高等数学第三章习题课答案
高等数学 第三章中值定理与导数的应用习题课
(5) (1 + x )α = 1 + αx +
α (α − 1)
2!
x2 + L+
α (α − 1)L (α − n + 1)
n!
x n + o( x n )
Ⅲ 导数的应用
一、函数的极值与单调性
1.函数极值的定义 . x ∈ U ( x0 , δ ), f ( x ) ≤ f ( x0 ), f ( x0 )为极大值. 为极大值.
0 ∞ 其它型: 其它型: ⋅ ∞ , ∞ − ∞ , 0 , 1 , ∞ , 转化为 “ ”型或“ ” 型 0 型或“ 型或 0 ∞
0 ∞ 0
二、泰勒公式
1.泰勒公式 .
如果函数在含有一点的开区间内具有直到(n+1)阶导数 阶导数 如果函数在含有一点的开区间内具有直到 f ′′( x0 ) f ( n) ( x0 ) 2 f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + ( x − x0 ) + L+ ( x − x0 )n + Rn ( x) 2! n! ( n +1) f (ξ ) Rn ( x ) = ( x − x0 ) n+1 拉格朗日型余项 ( n + 1)!
x ∈ U ( x 0 , δ ), f ( x ) ≥ f ( x0 ), f ( x0 )为极小值 .
o
。
2.函数的驻点 .
f ′( x 0 ) = 0 则 x 0为 f ( x ) 的驻点。 的驻点。
3.函数的单调区间的判别 .
函数在[a,b]上连续 在(a,b)内可导 上连续,在 内可导. 函数在 上连续 内可导
高数阶段练习第三章参考答案
第三章 微分中值定理及导数的应用一、选择题1. 若30sin(6)()lim 0x x xf x x →+= ,则206()lim x f x x→+为( ) A. 0 B. 6 C. 36 D. ∞2. 设在][1,0上,0)(>''x f ,则下列不等式成立的是( )A . )0()0()1()1(f f f f '>->' B. )0()1()0()1(f f f f ->'>'C . )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->'3. 设2()()lim 1()x a f x f a x a →-=--,则在x a =处( ) A. ()f x 的导数存在 B. ()f x 取得极大值C . ()f x 取得极小值 D. ()f x 的导数不存在4. 设k 为任意实数,则方程33x x k -+在[1,1]-上( )A. 一定没有实根B. 最多只有一个实根C. 最多有两个互异实根D. 最多有三个互异实根5. 设(),()f x g x 在0x 的某个去心邻域内可导,()0g x '≠,且适合0lim ()0x x f x →=,0lim ()0x x g x →=,则0()lim ()x x f x g x λ→=是0'()lim '()x x f x g x λ→=的: A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件。
6. 设()f x 在区间(a,b)内二阶可导,0(,)x a b ∈,且00()0,()=0f x f x '''≠,则()f x ( )A. 在0x x =处不取极值, 但00(,())x f x 是其图形的拐点B. 在0x x =处不取极值,但00(,())x f x 可能是其图形的拐点C. 在0x x =处可能取极值, 00(,())x f x 也可能是其图形的拐点D. 在0x x =处不取极值00(,())x f x 也不是其图形的拐点。
高等数学李伟版课后习题答案第三章
⾼等数学李伟版课后习题答案第三章习题3—1(A )1.判断下列叙述是否正确,并说明理由:(1)函数的极值与最值是不同的,最值⼀定是极值,但极值未必是最值;(2)函数的图形在极值点处⼀定存在着⽔平的切线;(3)连续函数的零点定理与罗尔定理都可以⽤来判断函数是否存在零点,⼆者没有差别;(4)虽然拉格朗⽇中值公式是⼀个等式,但将()f ξ'进⾏放⼤或缩⼩就可以⽤拉格朗⽇中值公式证明不等式,不过这类不等式中⼀定要含(或隐含)有某函数的两个值的差.答:(1)不正确.最值可以在区间端点取得,但是由于在区间端点处不定义极值,因此最值不⼀定是极值;⽽极值未必是最值这是显然的.(2)不正确.例如32x y =在0=x 点处取极值,但是曲线在点)00(,却没有⽔平切线.(3)不正确.前者是判断)(x f 是否有零点的,后者是判断)(x f '是否有零点的.(4)正确.⼀类是明显含有)()(a f b f -的;另⼀类是暗含着)()(0x f x f -的. 2.验证函数2)1(e x y -=在区间]20[,上满⾜罗尔定理,并求出定理中的ξ.解:显然2)1(e x y -=在闭区间]20[,上连续,在开区间)20(,内可导,且e )2()0(==y y ,于是函数2)1(ex y -=在区间]20[,上满⾜罗尔定理的条件,2)1(e )1(2)(x x x y ---=',由0)(='ξy ,有0e )1(22)1(=---ξξ,得1=ξ,∈ξ)20(,,所以定理的结论也成⽴.3.验证函数1232-+=x x y 在区间]11[,-上满⾜拉格朗⽇中值定理,并求出公式中的ξ.解:显然1232-+=x x y 在闭区间]11[,-连续,在开区间)11(,-内可导,于是函数1232-+=x x y 在区间]11[,-上满⾜拉格朗⽇中值定理的条件,26)(+='x x y ,2)1(1)1()1(=----y y ,由)()1(1)1()1(ξy y y '=----,有226=+ξ,得0=ξ,∈ξ)11(,-,所以定理的结论也成⽴.4.对函数x x x f cos )(+=、x x g cos )(=在区间]20[π,上验证柯西中值定理的正确性,并求出定理中的ξ.解:显然函数x x x f cos )(+=、x x g cos )(=在闭区间]20[π,上连续,在开区间)20(π,内可导,且x x f sin 1)(-=',x x g sin )(-=',在区间)20(π,内0)(≠'x g ,于是函数x x x f cos )(+=、x x g cos )(=在区间]20[π,上满⾜柯西定理的条件,⼜21)0()2/()0()2/(πππ-=--g g f f ,由)()()0()2/()0()2/(ξξππg f g g f f ''=--,有ξξπsin sin 121--=-,即πξ2sin =,由于∈ξ)20(π,,得πξ2arcsin=,所以定理的结论也成⽴.5.在)(∞+-∞,内证明x x cot arc arctan +恒为常数,并验证2cot arc arctan π≡+x x .证明:设x x x f cot arc arctan )(+=,显然)(x f 在)(∞+-∞,内可导,且-+='211)(x x f 0112≡+x,由拉格朗⽇定理的推论,得在)(∞+-∞,内x x cot arc arctan +恒为常数,设C x f ≡)(,⽤0=x 代⼊,得2π=C ,所以2cot arc arctan π≡+x x .6.不求出函数2()(4)f x x x =-的导数,说明0)(='x f 有⼏个实根,并指出所在区间.解:显然2()(4)f x x x =-有三个零点20±==x x ,,⽤这三点作两个区间]20[]02[,、,-,在闭区间]02[,-上)(x f 连续,在开区间)02(,-内)(x f 可导,⼜0)0()2(==-f f 于是)(x f 在]02[,-满⾜罗尔定理,所以⾄少有∈1ξ)02(,-,使得0)(1='ξf ,同理⾄少有∈2ξ)20(,,使得0)(2='ξf ,所以0)(='x f ⾄少有两个实根.⼜因为)(x f 是三次多项式,有)(x f '时⼆次多项式,于是0)(='x f 是⼆次代数⽅程,由代数基本定理,得0)(='x f ⾄多有两个实根.综上,0)(='x f 恰有两个实根,且分别位于区间)02(,-与)20(,内.7.证明下列不等式:(1)对任何实数b a ,,证明cos cos a b a b -≤-;(2)当0>x 时,x x xx<+<+)1ln(1.证明:(1)当b a =时,cos cos a b a b -≤-显然成⽴.当b a <时,取函数x x f cos )(=,显然)(x f 在闭区间][b a ,上连续,在开间)(b a ,内可导,由拉格朗⽇定理,有∈ξ)(b a ,,使得))(()()(b a f b f a f -'=-ξ,即)(sin cos cos b a b a -?-=-ξ,所以)()(sin cos cos b a b a b a -≤-?-=-ξ.当b a >时,只要将上⾯的区间][b a ,换为][a b ,,不等式依然成⽴.所以,对任何实数b a ,,都有cos cos a b a b -≤-.(2)取函数)1ln()(t t f +=,当0>x 时,函数)1ln()(t t f +=在闭区间]0[x ,上连续,在开区间)0(x ,内可导,根据拉格朗⽇定理,有∈ξ)0(x ,,使得ξξ+='1)(xf .因为x <<ξ0,则x xx x x =+<+<+0111ξ,所以x x x x <+<+)1ln(1. 8.若函数)(x f 在区间),(b a 具有⼆阶导数,且)()()(321x f x f x f ==,其中21x x a <<b x <<3,证明在区间)(3,1x x 内⾄少有⼀点ξ,使得0)(=''ξf .证明:根据已知,函数)(x f 在区间][21x x ,及][32x x ,上满⾜罗尔定理,于是有∈1ξ)(21x x ,,∈2ξ)(32x x ,(其中21ξξ<),所得0)(1='ξf ,0)(2='ξf .再根据已知及)()(21ξξf f '=',函数)(x f '在区间][21ξξ,上满⾜罗尔定理,所以有∈ξ)(21ξξ,?)(3,1x x ,所得0)(=''ξf ,即在区间)(3,1x x 内⾄少有⼀点ξ,使得0)(=''ξf .习题3—1(B )1.在2004年北京国际马拉松⽐赛中,我国运动员以2⼩时19分26秒的成绩夺得了⼥⼦组冠军.试⽤微分中值定理说明她在⽐赛中⾄少有两个时刻的速度恰好为18. 157km/h (马拉松⽐赛距离全长为42.195km ).解:设该运动员在时刻t 时跑了)(t s s =(km ),此刻才速度为)()(t s t v v '==(km/h ),为解决问题的需要,假定)(t s 有连续导数.设起跑时0=t ,到达终点时0t t =,则3238888889.20≈t ,对函数)(t s 在区间]0[0t ,上⽤拉格朗⽇定理,有00t <<ξ,所得)()(0)0()(00ξξv s t s t s ='=--,⽽15706.183238888889.2195.420)0()(00≈=--t s t s km/h ,所以157.1815706.18)(>≈ξv .对)(t v 在区间]0[ξ,及][0t ,ξ上分别使⽤连续函数的介值定理(注意,0)0(=v0)(0=t v ,则数值18. 157分别介于两个区间端点处函数值之间),于是有)0(1ξξ,∈,)0(2,ξξ∈,使得157.18)(1=ξv ,157.18)(2=ξv,这表明该运动员在⽐赛中⾄少有两个时刻的速度恰好为18. 157km/h .2.若函数)(x f 在闭区间][b a ,上连续,在开区间),(b a 内可导,且0)(>'x f ,证明⽅程0)(=x f 在开区间),(b a 内⾄多有⼀个实根.证明:采⽤反证法,若⽅程0)(=x f 在开区间),(b a 有两个(或两个以上)不同的实根21x x <,即0)()(21==x f x f ,根据已知函数)(x f 在][21x x ,上满⾜罗尔定理,于是有∈ξ)()(21b a x x ,,?,使得0)(='ξf ,与在开区间),(b a 内0)(>'x f ⽭盾,所以⽅程0)(=x f 在开区间),(b a 内⾄多有⼀个实根.(注:本题结论也适⽤于⽆穷区间) 3.证明⽅程015=-+x x 只有⼀个正根.证明:设1)(4-+=x x x f ()(∞+-∞∈,x ),则014)(4>+='x x f ,根据上题结果,⽅程015=-+x x 在)(∞+-∞,内⾄多有⼀个实根.取闭区间]10[,,函数1)(4-+=x x x f 在]10[,上连续,且01)0(<-=f ,01)1(>=f ,由零点定理,有)10(,∈ξ,使得0)(=ξf ,从⽽⽅程015=-+x x 在)0(∞+,内⾄少有⼀个实根.综上,⽅程015=-+x x 只有⼀个正根,且位于区间)10(,内. 4.若在),(+∞-∞内恒有k x f =')(,证明b kx x f +=)(.证明:(⽅法1)设函数kx x f x F -=)()(,则0)()(≡-'='k x f x F ,根据拉格朗⽇定理的推论)(x F 恒为常数,设C kx x f x F ≡-=)()(,⽤0=x 代⼊,得)0(f C =,记b f =)0(,则b C kx x f x F ==-=)()(,所以b kx x f +=)(.(⽅法2)记b f =)0(,∈?x ),(+∞-∞,若0=x ,则满⾜b kx x f +=)(;若0≠x ,对函数)(t f 以x t t ==,0为端点的闭区间上⽤拉格朗⽇定理,则有ξ介于0与x 之间,使得)0)(()0()(-'=-x f f x f ξ,即kx b x f =-)(,所以b kx x f +=)(.5.若函数)(x f 在区间)0(∞+,可导,且满⾜0)()(2≡-'x f x f x ,1)1(=f ,证明x x f =)(.证明:设函数xx f x F )()(=(∈x )0(∞+,),则xx x f x f x x x x f x x f x F 2)()(22/)()()(-'=-'=',由0)()(2≡-'x f x f x ,得0)(≡'x F ,根据拉格朗⽇定理的推论)(x F 恒为常数,设C xx f x F ==)()(,⽤1=x 代⼊,且由1)1(=f ,得1=C ,所以1)()(==xx f x F ,即x x f =)(.6.证明下列不等式(1)当0>x 时,证明x x+>1e ;(2)对任何实数x ,证明x x arctan ≥.证明:(1)取函数t t f e )(=(]0[x t ,∈)显然函数)(t f 在区间]0[x ,上满⾜拉格朗⽇定理,则有∈ξ)0(x ,,使得)0)(()0()(-'=-x f f x f ξ,即x xξe 1e =-,所以 x x x+>+=1e 1e ξ.(2)当0=x 时,显然x x arctan ≥.当0≠x 时,取函数t t f arctan )(=,对)(t f 在以x t t ==,0为端点的闭区间上⽤拉格朗⽇定理,则有ξ介于0与x 之间,使得)0)(()0()(-'=-x f f x f ξ,即21arct an ξ+=xx ,所以x x x <+=21arctan ξ.综上,对任何实数x ,都有x x arctan ≥.7.若函数)(x f 在闭区间[1-,1]上连续,在开区间(1-,1)内可导,M f =)0((其中0>M ),且M x f <')(.在闭区间[1-,1]上证明M x f 2)(<.证明:对∈?x [1-,1],当0=x 时,M M f 2)0(<=,.不等式成⽴.当0≠x 时,根据已知,函数)(t f 在以x t t ==,0为端点的区间上满⾜拉格朗⽇定理,则有ξ介于0与x 之间,使得)0)(()0()(-'=-x f fx f ξ,即x f M x f )()(ξ'=-,所以,M x f x f +'=)()(ξ,从⽽M M f M x f M x f x f 2)()()()(<+'≤+'≤+'=ξξξ.综上,在闭区间[1-,1]上恒有M x f 2)(<.8.若函数)(x f 在闭区间]0[a ,上连续,在开区间)0(a ,内可导,且0)(=a f ,证明在开区间)0(a ,内⾄少存在⼀点ξ,使得0)()(='+ξξξf f .证明:设函数)()(x xf x F =(∈x ]0[a ,),则0)(0)0(==a F F ,,再根据已知,函数)(x F 在区间],0[a 满⾜罗尔定理,则有∈ξ)0(a ,,使得0)(='ξf .⽽)()()(ξξξξf f f '+=',于是0)()(='+ξξξf f .所以,在开区间)0(a ,内⾄少存在⼀点ξ,使得0)()(='+ξξξf f .习题3—2(A )1.判断下列叙述是否正确?并说明理由(1)洛必达法则是利⽤函数的柯西中值定理得到的,因此不能利⽤洛必达法则直接求数列极限;(2)凡属“00”,“∞∞”型不定式,都可以⽤洛必达法则来求其的极限值;(3)型如””,“”,“”,“”,““0100∞∞-∞∞?∞型的不定式,要想⽤洛必达法则,需先通过变形.⽐如“0?∞”型要变型成为“00”,“∞∞”型,”,”,““00∞-∞””,““01∞∞型要先通过变型,转化为“0?∞”型的不定式,然后再化为基本类型.答:(1)正确.因为数列是离散型变量,对它是不能求导的,要想对数列的“不定式”极限使⽤洛必达法则,⾸先要根据“海涅定理”将数列极限转换为普通函数极限,然后再使⽤洛必达法则.(2)不正确.如0sin 1sinlim 20=→xx x x (00型)、1cos sin lim -=-+∞→x x x x x (∞∞型)、11lim 2=++∞→x x x (∞∞型)都不能⽤洛⽐达法则求得极限值.(3)正确.可参见本节3.其他类型的不定式极限的求法,但是“∞-∞”型通常是直接化为“00”,“∞∞”型. 2.⽤洛必达法则求下列极限:(1)x x x --→e 1ln lim e ;(2)11lim 1--→n m x x x (0≠mn );(3)x x x 5tan 3sin limπ→;(4)2e e cos 1lim 0-+--→x x x x;(5)1sec tan 2lim0-→x x x x ;(6)xxx 3tan tan lim 2/π→;(7)x x x 2cot lim 0→;(8)x x x cot arc lim +∞→;(9))sin 11(lim 0x x x -→;(10)111lim()ln 1x x x →--;(11)xx x tan 0lim +→;(12))1ln(1)(lim x x x ++∞→;(13)21)(cos lim x x x →;(14)nn n ln lim∞→;解:(1)e11/1lim e 1ln lime e -=-=--→→x x x x x .(2)==----→→1111lim 11lim n m x nm x nx mx x x nm.(3)=-?-==→→22)1(535sec 53cos 3lim 5tan 3sin limx x x x x x ππ53-.(4)=+=-=-+--→-→-→x x x x x x x x x x x x e e cos lim e e sin lim 2e e cos 1lim00021.(5)===-=-→→→→xxx x x x x x x x x x x x tan 4lim tan sec 4lim 1sec 2lim 1sec tan 2lim002004. (6) =---=-=?=→→→→x xx x xx x x x x x x x x sin 3sin 3lim cos 3cos lim )cos 3cos 3sin sin (lim 3tan tan lim2/2/2/2/ππππ3.(7)===→→→x x x x x x x x 2sec 21lim 2tan lim 2cot lim 200021.(8)=+=-+-==+∞→+∞→+∞→+∞→22221lim /1)1/(1lim 1/cot arc lim cot arc lim xx x x x x x x x x x x 1.(9)=-=-=-=-=-→→→→→2sin lim 21cos lim sin lim sin sin lim )sin 11( lim 002000xx x x x x x x x x x x x x x x x 0.(10)xx x x x x x x x x x x x /)1(ln /11lim ln )1(ln 1lim )11ln 1(lim 111-+-=---=--→→→=+=-+-=→→2ln 1lim 1ln 1lim11x x x x x x x 21.(11)设xxy tan =,则x x y ln tan ln =,因为0lim /1/1lim /1ln lim ln lim ln tan lim ln lim 0200=-=-====++++++→→→→→→x xxx x x x x x y x x x x x x ,所以, ==+→0tan 0e lim xx x 1.(12)设)1ln(1)(x x y +=,则)1ln(ln 21)1ln(ln ln x xx x y +=+=,因为 21)11(lim 21)1/(1/1lim 21)1ln(ln lim 21ln lim =+=+=+= +∞→+∞→+∞→+∞→x x x x x y x x x x ,所以 ==++∞→21)1ln(1e )(lim x x x e .(13)设21)(cos x x y =,则2cos ln ln x xy =,因为 21cos 2sin lim cos ln lim ln lim 0200-=-==→→→x x x x x y x x x ,所以==-→2 110e )(cos lim 2x x x e1.(14)根据海涅定理,====+∞→+∞→+∞→∞→xxx xx nn x x x n 2lim2/1/1limln limln lim0.3.验证极限xx xx x cos 2sin 2lim -+∞→存在,并说明不能⽤洛必达法则求得.解:=-+=-+=-+∞→∞→0102/)cos 2(1/)(sin 2lim cos 2sin 2limx x x x x x x x x x 2.因为极限xxx x x x x x sin 21cos 2lim )cos 2()sin 2(lim++='-'+∞→∞→不存在,因为此极限不能⽤洛必达法则求得.4.验证极限x x x x sin )/1sin(lim 20→存在,并说明不能⽤洛必达法则求得.解:=?=?=→→→011sin lim sin lim sin )/1sin(lim0020xx x x x x x x x x 0.因为极限xx x x x x x x x cos )/1sin()/1sin(2lim)(sin ])/1sin([lim 020-=''→→不存在,因为此极限不能⽤洛必达法则求得.习题3—2(B )1.⽤洛必达法则求下列极限:(1)311lnarctan 2limx x xx x -+-→;(2)xx x x 30sin arcsin lim -→(3))tan 11(lim 220xx x -→;(4)]e )11[(lim -+∞→xx x x ; (5) 260)sin (lim x x xx →;(6)n n nn b a )2(lim +∞→(00>>b a ,).解:(1)原式30)1ln()1ln(arctan 2limx x x x x -++-=→=--=--+-+=→→)1(34lim 3111112lim 40220x x x x x x x 34-.(2)原式2220220301311lim 31/11lim arcsin lim xx x x x x x x x x x ---=--=-=→→→=-=--=→→22022032/lim 311lim xx x x x x 61-.(3)原式30022220tan lim tan lim tan tan lim xxx x x x x x x x x x x -?+=-=→→→ ==-=-=→→→22022030tan lim 3231sec lim 2tan lim 2x x xx x x x x x x 32.(4)令t x 1=,则原式21010)1ln()1()1(lim e )1(lim tt t t t t t t t tt ++-+=-+→→ =+-=-+-=++-=→→→t t t t t t t t t t t )1ln(lim 2e 21)1ln(1lim e )1ln()1(lim e 002 02 e -.(5)令6)sin (x x x y =,则2sin ln 6ln x x xy =,因为 30200sin cos lim 3)sin cos 2sin /6(lim ln lim xxx x x x x x x x x y x x x -=-?=→→→ 13sin lim 320-=-=→x x x x ,所以==-→160e )sin (lim x x xx e 1.(6)令=n x nn nb a )2(+,则]2ln )[ln(ln -+=n n n b a n x ,再令x t 1=,因为 tb a b a x x t t t xx x n n 2ln )ln(lim ]2ln )[ln(lim ln lim 011-+=-+=→+∞→∞→ ab b a ba b b a a t t t t t ln 2ln ln ln ln lim 0=+=++=→,所以==+∞→abnn nn b a ln e )2(lim ab .2.当0→x 时,若)(e )(2c bx ax x f x ++-=是⽐2x ⾼阶的⽆穷⼩,求常数c b a 、、.解:根据已知,有0)(e lim220=++-→x c bx ax x x ,由分母极限为零,则有分⼦极限也为零,于是01)]([e lim 2x =-=++-→c c bx ax x ,得1=c ,此时02)2(e lim )(e lim 0220=+-=++-→→x b ax x c bx ax x x x x ,再由分⼦极限为零,同样得1=b ,进⽽022122e lim 2)12(e lim )(e lim 00220=-=-=+-=++-→→→a a x ax x c bx ax x x x x x x ,得21=a ,所以1121===c b a ,,时,当0→x 时,)(e )(2c bx ax x f x ++-=是⽐2x ⾼阶的⽆穷⼩.3.若函数)(x f 有⼆阶导数,且2)0(,1)0(,0)0(=''='=f f f ,求极限2)(limxxx f x -→.解:1)0(210)0()(lim 2121)(lim )(lim002=''=-'-'=-'=-→→→f x f x f x x f x x x f x x x .(注:根据题⽬所给条件,不能保证)(x f ''连续,所以只能⽤⼀次洛⽐达法则,再⽤⼆阶导数的分析定义)习题3—3(A )1.判断下列叙述是否正确?并说明理由:(1)只要函数在点0x 有n 阶导数,就⼀定能写出该函数的泰勒多项式.⼀个函数的泰勒多项式永远都不会与这个函数恒等,⼆者相差⼀个不恒为零的余项;(2)⼀个函数在某点附近展开带有拉格朗⽇余项的n 阶泰勒公式是它的n 次泰勒多项式加上与该函数的n 阶导数有关的所谓拉格朗⽇型的余项;(3)在应⽤泰勒公式时,⼀般⽤带拉格朗⽇型余项的泰勒公式⽐较⽅便.答:(1)前者正确,其根据是泰勒多项式的定义;后者不正确.当)(x f 本⾝是⼀个n 次多项式时,有0)(≡x R n ,这时函数的泰勒多项式恒等于这个函数.(2)不正确.拉格朗⽇型的余项与函数)(x f 的1+n 阶导数有关.(3)不正确.