高三数学复习学案NO.3
高考数学第一轮复习第三章 数列第三课时等比数列教案 人教版 教案

高考数学第一轮复习第三章 数列第三课时等比数列教案教学目的:理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题.教学重点:等比数列的通项公式及前n 项和公式的的运用。
教学难点:函数与方程思想及等价转化的思想;错位减法的运用。
考点分析及学法指导:等差与等比数列的考察题型即有选择题、填空题,又有解答题;难度即有容易题、中等题,也有难题。
这与每年试卷的结构布局有关。
客观是突出“小而巧”,主观是为“大而全”,着重考察函数与方程、等价转换、分类讨论等重要的数学思想,以及配方法、换元法、待定系数法等基本数学方法,加强与函数、方程、不等式等支撑数学笠体系的重点内容的结合,在知识网络交汇点设计命题。
数列的应用题,考察的侧重点是现实客观事的确良数学化。
旨在通过阅读,理解命题的背景材料,运用数学的思想和方法分析题目中多种数量之间的关系,构造数列模型,将现实问题转化为数学问题解决。
资料 教学过程: 一、知识讲解:1.m n m n q a a -=2.若q p n m +=+,m 、n 、p 、q ∈N *,则q p n m a a a a =特别地,当p n m 2=+时,2p n m a a a =3.n n n q qa q a q q a S ⋅---=--=111)1(111(q≠1),则nn q k k S ⋅-=,其中q 为公比,q ≠0,q ≠1,qa k -=11。
4.若首项1a >0,公比q >1,或首项1a <0,公比0<q <1,则数列为递增数列;若首项1a >0,公比0<q <1,或首项1a <0,公比q >1,则数列为递减数列;公比q =1,数列为常数列;公比q <0,数列为摆动数列.公比q 不等于零是一大特点.5.在等比数列中,下标成等差数列的项构成等比数列; 6.连续相同个数项的积也构成等比数列;7.在等比数列中{}2n a ,⎭⎬⎫⎩⎨⎧n a 1也成等比数列; 8.若{}n a 为等比数列,则{}n a lg 成等差数列. 二、例题分析 (一)基础知识扫描1.等比数列{}n a 的通项公式为n a =,可推广为 n a =⋅m a ;等比数列前n 项和公式为n S =,其中n ,m ∈N *.2.若等比数列{}n a 中,3021=+a a ,6043=+a a ,则87a a +=. 3.ac b =2是三个数a ,b ,c 成等比数列的() A .充分而不必要条件B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.一条信息,若一人得知后用一小时将信息传给两个人,这两个人又用一小时各传给未知此信息的另外两人,如此继续下去,要传遍100万人口的城市,所需的时间大约为( )A .三个月B .一个月C .10天D .20天 5.给出下面五个命题:①若{}n a 是等比数列,且l k n m +=+,则l k n m a a a a +=+②若{}n a 是等比数列,其前n 项和为n S ,则()()n n n n n S S S S S 2322-⋅=-③{}n a 是等比数列的一个充要条件是()1-⋅=nn b a S ,常数a ≠0,b ≠1;④若{}k n 成等差数列,则{}kn a成等比数列,其中a >0,a ≠1;⑤若{}n a 成等差数列,则{}n a lg 成等比数列。
高三数学复习教案

高三数学复习教案作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的高三数学复习教案,欢迎阅读,希望大家能够喜欢。
高三数学复习教案1教学目标知识目标等差数列定义等差数列通项公式能力目标掌握等差数列定义等差数列通项公式情感目标培养学生的观察、推理、归纳能力教学重难点教学重点等差数列的概念的理解与掌握等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用教学过程由XX《红高粱》主题曲“酒神曲”引入等差数列定义问题:多媒体演示,观察————发现?一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:…。
二、等差数列通项公式:已知等差数列{an}的首项是a1,公差是d。
则由定义可得:a2—a1=da3—a2=da4—a3=d……an—an—1=d即可得:an=a1+(n—1)d例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。
代入通项公式解:∵a1=3,d=2∴an=a1+(n—1)d=3+(n—1)×2=2n+1例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=—2,先求出通项公式an,再求出a20 解:∵a1=10,d=8—10=—2,n=20由an=a1+(n—1)d得∴a20=a1+(n—1)d=10+(20—1)×(—2)=—28例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
数学高三复习教案教案第三章

第三章 导数及其应用高考考纲(1) 导数概念及其几何意义 ① 了解导数概念的实际背景, ② 理解导数的几何意义.(2) 导数的运算① 能根据导数定义求函数y C =(C 为常数),y x =,2y x =,3y x =,1y x=,y =的导数.② 能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如()f ax b +的复合函数)的导数.∙ 常见基本初等函数的导数公式和常用导数运算公式:(C )′=0(C 为常数);(x n )′=nx n -1,n ∈N +; (sin )cos x x '=;(cos )sin x x '=-;(e )e x x '=;()ln x x a a a '=(a >0,且a ≠1); 1(ln )x x '=;1(log )log e a a x x '=(a >0,且a ≠1).