的进展
物理:光、声、电、磁、核 化学:合成、标记、分子作用 信息工程:设备、图像处理、信息网络 生物医学:基因、蛋白质、细胞、组织、器官、个体
光成像
超声成像
CT
基础研究
MRI

核医学知识点总结

核医学知识点总结

核医学知识点总结1. 核医学的基本原理核医学是利用放射性同位素进行医学诊断和治疗的一种方法。

放射性同位素是指原子核具有相同的原子序数,但质子数或中子数不同的同一元素。

放射性同位素的原子核不稳定,会发出粒子或电磁辐射进行衰变,这种衰变过程是放射性同位素的特征。

核医学主要有三种应用方式:核医学诊断、核医学治疗和分子影像学。

核医学诊断主要是通过放射性同位素在体内的分布和代谢特点,来观察生物组织和器官的生理功能和病理状态,从而实现疾病的早期诊断和治疗效果评估。

核医学治疗则是利用放射性同位素的放射性衰变作用,直接破坏肿瘤细胞或者调节机体的生理代谢,达到治疗疾病的目的。

分子影像学是指利用放射性同位素标记的生物分子,来研究生物体内的分子生物学过程和病理生理学过程。

2. 核医学的放射性同位素及其应用核医学常用的放射性同位素有:碘-131、钴-60、钴-57、镉-109等。

这些放射性同位素在医学领域有着广泛的应用:碘-131广泛用于甲状腺诊断和治疗。

在甲状腺诊断中,碘-131被甲状腺摄取,通过放射性衰变产生γ射线,从而实现对甲状腺功能和结构的评估;在甲状腺治疗中,碘-131被甲状腺直接摄取,在体内发射β射线,破坏甲状腺组织,达到治疗目的。

钴-60是一种常用的放射源,广泛用于放射治疗、癌症治疗等。

钴-57可用于心肌灌注显像,可用于心肌缺血、心肌梗死等疾病的早期诊断和评估。

镉-109可用于骨矿物质密度测定,对于骨质疏松症的诊断和骨质疏松治疗效果的评估有重要意义。

3. 核医学的临床应用核医学在临床上有着广泛的应用,主要包括以下几个方面:(1)肿瘤的诊断和治疗:核医学可以通过肿瘤的代谢活性和血液灌注情况等特征,对肿瘤进行早期诊断和治疗效果评估。

例如,利用正电子发射计算机断层显像技术(PET-CT)可以实现对肿瘤的精准定位和评估,为肿瘤的精准治疗提供重要信息。

(2)心血管疾病的诊断和治疗:核医学可以通过心肌灌注显像和心脏功能评价等技术,对冠心病、心肌梗死等心血管疾病进行早期诊断和治疗效果评估,为心血管疾病的诊治提供重要的辅助信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pre-clinical molecular imaging
Tumor PET image (I-124 FIAU) (gene expressed) CT image FunctionalAnatomical coregistered PET/CT images
In Vivo Proof of Concept and Optimization

The comparison of different imaging
Image device Signal γ γ Visible light Visible light Space resolution 1-2mm 1-2mm 3-5mm 2-3mm Depth No-limit No-limit 1-2cm < 1cm No-limit No-limit cm Sensitivity 10-11-10-12mol/L 10-10-10-11mol/L 10-15-10-17mol/L 10-9-10-12mol/L 10-3-10-5mol/L Not measurement Not measurement unused Probe quantity ng ng mg ug
Memorial Sloan Kettering Cancer Center
Imaging of tumor suppressor gene
Control
Tumor
Control
Tumor
未治疗的肿瘤动物 模型P53未激活
药物治疗后 P53激活
报告基因显像与基因治疗监测
Reporter gene imaging and gene therapy monitoring
Phenotype Genotype
放射性核素示踪技术
+ 生物技术
受体与配体