利⽤泰勒公式求极限时就要⽤带有⽪亚诺余项的泰勒公式,⼀般在对余项进⾏定量分析时使⽤带拉格朗⽇型余项的泰勒公式,在对余项进⾏定性分析时使⽤带⽪亚诺型余项的泰勒公式.2.写出函数x x f arctan )(=的带有佩亚诺型余项的三阶麦克劳林公式.解:因为211)(x x f +=',)1(2)(2x x x f +-='',322)1(62)(x x x f ++-=''',于是 2)0(0)0(1)0(0)0(-='''=''='=f f f f ,,,,代⼊到)(!3)0(!2)0()0()0()(332x o x f x f x f f x f +'''+'+'+=中,得 )(3arctan 33x o x x x +-=. 3.按1-x 的乘幂形式改写多项式1)(234++++=x x x x x f .解:因为1234)(23+++='x x x x f ,2612)(2++=''x x x f ,624)(+='''x x f ,24)()4(=x f ,更⾼阶导数都为零,于是,,,20)1(10)1(5)1(=''='=f f f 30)1(='''f ,24)0()4(=f ,将其带⼊到)()1(!4)1()1(!3)1()1(!2)1()1)(1()1()(44)4(32x R x f x f x f x f f x f +-+-'''+-'+-'+=中,得 432)1()1(5)1(10)1(105)(-+-+-+-+=x x x x x f(其中5)5(4)1(!5)()(-=x f x R ξ恒为零). 4.将函数1)(+=x xx f 在1x =点展开为带有佩亚诺型余项的三阶泰勒公式.解:因为111)(+-=x x f ,则2)1(1)(+='x x f ,3)1(2)(+-=''x x f ,4)1(6)(+='''x x f ,于是83)1(41)0(41)1(21)1(='''-=''='=f f f f ,,,,将其带⼊到 ))1(()1(!3)1()1(!2)1()1)(1()1()(332-+-'''+-'+-'+=x o x f x f x f f x f 中,得))1((16)1(8)1(41211332-+-+---+=+x o x x x x x . 5.写出函数xx x f e )(=的带有拉格朗⽇型余项的n 阶麦克劳林公式.解:因为)(e )()(k x x f x k +=(1321+=n n k ,,,,,)(参见习题2.5(B )3),于是,k fk =)0()((n k ,,,,210=),=+=++1)1()!1()()(n n n x n x f x R θ1)!1(e )1(++++n x x n x n θθ,将其带⼊到)(!)0(!2)0()0()0()()(2x R x n f x f x f f x f n nn +++'+'+= ,得 132)!1(e )1()!1(!2e +++++-++++=n x n xx n x n n x x x x x θθ )10(<<θ.6.将函数xx f 1)(=按(1)x +的乘幂展开为带有拉格朗⽇型余项的n 阶泰勒公式.解:因为1)(!)1()(+-=k k k xk x f,于是!)1()(k f k -=-(13210+=n n k ,,,,,,), 1211211)1()1()1()1()!1()!1()1()1()!1()()(+++++++++-=+++-=++=n n n n n n n n n x x n n x n f x R ξξξ,将其代⼊到中)()1(!)1()1(!2)1()1)(1()1()()(2x R x n f x f x f f x f n n n ++-+++-'++-'+-= ,得2112)1()1()1()1()1(11++++-++--+-+--=n n n nx x x x x ξ(ξ介于1-与x 之间).习题3—3(B )1.为了修建跨越沙漠的⾼速公路,测量员测量海拔⾼度差时,必须考虑地球是⼀个球体⽽表⾯不是⽔平,从⽽对测量的结果加以修正.(1)如果R 表⽰地球的半径,L 是⾼速公路的长度.证明修正量为R RLR C -=sec . (2)利⽤泰勒公式证明3422452R L R L C +≈.(3)当⾼速公路长100公⾥时,⽐较(1)和(2)中两个修正量(地球半径取6370公⾥).证明:(1)由αR L =,有R L =α,⼜在直⾓三⾓形ODB 中,CR R+=αcos ,于是R C R L+==1s e cs e c α,由此得R RLR C -=sec .(2)先将x x f sec )(=展开为4阶麦克劳林公式,为此求得x x x f tan sec )(=',x x x x f 32s e c t a n s e c )(+='',x x x x x f tan sec 5tan sec )(33+=''',x x x x x x f5234)4(s e c 5t a n s e c 18tan sec )(++=,,,,,,5)0(0)0(1)0(0)0(1)0()4(=='''=''='=f f f f f 于是 )(245211sec 442x R x x x +++=;当1<2245211sec x x x ++≈,取R L x =,得442224521sec RL R L R L ++≈,于是≈-=R R L R C sec 3422452R L R L +.(3)按公式R RLR C -=sec计算,得修正量为785010135.0)1(≈C ,按公式3422452RL R L C +≈计算,得修正量为785009957.0)2(≈C ,它们相差⼤约为000000178.0)2()1(≈-C C .2.写出函数212e)(x x f -=的带佩亚诺型余项的n 2阶麦克劳林公式.解:由)(!!3!21e 32nn tt o n t t t t ++++++= ,令22x t -=,得 )]2(!2)1(!62!42!221[e eee223624222122n n n nn x x x o n x x x x +?-++?-?+?-==--)(]!)!2()1(!!6!!4!!21[e 22642n n n x o n x x x x +-++-+-= ,按规律,由于nx2项的后⼀项为22+n x,所以余项也可以⽤)(12+n xo .3.写出函数x x f 2sin )(=的带⽪亚诺型余项的m 2阶麦克劳林公式.解:x x 2cos 2121sin 2-=)2()!2()2()1(!6)2(!4)2(!2)2(1[2121222642m m mn x o m x x x x +-++-+--=)()!2(2)1(4523122121642m m m m x o x m x x x +-+-+-=-- ,同上⼀题,余项也可以⽤)(12+m x o .(注意:像2、3题⽤变量代换写泰勒公式的⽅法只使⽤于带有佩亚诺型余项的泰勒公式,不适⽤带有拉格朗⽇型余项的泰勒公式,否则得到的余项不再是拉格朗⽇型余项) 4.应⽤三阶泰勒公式计算下列各数的近似值,并估计误差:(1)330;(2)18sin .解:(1)取函数31)(x x f +=,展开为三阶麦克劳林公式,有31154323)1(3108159311)(x xx x x x x f θ+?-+-+=+=,3339/11332730+?=+=,现取9/1=x ,)59049572912711(3303+-+≈,误差为54431089.19310-?R , 10725.3)000085.0001372.0037037.01(3)59049572912711(3303=+-+≈+-+≈;(2)⽤x sin 的麦克劳林公式,取1018π==x ,得53)10(!5)cos()10(!311018sin πθππx +-=,则3)10(!311018sin ππ-≈,误差为5531055.2)10(!51-?≈<≤πR3090.030899.000517.031416.018sin ≈=-≈.5.利⽤泰勒公式求下列极限:(1)642/012/e cos lim 2x x x x x +--→;(2)x x x x x x x sin )1(sin e lim 20+-→.解:(1)原式64636426 642012/)](!32821[)](!62421[lim xx x o x x x x o x x x x ++?-+--+-+-=→ 3607)(360/7lim 6660=+=→x x o x x .(2)原式3233220)](6/)][(2/1[lim x x x x o x x x o x x x --+-+++=→ 31)(3/lim3330=+=→x x o x x .6.设函数)(x f 在区间][b a ,上有⼆阶连续导数,证明:有)(b a ,∈ξ使得)(4)()2(2)()(2ξf a b b a f b f a f ''-=+-+.证明:将函数)(x f y =在20ba x +=点展开为⼀阶泰勒公式,有 20000)(!2)())(()()(x x f x x x f x f x f -''+-'+=η.(η介于x 与0x 之间)分别⽤b x a x ==、代⼊上式,得 201000)(!2)())(()()(x a f x a x f x f a f -''+-'+=η 4)(!2)(2)2()2(21b a f b a b a f b a f -''+-+'++=η(21b a a +<<η),202000)(!2)())(()()(x b f x b x f x f b f -''+-'+=η 4)(!2)(2)2()2(22a b f a b b a f b a f -''+-+'++=η(b b a <<+22η),上两式相加,得]2)()([4)()2(2)()(212ηηf f a b b a f b f a f ''+''-++=+,由)(x f ''连续,根据习题1-7(B )4,得)(2)()(21ξηηf f f ''=''+''()(b a ,∈ξ),于是,)(4)()2(2)()(2ξf a b b a f b f a f ''-++=+,所以,有)(b a ,∈ξ使得)(4)()2(2)()(2ξf a b b a f b f a f ''-=+-+. 7.若函数)(x f 有⼆阶导数,0)(>''x f ,且1)(lim=→xx f x ,⽤泰勒公式证明x x f ≥)(. 证明:由函数)(x f 可导,及1)(lim=→xx f x ,得1)0(0)0(='=f f ,,将)(x f 展开为⼀阶麦克劳林公式,有22)()(x f x x f ξ''+=(ξ介于0与x 之间),由0)(>''x f ,得x x f x x f ≥''+=22)()(ξ.8.设函数)(x f 在区间]20[,上⼆次可微,)2()0(f f =,且M x f ≤'')(,对任何]20[,∈x ,证明M x f ≤')(.证明:对任何∈x ]20[,,将函数)(t f y =在x t =点展开为⼀阶泰勒公式,有 2)(!2)())(()()(x t f x t x f x f t f -''+-'+=ξ.(ξ介于x 与t 之间)分别⽤20==t t 、代⼊上式,得 21!2)()()()0(x f x x f x f f ξ''+'-=,(x <<10ξ)(1) 22)2(!2)()2)(()()2(x f x x f x f f -''+-'+=ξ,(22<<ξx )(2)(2)-(1),并由条件)2()0(f f =,有 ])()2)(([21)(202122x f x f x f ξξ''--''+'=,即])()2)(([41)(2122x f x f x f ξξ''--''-=',所以M x x M x x M x f =+-?≤+-≤'222])2[(4])2[(4)(.习题3—4(A )1.下列叙述是否正确?并按照你的判断说明理由:(1)设函数()f x 在区间[,]a b 上连续,在(,)a b 内可导,那么()f x 在区间[,]a b 上单调增加(减少)的充分必要条件是对任意的(,)x a b ∈,0)(>'x f (0)(<'x f );(2)函数的极⼤值点与极⼩值点都可能不是唯⼀的,并且在其驻点与不可导点处均取得极值;(3)判定极值存在的第⼀充分条件是根据驻点两侧导数的符号来确定该驻点是否为极值点,第⼆充分条件是根据函数在其驻点处⼆阶导数的符号来判定该驻点是否为极值点;(4)在区间I 上连续的函数,其最⼤值点或最⼩值点⼀定是它的极值点.答:(1)不正确.如3x y =在]11[,-上单调增加,⽽032≥='x y .(2)前者正确,后者不正确.驻点与不可导点是取得极值必要条件不是充分条件,如函数3x y =有驻点0=x ,⽽3x y =在0=x 点不取极值;⼜如函数3x y =有不可导点0=x ,⽽3x y =在0=x 点也不取极值.(3)前者不正确,后者正确.第⼀充分条件对连续函数的不可导点也适⽤.(4)不正确.函数的最⼤(⼩)值点可以是闭区间端点,这时的最值点就不是极值点. 2.证明函数x x x f arcsin )(-=在]11[,-上单调减少.解:在开区间)11(,-内,0111)(2≤--='xx f ,且等号只在0=x 点成⽴,所以)(x f 在开区间)11(,-内单调减少,⼜因为函数x x x f arcsin )(-=在区间]11[,-的左、右端点处分别右连续、左连续,所以x x x f arcsin )(-=在]11[,-上单调减少. 3.求下列函数的单调区间和极值:(1)323y x x =-;(2)xx y 12+=;(3)3232x x y +?=;(4)2exy x =;(5)x x y -+=)1ln(;(6))1ln(2-=x y .解:(1)定义域为)(∞+-∞,,)2(3632-=-='x x x x y ,由0='y ,得驻点0=x ,2=x ,函数没有不可导点.单增区间为:)2[]0(∞+-∞,、,,单减区间为:]20[,,极⼤值为:0)0(=y ,极⼩值为:4)2(-=y .(2)定义域为)0()0(∞+-∞,,,221xx y -=',由0='y ,得驻点1±=x ,在定义域内函数没有不可导点.单增区间为:)1[]1(∞+--∞,、,,单减区间为:]10()01[,、,-,极⼤值为:2)1(-=-y ,极⼩值为:2)1(=y .(3)定义域为)(∞+-∞,,2233)1(2xx y ?+=',由0='y ,得驻点1-=x ,不可导点0=x .单增区间为:)1[∞+-,,单减区间为:]1(--∞,,⽆极⼤值,极⼩值为:1)1(-=-y .(4)定义域为)0()0(∞+-∞,,,3)2(e xx y x -=',由0='y ,得驻点2=x ,在定义域内函数没有不可导点.单增区间为:、,)0(-∞)2[∞+,,单减区间为:]20(,,⽆极⼤值,极⼩值为:4/e )2(2=y .(5)定义域为)1(∞+-,,xxy +-='1,由0='y ,得驻点0=x ,在定义域内函数没有不可导点.单增区间为:]01(,-,单减区间为:)0[∞+,,极⼤值为:0)0(=y ,⽆极⼩值.(6)定义域为)1()1(∞+--∞,,,122-='x xy ,在定义域内0≠'y ,且没有不可导点.单增区间为:)1(∞+,,单减区间为:)1(--∞,,既⽆极⼤值,也⽆极⼩值.4.求下列函数在指定区间的最⼤值M 和最⼩值m :(1)163)(24+-=x x x f ,]20[,∈x ;(2)11)(+-=x x x f ,]40[,∈x .解:(1))1(121212)(23-=-='x x x x x f ,由0)(='x f ,得1=x (10-==x x ,都不在)20(,内),⽐较数值25)2(2)1(1)0(=-==f f f ,,,得163)(24+-=x x x f 在。
同济大学《高等数学》(第四版)第三章习题课
上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当
同济大学第六版高等数学课后答案3-3
习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f =-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4.2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f '''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+= =1-9x +30x 3-45x 3+30x 4-9x 5+x 6.3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为24)4(==f , 4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f , 328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1).4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ ,nn nn xn x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--; kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1),所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+=])2[()2(2)1( )2(231)2(221)2(212ln 13322nn nn x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-. 5. 求函数xx f 1)(=按(x +1)的幂展开的带有拉格朗日型余项的n 阶泰勒公式.解 因为f (x )=x -1, f '(x )=(-1)x -2, f ''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , 1)1()(!)1()( )2)(1()(++--=-⋅⋅⋅--=n n n n xn xn x f ; !)1(!)1()1(1)(k k fk k k -=--=-+(k =1, 2, ⋅ ⋅ ⋅, n ),所以 )1(!3)1()1(!2)1()1)(1()1(132⋅⋅⋅++-'''++-''++-'+-=x f x f x f f x 1)1()()1()!1()()1(!)1(++++++-+n n nn x n f x n f ξ 12132)1()]1(1[)1(])1( )1()1()1(1[++++++--+++⋅⋅⋅+++++++-=n n n nx x x x x x θ (0<θ<1).6. 求函数f (x )=tan x 的带有拉格朗日型余项的3阶麦克劳林公式. 解 因为 f '(x )=sec 2x ,f ''(x )=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x ,f '''(x )=4sec x ⋅sec x ⋅tan 2x +2sec 4x =4sec 2x ⋅tan 2x +2sec 4x ,f (4)(x )=8sec 2x ⋅tan 3x +8sec 4x ⋅tan x +8sec 4x ⋅tan x xx x 52cos )2(sin sin 8+=;f (0)=0, f '(0)=1, f ''(0)=0, f '''(0)=2,所以 4523)(c o s 3]2)()[s i n s i n (31t a n x x x x x x x θθθ+++=(0<θ<1). 7. 求函数f (x )=xe x 的带有佩亚诺型余项的n 阶麦克劳林公式. 解 因为 f '(x )=e x +xe x ,f ''(x )=e x +e x +xe x =2e x +xe x , f '''(x )=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅, f (n )(x )=ne x +xe x ;f (k )(0)=k (k =1, 2, ⋅ ⋅ ⋅, n ),所以 )(!)0( !3)0(!2)0()0()0()(32n n n x x o x n f x f x f x f f xe ++⋅⋅⋅⋅+'''+''+'+= )()!1(1 !2132n n x o x n x x x +-⋅⋅⋅+++=.8. 验证当210≤≤x 时, 按公式62132x x x e x+++≈计算e x 的近似值时, 所产生的误差小于0.01, 并求e 的近似值, 使误差小于0.01.解 因为公式62132x x x e x +++≈右端为e x 的三阶麦克劳林公式, 其余项为43!4)(x ex R ξ=,所以当210≤≤x 时,按公式62132x x x e x+++≈计算e x 的误差01.00045.0)21(!43|!4||)(|42143<≈≤=x e x R ξ.645.1)21(61)21(212113221≈⋅+⋅++≈=e e .9. 应用三阶泰勒公式求下列各数的近似值, 并估计误差: (1)330; (2)sin18︒.解 (1)设3)(x x f =, 则f (x )在x 0=27点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(-⋅-⋅+-⋅+==--x x x x f4311338)27)(8180(!41)27)(272710(!31--⋅+-⋅⋅+--x x ξ(ξ介于27与x 之间).于是33823532333)272710(!313)2792(!21327312730⋅⋅⋅+⋅⋅-⋅+⋅⋅+≈---10724.3)3531311(31063≈+-+≈, 其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|---⨯=⋅=⋅⋅⋅<⋅-⋅=ξR .(2) 已知43!4s i n !31s i nx x x x ξ+-=(ξ介于0与x 之间), 所以 sin 18︒3090.0)10(!311010sin 3≈-≈=πππ,其误差为44431003.2)10(!46sin |)10(!4sin ||)10(|-⨯=<=πππξπR . 10. 利用泰勒公式求下列极限: (1))23(lim 434323x x x x x --++∞→;(2))]1ln([cos lim222x x x e x x x -+--→;(3)2220sin )(cos 1211lim 2x e x x x x x -+-+→. 解 (1)tt t xx x x x x x t x x 430434343232131lim 12131lim)23(lim --+=--+=--++→+∞→+∞→.因为)(1313t o t t ++=+,)(211214t o t t +-=-, 所以23])(23[lim )](211[)](1[lim)23(lim 00434323=+=+--++=--++→+→+∞→t t o t t o t t o t x x x x t t x . (2)])1ln(1[)](41!21211[)](!41!211[lim)]1ln([cos lim1344244202202x x xx x xx o x x x o x x x x x e x -++⋅+--++-=-+-→-→010)1l n (1)(121lim 11340=+=-++-=-→ex x x o x xx . (3)2442442442202220))](!211())(!41!211[()](!43!211[211lim sin )(cos 1211lim 2xx o x x x o x x x o x x x x e x x x x x x +++-++-+-+-+=-+-+→→ 12123!43)(241123)(!43lim )(241123)(!43lim 2424404264440-=-=+--+=⋅+--+=→→x x o x x x o x o x x x x o x x x .。
高等数学第三章习题课答案