∙ 常用的导数运算法则:法则1:[]()()()()u x v x u x v x '''±=±. 法则2:[]()()()()()()u x v x u x v x u x v x '''=+.法则3:2()()()()()(()0)()()u x u x v x u x v x v x v x v x '''⎡⎤-=≠⎢⎥⎣⎦.(3) 导数在研究函数中的应用① 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).② 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次) ;会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次) .(4) 生活中的优化问题会利用导数解决某些实际问题. (5) 定积分与微积分基本定理的含义① 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. ② 了解微积分基本定理的含义.第一节 变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 Δy Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx .(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx 为f (x )的导函数.三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x );2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.类型一 利用导数的定义求函数的导数[例1] 用定义法求下列函数的导数.(1)y =x 2; (2)y =4x 2.[自主解答]根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0);(2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx;(3)计算导数f ′(x 0)=li m Δx →0 ΔyΔx .1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解).类型二 导数的运算[例2] 求下列函数的导数.(1)y =x 2sin x ;(2)y =e x +1e x -1;[自主解答]求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;类型三 导数的几何意义[例3]曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答]若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. [自主解答]导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.3.(1)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.(2)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12 D .1易错题思考[典例] 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[尝试解题]1.在解答本题时有两个易误点:(1)审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点;(2)当所给点不是切点时,无法与导数的几何意义联系.2.解决与导数的几何意义有关的问题时,应注意:(1)首先确定已知点是否为曲线的切点是求解关键;(2)基本初等函数的导数、(理)复合函数的导数和导数的运算法则要熟练掌握.针对训练1.(2012·广州模拟)已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( ) A.278B .-2C .2D .-2782.已知曲线y =3x -x 3及点P (2,2),则过点P 的切线条数为________.第二节导数在函数中的应用1.函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.1.f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.2.可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3.可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.类型一运用导数解决函数的单调性问题[例1]已知函数f(x)=ln x+ke x(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间.[自主解答]求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.1.已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;(2)是否存在a 使函数f (x )为R 上的单调递减函数,若存在,求出a 的取值范围;若不存在,请说明理由.类型二 运用导数解决函数的极值问题[例2] (2012·江苏高考)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点.(1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点. [自主解答]求函数极值的步骤 (1)确定函数的定义域; (2)求方程f ′(x )=0的根;(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并形成表格; (4)由f ′(x )=0根的两侧导数的符号来判断f ′(x )在这个根处取极值的情况.2.