基因技术
反义显像 基因显像
细胞功能与代谢
代谢显像 凋亡显像
受体功能 分布密度
异常抗 基因异 显示报 原表达 常表达 告基因
代谢增高 与减低
细胞活性 与凋亡
代谢显像(metabolism imaging)
核医学分子影像
• 核医学分子影像(molecular nuclear medicine)是当今最成熟的分子影像学。 • 核医学与分子生物学发展融合而形成的新 的核医学分支。
核医学分子影像理论基础
• 分子识别是这一新兴领域发展的重要理 论基础。 • 在分子核医学有关的各种技术中,尽管 不同的技术和研究手段,依据方法学原 理各不相同,但其共同理论基础就是“ 分子识别,molecular Recognise ”。
分子影像
• 分子影像能够通过各种成像手段从分子和 细胞水平认识疾病,阐明病变组织细胞受 体密度和功能变化、基因与报告基因的表 达、生化代谢变化及细胞信息传导等,为 临床诊治、医学研究提供分子水平信息。
• 医学影像诊断将从解剖学或病理学影像时 代走向分子影像时代。
无创分子影像技术三要素
• 寻找和选择合适的靶点。
P53 gene
基因表达 受体变化
生理 生化改变
?
受体变化
功能代谢异常
CT,MR
解剖结构异常
PET/CT
MR
临床症状体征
分子影像定义
• 分子影像学(molecular imaging)是对人或 其他活体动物在分子和细胞水平的生物学 过程进行可视化、特征化和检测的科学。
• 分子影像(molecular imaging)是医学影像 技术和分子生物学技术相互融合而形成的 新的分支学科,也是当今医学影像研究的 热点和发展方向。
受体显像(receptor imaging)
• 受体显像是核医学分子显像基础,利用放 射性配体显示受体的分布与功能,为观察 细胞间、细胞内的生物学过程提供窗口。
• 是目前活体内能安全、无创、获得受体功 能与分布信息的唯一方法。
受体研究特点
• 受体显像在生理情况下,研究人体受体的 分布(定位)、数量(密度)和功能(亲 和力)提供了唯一的、无创伤性手段。 • 神经受体显像已成为某些神经精神疾病 (如Parkinson病)诊断和研究重要手段。
Cell Membrane Alteration
normal cell apoptotic cell
磷脂酰丝氨酸
磷脂蛋白
99mTc-Annexin
V
apoptosis imaging
30 min after I.V. 99mTc-HYNIC-ANNEXIN V
Normal saline 1 h 生理盐水1h
MRI spectroscopy Micro-MRI
Gene expression
Molecule-anatomy fusion imaging
Micro-PET
Optical imaging
PET-CT
医学影像发展
Biology
分子影像为观察机体某一特定病变部 位的生化过程变化提供了一个窗口
Disease
• 设计与该靶点特异、高亲和力结合的标记 探针,且具备足够的放大信号便于实现高 灵敏的探测。 • 灵敏度高、分辨率好的成像仪器。
分子探针要求
• 生物学兼容性:在体内参与正常生理代谢 过程 • 能克服体内的生理屏障(血脑屏障,血管 壁,细胞膜等) • 与靶分子结合有高度灵敏、特异性 • 有适当的扩增能力 小分子探针:受体配体,生物酶等 大分子探针:单抗等
• 凋亡可以由于细胞核受到严重损伤,如或X 射线照射或线粒体内受到各种病毒侵袭等 诱导产生,此外,也可通过外部的信号诱 导,如fas配体与fas受体之间的相互作用 诱导。
Apoptosis imaging
• 流式细胞仪在体外监测与活体组织凋亡显像 • 凋亡显像对某些疾病治疗药物的设计与研究、治 疗效果监测是非常有用的,用于肿瘤治疗效果、 心脏移植排异反应监测、急性心梗与心肌炎的评 价等 • 细胞膜上磷脂酰丝氨酸(phosphatidylserine) 的异常表达是用于凋亡监测目的的靶物质,而35 KD的生理蛋白磷脂蛋白(Annexin V,又称膜联蛋 白)对细胞膜上的磷脂酰丝氨酸微分子具有很高 的亲和力。