第三章 微分中值定理习题课一、判断题(每题3分)1.函数)(x f 在0x 点处可导,且在0x 点处取得极值,那么0)(0='x f .( √ )2.函数)(x f 在0x 点处可导,且0)(0='x f ,那么)(x f 在0x 点处取得极值.( × )3.若0x 是()f x 的极值点,则0x 是()f x 的驻点. ( × )4.函数()x f 在区间()b a ,内的极大值一定大于极小值 . ( × )5.若()0,(,)f x x a b ''>∈,则()f x '在(,)a b 内单调增加 .( √ )6.0()0f x '=且0()0f x ''<是函数()y f x =在0x 处取得极大值的充要条件. ( × )7.函数()arctan f x x x =的图形没有拐点. ( √ )8.因为函数y =0x =点不可导,所以()0,0点不是曲线y =.( × )二、选择题(每题3分)1.下列函数中,在闭区间[-1,1]上满足罗尔定理条件的是( D ). A .xe B .ln x C .x D .21x - 2.对于函数()211f x x=+,满足罗尔定理全部条件的区间是( D ). (A )[]2,0-;(B )[]0,1;(C );[]1,2-(D )[]2,2-3. 设函数()()()12sin f x x x x =--,则方程()0f x '=在 (0,)π内根的个数( D )(A) 0个 ; (B)至多1个; (C) 2个; (D)至少3个.4.已知函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的条件,使得该定理成立的ξ=( D ).(A )13 (B (C )12 (D 5.若函数)(),(x g x f 在区间),(b a 上的导函数相等,则该两函数在),(b a 上( C ). A.不相等 B .相等 C.至多相差一个常数 D.均为常数6.arcsin y x x =- 在定义域内( B ).A. 单调减函数B.单调增函数C. 有单调增区间也有单调减区间D. 没有单调性7. 函数2129223-+-=x x x y 的单调减少区间是 ( C ). (A )),(+∞-∞ (B ))1,(-∞(C ))2,1((D )),2(+∞8.设(),a b 内()0f x ''>,则曲线()y f x =在(),a b 内的曲线弧位于其上任一条切线的( A ). (A )上方;(B )下方; (C )左方; (D )右方.9.曲线32y ax bx =+的拐点为(1,3),则 ( A ). (A )3,30a b a b +=+= (B )0,30a b a b +=+= (C )2,320a b a b +=+=(D )0,340a b a b +<+=10. 设函数()y f x =在开区间(,)a b 内有()'0f x <且()"0f x <,则()y f x =在(,)a b 内( C )A.单调增加,图像是凹的B.单调减少,图像是凹的C.单调减少,图像是凸的D. 单调增加,图像是凸的11.函数2y ax c =+在区间()0,+∞内单调增加,则a 和c 应满足( C ).(A )0a <且0c =; (B )0a >且c 是任意实数; (C )0a <且0c ≠;(D )0a <且c 是任意实数.12. 函数23++=x x y 在其定义域内( B ) (A )单调减少 (B) 单调增加 (C) 图形是凹的(D) 图形是凸的13.若()()00,x f x 为连续曲线()y f x =上凹弧与凸弧的分界点,则( A ). (A )()()00,x f x 必为曲线的拐点; (B )()()00,x f x 必为曲线的驻点; (C )0x 点必为曲线的极值点;(D )0x x =必为曲线的拐点.14.函数()2ln f x x x =-的驻点是( B ).(A )1x = (B )12x =(C )(1,2) (D) 1(,1ln 2)2+15.函数2ln(1)y x x =-+的极值( D ). A .是1ln 2-- B .是0D.不存在 C.是1ln216.设()[0,1]()f x x f x ''=在上有<0,则下述正确的是( A )( A ) (1)f '<)0()1(f f -<(0)f '; ( B ) (0)f '<)0()1(f f -<(1)f '; ( C ) (1)f '<(0)f '<)0()1(f f -; ( D ) (0)f '<(1)f '<)0()1(f f -17.设()f x 具有二阶连续的导数,且20()lim3,ln(1)x f x x →=-+则(0)f 是()f x 的( A )(A )极大值; (B )极小值; (C )驻点; (D )拐点.18.设函数()y f x =在0x x =处有()0f x '=0,在1x x =处导数不存在,则( C ). A. 0x x =,1x x =一定都是极值点 B.只有0x x =可以是极值点C. 0x x =, 1x x =都可能不是极值点D. 0x x =,1x x =至少有一个是极值点三、解答题(求极限每题4分其余每题 8分) 1.求极限220000011sin sin 1cos 2(1)lim lim lim lim lim 0sin sin 22→→→→→---⎛⎫-===== ⎪⎝⎭x x x x x x x x x x x x x x x x x x (2)11lim 1ln x xx x →⎛⎫⎪⎝⎭-- =()()11ln 1ln 11limlim 11ln ln x x x x x x x x x x x→→--+-=--+11ln ln 11limlim ln 1ln 22x x x x x x x x x →→+===+-+0(3)11lim 1→⎛⎫ ⎪⎝⎭--x x x e 01lim (1)→--=-xx x e x x e 0011lim lim 12xxx x x x x x x e e e xe e e xe →→-===-+++ (4)200011ln(1)ln(1)lim()lim lim ln(1)ln(1)x x x x x x x x x x x x →→→-+-+-==++0011111limlim lim 22(1)2(1)2x x x x x x x x x →→→-+====++20sin (5)limtan →-x x xx x 2200sin 1cos lim limtan 3x x x x x x x x →→--==0sin 1lim 66x x x →==222201(6)lim(1)→---x x x e xx e 22401lim→--=x x e xx 2232002211lim lim 42x x x x xe x e x x →→--==12=2223220000tan tan sec 1tan 1(7)lim lim lim lim ln(1)333→→→→---====+x x x x x x x x x x x x x x x1ln 1(8)lim cot →+∞⎛⎫+ ⎪⎝⎭x x arc x 1lim cot →+∞=x x arc x 222211lim lim 111x x x x x x x →+∞→+∞-+===+-+sin sin cos (9)limlim cos 1→→-==-x a x a x a xa x a22200021sec 77ln tan 7tan 2sec 77tan 7(10)lim lim lim 11ln tan 2tan 7sec 22sec 22tan 2+++→→→⋅⋅⋅===⋅⋅⋅x x x x x x x x x x x x x(11)lim arctan 2→+∞⎛⎫- ⎪⎝⎭x x x π22221arctan 12lim limlim 1111→+∞→+∞→+∞--+====+-x x x x x x x xxπ2lim ln(arctan )2(12)lim arctan →+∞→+∞⎛⎫= ⎪⎝⎭x xx x x x e ππ2lim ln(arctan )→+∞x x x π222211ln arctan lnln arctan arctan 1limlimlim 111→+∞→+∞→+∞+⋅+===-x x x x x x x xxxππ2222lim 1x x x ππ→+∞=-=-+ 22lim arctan -→+∞⎛⎫∴= ⎪⎝⎭xx x e ππ .()tan 21(13)lim 2→-x x x π解:()()()11sin ln 22limlim tan ln 2cos tan 2221lim 2x x x x x x xx x x eeππππ→→--→-==1122sinlim22x xx e eπππ→---⋅==tan 0(14)1lim +→⎛⎫⎪⎝⎭xx x 0011lim tan lnlim ln++→→⋅⋅==x x x x xxee2001110ln limlim1x x x xx xe ee++→→---====2. 验证罗尔中值定理对函数32452y x x x =-+-在区间[]0,1上的正确性.解:()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,()()012f f ==-满足罗尔定理条件.(3分)令()2121010f x x x '=-+=,得()0,1x =,满足罗尔定理结论.3. 试证明对函数2y px qx r =++应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明:在区间[],a b 上,()()()f b f a f b aξ-'=- 代入:()()222pb qb r pa qa r p q b aξ++-++=+-解得:2a bξ+=. 4. 证明方程531xx -=在()1,2之间有且仅有一个实根.证明:令()531f x x x =--,()11310f =--<, ()522610f =-->所以 ()0f x =在()1,2上至少一个根,又()4'53f x x =-,当()1,2x ∈时()'0f x >,所以单增,因此在()1,2上至多有一个根.()0f x =在()1,2上有且仅有一个根.5. 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()0f a f b ==,证明:至少存在一个(,)a b ξ∈,使得()()0f f ξξ'+=. 提示:令()()x F x e f x =证明:令()()xF x e f x =,显然()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()()()x F x e f x f x ''=+ (3分)由Larange 中值定理,则至少(,)a b ξ∈,使得()()()F b F a F b aξ-'=-又()()0f a f b == ∴()()0f f ξξ'+=6. 设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=.提示:令 ()()F x xf x =.证明:构造辅助函数()()F x xf x =, ()f x 在[0,]a 上连续,在(0,)a内可导∴()F x 在[0,]a 上连续,在(0,)a 内可导,()()()F x f x xf x ''=+且(0)()0F F a ==由Rolle 定理,至少(0,)a ξ∃∈,有()0F ξ'= 即()()0f f ξξξ'+=7. 证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根证:令()()()()323,33311f x x x b f x x x x '=-+=-=+-()1,1x ∈-时,0,,f f'<故()f x 在区间[]1,1-上至多有一个实根.8. 证明:当1x >时,xe x e >⋅.证明: 令()xf x e x e =-⋅,显然()f x 在[1,]x 上满足Lagrange 中值定理的条ξ∈,使得件,由中值定理,至少存在一点(1,)x()(1)(1)()(1)()f x f x f x e e ξξ'-=-=--即()(1)0f x f >=又即x e x e >⋅9. 证明:当0x >时,112x +>证:()()111022f x x f x '=+==>()()00f x f >=,即有112x +>10. 求证:1,(0,)>+∈+∞xex x证明:令()1,,[0,)xf x e x x =--∈+∞当(0,)x ∈+∞时,()10x f x e '=->故在区间[0,)+∞上,()f x 单调递增从而当(0,)x ∈+∞时,()(0)0f x f >=即1x e x >+或者:证明:()221112!2xf e e x x x x x ξξ''=++=++>+……8分11. 当1>x 时,证明:13>-x. 答案参看课本p148 例6 12. 证明:当0x >时, ln(1).1xx x x<+<+ 答案参看课本P132 例1 13. 设0,1a b n >>>, 证明:11()()n n n n nba b a b na a b ---<-<-.证明:令()nf x x =,显然()f x 在[,]b a 上满足lagrange 定理条件,故至少存在一点(,)b a ξ∈,使得()()()()f a f b f a b ξ'-=- 即1()n n n a b n a b ξ--=-又由b a ξ<<及1(1)n n n ξ->的单增性,得11()()n n n n nba b a b na a b ---<-<-14. 设0a b >>,证明:ln a b b a ba a b--<< 证明:令()ln f x x =,在区间[],b a 上连续,在区间(,)b a 内可导,有拉格朗日中值定理,至少存在一点(),b a ξ∈,使得1ln ln ()a b a b ξ-=-,又因为1110,a b ξ<<<因此,ln a b a a ba b b--<<. 15. 证明恒等式()arcsin arccos ,112x x x π+=-≤≤.证:令()arcsin arccos f x x x =+ 则()f x 在[]1,1-上连续.在()1,1-内有:()0,f x f C '=≡≡令0,,arcsin arccos 22x C x x ππ==+=在()1,1-内成立.再根据()f x 在[]1,1-上的连续性,可知上式在[]1,1-上成立.16. 求函数2y x =的极值点和单调区间. 解:132(1)y x-'=-因此,2y x =在定义域(,)-∞+∞内有不可导点10x =和驻点21x =17. 求函数32535y x x x =-++的单调区间,拐点及凹或凸的区间. 解:23103y x x '=-+,易得函数的单调递增区间为1(,)(3,)3-∞+∞,单调减区间1(,3)3.610y x ''=-,令0y ''=,得53x =. 当53x -∞<<时,0y ''<,因此曲线在5(,]3-∞上是凸的;当53x <<+∞时,0y ''>,因此曲线在5[,)3+∞上是凹的,故520(,)327是拐点18. 试确定,,a b c 的值,使曲线32y x ax bx c =-++在(1,1-)为一拐点,在0x =处有极值,并求曲线的凹凸区间.解:232y x ax b '=-+ 62y x a ''=-(1,1)-为拐点,则062a =- 3a ∴=由0y '=,则2360x x b -+= , 代入0x =,则0b =.11,1a b c c -++=-=曲线为3231y x x =-+, 66y x ''=-. 凸区间为(,1)-∞-, 凹区间为(1,)+∞.19. 求函数()7ln 124-=x x y 的单调区间,拐点及凹或凸的区间.解: 34314(12ln 7)124(12ln 4)y x x x x x x'=-+⋅⋅=-, 易得函数的单调递增区间为13(,)e +∞,单调减区间13(0,)e . ()232112(12ln 4)412144ln 0y x x x x x x x''=-+⋅⋅=>, 令0y ''=,得1x =.当01x <<时,0y ''<,因此曲线在(0,1]上是凸的;当1x <<+∞时,0y ''>,因此曲线在[1,)+∞上是凹的,故(1,7)-是拐点 20. 求函数arctan xy e=的单调区间,拐点及凹或凸的区间.解:arctan 211x y e x '=⋅+>0,因此单调增区间是R , arctan arctan arctan 2222221212(1)(1)(1)xx x x x y e e e x x x ⎡⎤⎡⎤-''=+-=⎢⎥⎢⎥+++⎣⎦⎣⎦, 令0y ''=,得12x =. 当12x -∞<<时,0y ''>,因此曲线在1(,]2-∞上是凹的; 当12x <<+∞时,0y ''<,因此曲线在1[,)2+∞上是凸的,故1arctan 21(,)2e是拐点 21. 求函数1234+-=x x y 的拐点和凹凸区间. 解:3246y x x '=- 2121212(1)y x x x x ''=-=- 令0y ''=,得10x =,21x = 列表 (4分)22. 求函数32391=+-+y x x x 的极值.解:2'3693(1)(3)y x x x x =+-=-+ ''66y x =+ 令0'=y 得驻点:121,3x x ==-.当21x =时,''0,y >取得极小值,其值为4-. 当33x =-时,''0y <,取得极大值,其值为28.23. 求函数23(1)1=-+y x 的极值.解: 226(1)y x x '=-22226(1)24(1)y x x x ''=-+-令0y '=,得1231,0,1x x x =-==(0)60y ''=>,故20x =是极小值点.(1)0y ''±=, 无法用第二充分条件进行判定.在11x =-的附近的左右两侧取值均有0y '<,故11x =-不是极值点. 在21x =的附近的左右两侧取值均有0y '>,故21x =不是极值点. 极小值(0)0y =24. 求函数32(1)(23)=-+y x x 的极值点和单调区间.解:22323(1)(23)4(1)(23)(1)(23)(105)0y x x x x x x x '=-++-+=-++=所以,驻点11x =,232x =-,312x =- 列表∴()f x 在32x =-处取得极大值3()02f -= ()f x 在12x =-处取得极小值127()22f -=- 单调递增区间31(,],[,)22-∞--+∞,单调递增区间31[,]22-- 25. 试问a 为何值时,函数1()sin sin 23=+f x a x x 在3π处取得极值?它是极大值还是极小值?并求此极值.解:2()cos cos23f x a x x '=+()f x在3π处取得极值22121()coscos 03333232f a a πππ'∴=+=⋅-⋅= 23a ∴=即 ()2()cos cos 23f x x x '=+ ()2()sin 2sin 23f x x x ''∴=--222()sin 2sin 2033333f πππ⎛⎫''∴=--=-⋅+< ⎪⎝⎭⎝⎭所以它是极大值,极大值为212()sin sin 33333f πππ∴=+=26. 求函数3223y x x =-在区间[]1,4上的最大值与最小值.解:212660,0,1y x x x x '=-===(舍去x =)()()11,480,f f =-=,故最大值为80,最小值为-1.27.、某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20m 长的墙壁.问应围成怎样的长方形才能使这间小屋的面积最大?解:设小屋长 x m ,宽 y m ,220,102xx y y +==-.2101022x x S x x ⎛⎫=-=- ⎪⎝⎭,100,10S x x '=-==故小屋长10米,宽5米时,面积最大.28.某厂每批生产产品x 单位的总费用为()5200C x x =+(元), 得到的收入是()2100.01R x x x =-(元).问每批生产多少个单位产品时总利润()L x 最大?解:()()()22100.0152000.015200L x x x x x x =--+=-+-()0.0250,250L x x x '=-+==(单位)()0.020L x ''=-<,故250x =单位时总利润最大.-----精心整理,希望对您有所帮助!。
高等数学 同济二版上册课后答案
第一章1-4节 1、计算下列极限7)2382lim 222+--+→x x x x x分析:本题分子分母同时趋近于0,根据表达式的形式,考虑利用约分将趋于0的项约去。
解:原式6)1(lim )4(lim 14lim )2)(1()2)(4(lim2222=-+=-+=---+=→→→→x x x x x x x x x x x x 9))sin(sin sin lima x ax a x --→分析:本题分子分母同时趋于0,但不能约分,利用复合函数求极限,通过变量替换进行求解 解一:令0,,,→→+=-=u a x u a x a x u 时则。
a uua a u u u a a u u a a uau a u a u a u a u u u u u cos )2cos42sinsin (cos lim ]2cos2sin 2)2sin 21(sin [cos lim ]sin )1(cos sin [cos lim sin sin sin cos cos sin limsin sin )sin(lim020000=-=-+=-+=-+=-+=→→→→→原式 解二:利用三角函数的和差化积,以及等价替换a ax ax a x a x a x a x a x ax cos 22cos 2lim )sin(2sin 2cos2lim=--⋅+⋅=--+=→→原式11)6)1(lim )4(lim 14lim 4lim 020202230=++-=++-=++-→→→→t t t t t t t t t t t t t t t (应该为4) 13)31)312(lim 2lim )312)(4()4(2lim )312)(4(9)12(lim 4312lim44444=++=++--=++--+=--+→→→→→x x x x x x x x x x x x x x本题利用了分子有理化 2、计算下列极限 1)nnn arctan lim∞→解:因为2arctan 01π<→∞→n ,n,n 而时,无穷小与有界函数之积仍然为无穷小,所以原式n nn arctan 1lim∞→==0 2)0sin 1lim 1sin lim=+=+∞→∞→n n nn n n n n 3)1arctan 11arctan 11lim arctan arctan lim =+-=+-∞→∞→xxxx x x x x x x 第一章1-5节 1、计算下列极限 2)βαβαββααβα==→→x x x x x x x x sin sin lim sin sin lim00解法2:原式βαβα==→x x x 0lim5)212cos122sin 21lim 2cos 2sin 22sin 2lim sin cos 1lim 0200=⋅⋅=⋅=-→→→x x x x x x xx x x x x x 解法2:原式2121lim 20=⋅=→x x x x7)πππππ-=-=-=-=-→→→→uu u u u u x x u u u x 0001lim tan lim )1(tan lim 1tan lim分析:本题利用了变量替换和等价替换 9)2)2(21lim )12(coslim 222-=⎥⎦⎤⎢⎣⎡-=-∞→∞→x x x x x x分析:∞→x 时,02→x 。
国防科大高等数学教材答案
国防科大高等数学教材答案为了方便学生对国防科大高等数学教材的学习,以下给出一些答案供参考。
这些答案将涵盖教材中的一些练习题和案例,帮助学生巩固和加深对相关数学概念和技巧的理解。
1. 第一章:函数与极限
1.1 作业题答案
1.2 难题解答
2. 第二章:导数与微分
2.1 作业题答案
2.2 难题解答
3. 第三章:不定积分
3.1 作业题答案
3.2 难题解答
4. 第四章:定积分及其应用
4.1 作业题答案
4.2 难题解答
5. 第五章:微分方程
5.1 作业题答案
5.2 难题解答
6. 第六章:多元函数微分学
6.1 作业题答案
6.2 难题解答
7. 第七章:多重积分
7.1 作业题答案
7.2 难题解答
8. 第八章:曲线积分与曲面积分 8.1 作业题答案
8.2 难题解答
9. 第九章:级数与幂级数
9.1 作业题答案
9.2 难题解答
10. 第十章:常微分方程
10.1 作业题答案
10.2 难题解答
请注意,这里提供的仅仅是一些答案供参考,在学习时应当注重理解思路和方法,而非仅仅背诵答案。
数学的学习过程需要通过自我思考和思维训练,才能真正掌握其中的知识和技巧。
希望以上答案能对学生们的学习有所帮助。
祝愿大家在国防科大高等数学课程中取得好成绩!。
高等数学3教材答案
高等数学3教材答案1. 选择题1.1 A1.2 C1.3 B1.4 D1.5 A2. 填空题2.1 解:根据题意,设直线的方程为y = kx + b,由已知条件得:当x = 1时,y = 2,代入方程得2 = k + b,即k + b = 2;当x = 2时,y = 5,代入方程得5 = 2k + b,即2k + b = 5。
解方程组可得k = 3,b = -1,因此直线的方程为y = 3x - 1。
2.2 解:根据题意,设函数的表达式为f(x) = ax^3 + bx^2 + cx + d,由已知条件得:当x = 1时,f(1) = 2,代入表达式得a + b + c + d = 2;当x = 2时,f(2) = 3,代入表达式得8a + 4b + 2c + d = 3;当x = 3时,f(3) = 4,代入表达式得27a + 9b + 3c + d = 4;当x = 4时,f(4) = 5,代入表达式得64a + 16b + 4c + d = 5。
解方程组可得a = 0,b = 1,c = 1,d = 0,因此函数的表达式为f(x) = x^2 + x。
3. 解答题3.1 题目:求函数f(x) = x^3 - 3x + 2的导数。
解:对于函数f(x) = x^3 - 3x + 2,根据导数的定义,导数f'(x) =lim(h->0)[f(x + h) - f(x)] / h。
将函数f(x) = x^3 - 3x + 2带入导数的定义中,得到:f'(x) = lim(h->0)[(x + h)^3 - 3(x + h) + 2 - (x^3 - 3x + 2)] / h= lim(h->0)[(x^3 + 3x^2h + 3xh^2 + h^3 - 3x - 3h + 2 - x^3 + 3x - 2)] / h= lim(h->0)[3x^2h + 3xh^2 + h^3 - 3h] / h= lim(h->0)3x^2 + 3xh + h^2 - 3= 3x^2 - 3.因此,函数f(x) = x^3 - 3x + 2的导数为f'(x) = 3x^2 - 3。
高等数学课后习题答案3-1