设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.类型三 运用导数解决函数的最值问题 [例3] 已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. [自主解答]本题条件不变,求f (x )在区间[0,1]上的最大值. [自主解答]求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.3.已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16.(1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值.导数是解决函数问题的重要工具,利用导数解决函数的单调性问题、求函数极值、最值及解决生活中的最优化问题,是高考考查的热点,在解答题中每年必考,常与不等式、方程结合考查,试题难度较大,因此对该部分知识要加大训练强度,提高解题能力.导数的应用问题答题模板[典例] 已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间,并求其在区间(-∞,-1]上的最大值.[教你快速规范审题]1.审条件,挖解题信息 观察条件―→曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处有公共切线―――――――――――→两曲线在x =1处的纵坐标及导数相同⎩⎪⎨⎪⎧f (1)=g (1),f ′(1)=g ′(1)2.审结论,明解题方向观察所求结论―→求a ,b 的值―――――――→需要建立关于a ,b 的方程组将⎩⎪⎨⎪⎧f (1)=g (1),f ′(1)=g ′(1)用a ,b 表示即可 3.建联系,找解题突破口解方程组⎩⎪⎨⎪⎧f (1)=g (1),f ′(1)=g ′(1)―――――――→先求f ′(x )和g ′(x )f ′(x )=2ax ,g ′(x )=3x 2+b ―――――→将x =1代入 ⎩⎪⎨⎪⎧a +1=b +1,2a =3+b ,⇒a =b =31.审条件,挖解题信息观察条件―→a 2=4b ――――――――――――――――――→可消掉一个参数,使f (x )与g (x )含有同一个参数f (x )=ax 2+1(a >0),g (x )=x 3+14a 2x2.审结论,明解题方向观察所求结论―→求函数f (x )+g (x )的单调区间及其在区间(-∞,-1]上的最大值 ――――――→f (x )+g (x )含x 3及参数a 应利用导数解决――――――――→由h26−−−−−−−−−−→-及-与-,-的系,求最值讨论区间关[教你准确规范解题]—————————————————[万能模板]———————————用导数求给定区间上的函数的最值问题一般可用以下几步解答: 第一步求函数f (x )的导数f ′(x )第二步求函数f (x )在给定区间上的单调区间 第三步求函数f (x )在给定区间上的极值 第四步求函数f (x )在给定区间上的端点值第五步比较函数f (x )的各极值与端点值的大小,确定函数f (x )的最大值和最小值 第六步反思回顾,查看关键点,易错点和解题规范.如本题的关键点是确定函数f (x )的单调区间;易错点是忽视对参数a 的讨论第三节 导数的综合应用类型一 利用导数研究恒成立问题及参数求解[例1] 已知函数f (x )=x 2ln x -a (x 2-1),a ∈R.(1)当a =-1时,求曲线f (x )在点(1,f (1))处的切线方程; (2)若当x ≥1时,f (x )≥0成立,求a 的取值范围. [自主解答]利用导数解决参数问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解.(2)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. (3)已知函数的零点个数求参数的取值范围:利用函数的单调性、极值画出函数的大致图象,数形结合求解.1.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.类型二 利用导数证明不等式问题[例2] 已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln xx ,其中e 是自然常数,a ∈R.(1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12.[自主解答]在本例条件下,是否存在正实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,说明理由.[自主解答]利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,确定函数的最值证明h (x )>0.2.已知f (x )=x ln x .(1)求g (x )=f (x )+kx (k ∈R)的单调区间;(2)证明:当x ≥1时,2x -e ≤f (x )恒成立.类型三 利用导数研究生活中的优化问题[例3] 某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,顶点B 、D 分别在边AM 、AN 上,假设AB 的长度为x 米.(1)要使仓库的占地面积不少于144平方米,求x 的取值范围;(2)要规划建设的仓库是高度与AB 的长度相同的长方体建筑,问AB 的长度为多少时仓库的库容量最大.(墙地及楼板所占空间忽略不计)[自主解答]利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各个量之间的关系,建立数学模型,写出函数关系式y =f (x ); (2)求出函数的导函数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和使f ′(x )=0的点处的函数值的大小,最大(小)者为最大(小)值.3.