• 程序性细胞死亡又称细胞凋亡,是近些年 人们关注的话题 • 凋亡细胞的死亡与细胞坏死不同,凋亡是 一种可诱导的有机组织死亡的能量需求形 式,其细胞的消失不伴有炎症反应出现, 而坏死则是混乱无序的,没有能量需求, 导致局部炎性改变,常常继发于突发的细 胞内成份释放
诱导凋亡 Induced apoptosis
正常多巴胺转运体显像
PD的多巴胺D2受体显像
Estrogen receptor imaging of breast Cancer
乳腺癌雌激素受体显像
Carcinoid 18F-DOPA
反义与基因显像 antisense & gene imaging
• 应用放射性核素标记人工合成的反义寡核苷酸 • 引入体内后与相应的靶基因结合 • 应用显像仪器观察其与病变组织中过度表达的目 标DNA或mRNA发生特异性结合过程 • 显示特异性癌基因过度表达的癌组织,从而达到 在基因水平早期、定性诊断 • 反义显像使肿瘤显像进入了基因水平,有可能成 为未来“分子影像学”的重要组成部分
• 代谢显像是分子核医学最 成熟的技术,已广泛应用 于临床诊断。 • 18 氟 - 脱 氧 葡 萄 糖 ( 18FFDG)。 • Wagner 教 授 将 18F-FDG 命 名为世纪分子。 • DNA名为“千年分子”。
18F-FDG作为葡萄糖代谢显像剂原理
• FDG第二位碳原子相连的羟基脱氧后剩下的H 被18F取代生成18F-FDG。 • 18F-FDG的结构类似于天然葡萄糖
分子识别
• • • • Antigen—antibody Ligand—receptor Polypeptide—target cell Antisense probe—carcinoma gene (Complementary nucleotide核苷酸碱基互补) • Enzyme—substrate 分子识别是分子核医学重要理论依据
radioimmunoimaging, RII
• 放射免疫显像(RII)与放射免疫治疗(RIT) • 面临的技术难题:产生HAMA、分子量大血液清除慢 、T/NT比值低、穿透能力差。 • Affibody、微型抗体或纳米体为核医学分子探针研 究的新靶点。
肝癌
肝脏胶体显像
131I-AFP-Ab显像
凋亡显像(apoptosis imaging)
反义显像
antisense imaging
人工合成反义寡核苷酸 Labeled I.V
与病变组织过度表达 的目标DNA或mRNA以 碱基互补特异性结合
C-myc
显示特异性癌 基因过度表达 的组织
imaging
antisense Imaging
脂质体包裹99mTc-Survivin反义寡核苷酸鼠肿瘤模型显像 (A为反义显像,肿瘤区呈异常浓聚;B为非标记反义寡核苷酸抑制后对照影像)
心肌活性
Early diagnosis, staging, recurrence and metastasis, efficacy
神经、精神疾病、 脑功能研究,不同 生理刺激或思维活 动状态脑皮质的代 谢,脑行为研究
区别心肌坏死、冬 眠心肌,为冠心病 血运重建治疗提供 依据,是判断心肌 细胞活性的“金标 准”
分子核医学的重要研究领域
• 分子核医学研究内容广泛,最重要的研 究领域有两个方面: • 一是受体研究,二是基因研究 • 临床上以代谢、功能以及解剖学结构异 常为表现的各种疾病几乎都是在受体或 基因水平变化基础上的具体表现。
• 病人的基因型总是可以由生化过程来表 达的,分子核医学利用放射性示踪药物 不仅可以观察到体内生化过程的变化( Wagner教授称之为“化学型” )。 • 且将这种以某种生化过程的变化为表型 的疾病与其相关的基因型联系起来,从 而使人们对于疾病的认识以及诊断和治 疗提高到一个崭新的水平。
相关文档
最新文档