习题3-11. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性. 解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cot ξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈. 因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0. 2. 验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性. 解 因为y =4x 3-5x 2+x -2在区间[0, 1]上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点ξ∈(0, 1), 使001)0()1()(=--='y y y ξ. 由y '(x )=12x 2-10x +1=0得)1 ,0(12135∈±=x . 因此确有)1 ,0(12135∈±=ξ, 使01)0()1()(--='y y y ξ. 3. 对函数f (x )=sin x 及F (x )=x +cos x 在区间]2,0[π上验证柯西中值定理的正确性.解 因为f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上连续, 在)2 ,0(π可导, 且F '(x )=1-sin x 在)2,0(π内不为0, 所以由柯西中值定理知至少存在一点)2 ,0(πξ∈, 使得)()()0()2()0()2(ξξππF f F F f f ''=--. 令)0()2()0()2()()(F F f f x F x f --=''ππ, 即22sin 1cos -=-πx x .化简得14)2(8sin 2-+-=πx . 易证114)2(802<-+-<π, 所以14)2(8sin 2-+-=πx 在)2,0(π内有解, 即确实存在)2 ,0(πξ∈, 使得 )()()0()2()0()2(ξξππF f F F f f ''=--. 4. 试证明对函数y =px 2+qx +r 应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明 因为函数y =px 2+qx +r 在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 由拉格朗日中值定理, 至少存在一点ξ∈(a , b ), 使得y (b )-y (a )=y '(ξ)(b -a ), 即 (pb 2+qb +r )-(pa 2+qa +r )=(2p ξ+q )(b -a ).化间上式得p (b -a )(b +a )=2p ξ (b -a ), 故2b a +=ξ. 5. 不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f '(x )=0有几个实根, 并指出它们所在的区间.解 由于f (x )在[1, 2]上连续, 在(1, 2)内可导, 且f (1)=f (2)=0, 所以由罗尔定理可知, 存在ξ1∈(1, 2), 使f '(ξ1)=0. 同理存在ξ2∈(2, 3), 使f '(ξ2)=0; 存在ξ3∈(3,4), 使f '(ξ3)=0. 显然ξ1、ξ2、ξ 3都是方程f '(x )=0的根. 注意到方程f '(x )=0是三次方程, 它至多能有三个实根, 现已发现它的三个实根, 故它们也就是方程f '(x )=0的全部根.6. 证明恒等式: 2arccos arcsin π=+x x (-1≤x ≤1). 证明 设f (x )= arcsin x +arccos x . 因为01111)(22≡---='xx x f , 所以f (x )≡C , 其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f , 即2arccos arcsin π=+x x . 7. 若方程a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x =0有一个正根x 0, 证明方程a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0必有一个小于x 0的正根.证明 设F (x )=a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0, x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点ξ∈(0, x 0), 使F '(ξ)=0, 即方程a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0必有一个小于x 0的正根.8. 若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明:在(x 1, x 3)内至少有一点ξ, 使得f ''(ξ)=0.证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点ξ1∈(x 1, x 2), 使f '(ξ1)=0. 同理存在一点ξ2∈(x 2, x 3), 使f '(ξ2)=0. 又由于f '(x )在[ξ1, ξ2]上连续, 在(ξ1, ξ2)内可导, 且f '(ξ1)=f '(ξ2)=0, 根据罗尔定理, 至少存在一点ξ ∈(ξ1, ξ2)⊂(x 1, x 3), 使f ''(ξ )=0.9. 设a >b >0, n >1, 证明:nb n -1(a -b )<a n -b n <na n -1(a -b ) .证明 设f (x )=x n , 则f (x )在[b , a ]上连续, 在(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即a n -b n =n ξ n -1(a -b ).因为 nb n -1(a -b )<n ξ n -1(a -b )< na n -1(a -b ),所以 nb n -1(a -b )<a n -b n < na n -1(a -b ) .10. 设a >b >0, 证明:bb a b a a b a -<<-ln . 证明 设f (x )=ln x , 则f (x )在区间[b , a ]上连续, 在区间(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即)(1ln ln b a b a -=-ξ. 因为b <ξ<a , 所以)(1ln ln )(1b a b b a b a a -<-<-, 即bb a b a a b a -<<-ln . 11. 证明下列不等式:(1)|arctan a -arctan b |≤|a -b |;(2)当x >1时, e x >e ⋅x .证明 (1)设f (x )=arctan x , 则f (x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使f (b )-f (a )=f '(ξ)(b -a ), 即)(11arctan arctan 2a b a b -+=-ξ, 所以||||11|arctan arctan |2a b a b a b -≤-+=-ξ, 即|arctan a -arctan b |≤|a -b |. (2)设f (x )=e x , 则f (x )在区间[1, x ]上连续, 在区间(1, x )内可导, 由拉格朗日中值定理, 存在ξ∈(1, x ), 使f (x )-f (1)=f '(ξ)(x -1), 即 e x -e =e ξ (x -1).因为ξ >1, 所以e x -e =e ξ (x -1)>e (x -1), 即e x >e ⋅x .12. 证明方程x 5+x -1=0只有一个正根.证明 设f (x )=x 5+x -1, 则f (x )是[0, +∞)内的连续函数.因为f (0)=-1, f (1)=1, f (0)f (1)<0, 所以函数在(0, 1)内至少有一个零点, 即x 5+x -1=0至少有一个正根.假如方程至少有两个正根, 则由罗尔定理, f '(x )存在零点, 但f '(x )=5x 4+1≠0, 矛盾. 这说明方程只能有一个正根.13. 设f (x )、g (x )在[a , b ]上连续, 在(a , b )内可导, 证明在(a , b )内有一点ξ, 使)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.解 设)()()()()(x g a g x f a f x =ϕ, 则ϕ(x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使ϕ(b )-ϕ(a )=ϕ'(ξ)(b -a ),即 ⎥⎦⎤⎢⎣⎡''+''-=-)()()()()(])([)(])([)()()()()()()()()(ξξξξg a g f a f g a g f a f a b a g a g a f a f b g a g b f a f . 因此 )()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.14. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令xe xf x )()(=ϕ, 则在(-∞, +∞)内有 0)()()()()(2222≡-=-'='x x x x ee xf e x f e e x f e x f x ϕ, 所以在(-∞, +∞)内ϕ(x )为常数. 因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x .15. 设函数y =f (x )在x =0的某邻域内具有n 阶导数, 且f (0)=f '(0)= ⋅ ⋅ ⋅ =f (n -1)(0)=0, 试用柯西中值定理证明:!)()()(n x f xx f n n θ= (0<θ<1). 证明 根据柯西中值定理111)(0)0()()(-'=--=n n n f x f x f x x f ξξ(ξ1介于0与x 之间), 2221111111)1()(0)0()()(-----''=⋅-'-'='n n n n n n f n n f f n f ξξξξξξ(ξ2介于0与ξ1之间),3332222222)2)(1()(0)1()1()0()()1()(------'''=⋅---''-''=-''n n n n n n n f n n n n f f n n f ξξξξξξ(ξ3介于0与ξ2之间),依次下去可得!)(02 )1(2 )1()0()(2 )1()()(1)1(1)1(11)1(n f n n n n f f n n f n n n n n n n n n ξξξξξ=⋅⋅⋅⋅--⋅⋅⋅⋅--=⋅⋅⋅⋅--------(ξn 介于0与ξn -1之间), 所以!)()()(n f xx f n n n ξ=. 由于ξn 可以表示为ξn =θ x (0<θ<1), 所以!)()()(n x f x x f n n θ= (0<θ<1).。
高等数学(黄立宏)(第三版)习题三课后答案
习题三1. 验证:函数()ln sin f x x =在π5π[,]66上满足罗尔定理的条件,并求出相应的x ,使()0f x ¢=. 证:()l n s i f x x =在区间π5π[,]66上连续,在π5π(,)66上可导,且π5π()()ln 266f f ==-,即在π5π[,]66上满足罗尔定理的条件,由罗尔定理,至少存在一点π5π(,),66x Î使()0f x ¢=.事实上,由c o s ()c o t 0s i n x f x x x¢===得ππ5π(,),266x =Î故取π2x =,可使()0f x ¢=. 2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的x ?⑴ 2, 01,() [0,1] 0, 1, x x f x x ì£<=í=î;⑵ ()1, [0,2] f x x =-; ⑶ sin , 0π,() [0,π] . 1, 0, x x f x x <£ì=í=î 解:⑴()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x ¢=<<,即在(0,1)内不存在x ,使()0f x¢=罗尔定理的结论不成立.⑵ 1, 12,()1, 0 1.x x f x x x -£<ì=í-<<î(1)f ¢不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件. 而1, 12,()1, 0 1.x f x x <<ì¢=í-<<î即在(0,2)内不存在x ,使()0f x ¢=.罗尔定理的结论不成立. ⑶ 因(0)1(π)=0f f =¹,且()f x 在区间[0,[0,ππ] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x ¢=<<,取π2x =,使()0f x ¢=.有满足罗尔定理结论的π2x =. 故罗尔定理的三个条件是使结论成立的充分而非必要条件. 3. 函数()(2)(1)(1)(2)f x x x x x x =--++的导函数有几个零点?各位于哪个区间内?内?解:因为(2)(1)(0)(1)(2)0f f f f f ===-=-=,则分别在[-2,-1],[-1,0],[0,1],[1,2]上应用罗尔定理,有1234(2,1),(1,0),(0,1),1(1,2),,2),x x x x Î--Î-ÎÎ使得12()()()f f f f x x x x ¢¢¢¢====.因此,()x 至少有4个零点,且分别位于(2,1),(1,0),(0,1),(1,2)---内. 4. 验证:拉格朗日定理对函数3()2f x x x =+在区间[0,1]上的正确性. 验证:因为()f x 在[0,1]上连续,在(0,1)内可导,满足拉格朗日定理的条件. 由(1)(0)()(10)f f f x ¢-=-得2322x =+解得13x =,即存在13x =使得拉格朗日定理的结论成立. 5. 如果()f x ¢在[a ,b ]上连续,在(a ,b )内可导且()0,()0,f a f x ¢¢¢³>证明:()()f b f a >. 证明:因为()f x ¢在[a , b]上连续,在(a ,b )内可导,故在[a ,x ]上应用拉格朗日定理,则(,),()a x a x b x $Î<<,使得()()()0f x f a f x a x ¢¢-¢¢=>-, 于是()()0f x f a ¢¢>³,故有()()f b f a >6. 设()()()f a f c f b ==,且a c b <<,()f x ¢¢在[a ,b ]内存在,证明:在(a ,b )内至少有一点x ,使()0f x ¢¢=. 证明:()f x ¢¢在[a ,b ]内存在,故()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()()f a f c f b ==,故由罗尔定理知,1(,)a c x $Î,使得1()0f x ¢=,2(,)c b x $Î,使得2()0f x ¢=,又()f x ¢在12[,]x x 上连续,在12(,)x x 内可导,由罗尔定理知,12(,)x x x $Î,使()0f x ¢¢=,即在(a ,b )内至少有一点x ,使()0f x ¢¢=. 7. 已知函数()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()0f a f b ==,试证:在(a ,b )内至少有一点x ,使得,使得()()0, (,)f f a b x x x ¢+=Î. 证明:令()()e ,xF x f x =×()F x 在[a ,b ]上连续,在(a ,b )内可导,且()()0F a F b ==,由罗尔定理知,(,)a b x $Î,使得()0F x ¢=,即()e ()e f f x x x x ¢+=,即()()0, (,).f f a b x x x ¢+=Î 8. 证明恒等式:证明恒等式:222arctan arcsinπ (1).1xx x x+=³+证明:令22()2arctan arcsin 1x f x x x =++, 22222222212(1)22()1(1)21()122 011x x x f x x x x x x x +-×¢=+×++-+=-=++ 故()f x C º,又因(1)πf =,所以()πf x =,即222arctan arcsinπ.1x x x +=+9. 对函数()sin f x x =及()cos g x x x =+在[0,]2p 上验证柯西定理的正确性. 验证:()f x ,()g x 在[0,]2p 上连续,在(0,)2p 内可导,且()1sin 0g x x ¢=-¹,满足柯西定理的条件. 由 π()(0)()2π()()(0)2f f f g g g x x-¢=¢-,得2c o s πc o t ()π21s i n 42x x x ==---, 故ππ2π2arctan (0,)222x -=-Î满足柯西定理的结论. 10. 设()f x 在[,]a b 上有(1)n -阶连续导数,在(,)a b 内有n 阶导数,且(1)()()()()0.n f b f a f a f a -¢=====试证:在(,)a b 内至少存在一点x ,使()()0n fx =. 证明:首先,对()f x 在[,]a b 上应用罗尔定理,有1(,)a a b Î,即1a a b <<,使得1()0f a ¢=;其次,对()f x ¢在[,]a b 上应用罗尔定理,有21(,)a a b Î,即12a a a b <<<, 使得2()0; ,f a ¢¢=一般地,设在(,)a b 内已找到1n -个点121,,,,n a a a -其中121,n a a a a b-<<<<<使得(1)1()0n n f a --=,则对(1)()0nfx -=在1[,]n a b -上应用罗尔定理有1(,)(,),n a b a b x -ÎÌ使得()()0nf x =. 11. 利用洛必达法则求下列极限:利用洛必达法则求下列极限:⑴ πsin 3lim tan 5x x x ®; ⑵ 3π2lnsin lim (2)x xx p ®-; ⑶ 0e 1lim (e 1)x x x x x ®---; ⑷⑷ sin sin lim x a x a x a ®--; ⑸ lim m m n n x a x a x a ®--; ⑹ 1ln(1)lim cot x x arc x®+¥+; ⑺ 0ln lim cot x xx+®; ⑻⑻ 0lim sin ln x x x +®; ⑼ 0e 1lim()e 1x x x x ®--; ⑽ 01lim (ln )x x x +®;⑾ 2lim (arctan )πxx x ®+¥×; ⑿ 10lim(1sin )xx x ®+; ⒀ 0lim[ln ln(1)]x x x +®×+; ⒁ 332lim (1)x x x x x ®+¥+++-; ⒂ sin 0e e limsin x x x x x®--; ⒃ 21sin lim()x x x x®; ⒄ 1101lim[(1)]ex x x x ®+. 解:⑴解:⑴ 原式原式==2π3cos33lim5sec 55x x x ®=-. ⑵ 原式原式==2ππ221cot 1csc 1limlim 4π-2428x x xx x ®®--=-=--. ⑶ 原式原式==000e 1e 11limlim lim e 1e 2e e 22x x x x x x x x x x x x ®®®-===-+++. ⑷ 原式原式==cos lim cos 1x a x a ®=. ⑸ 原式原式==11lim m m n n x a mx m a nx n ---®=. ⑹ 原式原式==22221()11lim lim 111x x x x x x x x x ®+¥®+¥×-++==+-+. ⑺ 原式原式==22001sin lim lim 0csc x x x x xx ++®®=-=-. ⑻ 原式原式==001ln limlim 0csc csc cot x x xx x x x++®®==-×. ⑼ 原式22200e e e e lim =lim (e 1)x x x xx x x x x x x®®----=-202e e 1=lim 2x x x x ®-- 204e e3=l i m 22x xx ®-=. ⑽ 原式原式==0lim(1ln )xx x +®- 令(1ln )xy x =-00020011()ln(1ln )1ln lim ln lim lim 111 lim lim 011ln x x x x x x x x y x xx x x+++++®®®®®×---==-===-- ∴原式∴原式==0lim e 1x y +®==. ⑾ 令2(arctan )πxy x =×,则,则2222211l n l n a r c t a n πa rc t a n 1l i m l n l i m l i m 1112 limarctan 1πx x x x x x x y xxx x x ®+¥®+¥®+¥®+¥+×+==-=-×=-+ ∴原式∴原式==2πe-. ⑿ 令1(1sin )xy x =+,则,则000cos ln(1sin )1sinlimln lim lim 11x x x x x x y x ®®®++=== ∴原式∴原式==e =e ¢. ⒀ 原式00ln lim(ln )lim 1x x x x x x++®®=×=0021=lim=lim()01x x x x x ++®®-=-⒁ 原式32311111lim1x x x x x ®+¥+++-=2234232311111=lim(1)(23)=33x x x x x x xx ----®+¥+++×++× ⒂ 原式sin sin 0e (e 1)lim sin x x x x x x -®-=-sin 00e (sin )=lim =e =1sin x x x x x x®×--⒃ 令12sin()x x y x=,则,则200023002220011cos ln sin ln sin limln lim lim 2cos sin cos sin lim lim 2sin 2cos sin cos 1 lim lim .666x x x x x x x x x x x x y x xx x x x x xx x x x x x x x x x ®®®®®®®--==--==---===- ∴原式∴原式==16e -. ⒄ 令111[(1)]ex xy x =+,则11ln [ln(1)1]xy x x=+-2000011ln(1)1limln lim lim 2111 lim .212x x x x x x x y x x x ®®®®-+-+===-=-+ 12. 求下列极限问题中,能使用洛必达法则的有( ). ⑴ 201sinlimsin x x x x ®; ⑵ lim (1)x x k x®+¥+; ⑶ sin lim sin x x x x x ®¥-+; ⑷ e e lim .e ex xx x x --®+¥-+ 解:⑴解:⑴ ∵200111sin 2sin cos limlim sin cos x x x x x x x x x®®-=不存在,(因1sin x ,1cos x 为有界函数)函数)又2001sin 1limlim sin 0sin x x x x x x x®®==, 故不能使用洛必达法则 ⑶ ∵sin 1cos lim lim sin 1cos x x x x x x x x®¥®¥--=++不存在, 而sin 1sinlim lim 1.sin sin 1x x x x x x x x x x®¥®¥--==++故不能使用洛必达法则故不能使用洛必达法则..⑷ ∵e e e e e e lim lim lim e e e e e ex x x x x xx x x x x x x x x ------®+¥®+¥®+¥-+-==+-+利用洛必达法则无法求得其极限利用洛必达法则无法求得其极限..而22e e 1e lim lim 1e e 1ex x xx x x x x ----®+¥®+¥--==++. 故答案选(2). 13. 设21lim 51x x mx n x ®++=-,求常数m , n 的值.解:要使21lim 51x x mx n x ®++=-成立,则21lim()0x x mx n ®++=,即10m n ++=又2112limlim2511x x x mx nx m m x ®®+++==+=-得3,4m n ==- 14. 设()f x 二阶可导,求2()2()()limh f x h f x f x h h®+-+-. 解:解:2000()2()()()()lim lim21()()()() lim []21 [li 2h h h f x h f x f x h f x h f x h h h f x h f x f x h f x h h®®®¢¢+-+-+--=¢¢¢¢+---=+-=00()()()()m lim ]1 [()()]2 ().h h f x h f x f x h f x h h f x f x f x ®®¢¢¢¢+---+-¢¢¢¢=+¢¢= 15. 确定下列函数的单调区间:确定下列函数的单调区间:(1) 3226187y x x x =---;解:所给函数在定义域(,)-¥+¥内连续、可导,且内连续、可导,且2612186(1)(3)y x x x x ¢=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-¥--+¥内,y ¢分别取+,–,+号,故知函数在(,1],[3,)-¥-+¥内单调增加,在[1,3]-内单调减少. (2) 82 (0)y x x x =+>; 解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x¢=-,则函数有驻点2x =,在部分区间(0,2]内,0y ¢<;在[2,)+¥内y ¢>0,故知函数在[2,)+¥内单调增加,而在(0,2]内单调减少. (3) 2ln(1)y x x =++; 解: 函数定义域为(,)-¥+¥,2101y x¢=>+,故函数在(,)-¥+¥上单调增加. (4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-¥+¥,22(1)(21)y x x ¢=+-,则函数有驻点: 11,2x x =-=,在1(,]2-¥内,内, 0y ¢<,函数单调减少;在1[,)2+¥内,内, 0y ¢>,函数单调增加. (5) e (0,0)n xy x n x -=>³;解: 函数定义域为[0,)+¥,11e e e ()n xn xx n y nx x x n x -----¢=-=-函数的驻点为0,x x n ==,在[0,]n 上0y ¢>,函数单调增加;在[,]n +¥上0y ¢<,函数单调减少. (6) sin 2y x x =+; 解: 函数定义域为(,)-¥+¥, πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ì+Î+Îï=íï-Î-ÎïîZ Z 1) 当π[π,π]2x n n Î+时,时, 12cos 2y x ¢=+,则,则1π0cos 2[π,π]23y x x n n ¢³Û³-ÛÎ+;πππ0cos 2[π,π]232y x x n n ¢£Û£-ÛÎ++. 2) 当π[π,π]2x n n Î-时,时, 12cos 2y x ¢=-,则,则1ππ0cos 2[π,π]226y x x n n ¢³Û£ÛÎ--1π0cos 2[π,π]26y x x n n ¢£Û³ÛÎ-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +Î, 函数单调减少区间为ππππ[,] ()2322k k k z ++Î. (7) 54(2)(21)y x x =-+. 解: 函数定义域为(,)-¥+¥. 4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x ¢=-++-+×=+--函数驻点为123111,,2218x x x =-==, 在1(,]2+¥-内,内, 0y ¢>,函数单调增加,函数单调增加,在111[,]218-上,上, 0y ¢<,函数单调减少,函数单调减少,在11[,2]18上,上, 0y ¢>,函数单调增加,函数单调增加, 在[2,)+¥内,内, 0y ¢>,函数单调增加. 故函数的单调区间为: 1(,]2-¥-,111[,]218-,11[,)18+¥. 16. 证明下列不等式: (1) 当π02x <<时,时, sin tan 2;x x x +>证明: 令()sin tan 2,f x x x x =--则22(1cos )(cos cos 1)()cos x x x f x x -++¢=, 当π02x <<时,时, ()0,()f x f x ¢>为严格单调增加的函数,故()(0)0f x f >=, 即sin 2tan 2.x x x ->(2) 当01x <<时,时, 2e sin 1.2x x x -+<+ 证明: 令2()=e sin 12xx f x x -+--,则()=e cos xf x x x -¢-+-, ()=e sin 1e (sin 1)0x xf x x x --¢¢--=-+<,则()f x ¢为严格单调减少的函数,故()(0)0f x f ¢¢<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2x x x -+<+17. ⑴ 证明:不等式ln(1) (0)1x x x x x<+<>+证明:令()ln(1)f x x =+在[0,x]上应用拉格朗日定理,则(0,),x x $Î使得使得 ()(0)()(f x f f x x ¢-=- 即ln(1)1x x x +=+,因为0x x <<,则11x x x x x<<++即ln(1) (0)1x x x x x <+<>+ ⑵ 设0, 1.a b n >>>证明:证明:11()().n nnn nb a b a b naa b ---<-<-证明:令()nf x x =,在[b ,a]上应用拉格朗日定理,则(,).b a x $Î使得使得1(), (,)nnna b n a b b a x x --=-Î 因为b a x <<,则111()()()n n n nb a b n a b na a b x----<-<-, 即11()().n nnn nb a b a b na a b ---<-<-⑶ 设0a b >>证明:证明:l n .a b a a ba b b--<<证明:令()ln f x x =在[b ,a]上应用拉格朗日定理,则(,).b a x $Î使得使得 1l n l n ()a b a b x-=- 因为b a x <<,所以1111, ()a b a ba b a b a b x x--<<<-<, 即ln a b a a b a b b --<<. ⑷ 设0x >证明:证明:111.2x x +>+ 证明:令()1f x x =+,[0,]x x Î,应用拉格朗日定理,有应用拉格朗日定理,有()(0)()(0), (0,(0,)f x f f x x x x ¢-=-Î ()()(0)f x f x f x ¢=×+11221x x x=+<++即111.2x x +>+18. 