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间关系可近似地用如下函数给出:y =⎩⎪⎨⎪⎧-18t 3-34t 2+36t -6294,6≤t <9,18t +594,9≤t ≤10,-3t 2+66t -345,10<t ≤12,求从上午6点到中午12点,通过该路段用时最多的时刻.转化与划归思想在导数研究函数中的应用[典例] (2012·山西四校联考)已知函数f (x )=x 3+ax 2-a 2x +m (a >0). (1)若a =1时函数f (x )有三个互不相同的零点,求实数m 的取值范围;(2)若对任意的a ∈[3,6],不等式f (x )≤1在[-2,2]上恒成立,求实数m 的取值范围. [解][题后悟道] 所谓转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.解答本题利用了转化与化归思想,第(1)问中把函数的零点问题转化为g (x )=-x 3-x 2+x 与y =m 图象的交点;第(2)问中把问题转化为求f (x )在[-2,2]的最大值,利用最大值小于等于1,进一步转化为m ≤9-4a -2a 2在a ∈[3,6]恒成立,从而可求m 的范围.针对训练11 设函数f (x )=13x 3+x 2+x ,g (x )=2x 2+4x +c .当x ∈[-3,4]时,函数f (x )与g (x )的图象有两个公共点,求c 的取值范围.。
高中数学 第3章 概率章末复习课学案 苏教版必修3-苏教版高一必修3数学学案

第3章 概率章末复习课网络构建核心归纳1.本章涉及的概念比较多,要真正理解它们的实质,搞清它们的区别与联系.了解随机事件发生的不确定性和频率的稳定性,要进一步了解概率的意义以及频率与概率的区别.2.应用互斥事件的概率加法公式,一定要注意首先确定事件彼此是否互斥,然后分别求出各事件发生的概率,再求和.求较复杂的概率通常有两种方法:一是将所求事件转化为彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P (A )=1-P (A -)(事件A 与事件A -互为对立事件)求解.3.对于古典概型概率的计算,关键要分清基本事件的总数n 与事件A 包含的基本事件的个数m ,再利用公式P (A )=mn求出概率.有时需要用列举法把基本事件一一列举出来,在列举时必须按某一顺序,做到不重不漏.要点一 随机事件的概率 1.有关事件的概念 事件 概念确定性现象在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象(1)求一个事件的概率的基本方法是通过大量的重复试验.(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率.(3)概率是频率的稳定值,而频率是概率的近似值.(4)概率反映了随机事件发生的可能性的大小.(5)必然事件的概率为1,不可能事件的概率为0,故0≤P(A)≤1.【例1】某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.【训练1】 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为________.解析 ∵28254×1 534≈169,∴这批米内夹谷约为169石. 答案 169石要点二 古典概型及其应用古典概型是一种最基本的概率模型,也是学习其他概率模型的基础,在高考题中,经常出现此种概率模型的题目.解题时要紧紧抓住古典概型的两个基本特点,即有限性和等可能性.另外,在求古典概型问题的概率时,往往需要我们将所有基本事件一一列举出来,以便确定基本事件总数及事件所包含的基本事件数.这就是我们常说的列举法.在列举时应注意按一定的规律、标准,保证不重不漏.【例2】 一个盒子中装有完全相同的6个小球,分别标有1~6这六个数字,现在依次随机抽出两个小球,如果: (1)抽出的小球不放回; (2)抽出的小球放回,求这两个小球的数字相邻的概率.解 对于抽出的小球放回的情形,所有基本事件的情况如下表:36-6=30(个),满足数字相邻的基本事件有10个,因此两个数字相邻的概率为1030=13. (2)对于抽出的小球放回的情形,共有表中所列的36个基本事件,两个数字相邻的基本事件共有10个,因此两个数字相邻的概率为1036=518.【训练2】 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示投掷第1颗正四面体玩具落在底面的数字,y 表示投掷第2颗正四面体玩具落在底面的数字. (1)写出试验的基本事件;(2)求事件“落在底面的数字之和大于3”的概率; (3)求事件“落在底面的数字相等”的概率. 解 (1)这个试验的基本事件列表如下:由表知共有16(2)事件“落在底面的数字之和大于3”包括以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). 故所求概率P =1316.(3)事件“落在底面的数字相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4). 故所求概率P =416=14.要点三 互斥事件与对立事件 1.对互斥事件与对立事件概念的理解(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)利用集合的观点来看,如果事件A ∩B =∅,则两事件是互斥的,此时A ∪B 的概率就可用概率加法公式来求,即为P (A +B )=P (A )+P (B );如果事件A ∩B ≠∅,则可考虑利用古典概型的定义来解决,不能直接利用概率加法公式.(3)利用集合的观点来看,如果事件A ∩B =∅,A ∪B =U ,则两事件是对立的,此时A ∪B 就是必然事件,可由P (A +B )=P (A )+P (B )=1来求解P (A )或P (B ). 2.互斥事件概率的求法(1)若A 1,A 2,…,A n 互斥,则P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).