试证:方程sin x x =只有一个实根. 证明:设()sin f x x x =-,则()c o s 10,f x x =-£()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根. 19. 求下列函数的极值: (1) 223y x x =-+;解: 22y x ¢=-,令0y ¢=,得驻点1x =. 又因20y ¢¢=>,故1x =为极小值点,且极小值为(1)2y =. (2) 3223y x x =-;解: 266y x x ¢=-,令0y ¢=,得驻点120,1x x ==, 126y x ¢¢=-,010,0x x y y ==¢¢¢¢<>, 故极大值为(0)0y =,极小值为(1)1y =-. (3) 3226187y x x x =--+;解: 2612186(3)(1)y x x x x ¢=--=-+, 令0y ¢=,得驻点121,3x x =-=. 1212y x ¢¢=-,130,0x x y y =-=¢¢¢¢<>, 故极大值为(1)17y -=,极小值为(3)47y =-. (4) ln(1)y x x =-+;解: 1101yx ¢=-=+,令0y ¢=,得驻点0x =. 21,0(1)x y y x =¢¢¢¢=>+,故(0)0y =为极大值. (5) 422y x x =-+;解: 32444(1)y x x x x ¢=-+=-, 令0y ¢=,得驻点1231,0,1x x x =-==. 210124, 0,0,x x y x y y =±=¢¢¢¢¢¢=-+<>故(1)1y ±=为极大值,(0)0y =为极小值. (6) 1y x x =+-;解: 1121y x¢=--,令0y ¢=,得驻点13,4x =且在定义域(,1]-¥内有一不可导点21x =,当34x >时,时, 0y ¢<;当34x <时,时, 0y ¢>,故134x =为极大值点,且极大值为35()44y =. 因为函数定义域为1x £,故1x =不是极值点. (7) 21345xy x +=+; 解: 23125(45)x y x -¢=+,令0y ¢=,得驻点125x =. 当125x >时,时, 0y ¢<;当125x <,0y ¢>,故极大值为121()205510y =. (8) 223441x x y x x ++=++; 解: 2131x y x x +=+++,22(2)(1)x x y x x -+¢=++, 令0y ¢=,得驻点122,0x x =-=. 2223(22)(1)2(21)(2)(1)x x x x x x y x x --+++++¢¢=++200,0x x y y =-=¢¢¢¢><, 故极大值为(0)4y =,极小值为8(2)3y -=. (9) e cos xy x =; 解: e (cos sin )x y x x ¢=-, 令0y ¢=,得驻点ππ (0,1,2,)4k x k k =+=±±. 2e sin xy x ¢¢=-,ππ2π(21)1)ππ440,0x k x k y y =+=++¢¢¢¢<>, 故2π2π 4k x k =+为极大值点,其对应的极大值为π2π422()e 2k ky x +=; 21π(21)1)ππ 4k xk +=++为极小值点,对应的极小值为π(21)1)ππ4212()e2k k y x +++=-. (10) 1xy x =;解: 11211ln(ln )xxxy x x x x x-¢¢==, 令0y ¢=,得驻点e x =. 当e x >时,时, 0y ¢<,当e x <时,时, 0y ¢>, 故极大值为1e(e)e y =. (11) 2e e xx y -=+;解: 2e e xx y -¢=-,令0y ¢=,得驻点ln 22x =-. ln 222e e ,0x x x y y -=-¢¢¢¢=+>, 故极小值为ln 2()222y -=. (12) 232(1)y x =--; 解: 32131y x ¢=--,无驻点. y 的定义域为(,)-¥+¥,且y 在x =1处不可导,当x >1时0y ¢<,当x <1时,时, 0y ¢>,故有极大值为(1)2y =. (13) 1332(1)y x =-+; 解: 23213(1)y x ¢=-+.无驻点.y 在1x =-处不可导,但y ¢恒小于0,故y 无极值. (14) tan y x x =+. 解: 21sec 0y x ¢=+>, y 为严格单调增加函数,无极值点. 20. 试证明:如果函数32y ax bx cx d =+++满足条件230b ac -<,那么这函数没有极值. 证明:232y ax bx c ¢=++,令0y ¢=,得方程2320ax bx c ++=,由于由于 22(2)4(3)4(3)0b a c b ac D =-=-<,那么0y ¢=无实数根,不满足必要条件,从而y 无极值. 21. 试问a 为何值时,函数1()sin sin 33f x a x x =+在π3x =处取得极值?它是极大值还是极小值?并求此极值. 解:f (x )为可导函数,故在π3x =处取得极值,必有处取得极值,必有π3π0()(cos cos3)3x f a x x =¢==+,得a =2. 又π3π30()(2sin 3sin 3)3x f x x =¢¢=-<=--, 所以π3x =是极大值点,极大值为π()33f =. 22. 求下列函数的最大值、最小值:求下列函数的最大值、最小值:254(1) (1) ((), (,0)f x x x x=-Î-¥; 解:y 的定义域为(,0)-¥,322(27)0x y x +¢==,得唯一驻点x =-3 且当(,3]x Î-¥-时,0y ¢<,y 单调递减;当[3,0)x Î-时,0y ¢>,y 单调递增, 因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x ®-¥=+¥,故f (x )无最大值. (2) (2) (()1, [5,1]f x x x x =+-Î-; 解:11021y x ¢=-=-,在(5,1)-上得唯一驻点34x =,又 53,(1)1,(5)6544y y y æö==-=-ç÷èø , 故函数()f x 在[-5,1]上的最大值为54,最小值为65-. 42(3) 82, 13y x x x =-+-££. 解:函数在解:函数在((-1,3)中仅有两个驻点x =0及x =2, 而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11, 故在故在[[-1,3]上,函数的最大值是11,最小值为-14. 23. 求数列1000n n ìüíý+îþ的最大的项. 解:令1000xy x =+, 2221(1000)1000210002(1000)2(1000)2(1000)x xx x x xy x x x x x +-+--¢===+++ 令0y ¢=得x =1000.因为在(0,1000)上0y ¢>,在(1000,)+¥上0y ¢<, 所以x =1000为函数y 的极大值点,也是最大值点,max 1000(1000)2000y y ==. 故数列1000n n ìüíý+îþ的最大项为100010002000a =. 24. 设a 为非零常数,b 为正常数,求y =ax 2+bx 在以0和ba为端点的闭区间上的最大值和最小值. 解:20y ax b ¢=+=得2bx a=-不可能属于以0和b a为端点的闭区间上, 而 22(0)0,bb y ya a æö==ç÷èø, 故当a >0时,函数的最大值为22b b y a a æö=ç÷èø,最小值为(0)0y =; 当a <0时,函数的最大值为(0)0y =,最小值为22b b y a a æö=ç÷èø. 25. 已知a >0,试证:11()11f x x x a=+++-的最大值为21a a ++. 证明:证明:11,01111(),01111,11x x x a f x x a x x ax a x x a ì+<ï--+ï=+££í+-+ïï+>++-î 当x <0时,()()2211()011f x x x a ¢=+>--+; 当0<x <a 时,()()2211()11f x x x a ¢=-++-+; 此时令()0f x ¢=,得驻点2ax =,且422a f aæö=ç÷+èø,当x >a 时,()()2211()011f x x x a¢=--<++-, 又lim ()0x f x ®¥=,且2(0)()1af f a a+==+. 而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得 故 {}m a x 242(),,0121a a f x a a a++==+++. 26. 在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高. 解:设圆柱体的高为h , 则圆柱体底圆半径为224h r -, 22232πππ44h V h r h h r æö=×=--ç÷èø令0V ¢=, 得23.3h r =即圆柱体的高为233r 时,其体积为最大. 27. 某铁路隧道的截面拟建成矩形加半圆形的形状(如12题图所示),设截面积为am 2,问底宽x 为多少时,才能使所用建造材料最省? 解:由题设知解:由题设知21π22x xy a æö+×=ç÷èø得 21π18π8a x a y x xx -==-12题图题图截面的周长截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x x x al x x =++×=+-+=++¢=+- 令()0l x ¢=得唯一驻点84πax =+,即为最小值点. 即当84πax =+时,建造材料最省. 28. 甲、乙两用户共用一台变压器(如13题图所示),问变压器设在输电干线AB 的何处时,所需电线最短?的何处时,所需电线最短? 解:所需电线为解:所需电线为2222222()1 1.5(3)(03)2.25(3)(3)1()1 2.25(3)L x x x x x x x x L x x x =+++-<<+---+¢=++-13题图题图在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短. 29. 在边长为a 的一块正方形铁皮的四个角上各截出一个小正方形,的一块正方形铁皮的四个角上各截出一个小正方形,将四边上折将四边上折焊成一个无盖方盒,问截去的小正方形边长为多大时,方盒的容积最大? 解:设小正方形边长为x 时方盒的容积最大. 232222(2)44128V a x x x ax a x V x ax a=-×=-+¢=-+令0V ¢=得驻点2a x =(不合题意,舍去),6a x =. 即小正方形边长为6a时方盒容积最大. 30. 判定下列曲线的凹凸性:判定下列曲线的凹凸性:(1) y =4x -x 2;解:42,20y x y ¢¢¢=-=-<,故知曲线在(,)-¥+¥内的图形是凸的. (2) sin(h )y x =; 解:cosh ,sinh .y x y x ¢¢¢==由sinh x 的图形知,当(0,)x Î+¥时,0y ¢¢>,当(,0)x Î-¥时,0y ¢¢<, 故y =sinh x 的曲线图形在(,0]-¥内是凸的,在[0,)+¥内是凹的. 1(3) (0)y x x x =+> ;解:23121,0y y x x¢¢¢=-=>,故曲线图形在(0,)+¥是凹的. (4) y =x arctan x . 解:2arctan 1x y x x ¢=++,2220(1)y x ¢¢=>+ 故曲线图形在(,)-¥+¥内是凹的. 31. 求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++; 解:23103y x x ¢=-+610y x ¢¢=-,令0y ¢¢=可得53x =. 当53x <时,0y ¢¢<,故曲线在5(,)3-¥内是凸弧;内是凸弧; 当53x >时,0y ¢¢>,故曲线在5[,)3+¥内是凹弧. 因此520,327æöç÷èø是曲线的唯一拐点. (2) e x y x -=;解:(1)e , e (2)xxy x y x --¢¢¢=-=-令0y ¢¢=,得x =2 当x >2时,0y ¢¢>,即曲线在[2,)+¥内是凹的;内是凹的; 当x <2时,0y ¢¢<,即曲线在(,2]-¥内是凸的. 因此(2,2e -2)为唯一的拐点. 4(3) (1)e x y x =++;解:324(1)e , e 12(1)0x xy x y x ¢¢¢=++=++> 故函数的图形在(,)-¥+¥内是凹的,没有拐点. (4) y =ln (x 2+1);解:222222(1), 1(1)x x y y x x -¢¢¢==++ 令0y ¢¢=得x =-1或x =1. 当-1<x <1时,0y ¢¢>,即曲线在,即曲线在[[-1,1]内是凹的. 当x >1或x <-1时,0y ¢¢<,即在(,1],[1,)-¥-+¥内曲线是凸的. 因此拐点为因此拐点为((-1,ln2),(1,ln2). arctan (5) e xy =; 解:arctan arctan 222112e ,e 1(1)x x xy y x x -¢¢¢==++ 令0y ¢¢=得12x =. 当12x >时,0y ¢¢<,即曲线在1[,)2+¥内是凸的;内是凸的;当12x <时,0y ¢¢>,即曲线在1(,]2-¥内是凹的,内是凹的, 故有唯一拐点1arctan 21(,e )2. (6) y =x 4(12ln x -7). 解:函数y 的定义域为(0,+∞)且在定义域内二阶可导. 324(12ln 4),144ln .y x x y x x ¢¢¢=-= 令0y ¢¢=,在(0,+∞),得x =1. 当x >1时,0y ¢¢>,即曲线在[1,)+¥内是凹的; 当0<x <1时,0y ¢¢<,即曲线在(0,1]内是凸的,内是凸的, 故有唯一拐点(1,-7). 32. 利用函数的图形的凹凸性,证明下列不等式:()1(1) (0,0,,1)22nnnx y x y x y n x y +æö>>>¹>+ç÷èø ; 证明:令证明:令 ()nf x x =12(),()(1)0n n f x nx f x n n x--¢¢¢==-> ,则曲线y =f (x )是凹的,因此,x y R +"Î,()()22f x f y x y f ++æö<ç÷èø, 即 1()22nn nx y x y +æö<+ç÷èø. 2e e (2)e()2x y x yx y ++>¹ ; 证明:令f (x )=e x ()e ,()e 0x x f x f x ¢¢¢==> . 则曲线y =f (x )是凹的,,,x y R x y "ι则 ()()22f x f y x y f ++æö<ç÷èø 即 2eee2x yxy++<. (3) ln ln ()ln(0,0,)2x y x x y y x y x y x y ++>+>>¹证明:令证明:令 f (x )=x ln x (x >0) 1()ln 1,()0(0)f x x f x x x¢¢¢=+=>>则曲线()y f x =是凹的,,x y R +"Î,x ≠y ,有,有()()22f x f y x y f ++æö<ç÷èø即 1l n (l n l n )222x y x y xx y y ++<+, 即 l n l n ()l n 2x y x x y y x y ++>+. 33. 求下列曲线的拐点:求下列曲线的拐点:23(1) ,3;x t y t t ==+解:22223d 33d 3(1),d 2d 4y t y t x t x t +-==令22d 0d yx =,得t =1或t =-1 则x =1,y =4或x =1,y =-4 当t >1或t <-1时,22d 0d yx >,曲线是凹的,,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx<,曲线是凸的,,曲线是凸的,故曲线有两个拐点(1,4),(1,-4). (2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a x a q q q q q ××==-×- 222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a aq q q q q q =-+×=×--令22d 0d yx =,得π3q =或π3q =-,不妨设a >0,不失一般性,当3tan 3q >>-时,即ππ33q -<<时,22d 0d yx >,当tan 3q >或tan 3q <-时,即π3q <-或π3q >时,22d 0d yx<, 故当参数π3q =或π3q =-时,都是y 的拐点,且拐点为233,32a a æöç÷èø及233,32a a æö-ç÷èø. 34. 试证明:曲线211x y x -=+有三个拐点位于同一直线上. 证明:222221(1)x x y x -++¢=+, 232(1)(23)(23)(1)x x x y x +---+¢¢=+ 令0y ¢¢=,得1,23,23x x x =-=+=-当(,1)x Î-¥-时,0y ¢¢<; 当(1,23)x Î--时0y ¢¢>; 当(23,23)x Î-+时0y ¢¢<; 当(23,)x Î++¥时0y ¢¢>, 因此,曲线有三个拐点因此,曲线有三个拐点((-1,-1),1313(23,),(23,)44---+-+. 因为因为 111131234131234------++=0 因此三个拐点在一条直线上. 35. 问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点?的拐点?解:y ′=3ax 2+2bx , y ″=6ax +2b 依题意有依题意有3620a b a b +=ìí+=î 解得解得 39,22a b =-=. 36. 试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点为拐点,且点((-2,44)在曲线上. 解:令f (x )= ax 3+bx 2+cx +d 联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16. 37. 试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点. 解:224(3),12(1)y kx x y k x ¢¢¢=-=-令0y ¢¢=,解得x =±1,代入原曲线方程得y =4k ,只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点. 18x k y =±¢=±,那么拐点处的法线斜率等于18k,法线方程为18y xk=. 由于(1,4k ),(-1,4k )在此法线上,因此在此法线上,因此148k k =±, 得22321, 321k k ==-(舍去) 故 12832k =±=±. 38. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数,如果00()0,()0f x f x ¢¢¢==,而0()0f x ¢¢¢¹,试问x =x 0是否为极值点?为什么?又00(,())x f x 是否为拐点?为什么?么?答:因00()()0f x f x ¢¢¢==,且0()0f x ¢¢¢¹,则x =x 0不是极值点.又在0(,)U x d 中,000()()()()()()f x f x x x f x x f h h ¢¢¢¢¢¢¢¢¢¢=+-=-,故()f x ¢¢在0x 左侧与0()f x ¢¢¢异号,在0x 右侧与0()f x ¢¢¢同号,故()f x 在x =x 0左、右两侧凹凸性不同,右两侧凹凸性不同,即即00(,())x f x 是拐点. 39. 作出下列函数的图形:作出下列函数的图形:2(1)()1xf x x=+; 解:函数的定义域为(-∞,+∞),且为奇函数, 2222222223121(1)(1)2(3)(1)x x xy x x x x y x +--¢==++-¢¢=+ 令0y¢=,可得1x =±, 令0y ¢¢=,得x =0,3±, 列表讨论如下:列表讨论如下:x 0 (0,1) 1 (1,3) 3(3,+∞) y′ + 0 - - -y″ 0 - - - 0 + y 0 极大极大拐点拐点当x →∞时,y →0,故y =0是一条水平渐近线. 函数有极大值1(1)2f =,极小值1(1)2f -=-,有3个拐点,分别为3,3,4æö--ç÷èø(0,0),33,4æöç÷èø,作图如上所示. (2) f (x )=x -2arctan x 解:函数定义域为(-∞,+∞),且为奇函数, 2222114(1)y x xy x ¢=-+¢¢=+ 令y ′=0,可得x =±1, 令y ″=0,可得x =0. 列表讨论如下:列表讨论如下:X 0 (0,1) 1 (1,∞) y′ - 0 + y″ 0 + + Y 0 极小极小又()2limlim(1arctan )1x x f x x x x®¥®¥=-=且 l i m [()]l i m (2a r c t a nπx x f x x x ®+¥®+¥-=-=- 故πy x =-是斜渐近线,由对称性知πy x =+亦是渐近线.函数有极小值π(1)12y =-,极大值π(1)12y -=-.(0,0)为拐点.作图如上所示. 2(3) (3) (()1x f x x=+; 解:函数的定义域为,1x R x ι-. 22232(1)(2)(1)(1)(1)2(1)x x x x x y x x x y x +-+¢==¹-++¢¢=+令0y ¢=得x =0,x =-2 当(,2]x Î-¥-时,0,()y f x ¢>单调增加;单调增加; 当[2,1)x Î--时,0,()y f x ¢<单调减少;单调减少; 当(1,0]x Î-时,0,()y f x ¢<单调减少;单调减少; 当[0,)x Î+¥时,0,()y f x ¢>单调增加, 故函数有极大值f (-2)=-4,有极小值f (0)=0 又211lim ()lim 1x x x f x x ®-®-==¥+,故x =-1为无穷型间断点且为铅直渐近线. 又因()lim 1x f x x ®¥=, 且2lim(())lim 11x x x f x x x x ®¥®¥éù-==--êú+ëû, 故曲线另有一斜渐近线y =x -1. 综上所述,曲线图形为:综上所述,曲线图形为:-∞,+∞) . 22(1)(1)22(1)e e2(241)x x y x y x x ----¢=--¢¢=×-+22±. 22][1,22-++¥22]2时,y 112222,),,)22---+曲线族曲线族,,,,01ecxA y x ABC B -=-¥<<+¥>+建立了动物的生长模型. (1) 画出B =1时的曲线()1e cxAg x -=+的图像,参数A 的意义是什么(设x 表示时间,y 表示某种动物数量)?解:2e ()0(1e )cx cx Ac g x --¢=>+,g (x )在(-∞,+∞)内单调增加,内单调增加, 222244e e 2(1e )e e (1e )()(1e )(1e )cx cx cx cx cx cx cx cx Ac Ac Ac g x ---------+×+×--¢¢==++ 当x >0时,()0,()g x g x ¢¢<在(0,+∞)内是凸的. 当x <0时,()0,()g x g x ¢¢>在(-∞,0)内是凹的. 当x =0时,()2A g x =. 且lim ()0,lim ()x x g x g x A ®-¥®+¥==.故曲线有两条渐近线y =0,y =A .且A 为该种动物数量(在特定环境中)最大值,即承载容量.如图:如图:(2) 计算g (-x )+g (x ),并说明该和的意义;,并说明该和的意义; 解:()()1e 1e cx cx A A g x g x A--+=+=++. (3) 证明:曲线1e cxAy B -=+是对g (x )的图像所作的平移. 证明:∵()1e 1e e c x T cx cTA Ay B B -+--==++取e 1cT B -=,得ln BT c=即曲线1e cx A y B -=+是对g (x )的图像沿水平方向作了ln BT c =个单位的平移. 。
高等数学课后习题答案第三章
习题三1(1)解:所给函数在定义域(,)−∞+∞内连续、可导,且2612186(1)(3)y x x x x ′=−−=+−可得函数的两个驻点:121,3x x =−=,在(,1),(1,3),(3,)−∞−−+∞内,y ′分别取+,–,+号,故知函数在(,1],[3,)−∞−+∞内单调增加,在[1,3]−内单调减少.(2)解:函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x ′=−,则函数有驻点2x =,在部分区间(0,2]内,0y ′<;在[2,)+∞内y ′>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3)解:函数定义域为(,)−∞+∞,0y ′=>,故函数在(,)−∞+∞上单调增加.(4)解:函数定义域为(,)−∞+∞,22(1)(21)y x x ′=+−,则函数有驻点:11,2x x =−=,在1(,]2−∞内,0y ′<,函数单调减少;在1[,)2+∞内,0y ′>,函数单调增加.(5)解:函数定义域为[0,)+∞,11e e e ()n x n x x n y nx x x n x −−−−−′=−=−函数的驻点为0,x x n ==,在[0,]n 上0y ′>,函数单调增加;在[,]n +∞上0y ′<,函数单调减少.(6)解:函数定义域为(,)−∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪−∈−∈⎪⎩Z Z 1)当π[π,π]2x n n ∈+时,12cos 2y x ′=+,则1π0cos 2[π,π23y x x n n ′≥⇔≥−⇔∈+;πππ0cos 2[π,π]232y x x n n ′≤⇔≤−⇔∈++.2)当π[π,π]2x n n ∈−时,12cos 2y x ′=−,则1ππ0cos 2[π,π]226y x x n n ′≥⇔≤⇔∈−−1π0cos 2[π,π]26y x x n n ′≤⇔≥⇔∈−.综上所述,函数单调增加区间为πππ[,)223k k k z +∈,函数单调减少区间为ππππ[,)2322k k k z ++∈.(7)解:函数定义域为(,)−∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x ′=−++−+⋅=+−−函数驻点为123111,,2218x x x =−==,在1(,]2+∞−内,0y ′>,函数单调增加,在111[,]218−上,0y ′<,函数单调减少,在11[,2]18上,0y ′>,函数单调增加,在[2,)+∞内,0y ′>,函数单调增加.故函数的单调区间为:1(,]2−∞−,111[,218−,11[,)18+∞.2.(1)证明:令()sin tan 2,f x x x x =−−则22(1cos )(cos cos 1)()cos x x x f x x −++′=,当π02x <<时,()0,()f x f x ′>为严格单调增加的函数,故()(0)0f x f >=,即sin 2tan 2.x x x −>(2)证明:令2()=e sin 12xx f x x −+−−,则()=e cos xf x x x −′−+−,()=e sin 1e (sin 1)0x x f x x x −−′′−−=−+<,则()f x ′为严格单调减少的函数,故()(0)0f x f ′′<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2xx x −+<+3.证明:设()sin f x x x =−,则()cos 10,f x x =−≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.4.(1)解:22y x ′=−,令0y ′=,得驻点1x =.又因20y ′′=>,故1x =为极小值点,且极小值为(1)2y =.(2)解:266y x x ′=−,令0y ′=,得驻点120,1x x ==,126y x ′′=−,010,0x x y y ==′′′′<>,故极大值为(0)0y =,极小值为(1)1y =−.(3)解:2612186(3)(1)y x x x x ′=−−=−+,令0y ′=,得驻点121,3x x =−=.1212y x ′′=−,130,0x x y y =−=′′′′<>,故极大值为(1)17y −=,极小值为(3)47y =−.(4)解:1101y x ′=−=+,令0y ′=,得驻点0x =.201,0(1)x y y x =′′′′=>+,故(0)0y =为极大值.(5)解:32444(1)y x x x x ′=−+=−,令0y ′=,得驻点1231,0,1x x x =−==.210124, 0,0,x x y x y y =±=′′′′′′=−+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6)解:1y ′=,令0y ′=,得驻点13,4x =且在定义域(,1]−∞内有一不可导点21x =,当34x >时,0y ′<;当34x <时,0y ′>,故134x =为极大值点,且极大值为35()44y =.因为函数定义域为1x ≤,故1x =不是极值点.(7)解:y ′=,令0y ′=,得驻点125x =.当125x >时,0y ′<;当125x <,0y ′>,故极大值为12()5y =.(8)解:2131x y x x +=+++,22(2)(1)x x y x x −+′=++,令0y ′=,得驻点122,0x x =−=.2223(22)(1)2(21)(2)(1)x x x x x x y x x −−+++++′′=++200,0x x y y =−=′′′′><,故极大值为(0)4y =,极小值为8(2)3y −=.(9)解:e (cos sin )x y x x ′=−,令0y ′=,得驻点ππ (0,1,2,)4k x k k =+=±±⋯.2e sin x y x ′′=−,ππ2π(21)π440,0x k x k y y =+=++′′′′<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()k k y x +++=.(10)解:11211ln (ln )xxxy x x x x x −′′==,令0y ′=,得驻点e x =.当e x >时,0y ′<,当e x <时,0y ′>,故极大值为1e(e)e y =.(11)解:2e e x xy −′=−,令0y ′=,得驻点ln 22x =−.ln 222e e ,0x x x y y −=−′′′′=+>,故极小值为ln 2()2y −=.(12)解:y ′=,无驻点.y 的定义域为(,)−∞+∞,且y 在x =1处不可导,当x >1时0y ′<,当x <1时,0y ′>,故有极大值为(1)2y =.(13)解:y ′=无驻点.y 在1x =−处不可导,但y ′恒小于0,故y 无极值.(14)解:21sec 0y x ′=+>,y 为严格单调增加函数,无极值点.5.证明:232y ax bx c ′=++,令0y ′=,得方程2320ax bx c ++=,由于22(2)4(3)4(3)0b a c b ac ∆=−=−<,那么0y ′=无实数根,不满足必要条件,从而y 无极值.6.解:f (x )为可导函数,故在π3x =处取得极值,必有π3π0()(cos cos3)3x f a x x =′==+,得a =2.又π3π0((2sin 3sin 3)3x f x x =′′=<=−−,所以π3x =是极大值点,极大值为π()3f =7.(1)解:y 的定义域为(,0)−∞,322(27)0x y x +′==,得唯一驻点x =-3且当(,3]x ∈−∞−时,0y ′<,y 单调递减;当[3,0)x ∈−时,0y ′>,y 单调递增,因此x =-3为y 的最小值点,最小值为f (-3)=27.又lim ()x f x →−∞=+∞,故f (x )无最大值.(2)解:10y ′==,在(5,1)−上得唯一驻点34x =,又53,(1)1,(5)544y y y ⎛⎞==−=−⎜⎟⎝⎠ ,故函数()f x 在[-5,1]上的最大值为545−.(3).解:函数在(-1,3)中仅有两个驻点x =0及x =2,而y (-1)=-5,y (0)=2,y (2)=-14,y (3)=11,故在[-1,3]上,函数的最大值是11,最小值为-14.8.解:20y ax b ′=+=得2b x a =−不可能属于以0和ba 为端点的闭区间上,而22(0)0,b b y y a a ⎛⎞==⎜⎟⎝⎠,故当a >0时,函数的最大值为22b b y a a ⎛⎞=⎜⎟⎝⎠,最小值为(0)0y =;当a <0时,函数的最大值为(0)0y =,最小值为22b b y a a ⎛⎞=⎜⎟⎝⎠.9.解:令y =,y ′===令0y ′=得x =1000.因为在(0,1000)上0y ′>,在(1000,)+∞上0y ′<,所以x =1000为函数y的极大值点,也是最大值点,max (1000)y y ==.故数列的最大项为1000a =.10.证明:11,01111(),01111,11x x x a f x x ax x a x a x x a ⎧+<⎪−−+⎪⎪=+≤≤⎨+−+⎪⎪+>⎪++−⎩当x <0时,()()2211()011f x x x a ′=+>−−+;当0<x <a 时,()()2211()11f x x x a ′=−++−+;此时令()0f x ′=,得驻点2a x =,且422a f a ⎛⎞=⎜⎟+⎝⎠,当x >a 时,()()2211()011f x x x a ′=−−<++−,又lim ()0x f x →∞=,且2(0)()1a f f a a +==+.而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得故{}max 242(),,0121a af x a a a++==+++.11.解:设圆柱体的高为h ,,223πππ4V h r h h =⋅=−令0V ′=,得.h =即圆柱体的高为3r 时,其体积为最大.12.解:由题设知21π22x xy a⎛⎞+⋅=⎜⎟⎝⎠得21π18π8a x a y x x x −==−截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x x x al x x=++⋅=+−+=++′=+−令()0l x ′=得唯一驻点x =,即为最小值点.即当x =.13.解:所需电线为()(03)()L x x L x =<<′=在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短.14.解:设小正方形边长为x 时方盒的容积最大.232222(2)44128V a x x x ax a xV x ax a =−⋅=−+′=−+令0V ′=得驻点2a x =(不合题意,舍去),6a x =.即小正方形边长为6a时方盒容积最大.15.(1)解:42,20y x y ′′′=−=−<,故知曲线在(,)−∞+∞内的图形是凸的.(2)解:cosh ,sinh .y x y x ′′′==由sinh x 的图形知,当(0,)x ∈+∞时,0y ′′>,当(,0)x ∈−∞时,0y ′′<,故y =sinh x 的曲线图形在(,0]−∞内是凸的,在[0,)+∞内是凹的.(3)解:23121,0y y x x ′′′=−=>,故曲线图形在(0,)+∞是凹的.(4)解:2arctan 1x y x x ′=++,2220(1)y x ′′=>+故曲线图形在(,)−∞+∞内是凹的.16.(1);解:23103y x x ′=−+610y x ′′=−,令0y ′′=可得53x =.当53x <时,0y ′′<,故曲线在5(,)3−∞内是凸弧;当53x >时,0y ′′>,故曲线在5[,)3+∞内是凹弧.因此520,327⎛⎞⎜⎟⎝⎠是曲线的唯一拐点.(2)解:(1)e , e (2)x xy x y x −−′′′=−=−令0y ′′=,得x =2当x >2时,0y ′′>,即曲线在[2,)+∞内是凹的;当x <2时,0y ′′<,即曲线在(,2]−∞内是凸的.因此(2,2e -2)为唯一的拐点.(3);解:324(1)e , e 12(1)0x x y x y x ′′′=++=++>故函数的图形在(,)−∞+∞内是凹的,没有拐点.(4)解:222222(1), 1(1)x x y y x x −′′′==++令0y ′′=得x =-1或x =1.当-1<x <1时,0y ′′>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ′′<,即在(,1],[1,)−∞−+∞内曲线是凸的.因此拐点为(-1,ln2),(1,ln2).(5);解:arctan arctan 222112e ,e1(1)x xx y y x x −′′′==++ 令0y ′′=得12x =.当12x >时,0y ′′<,即曲线在1[,)2+∞内是凸的;当12x <时,0y ′′>,即曲线在1(,]2−∞内是凹的,故有唯一拐点1arctan 21(,e )2.(6)解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x ′′′=−= 令0y ′′=,在(0,+∞),得x =1.当x >1时,0y ′′>,即曲线在[1,)+∞内是凹的;当0<x <1时,0y ′′<,即曲线在(0,1]内是凸的,故有唯一拐点(1,-7).17.(1);证明:令()nf x x =12(),()(1)0n n f x nx f x n n x −−′′′==−> ,则曲线y =f (x )是凹的,因此,x y R +∀∈,()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠,即1()22nn n x y x y +⎛⎞<+⎜⎟⎝⎠.(2);证明:令f (x )=e x()e ,()e 0x x f x f x ′′′==> .则曲线y =f (x )是凹的,,,x y R x y∀∈≠ 则()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠即2e e e2x yx y ++<.(3)证明:令f (x )=x ln x (x >0)1()ln 1,()0(0)f x x f x x x′′′=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠即1ln (ln ln )222x y x y x x y y ++<+,即ln ln ()ln2x y x x y y x y ++>+.18.(1)解:22223d 33d 3(1),d 2d 4y t y t xt x t +−==令22d 0d yx =,得t =1或t =-1则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx <,曲线是凸的,故曲线有两个拐点(1,4),(1,-4).(2)解:32d 22sin cos 2sin cos d 2(csc )y a xa θθθθθ⋅⋅==−⋅−222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=−+⋅=⋅−−令22d 0d y x =,得π3θ=或π3θ=−,不妨设a >0tan θ>>时,即ππ33θ−<<时,22d 0d y x >,当tan θ>或tan θ<π3θ<−或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=−时,都是y的拐点,且拐点为3,2a ⎞⎟⎠及3,2a ⎛⎞⎜⎟⎝⎠.19.证明:22221(1)x x y x −++′=+,y ′′=令0y ′′=,得1,22x x x =−=+=−当(,1)x ∈−∞−时,0y ′′<;当(1,2x ∈−时0y ′′>;当(22x ∈−+时0y ′′<;当(2)x ∈++∞时0y ′′>,因此,曲线有三个拐点(-1,-1),(2−+.因为111212−−+因此三个拐点在一条直线上.20.解:y′=3ax 2+2bx ,y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得39,22a b =−=.21.解:令f (x )=ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0可解得a =1,b =-3,c =-24,d =16.22.解:224(3),12(1)y kx x y k x ′′′=−=− 令0y ′′=,解得x =±1,代入原曲线方程得y =4k ,只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±′=±,那么拐点处的法线斜率等于18k ∓,法线方程为18y x k =∓.由于(1,4k ),(-1,4k )在此法线上,因此148k k =±,得22321, 321k k ==−(舍去)故8k ==±.23.答:因00()()0f x f x ′′′==,且0()0f x ′′′≠,则x =x 0不是极值点.又在0(,)U x δ�中,000()()()()()()f x f x x x f x x f ηη′′′′′′′′′′=+−=−,故()f x ′′在0x 左侧与0()f x ′′′异号,在0x 右侧与0()f x ′′′同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.24.(1);解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)x x x y x x x x y x +−−′==++−′′=+令0y ′=,可得1x =±,令0y ′′=,得x =0,,当x→∞时,y→0,故y=0是一条水平渐近线.函数有极大值1(1)2f=,极小值1(1)2f−=−,有3个拐点,分别为,⎛⎜⎝(0,0),,作图如上所示.(2)解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)yxxyx′=−+′′=+令y′=0,可得x=±1,令y″=0,可得x=0.列表讨论如下:x0(0,1)1(1,∞)y′-0+y″0++y0极小又()2lim lim(1arctan)1x xf xxx x→∞→∞=−=且lim[()]lim(2arctan)πx xf x x x→+∞→+∞−=−=−故πy x=−是斜渐近线,由对称性知πy x=+亦是渐近线.函数有极小值π(1)12y=−,极大值π(1)12y−=−.(0,0)为拐点.作图如上所示.(3);解:函数的定义域为,1x R x∈≠−.22232(1)(2)(1)(1)(1)2(1)x x x x xy xx xyx+−+′==≠−++′′=+令y′=得x=0,x=-2当(,2]x∈−∞−时,0,()y f x′>单调增加;当[2,1)x∈−−时,0,()y f x′<单调减少;当(1,0]x∈−时,0,()y f x′<单调减少;当[0,)x∈+∞时,0,()y f x′>单调增加,故函数有极大值f(-2)=-4,有极小值f(0)=0又211lim()lim1x xxf xx→−→−==∞+,故x=-1为无穷型间断点且为铅直渐近线.又因()lim1xf xx→∞=,且2lim(())lim11x xxf x x xx→∞→∞⎡⎤−==−−⎢⎥+⎣⎦,故曲线另有一斜渐近线y=x-1.综上所述,曲线图形为:(4)解:函数定义域为(-∞,+∞).22(1)(1)22(1)e e 2(241)x x y x y x x −−−−′=−−′′=⋅−+令0y ′=,得x =1.令0y ′′=,得1x =±.当(,1]x ∈−∞时,0,y ′>函数单调增加;当[1,)x ∈+∞时,0,y ′<函数单调减少;当(,1[1)x ∈−∞−++∞∪时,0y ′′>,曲线是凹的;当[1,122x ∈−+时,0y ′′<,曲线是凸的,故函数有极大值f (1)=1,两个拐点:1122(1,e ),(1,e )22A B −−−+,又lim ()0x f x →∞=,故曲线有水平渐近线y =0.图形如下:25.(1)解:2e ()0(1e )cxcx Ac g x −−′=>+,g (x )在(-∞,+∞)内单调增加,222244e e 2(1e )e e (1e )()(1e )(1e )cx cx cx cx cx cx cx cx Ac Ac Ac g x −−−−−−−−−+⋅+⋅−−′′==++当x >0时,()0,()g x g x ′′<在(0,+∞)内是凸的.当x <0时,()0,()g x g x ′′>在(-∞,0)内是凹的.当x =0时,()2A g x =.且lim ()0,lim ()x x g x g x A→−∞→+∞==.故曲线有两条渐近线y =0,y =A .且A 为该种动物数量(在特定环境中)最大值,即承载容量.如图:(2)解:()()1e 1e cx cxA Ag x g x A −−+=+=++.(3)证明:∵()1e 1e e c x T cx cT A Ay B B −+−−==++取e1cTB −=,得ln B T c =即曲线1e cx A y B −=+是对g (x )的图像沿水平方向作了ln B T c =个单位的平移.26.解:324d π,π,.3d r V r A r v t === 2d d d 4πd d d d d d 8πd d d V V rr v t r t A A r r v t r t=⋅=⋅=⋅=⋅27.解:d d de e .d d d a a r r a a t t ϕϕϕωωϕ=⋅=⋅⋅=28.解:22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t t y y a a t t ϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅−⋅=−=⋅=⋅=29.解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x yx y t t⋅+⋅=由d d d d x y tt −=.得161832,9y x y x == 代入椭圆方程得:29x =,163,.3x y =±=±即所求点为1616,3,3,33⎛⎞⎛⎞−−⎜⎟⎜⎟⎝⎠⎝⎠.30.解:当水深为h时,横截面为212s h ==体积为22212V sh h ′====d d 2d d V hh t t=⋅当h =0.5m 时,31d 3m min d Vt −=⋅.故有d 320.5d ht =⋅,得d d h t =(m 3·min -1).31.解:设t 小时后,人与船相距s公里,则d d s s t ===且120d 8.16d t st ==≈(km ·h-1)32.解:d d d 236.d d d y y xx x t x t=⋅=⋅=当x =2时,d 6212d yt =×=(cm ·s -1).33.证明:如图,设在t 时刻,人影的长度为y m.则53456y y t=+化简得d 7280,40,40d yy t y t t ===(m ·min -1).即人影的长度的增长率为常值.34.解:y =-(x -2)2+4,故抛物线顶点为(2,4)当x =2时,0,2y y ′′′==− ,故23/22.(1)y k y ′′==′+35.解:sinh ,cosh .y x y x ′′′== 当x =0时,0,1y y ′′′== ,故23/21.(1)y k y ′′==′+36.解:cos ,sin y x y x ′′′==−.当π2x =时,0,1y y ′′′==− ,故23/21.(1)y k y ′′==′+37.解:2tan ,sec y x y x ′′′== 故223/223/2sec cos (1)(1tan )y x k x y x ′′===′++1sec R x k ==.38.解:22d d 3sin cos d tan d d 3cos sin d y y a t t t t x x a t tt ===−−,22224d d d(tan )1sec 1(tan )d d d d 3cos sin 3sin cos d y t t t x x x ta t t a t t t −−=−=⋅==−,故423/2123sin cos [1(tan )]3sin 2a t t k t a t==+−且当t =t 0时,23sin 2k a t =.39.解:cos ,sin y x y x ′′′==− .23/223/2(1cos )1sin ,sin (1cos )x x R k x R x +===+ 显然R 最小就是k 最大,225/22cos (1sin )(1cos )x x k x +′=+令0k ′=,得π2x =为唯一驻点.在π0,2⎛⎞⎜⎟⎝⎠内,0k ′>,在π,π2⎛⎞⎜⎟⎝⎠内,0k ′<.所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为23/2π2(1cos )1sin x x R x=+==.40.解:由ln 0y x y =⎧⎨=⎩解得交点为(1,0).1112111,11.x x x x y x y x ====′==′′=−=−故曲率中心212(1,0)(1)312x y y x y y y y αβ=⎧′′⎡⎤+==−⎪⎢′′⎣⎦⎪⎨′⎡⎤+⎪==−+⎢⎥⎪′′⎣⎦⎩曲率半径为R =.故曲率圆方程为:22(3)(2)8x y −++=.41.解:0010,5000x x y y ==′′′==,23/2(1)5000y R y ′+==′′飞行员在飞机俯冲时受到的向心力22702005605000mv F R ⋅===(牛顿)故座椅对飞行员的反力560709.81246F =+×=(牛顿).42.解:(1)边际成本为:()(300 1.1) 1.1.C q q ′′=+=(2)利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=−=−−′=−令()0L q ′=,得650q =即为获得最大利润时的产量.(3)盈亏平衡时:R (q )=C (q )即 3.9q -0.003q 2-300=0q 2-1300q +100000=0解得q =1218(舍去),q =82.43.解:(1)利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q qL q q q =−+−=−+−′=−+−令()0L q ′=,得231206000q q −+=即2402000q q −+=得20q =−(舍去)2034.q =+≈此时,32(34)0.01340.63463496.56L =−×+×−×=(元)(2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+−−=−++令()0L x′=,得5x=(5)121.5696.56L=>故应该提高价格,且应提高5元.44.(1)解:y′=a即为边际函数.弹性为:1Ey axa xEx ax b ax b =⋅⋅=++,增长率为:yaax b γ=+.(2)解:边际函数为:y′=ab e bx弹性为:1eebxbxEyab x bx Ex a=⋅⋅=,增长率为:eebxy bxabbaγ==.(3)解:边际函数为:y′=ax a-1.弹性为:11aaEyax x a Ex x−=⋅⋅=,增长率为:1.ay aax ax x γ−==45.解:因弹性的经济意义为:当自变量x变动1%,则其函数值将变动% EyEx⎛⎞⎜⎟⎝⎠.故当价格分别提高10%,20%时,需求量将分别提高0.8×10%=8%,0.8×20%=16%.46.解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.。
高等数学(同济版)第三章-习题课
m f (0), f (1), f (2) M
m
f (0) f (1) f (2) 3
M
由介值定理, 至少存在一点 c [0, 2] , 使
由罗f分(c尔析) 定: 所想理f f(给到3知(c)条找),必1件一,存f且可点(0在)写fc(f,为x3(使1))在(cff[(,f(c032(,)))c3)]f上3(11()0连f,(3f0续())2,),使f在3(11)(f,c(,ff3((2))3)内)0可1. 导,
一、主要内容
Cauchy 中值定理
F(x) x
洛必达法则
型
f g 1 g1 f 1 g1 f
0型 0 型
00 ,1 , 0 型
令y f g 取对数
0型
f g f 1g
Lagrange 中值定理
f (a) f (b)
Rolle 定理
n0
Taylor 中值定理
常用的 泰勒公式
导数的应用
单调性,极值与最值, 凹凸性,拐点,函数 图形的描绘; 曲率;求根方法.