(2)利用这一公式求概率的步骤:①要确定这些事件彼此互斥;②先求出这些事件分别发生的概率,再求和. 3.对立事件概率的求法P (Ω)=P (A +A -)=P (A )+P (A -)=1,由公式可得P (A )=1-P (A -)(这里A -是A 的对立事件,Ω为必然事件).4.互斥事件的概率加法公式是解决概率问题的重要公式,它能把复杂的概率问题转化为较为简单的概率或转化为其对立事件的概率求解.【例3】 将一枚均匀正方体骰子(每个面上分别标有点数1,2,3,4,5,6)先后抛掷2次,观察向上的点数,求: (1)两数之和为5的概率; (2)两数中至少有一个奇数的概率;(3)以第一次向上的点数为横坐标x ,第二次向上的点数为纵坐标y ,点(x ,y )在圆x 2+y 2=15的内部的概率.解 由列表法可得,将一枚骰子先后抛掷2次,向上的点数(m ,n )的所有等可能基本事件有36种. (1)记“两数之(2)记“两数中至少有一个奇数”为事件B ,则事件和为5”为事件A ,则事件A 包含的基本事件有(1,4),(2,3),(3,2),(4,1),共4种,所以P (A )=436=19.B 与“两数均为偶数”为对立事件,“两数均为偶数”包含的基本事件有(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6),共9种,所以P (B )=1-P (B -)=1-936=34.(3)记“点(x ,y )在圆x 2+y 2=15的内部”为事件C ,则需x 2+y 2<15,其包含的基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8种,所以P (C )=836=29.【训练3】 投掷一个骰子的试验中,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B -发生的概率为________.解析 由于基本事件总数为6,故P (A )=26=13,P (B )=46=23,从而P (B -)=1-P (B )=1-23=13,又A 与B -互斥,故P (A +B -)=P (A )+P (B -)=13+13=23. 答案 23课堂小结1. 互斥事件不一定是对立事件;但对立事件一定是互斥事件.若事件A 1,A 2,A 3,…,A n 彼此互斥,则P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).2.关于古典概型,必须要解决好下面三个方面的问题: (1)试验结果是否有限且是等可能的? (2)试验的基本事件有多少个?(3)事件A 是什么,它包含多少个基本事件? 只有回答好了这三方面的问题,解题才不会出错.。
高三数学复习学案(第1-5章)(集合、不等式、函数、指数和对数、三角函数)

高三数学复习学案(一)集合知识要点一、元素与集合1.集合中元素的三个特性:、、.2.集合中元素与集合的关系元素与集合之间的关系有和两种,表示符号为和.3.集合的表示法:、、.二、集合间的基本关系1.集合的子集和真子集具有传递性,即若A⊆B,B⊆C,则A⊆C;2.对于集合A,B若A∩B=A∪B,则A=B.3.要注意∅的特殊性,在写集合的子集时不要忘记空集和它本身.4.若集合A中有n个元素,则其子集个数为2n,真子集个数为2n-1,非空真子集的个数是2n-2.三、集合的基本运算常用结论(1)A ∩∅=∅,A ∪∅=A ,A ∩A =A ,A ∪A =A .(2)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅ 四、充分条件与必要条件1.如果p ⇒q ,则p 是q ,q 是p 的 . 2.如果p ⇒q ,q ⇒p ,则p 是q 的课前热身1、若1=a ,集合{}2<=x x A ,则下列关系中正确的是( )A .A a ≠⊂B .{}A a ≠⊂ C .{}A a ∈ D .A a ∉2.若a ∈R ,则“a =1”是“|a |=1”的( )A .充分而不必要条件B .必要而不充分条C .充要条件D .既不充分也不必要条件3.设全集U ={-2,-1,0,1,2},集合A ={1,2},B ={-2,1,2},则A ∪(∁U B )等于( )A .∅B .{1}C .{1,2}D .{-1,0,1,2} 4.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}5.已知集合A 有5个元素,它们所有非空子集的个数是( ) A .32 B .31 C .30 D .256.已知集合{}{}21,1,0,23A x x B a ===--,且A B ⊆,则a 的值是 .例题解析[例1]、设集合{}{}{}7,4,1,2,1,4,22=+=+-=B a A a a U ,若U B A = ,则=a 。
《金版新学案》高三数学一轮复习 第三章 第3课时课件 理 新人教A版

1 (2)y= 2+log x+ tan x. 2 π - x 解析: (1)由函数 1- 2cos2 ≥0,得 sin
2 x≤ , 2 利用单位圆或三角函数的图象, 易 得 所 求 函 数 的 定 义 域 是
5π π x2kπ- ≤x≤2kπ+ ,k∈Z . 4 4
y=sin x
y=cos x
【思考探究】 2.正弦函数和余弦函数的图象 的对称轴及对称中心与函数图象的关键点有 什么关系?
提示:
y=sin x 与 y=cos x 的对称轴方程
中的 x 都是它们取得最大值或最小值时相 应的 x, 对称中心的横坐标都是它们的零点.
1. 使函数 y=1+3cos 2x(x∈R)取最大值的自变 量 x 的集合为( ) A.{0} B.{x|x=kπ,k∈Z} C.{x|x=2kπ,k∈Z}
2.若函数 y=Asin(ωx+φ)中 A>0,ω<0, 可用诱导公式将函数变为 y=-Asin(-ωx- φ) , 则 y=Asin(-ωx-φ)的增区间为原函数的 减区间,减区间为原函数的增区间. 对于函数 y=Acos(ωx+φ)的单调性的讨论与 以上类似.