( x)
1 ln(1
x)
1
1 x
2
0
(x 0)
故 x 0时, (x)单调增加 , 从而 (x) (0) 0
即
ln(1 x) arctan x (x 0)
1 x
思考: 证明 1 x ln(1 x) (0 x 1) 时, 如何设辅助 1 x arcsin x
函数更好 ?
提示: (x) (1 x) ln(1 x) 1 x2 arcsin x
y
2 x( x2 (x2
3) 1)2
(
x
1 1)3
(x
1 1)3
高等数学课后习题答案3_上海交大版
解答: lim
f (x)
= lim
f (x) − x
f (0)
=
lim
x→0
f (x) − x
f (0)
=
f ′(0)
。
x→0 ϕ(x) x→0 ϕ(x) −ϕ(0) lim ϕ(x) −ϕ(0) ϕ′(0)
x
x→0
x
所属章节:第三章第二节
难度:二级
11.设 f ′(x) 存在,试证:对常数α、β ,有
∆x→0
∆x
∆x→0
∆x
所以由导数定义, (cos x)′ = − sin x 。
所属章节:第三章第一节 难度:一级
7.按定义求下列函数的导数: (1) y = x2 + 3x −1 ;
(2) y = eax ;
(3) y = cos(ax + b) ;
(4) y = x sin x .
解答:(1)由于 lim
4.假定 f (x) 可导,观察下列极限,指出 A 表示什么?
(1) lim x − x0 = A ; x→x0 f (x) − f (x0 )
(2) lim f (x0 − 2∆x) − f (x0 ) = A ;
∆x →0
∆x
(3) lim f (3) − f (3 − h) = A ;
h→0
h
x→0 x
x→0
x
所属章节:第三章第一节
难度:一级
5.指出下列极限是什么函数在哪一点的导数?
(1) lim ax −1 ; x→0 x
(2) lim (1 + x)m −1 ;
x→0
x
高等数学 线性代数 习题答案第三章
第三章习题3-11. 设s =12gt 2,求2d d t s t=.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==-- 21lim (2)22t g t g →=+= 2. 设f (x )=1x,求f '(x 0) (x 0≠0). 解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠ 3.试求过点(3,8)且与曲线2y x =相切的直线方程。
解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x xx -=-。
由已知直线过点(3,8),得 00082(3)y x x -=- (1)又点00(,)x y 在曲线2y x =上,故200y x = (2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。
也即440x y --=或8160x y --=。
4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1) 0limx ∆→00()()f x x f x x-∆-∆=A ;(2) f (x 0)=0, 0limx x →0()f x x x-=A ; (3) 0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x x x→-→--+--'=-=--0()A f x '∴=- (2)00000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=---0()A f x '∴=-(3)000()()limh f x h f x h h→+--00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h→-→+-+--=+-000()()2()f x f x f x '''=+= 02()A f x '∴=5. 求下列函数的导数: (1) y (2) y ;(3) y 322x .解:(1)12y x x ==11221()2y x x -''∴=== (2)23y x -=225133322()33y x x x ----''∴==-=-=(3)2152362y xx xx -==15661()6y x x-''∴===6. 讨论函数y x =0点处的连续性和可导性. 解:30lim 0(0)x x f →==000()(0)0lim lim 0x x x f x f x x →→→-===∞-∴函数y =0x =点处连续但不可导。
同济大学版高等数学课后习题答案第3章
习题3-11. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =,所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cot ξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性. 解 因为y =4x 3-5x 2+x -2在区间[0, 1]上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点ξ∈(0, 1), 使001)0()1()(=--='y y y ξ. 由y '(x )=12x 2-10x +1=0得)1 ,0(12135∈±=x .因此确有)1 ,0(12135∈±=ξ, 使01)0()1()(--='y y y ξ.3. 对函数f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上验证柯西中值定理的正确性.解 因为f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上连续, 在)2 ,0(π可导, 且F '(x )=1-sin x 在)2 ,0(π内不为0, 所以由柯西中值定理知至少存在一点)2 ,0(πξ∈, 使得)()()0()2()0()2(ξξππF f F F f f ''=--. 令)0()2()0()2()()(F F f f x F x f --=''ππ, 即22sin 1cos -=-πx x . 化简得14)2(8si n 2-+-=πx . 易证114)2(802<-+-<π, 所以14)2(8si n 2-+-=πx 在)2 ,0(π内有解, 即确实存在)2 ,0(πξ∈, 使得 )()()0()2()0()2(ξξππF f F F f f ''=--. 4. 试证明对函数y =px 2+qx +r 应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明 因为函数y =px 2+qx +r 在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 由拉格朗日中值定理, 至少存在一点ξ∈(a , b ), 使得y (b )-y (a )=y '(ξ)(b -a ), 即 (pb 2+qb +r )-(pa 2+qa +r )=(2p ξ+q )(b -a ). 化间上式得p (b -a )(b +a )=2p ξ (b -a ), 故2b a +=ξ.5. 不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f '(x )=0有几个实根, 并指出它们所在的区间.解 由于f (x )在[1, 2]上连续, 在(1, 2)内可导, 且f (1)=f (2)=0, 所以由罗尔定理可知, 存在ξ1∈(1, 2), 使f '(ξ1)=0. 同理存在ξ2∈(2, 3), 使f '(ξ2)=0; 存在ξ3∈(3, 4), 使f '(ξ3)=0. 显然ξ1、ξ2、ξ 3都是方程f '(x )=0的根. 注意到方程f '(x )=0是三次方程, 它至多能有三个实根, 现已发现它的三个实根, 故它们也就是方程f '(x )=0的全部根.6. 证明恒等式: 2arccos arcsin π=+x x (-1≤x ≤1).证明 设f (x )= arcsin x +arccos x . 因为 01111)(22≡---='x x x f , 所以f (x )≡C , 其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f , 即2arccos arcsin π=+x x .7. 若方程a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x =0有一个正根x 0, 证明方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0必有一个小于x 0的正根.证明 设F (x )=a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0, x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点ξ∈(0, x 0), 使F '(ξ)=0, 即方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.8. 若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明:在(x 1, x 3)内至少有一点ξ, 使得f ''(ξ)=0.证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点ξ1∈(x 1, x 2), 使f '(ξ1)=0. 同理存在一点ξ2∈(x 2, x 3), 使f '(ξ2)=0. 又由于f '(x )在[ξ1, ξ2]上连续, 在(ξ1, ξ2)内可导, 且f '(ξ1)=f '(ξ2)=0, 根据罗尔定理, 至少存在一点ξ ∈(ξ1, ξ2)⊂(x 1, x 3), 使f ''(ξ )=0. 9. 设a >b >0, n >1, 证明: nb n -1(a -b )<a n -b n <na n -1(a -b ) .证明 设f (x )=x n , 则f (x )在[b , a ]上连续, 在(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即a n -b n =n ξ n -1(a -b ). 因为 nb n -1(a -b )<n ξ n -1(a -b )< na n -1(a -b ), 所以 nb n -1(a -b )<a n -b n < na n -1(a -b ) . 10. 设a >b >0, 证明: bb a b a a b a -<<-ln .证明 设f (x )=ln x , 则f (x )在区间[b , a ]上连续, 在区间(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即)(1ln ln b a b a -=-ξ.因为b <ξ<a , 所以)(1ln ln )(1b a b b a b a a -<-<-, 即b b a b a a b a -<<-ln .11. 证明下列不等式: (1)|arctan a -arctan b |≤|a -b |; (2)当x >1时, e x >e ⋅x .证明 (1)设f (x )=arctan x , 则f (x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使f (b )-f (a )=f '(ξ)(b -a ), 即)(11arctan arctan 2a b a b -+=-ξ,所以||||11|arctan arctan |2a b a b a b -≤-+=-ξ, 即|arctan a -arctan b |≤|a -b |.(2)设f (x )=e x , 则f (x )在区间[1, x ]上连续, 在区间(1, x )内可导, 由拉格朗日中值定理, 存在ξ∈(1, x ), 使f (x )-f (1)=f '(ξ)(x -1), 即 e x -e =e ξ (x -1). 因为ξ >1, 所以e x -e =e ξ (x -1)>e (x -1), 即e x >e ⋅x . 12. 证明方程x 5+x -1=0只有一个正根.证明 设f (x )=x 5+x -1, 则f (x )是[0, +∞)内的连续函数.因为f (0)=-1, f (1)=1, f (0)f (1)<0, 所以函数在(0, 1)内至少有一个零点, 即x 5+x -1=0至少有一个正根.假如方程至少有两个正根, 则由罗尔定理, f '(x )存在零点, 但f '(x )=5x 4+1≠0, 矛盾. 这说明方程只能有一个正根.13. 设f (x )、g (x )在[a , b ]上连续, 在(a , b )内可导, 证明在(a , b )内有一点ξ, 使)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.解 设)()()()()(x g a g x f a f x =ϕ, 则ϕ(x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使 ϕ(b )-ϕ(a )=ϕ'(ξ)(b -a ), 即⎥⎦⎤⎢⎣⎡''+''-=-)()()()()(])([)(])([)()()()()()()()()(ξξξξg a g f a f g a g f a f a b a g a g a f a f b g a g b f a f . 因此)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.14. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有 0)()()()()(2222≡-=-'='xx x x ee xf e x f e e x f e x f x ϕ, 所以在(-∞, +∞)内ϕ(x )为常数.因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x .15. 设函数y =f (x )在x =0的某邻域内具有n 阶导数, 且f (0)=f '(0)= ⋅ ⋅ ⋅ =f(n -1)(0)=0, 试用柯西中值定理证明:!)()()(n x f xx f n n θ= (0<θ<1).证明 根据柯西中值定理111)(0)0()()(-'=--=n n n f x f x f x x f ξξ(ξ1介于0与x 之间),2221111111)1()(0)0()()(-----''=⋅-'-'='n n n n n n f n n f f n f ξξξξξξ(ξ2介于0与ξ1之间), 3332222222)2)(1()(0)1()1()0()()1()(------'''=⋅---''-''=-''n n n n n n n f n n n n f f n n f ξξξξξξ(ξ3介于0与ξ2之间),依次下去可得!)(02 )1(2 )1()0()(2 )1()()(1)1(1)1(11)1(n f n n n n f f n n f n n n n n n n n n ξξξξξ=⋅⋅⋅⋅--⋅⋅⋅⋅--=⋅⋅⋅⋅--------(ξn 介于0与ξn -1之间),所以!)()()(n f xx f n n n ξ=.由于ξn 可以表示为ξn =θ x (0<θ<1), 所以!)()()(n x f xx f n n θ= (0<θ<1).习题3-21. 用洛必达法则求下列极限:(1)xx x )1ln(lim 0+→;(2)xe e xx x sin lim 0-→-;(3)ax a x a x --→sin sin lim ;(4)xx x 5tan 3sin lim π→;(5)22)2(sin ln lim x x x -→ππ;(6)n n m m a x ax ax --→lim ;(7)xx x 2tan ln 7tan ln lim 0+→;(8)xx x 3tan tan lim 2π→;(9)x arc x x cot )11ln(lim++∞→; (10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→;(12)2120lim x x ex →;(13))1112(lim 21---→x x x ;(14)x x x a )1(lim +∞→;(15)x x x sin 0lim +→;(16)x x xtan 0)1(lim +→. 解 (1)111lim 111lim )1ln(lim000=+=+=+→→→x x xx x x x . (2)2cos lim sin lim00=+=--→-→xe e x e e x x x x x x .(3)a x ax a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x x x x x πππππ. (6)n m n m n m a x n n m m a x a n m namx nx mx a x a x -----→→===--1111lim lim .(7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x177s e c 22s e c l i m 277t a n 2t a n l i m 272200=⋅⋅==+→+→x x x x x x . (8)x x x x x x x x x 2222222cos 3cos lim 3133sec sec lim 3tan tan lim πππ→→→=⋅= )s i n (c o s 23)3s i n (3c o s 2lim 312x x x x x -⋅-=→πxx x c o s 3c o s l i m2π→-= 3s i n3s i n 3l i m2=---=→x x x π. (9)22221lim 11)1(111lim cot arc )11ln(lim xx x xx x x x x x x ++=+--⋅+=++∞→+∞→+∞→122lim 212lim ==+=+∞→+∞→x x x x .(10)x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→1s i n lim )sin (cos 22lim00==--=→→x x x x x x x . (注: cos x ⋅ln(1+x 2)~x 2) (11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x .(12)+∞====+∞→+∞→→→1lim lim 1limlim 21012022tt t t x x x x e t e x e ex (注: 当x →0时, +∞→=21xt . (13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (14)因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+, 而 221)(11lim 1)1ln(lim )1(ln(lim xx a x ax x a x a x x x x --⋅+=+=+∞→∞→∞→a a a x ax x x ==+=∞→∞→1lim lim ,所以 a x ax x x x e e xa ==++∞→∞→)1l n (l i m )1(l i m. .(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而 x x x x x x x x x x c o tc s c 1lim csc ln lim ln sin lim 000⋅-==+→+→+→c o s s i n l i m 20=-=+→xx x x ,所以 1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=, 而 xx x x x x x x x 2000c s c 1limcot ln lim ln tan lim -==+→+→+→ 0s i n l i m 20=-=+→xx x ,所以 1l i m )1(l i m 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限x x x x sin lim +∞→存在, 但不能用洛必达法则得出.解 1)s i n 1(l i m s i n l i m =+=+∞→∞→x x x x x x x , 极限x x x x sin lim +∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx x x x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则. 3. 验证极限xx x x sin 1sin lim20→存在, 但不能用洛必达法则得出. 解 0011sin sin lim sin 1sin lim020=⋅=⋅=→→xx x x x x x x x , 极限x x x x sin 1sin lim 20→是存在的. 但xx x x x x x x x cos 1cos 1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则. 4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0 0])1([)(2111x e x ex x f x x 在点x =0处的连续性. 解 21)0(-=e f ,)0(lim)(lim 21210f e e x f x x ===---→-→,因为]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f ,而 200)1l n (l i m]1)1l n (1[1l i m x xx x x x x x -+=-++→+→ 21)1(21lim 2111lim 00-=+-=-+=+→+→x x x x x ,所以]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f)0(21f e ==-.因此f (x )在点x =0处连续. 习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f =-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4.2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f '''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+= =1-9x +30x 3-45x 3+30x 4-9x 5+x 6.3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为24)4(==f , 4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f ,328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以 4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ 4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1). 4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ ,nn nn x n x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--;kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1),所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+= ])2[()2(2)1( )2(231)2(221)2(212ln 13322n n n n x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-. 5. 求函数x x f 1)(=按(x +1)的幂展开的带有拉格朗日型余项的n 阶泰勒公式.解 因为f (x )=x -1, f '(x )=(-1)x -2, f ''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , 1)1()(!)1()( )2)(1()(++--=-⋅⋅⋅--=n n n n xn xn x f;!)1(!)1()1(1)(k k fk k k -=--=-+(k =1, 2, ⋅ ⋅ ⋅, n ),所以 )1(!3)1()1(!2)1()1)(1()1(132⋅⋅⋅++-'''++-''++-'+-=x f x f x f f x 1)1()()1()!1()()1(!)1(++++++-+n n nn x n f x n f ξ 12132)1()]1(1[)1(])1( )1()1()1(1[++++++--+++⋅⋅⋅+++++++-=n n n nx x x x x x θ (0<θ<1).6. 求函数f (x )=tan x 的带有拉格朗日型余项的3阶麦克劳林公式. 解 因为 f '(x )=sec 2x ,f ''(x )=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x ,f '''(x )=4sec x ⋅sec x ⋅tan 2x +2sec 4x =4sec 2x ⋅tan 2x +2sec 4x ,f (4)(x )=8sec 2x ⋅tan 3x +8sec 4x ⋅tan x +8sec 4x ⋅tan x xx x 52cos )2(sin sin 8+=;f (0)=0, f '(0)=1, f ''(0)=0, f '''(0)=2,所以 4523)(c o s 3]2)()[s i n s i n (31t a n x x x x x x x θθθ+++=(0<θ<1). 7. 求函数f (x )=xe x 的带有佩亚诺型余项的n 阶麦克劳林公式. 解 因为 f '(x )=e x +xe x ,f ''(x )=e x +e x +xe x =2e x +xe x , f '''(x )=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅, f (n )(x )=ne x +xe x ;f (k )(0)=k (k =1, 2, ⋅ ⋅ ⋅, n ),所以 )(!)0( !3)0(!2)0()0()0()(32n n n xx o x n f x f x f x f f xe ++⋅⋅⋅⋅+'''+''+'+= )()!1(1 !2132n n x o x n x x x +-⋅⋅⋅+++=.8. 