已知函数 f(x)= 3(sin x-cos x)-2sin xcos x. (1)求 f(x)的最小正周期; π π (2)设 x∈-3,3 , 求 f(x)的值域和单调递增区 间. 解析: (1)∵f(x)=- 3(cos2x-sin2x)- 2sin xcos x π =- 3cos 2x-sin 2x=-2sin2x+3 , ∴f(x)的最小正周期为 π.
π D.x|x=2kπ+2,k∈Z
答案: B
π - x 2.函数 y=tan 的定义域是( 4 π A.x|x≠4,x∈R π B.x|x≠-4,x∈R π x | x ≠ k π + , k ∈ Z , x ∈ R C. 4 3π x | x ≠ k π + , k ∈ Z , x ∈ R D. 4
人教课标版高中数学必修3《概率》复习课参考学案

必修3学案第三章《概率》复习课姓名☆学习目标:1.正确理解随机事件、必然事件、不可能事件的概念;理解事件的包含,并事件,交事件,相等事件,以及互斥事件,对立事件的概念;2.理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系;理解并掌握概率的三个基本性质;3. 正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.☆基础知识复习:1. 随机事件的概念(1)必然事件:在条件S下,发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,发生的事件,叫相对于条件S的不可能事件;(3)确定事件:事件和事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下的事件,叫相对于条件S的随机事件;2.事件的关系与运算①对于事件A与事件B, 如果事件A发生,事件B一定发生, 就称事件包含事件.②如果B⊇A且A⊇B, 那么称事件A与事件B相等.记作A B.③事件A ⋃B发生事件A发生事件B发生.称此事件为事件A与事件B 的并(和).④事件A ⋂B发生当且仅当.称此事件为事件A与事件B的交(积)事件.⑤如果A ⋂B为事件(A ⋂B=∅), 那么称事件A与事件B互斥.⑥如果A ⋂B为不可能事件, 且为必然事件, 那么称事件A与事件B互为独立事件.3. 频率与概率, 概率的基本性质10事件A发生的次数n A与试验总次数n的比值A n叫做事件A的,它具有n一定的稳定性,在某常数附近摆动,且随着试验次数的不断增多,摆动幅度越来越小.这个常数叫做随机事件的,在大量重复试验的前提下可以近似地作为这个事件的20. 必然事件的概率: ;不可能事件的概率: ; 随机事件的概率:30.当事件A与事件B互斥时, 当事件A与事件B互为对立时,4.古典概型和几何概型(1)古典概型的两个特征:10.试验中所有可能出现的基本事件;20.各基本事件的出现是,即它们发生的概率相同.(2)古典概型的概率公式, 设一试验有n个等可能的基本事件,而事件A恰包含其中的m个基本事件,则事件A的概率P(A)定义为:P A==()(3)几何概型的概念:10.将每个基本事件理解为从某特定的几何,该区域中每一点被取到的机会都一样;20.随机事件的发生理解为恰好取到上述区域内的.(4)几何概型的概率公式:在区域D中随机地取一点, 记事件A="该点落在其内部一个区域d内",则事件A发生的概率为:P A==.()5. 10 随机数具有广泛的应用,可以帮助我们安排和模拟一些试验20. 通过随机模拟的方法可以近似地计算不规则图形的面积.☆案例学习:例1例2例3例4 (1)两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率.(2) 在直角坐标内,射线OT落在600角的终边上, 现任作一射线OA, 求射线OA落在xOT内的概率.例5在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于36cm2 与81cm2之间的概率.参考答案例1例2例3例4(1)记“灯与两端距离都大于2m”为事件A ,则P(A)= 62=31 (2) 记“射线OA 落在xOT ∠内”为事件B, 则P(B)= 006013606=例5分析:正方形的面积只与边长有关,此题可以转化为在12cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6cm 与9cm 之间的概率.解:(1)用计算机产生一组[0,1]内均匀随机数1a =RAND .(2)经过伸缩变换,a =1a *12得到[0,12]内的均匀随机数.(3)统计试验总次数N 和[6,9]内随机数个数N 1(4)计算频率NN 1.记事件A={面积介于36cm 2 与81cm 2之间}={长度介于6cm 与9cm 之间},则P (A )的近似值为f n (A)=N N 1.。
福建省平潭县高中数学 第三章复习导学案 新人教A版必修3

授课时间第周星期第节课型复习课主备课人刘百波学习目标1.掌握概率的基本性质2.学会古典概型和几何概型简单运用重点难点重点古典概型、几何概型的相关知识点难点古典概型、几何概型的具体应用学习过程与方法自主学习1.本章的知识建构如下:2.概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);(巧妙的运用这一性质可以简化解题)4)互斥事件与对立事件的区别与联系:我们可以说如果两个事件为对立事件则它们一定互斥,而互斥事件则不一定是对立事件3.古典概型(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P(A)=总的基本事件个数包含的基本事件个数A4.几何概型(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P(A)=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.随机事件频率概率,概率的意思义与性质应用概率解决实际问题古典概型几何概型随机数与随机模拟5.古典概型和几何概型的区别相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.精讲互动例1、柜子里装有3双不同的鞋,随机地取出2只,试求下列事件的概率(1)取出的鞋子都是左脚的;(2)取出的鞋子都是同一只脚的(选作)变式:(1)取出的鞋一只是左脚的,一只是右脚的;(2)取出的鞋不成对例2、取一根长为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m 的概率有多大?达标训练1. 课本p161 复习题三 A组:1 2 3 4 5 62. 教辅资料作业布置1.复习题三 A组:7 、8、 9、10 、112.教辅资料学习小结/教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=( )
A.1
B.243
C.121
D.122
3
2.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3 +…+a9)2=39,则实数 m 的值为________.
3.已知(1+3x)n 的展开式中,后三项的二项式系数的和等于 121,则展开式中二项式系 数最大的项为________. 考点三 二项展开式的应用
例 4(1)若 x 1 n 的展开式中各项系数之和大于 8,但小于 32,则展开式中系数最
3 x
大的项是( )
3 A.6 x
B. 4 x
6 C.4x x
D.
4
或
6 4x
x
x
(2)若 x2 1 n 的展开式中含 x 的项为第 6 项,设(1-3x)n=a0+a1x+a2x2+…+anxn, x
A.1
B.2
C.3
D.4
2.1-90C110+902C210-903C310+…+(-1)k90kCk10+…+9010C 1100除以 88 的余数为________.
[课时跟踪检测]
1.(2019·河北“五个一名校联盟”模拟)
2 x2
x4 3 的展开式中的常数项为(
)
A.-3 2
B.3 2
C.6
(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的
和或差的形式,再用二项式定理展开.但要注意两点:
①余数的范围,a=cr+b,其中余数 b∈[0,r),r 是除数,若利用二项式定理展开变形
后,切记余数不能为负;
②二项式定理的逆用.
[题组训练]
1.使得多项式 81x4+108x3+54x2+12[例 3] (1)(x2+x+y)5 的展开式中 x5y2 的系数为( )
A.10
B.20
C.30
D.60
(2)将(x 4 4)3 展开后,常数项是________. x
[解题技法]
求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤
第一步,把三项的和 a+b+c 看成是(a+b)与 c 两项的和; 第二步,根据二项式定理写出[(a+b)+c]n 的展开式的通项; 第三步,对特定项的次数进行分析,弄清特定项是由(a+b)n-r 的展开式中的哪些项和 cr 相乘得到的;
A.-5
B.-15
C.-25
D.25
7.(2018·枣庄二模)若 x2 a x 1 10 的展开式中 x6 的系数为 30,则 a 等于(
)
x
A.1
B.1
C.1
D.2
3
2
8.若(1+mx)6=a0+a1x+a2x2+…+a6x6,且 a1+a2+…+a6=63,则实数 m 的值为( )
A.1 或 3
(1)项数为 n+1.
(2)各项的次数都等于二项式的幂指数 n,即 a 与 b 的指数的和为 n.
(3)字母 a 按降幂排列,从第一项开始,次数由 n 逐项减 1 直到零;字母 b 按升幂排列,
从第一项起,次数由零逐项增 1 直到 n.
二项式系数与项的系数的区别
二项式系数是指 C0n,C1n,…,Cnn,它只与各项的项数有关,而与 a,b 的值无关;而项
A.-4
B.-3
C.3
D.4
(2)(2019·南昌模拟)已知(x-1)(ax+1)6 的展开式中含 x2 项的系数为 0,则正实数 a=
________. [解题技法]
求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤
第一步,根据二项式定理把(a+b)m 与(c+d)n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a+b)m 与(c+d)n 的展开式中的哪些项相 乘得到; 第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量
13. x 1 15 展开式中的常数项为________. x
14.已知 x 1 n 的展开式中,前三项的系数成等差数列.
24 x
(1)求 n;
(2)求展开式中的有理项;
(3)求展开式中系数最大的项.
5
则 a1+a2+…+an 的值为________. (3)若(a+x)(1+x)4 的展开式中 x 的奇数次幂项的系数之和为 32,则 a=________.
[解题技法]
1.赋值法的应用
二项式定理给出的是一个恒等式,对于 x,y 的一切值都成立.因此,可将 x,y 设定为一
些特殊的值.在使用赋值法时,令 x,y 等于多少,应视具体情况而定,一般取“1,-1 或 0”,
B.-3
C.1
D.1 或-3
9.设复数 x= 2i (i 是虚数单位),则 C12 019x+C22 019x2+C32 019x3+…+C22 001199x2 019=(
)
1-i
A.i
B.-i
C.-1+i
D.-i-1
10.已知(x+2)9=a0+a1x+a2x2+…+a9x9,则(a1+3a3+5a5+7a7+9a9)2-(2a2+4a4+6a6
D.-6
2.设(2-x)5=a0+a1x+a2x2+…+a5x5,则a2+a4的值为(
)
a1+a3
A.-61 60
B.-122 121
C.-3 4
D.- 90 121
3.若二项式 x2 a 7 的展开式的各项系数之和为-1,则含 x2 项的系数为(
)
x
A.560
B.-560
C.280
D.-280
高三数学二轮复习学案 NO.49
二项式定理(4 月 8 号,周三用)
一、基础知识
1.二项式定理 (1)二项式定理:(a+b)n=C0nan+C1nan-1b+…+Cknan-kbk+…+Cnnbn(n∈N*)❶; (2)通项公式:Tk+1=Cknan-kbk,它表示第 k+1 项; (3)二项式系数:二项展开式中各项的系数为 C0n,C1n,…,Cnn❷. 2.二项式系数的性质
出相应方程(组)或不等式(组),解出 r;
第三步,把 r 代入通项公式中,即可求出 Tr+1,有时还需要先求 n,再求 r,才能求出
Tr+1 或者其他量. 考法(二) 求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量
[例 2] (1)(1- x)6(1+ x)4 的展开式中 x 的系数是( )
例 5、设 a∈Z,且 0≤a<13,若 512 018+a 能被 13 整除,则 a=( )
A.0
B.1
C.11
D.12
[解题技法]
利用二项式定理解决整除问题的思路
(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能
被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.
+8a8)2 的值为( )
A.39
B.310
C.311
D.312
11.(2019·唐山模拟)(2x-1)6 的展开式中,二项式系数最大的项的系数是________.(用数
字作答)
12.(2019·贵阳模拟) x a 9 的展开式中 x3 的系数为-84,则展开式的各项系数之和为 x
________.
[例 1]
(1)(2018·全国卷Ⅲ)
x2+2 x
5 的展开式中 x4 的系数为(
)
A.10
B.20
C.40
D.80
1
(2)(2019·合肥调研)若(2x-a)5 的二项展开式中 x3 的系数为 720,则 a=________.
(3)(2019·甘肃检测)已知
x-
a x
5 的展开式中
x5 的系数为
A,x2 的系数为
B,若
A+B=
11,则 a=________.
[解题技法] 求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤 第一步,利用二项式定理写出二项展开式的通项公式 Tr+1=Crnan-rbr,常把字母和系数 分离开来(注意符号不要出错);
第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列
有时也取其他值.如:
(1)形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R)的式子,求其展开式的各项系数之和,只
需令 x=1 即可. (2)形如(ax+by)n(a,b∈R)的式子,求其展开式各项系数之和,只需令 x=y=1 即可.
2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法
2
第四步,把相乘后的项合并即可得到所求特定项或相关量.
[题组训练] 1.(2019·福州四校联考)在(1-x3)(2+x)6 的展开式中,x5 的系数是________.(用数字作答)
2. x 1 2 5 (x>0)的展开式中的常数项为________. 2 x
考点二 二项式系数的性质及各项系数和
4.(2018·山西八校第一次联考)已知(1+x)n 的展开式中第 5 项与第 7 项的二项式系数相等,
则奇数项的二项式系数和为(
A.29
B.210
) C.211
D.212
4
5.二项式 1 2x2 9 的展开式中,除常数项外,各项系数的和为(
)
x
A.-671
B.671
C.672
D.673
6.(2018·石家庄二模)在(1-x)5(2x+1)的展开式中,含 x4 项的系数为( )
若 f(x)=a0+a1x+a2x2+…+anxn,则 f(x)的展开式中