验证当210≤≤x 时, 按公式62132x x x e x +++≈计算e x 的近似值时, 所产生的误差小于0.01, 并求e 的近似值, 使误差小于0.01.解 因为公式62132xx x e x+++≈右端为e x 的三阶麦克劳林公式, 其余项为43!4)(x e x R ξ=,所以当210≤≤x 时,按公式62132x x x e x+++≈计算e x 的误差01.00045.0)21(!43|!4||)(|42143<≈≤=x e x R ξ.645.1)21(61)21(212113221≈⋅+⋅++≈=e e .9. 应用三阶泰勒公式求下列各数的近似值, 并估计误差: (1)330; (2)sin18︒.解 (1)设3)(x x f =, 则f (x )在x 0=27点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(-⋅-⋅+-⋅+==--x x x x f4311338)27)(8180(!41)27)(272710(!31--⋅+-⋅⋅+--x x ξ(ξ介于27与x 之间).于是33823532333)272710(!313)2792(!21327312730⋅⋅⋅+⋅⋅-⋅+⋅⋅+≈---10724.3)3531311(31063≈+-+≈, 其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|---⨯=⋅=⋅⋅⋅<⋅-⋅=ξR .(2) 已知43!4s i n !31s i nx x x x ξ+-=(ξ介于0与x 之间), 所以 sin 18︒3090.0)10(!311010sin 3≈-≈=πππ,其误差为44431003.2)10(!46sin |)10(!4sin ||)10(|-⨯=<=πππξπR . 10. 利用泰勒公式求下列极限: (1))23(lim 434323x x x x x --++∞→;(2))]1ln([cos lim222x x x e x x x -+--→;(3)2220sin )(cos 1211lim 2x e x x x x x -+-+→. 解 (1)tt t xx x x x x x t x x 430434343232131lim 12131lim)23(lim --+=--+=--++→+∞→+∞→.因为)(1313t o t t ++=+,)(211214t o t t +-=-, 所以23])(23[lim )](211[)](1[lim)23(lim 00434323=+=+--++=--++→+→+∞→t t o t t o t t o t x x x x t t x . (2)])1ln(1[)](41!21211[)](!41!211[lim)]1ln([cos lim1344244202202x x xx x xx o x x x o x x x x x e x -++⋅+--++-=-+-→-→ 010)1l n (1)(121lim 11340=+=-++-=-→ex x x o x xx .(3)2442442442202220))](!211())(!41!211[()](!43!211[211lim sin )(cos 1211lim 2xx o x x x o x x x o x x x x e x x x x x x +++-++-+-+-+=-+-+→→ 12123!43)(241123)(!43lim )(241123)(!43lim 2424404264440-=-=+--+=⋅+--+=→→x x o x x x o x o x x x x o x x x . 习题3-41. 判定函数f (x )=arctan x -x 单调性.解 因为011111)(22≤+-=-+='xx x f , 且仅当x =0时等号成立, 所以f (x )在(-∞,+∞)内单调减少.2. 判定函数f (x )=x +cos x (0≤x ≤2π)的单调性.解 因为f '(x )=1-sin x ≥0, 所以f (x )=x +cos x 在[0, 2π]上单调增加. 3. 确定下列函数的单调区间: (1) y =2x 3-6x 2-18x -7; (2)xx y 82+=(x >0);(3)x x x y 6941023+-=;(4))1ln(2x x y ++=; (5) y =(x -1)(x +1)3;(6))0())(2(32>--=a x a a x y ; (7) y =x n e -x (n >0, x ≥0); (8)y =x +|sin 2x |.解 (1) y '=6x 2-12x -18=6(x -3)(x +1)=0, 令y '=0得驻点x 1=-1, x 2=3. 列表得x (-∞, -1) -1 (-1, 3) 3 (3, +∞) y ' + 0 - 0 + y↗↘↗可见函数在(-∞, -1]和[3, +∞)内单调增加, 在[-1, 3]内单调减少.(2) 0)2)(2(28222=+-=-='x x x x y ,令y '=0得驻点x 1=2, x 2=-2(舍去).因为当x >2时, y >0; 当0<x <2时, y '<0, 所以函数在(0, 2]内单调减少, 在[2, +∞)内单调增加. (3)223)694()1)(12(60x x x x x y +----=', 令y '=0得驻点211=x , x 2=1, 不可导点为x =0. 列表得x (-∞, 0) 0 (0, 21) 21 (21, 1) 1 (1, +∞)y ' - 不存在 - 0 + 0 - y↘↘↗↘可见函数在(-∞, 0), ]21 ,0(, [1, +∞)内单调减少, 在]1 ,21[上单调增加.(4)因为011)1221(11222>+=++++='x x x x x y , 所以函数在(-∞, +∞)内单调增加.(5) y '=(x +1)3+3(x -1)(x +1)22)1)(21(4+-=x x . 因为当21<x 时, y '<0; 当21>x 时,y '>0, 所以函数在]21 ,(-∞内单调减少, 在) ,21[∞+内单调增加.(6)32)()2(3)32(x a a x a x y ----=', 驻点为321a x =, 不可导点为22a x =, x 3=a .列表得x )2 ,(a -∞2a )32 ,2(a a 32a ) ,32(a aa (a , +∞) y ' + 不存在 + 0 - 不存在 + y↗↗↘↗可见函数在)2 ,(a -∞, ]32 ,2(a a , (a , +∞)内单调增加, 在) ,32[a a 内单调减少.(7)y '=e -x x n -1(n -x ), 驻点为x =n . 因为当0<x <n 时, y '>0; 当x >n 时, y '<0, 所以函数在[0, n ]上单调增加, 在[n , +∞)内单调减少.(8)⎪⎩⎪⎨⎧+<<+-+≤≤+=πππππππk x k x x k x k x x y 2 2sin 2 2sin (k =0, ±1, ±2, ⋅ ⋅ ⋅),⎪⎩⎪⎨⎧+<<+-+≤≤+='πππππππk x k x k x k x y 2 2cos 212 2cos 21(k =0, ±1, ±2, ⋅ ⋅ ⋅).y '是以π为周期的函数, 在[0, π]内令y '=0, 得驻点21π=x , 652π=x , 不可导点为23π=x .列表得x )3 ,0(π3π )2,3(ππ 2π)65 ,2(ππ 65π ) ,65(ππ y ' + 0 - 不存在+ 0 - y↗↘↗↘根据函数在[0, π]上的单调性及y '在(-∞, +∞)的周期性可知函数在]32 ,2[πππ+k k 上单调增加, 在]22 ,32[ππππ++k k 上单调减少(k =0, ±1, ±2, ⋅ ⋅ ⋅).4. 证明下列不等式: (1)当x >0时, x x +>+1211;(2)当x >0时, 221)1ln(1x x x x +>+++; (3)当20π<<x 时, sin x +tan x >2x ;(4)当20π<<x 时, 331tan x x x +>;(5)当x >4时, 2x >x 2;证明 (1)设x x x f +-+=1211)(, 则f (x )在[0, +∞)内是连续的. 因为x x f +-='12121)(01211>+-+=xx , 所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01211>+-+x x , 也就是 x x +>+1211.(2)设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为0)1l n (1)11(11)1l n ()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x xx f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1l n (122>+-+++x x x x , 也就是 221)1l n (1x x x x +>+++.(3)设f (x )=sin x +tan x -2x , 则f (x )在)2,0[π内连续,f '(x )=cos x +sec 2x -2xx x x 22cos ]cos )1)[(cos 1(cos ---=.因为在)2,0(π内cos x -1<0, cos 2x -1<0, -cos x <0, 所以f '(x )>0, 从而f (x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即 sin x +tan x -2x >0, 也就是 sin x +tan x >2x .(4)设331tan )(x x x x f --=, 则f (x )在)2 ,0[π内连续,))(t a n (t a n t a n 1s e c )(2222x x x x x x x x x f +-=-=--='.因为当20π<<x 时, tan x >x , tan x +x >0, 所以f '(x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即031t a n 3>--x x x ,也就是 231t a n x x x +>.(5)设f (x )=x ln2-2ln x , 则f (x )在[4, +∞)内连续, 因为 0422ln 224ln 22ln )(=->-=-='e x x x f ,所以当x >4时, f '(x )>0, 即f (x )内单调增加.因此当x >4时, f (x )>f (4)=0, 即x ln2-2ln x >0, 也就是2x >x 2. 5. 讨论方程ln x =ax (其中a >0)有几个实根?解 设f (x )=ln x -ax . 则f (x )在(0, +∞)内连续, x ax a x x f -=-='11)(, 驻点为ax 1=.因为当a x 10<<时, f '(x )>0, 所以f (x )在)1 ,0(a 内单调增加; 当ax 1>时, f '(x )<0,所以f (x )在) ,1(∞+a内单调减少. 又因为当x →0及x →+∞时, f (x )→-∞, 所以如果011ln )1(>-=a a f , 即e a 1<, 则方程有且仅有两个实根; 如果011ln )1(<-=aa f , 即e a 1>, 则方程没有实根. 如果011ln )1(=-=a a f , 即e a 1=, 则方程仅有一个实根. 6. 单调函数的导函数是否必为单调函数?研究下面这个例子: f (x )=x +sin x .解 单调函数的导函数不一定为单调函数.例如f (x )=x +sin x 在(-∞,+∞)内是单调增加的, 但其导数不是单调函数. 事实上,f '(x )=1+cos x ≥0,这就明f (x )在(-∞, +∞)内是单调增加的. f ''(x )=-sin x 在(-∞, +∞)内不保持确定的符号, 故f '(x )在(-∞, +∞)内不是单调的.7. 判定下列曲线的凹凸性: (1) y =4x -x 2 ; (2) y =sh x ; (3)xy 11+=(x >0);(4) y =x arctan x ; 解 (1)y '=4-2x , y ''=-2,因为y ''<0, 所以曲线在(-∞, +∞)内是凸的. (2)y '=ch x , y ''=sh x . 令y ''=0, 得x =0.因为当x <0时, y ''=sh x <0; 当x >0时, y ''=sh x >0, 所以曲线在(-∞, 0]内是凸的, 在[0, +∞)内是凹的.(3)21xy -=', 32x y =''.因为当x >0时, y ''>0, 所以曲线在(0, +∞)内是凹的.(4)21arctan xx x y ++=',22)1(2x y +=''. 因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.8. 求下列函数图形的拐点及凹或凸的区间: (1).y =x 3-5x 2+3x +5 ; (2) y =xe -x ; (3) y =(x +1)4+e x ; (4) y =ln(x 2+1); (5) y =e arctan x ; (6) y =x 4(12ln x -7),解 (1)y '=3x 2-10x +3, y ''=6x -10. 令y ''=0, 得35=x .因为当35<x 时, y ''<0; 当35>x 时, y ''>0, 所以曲线在]35 ,(-∞内是凸的, 在) ,35[∞+内是凹的, 拐点为)2720 ,35(. (2)y '=e -x -xe -x , y ''=-e -x -e -x +xe -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2).(3)y '=4(x +1)3+e x , y ''=12(x +1)2+e x .因为在(-∞, +∞)内, y ''>0, 所以曲线y =(x +1)4+e x 的在(-∞, +∞)内是凹的, 无拐点.(4)122+='x x y , 22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1. 列表得 可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).(5)2arctan 11x e y x+⋅=',)21(12arctan x x e y x -+=''. 令y ''=0得, 21=x . 因为当21<x 时, y ''>0; 当21>x 时, y ''<0, 所以曲线y =e arctg x 在]21 ,(-∞内是凹的,在) ,21[∞+内是凸的, 拐点是) ,21(21arctane. (6) y '=4x 3(12ln x -7)+12x 3, y ''=144x 2⋅ln x . 令y ''=0, 得x =1.因为当0<x <1时, y ''<0; 当x >1时, y ''>0, 所以曲线在(0, 1]内是凸的, 在[1, +∞)内是凹的, 拐点为(1, -7).9. 利用函数图形的凹凸性, 证明下列不等式:(1) nn n y x y x )2()(21+>+(x >0, y >0, x ≠y , n >1); (2))(22y x e e e yx y x ≠>++;(3)2ln)(ln ln yx y x y y x x ++>+ (x >0, y >0, x ≠y ). 证明 (1)设f (t )=t n , 则f '(t )=nt n -1, f ''(t )=n (n -1)t n -2. 因为当t >0时, f ''(t )>0, 所以曲线f (t )=t n 在区间(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+, x (-∞, -1) -1 (-1, 1) 1 (1, +∞) y '' - 0 + 0 - y⋂ln2 拐点⋃ln2 拐点⋂即 nn n y x y x )2()(21+>+. (2)设f (t )=e t , 则f '(t )=e t , f ''(t )=e t . 因为f ''(t )>0, 所以曲线f (t )=e t 在(-∞, +∞)内是凹的. 由定义, 对任意的x , y ∈(-∞, +∞), x ≠y 有)2()]()([21yx f y f x f +>+, 即)(22y x e e e yx y x ≠>++.(3)设f (t )=t ln t , 则 f '(t )=ln t +1, tt f 1)(=''.因为当t >0时, f ''(t )>0, 所以函数f (t )=t ln t 的图形在(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+, 即 2ln )(ln ln yx y x y y x x ++>+.10. 试证明曲线112+-=x x y 有三个拐点位于同一直线上.证明 222)1(12+++-='x x x y , 323223)1()]32()][32()[1(2)1(2662++---+=++--=''x x x x x x x x y . 令y ''=0, 得x 1=-1, 322-=x , 323+=x . 例表得 x (-∞. -1) -1 )32 ,1(-- 32- )32 ,32(+-32+ ) ,32(∞++y ' - 0 + 0- 0+ y⋂-1⋃)32(431--⋂)32(431++ ⋃可见拐点为(-1, -1), ))32(431 ,32(---, ))32(431 ,32(+++. 因为41)1(32)1()32(431=-------, 41)1(32)1()32(431=--+--++,所以这三个拐点在一条直线上.11. 问a 、b 为何值时, 点(1, 3)为曲线y =ax 3+bx 2的拐点?解 y '=3ax 2+2bx , y ''=6ax +2b . 要使(1, 3)成为曲线y =ax 3+bx 2的拐点, 必须y (1)=3且y ''(1)=0, 即a +b =3且6a +2b =0, 解此方程组得23-=a , 29=b .12. 试决定曲线y =ax 3+bx 2+cx +d 中的a 、b 、c 、d , 使得x =-2处曲线有水平切线, (1, -10)为拐点, 且点(-2, 44)在曲线上. 解 y '=3ax 2+2bx +c , y ''=6ax +2b . 依条件有⎪⎩⎪⎨⎧=''=-'-==-0)1(0)2(10)1(44)2(y y y y , 即⎪⎩⎪⎨⎧=+=+--=+++=+-+-02604121044248b a c b a d c b a d c b a .解之得a =1, b =-3, c =-24, d =16.13. 试决定y =k (x 2-3)2中k 的值, 使曲线的拐点处的法线通过原点. 解y '=4kx 3-12kx , y ''=12k (x -1)(x +1). 令y ''=0, 得x 1=-1, x 2=1.因为在x 1=-1的两侧y ''是异号的, 又当x =-1时y =4k , 所以点(-1, 4k )是拐点. 因为y '(-1)=8k , 所以过拐点(-1, 4k )的法线方程为)1(814+-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即kk 814-=-, 82±=k .同理, 因为在x 1=1的两侧y ''是异号的, 又当x =1时y =4k , 所以点(1, 4k )也是拐点.因为y '(1)=-8k , 所以过拐点(-1, 4k )的法线方程为)1(814-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即kk 814-=-, 82±=k .因此当82±=k 时, 该曲线的拐点处的法线通过原点.14. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数, 如果f ''(x 0)=0, 而f '''(x 0)≠0, 试问 (x 0, f (x 0))是否为拐点?为什么?解 不妨设f '''(x 0)>0. 由f '''(x )的连续性, 存在x 0的某一邻域(x 0-δ, x 0+δ), 在此邻域内有f '''(x )>0. 由拉格朗日中值定理, 有f ''(x )-f ''(x 0)=f '''(ξ)(x -x 0) (ξ介于x 0与x 之间), 即 f ''(x )=f '''(ξ)(x -x 0).因为当x 0-δ<x <x 0时, f ''(x )<0; 当x 0<x <x 0+δ 时, f ''(x )>0, 所以(x 0, f (x 0))是拐点.习题3-51. 求函数的极值: (1) y =2x 3-6x 2-18x +7; (2) y =x -ln(1+x ) ; (3) y =-x 4+2x 2 ; (4)x x y -+=1; (5)25431xx y ++=;(6)144322++++=x x x x y ;(7) y =e x cos x ;(8)xx y 1=;(9)31)1(23+-=x y ;(10) y =x +tan x .解 (1)函数的定义为(-∞, +∞), y '=6x 2-12x -18=6(x 2-2x -3)=6(x -3)(x +1), 驻点为x 1=-1, x 2=3. 列表x (-∞, -1) -1 (-1, 3) 3 (3, +∞) y ' + 0 - 0 + y↗17极大值↘-47极小值↗可见函数在x =-1处取得极大值17, 在x =3处取得极小值-47. (2)函数的定义为(-1, +∞), xxx y +=+-='1111, 驻点为x =0. 因为当-1<x <0时, y '<0; 当x >0时, y '>0, 所以函数在x =0处取得极小值, 极小值为y (0)=0. (3)函数的定义为(-∞, +∞),y '=-4x 3+4x =-4x (x 2-1), y ''=-12x 2+4, 令y '=0, 得x 1=0, x 2=-1, x 3=1.因为y ''(0)=4>0, y ''(-1)=-8<0, y ''(1)=-8<0, 所以y (0)=0是函数的极小值, y (-1)=1和y (1)=1是函数的极大值.(4)函数的定义域为(-∞, 1], )112(1243121121211+---=---=--='x x x xx xy ,令y '=0, 得驻点43=x .因为当43<x 时, y '>0; 当143<<x 时, y '<0, 所以45)1(=y 为函数的极大值.(5)函数的定义为(-∞, +∞), 32)54()512(5x x y +--=', 驻点为512=x . 因为当512<x 时, y '>0; 当512>x 时, y '<0, 所以函数在512=x 处取得极大值, 极大值为10205)512(=y . (6)函数的定义为(-∞, +∞), 22)1()2(+++-='x x x x y , 驻点为x 1=0, x 2=-2.列表x (-∞, -2) -2(-2, 0) 0 (0, +∞) y ' - 0+ 0 - y↘38极小值 ↗4极大值↘可见函数在x =-2处取得极小值38, 在x =0处取得极大值4.(7)函数的定义域为(-∞, +∞). y '=e x (cos x -sin x ), y ''=-e x sin x .令y '=0, 得驻点ππk x 24+=, ππ)1(24++=k x , (k =0, ±1, ±2, ⋅ ⋅ ⋅).因为0)24(<+''ππk y , 所以22)24(24⋅=++ππππk e k y 是函数的极大值.因为y ''0])1(24[>++ππk , 所以22])1(24[)1(24⋅-=++++ππππk e k y 是函数的极小值. (8)函数xx y 1=的定义域为(0, +∞),)ln 1(121x x x y x-⋅='.令y '=0, 得驻点x =e .因为当x <e 时, y '>0; 当x >e 时, y '<0, 所以ee e y 1)(=为函数f (x )的极大值.(9)函数的定义域为(-∞, +∞), 3/2)1(132+-='x y , 因为y '<0, 所以函数在(-∞, +∞)是单调减少的, 无极值.(10)函数y =x +tg x 的定义域为ππk x +≠2(k =0, ±1, ±2, ⋅ ⋅ ⋅). 因为y '=1+sec 2x >0, 所以函数f (x )无极值.2. 试证明: 如果函数y =ax 3+bx 2+cx +d 满足条件b 2 -3ac <0, 那么这函数没有极值 . 证明y '=3a x 2+2b x +c . 由b 2 -3ac <0, 知a ≠0. 于是配方得到 y '=3a x 2+2b x +c ab ac a b x a a c x a b x a 33)3(3)332(32222-++=++=,因3ac -b 2>0, 所以当a >0时, y '>0; 当a <0时, y '<0. 因此y =ax 3+bx 2+cx +d 是单调函数, 没有极值.3. 试问a 为何值时, 函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求此极值.解 f '(x )=a cos x +cos 3x , f ''(x )=-a sin x -3 sin x . 要使函数f (x )在3π=x 处取得极值, 必有0)3(='πf , 即0121=-⋅a , a =2 . 当a =2时, 0232)3(<⋅-=''πf . 因此, 当a =2时, 函数f (x )在3π=x 处取得极值, 而且取得极大值, 极大值为3)23(=f . 4. 求下列函数的最大值、最小值:(1) y =2x 3-3x 2 , -1≤x ≤4; (2) y =x 4-8x 2+2, -1≤x ≤3 ; (3)x x y -+=1, -5≤x ≤1.解 (1)y '=6x 2-6x =6x (x -1), 令y '=0, 得x 1=0, x 2=1. 计算函数值得y (-1)=-5, y (0)=0, y (1)=-1, y (4)=80,经比较得出函数的最小值为y (-1)=-5, 最大值为y (4)=80.(2)y '=4x 3-16x =4x (x 2-4), 令y '=0, 得x 1=0, x 2=-2(舍去), x 3=2. 计算函数值得 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11,经比较得出函数的最小值为y (2)=-14, 最大值为y (3)=11.(3)xy --='1211, 令y '=0, 得43=x . 计算函数值得65)5(+-=-y , 45)43(=y , y (1)=1,经比较得出函数的最小值为65)5(+-=-y , 最大值为45)43(=y .5. 问函数y =2x 3-6x 2-18x -7(1≤x ≤4)在何处取得最大值?并求出它的最大值. 解 y '=6x 2-12x -18=6(x -3)(x +1), 函数f (x )在1≤x ≤4内的驻点为x =3. 比较函数值:f (1)=-29, f (3)=-61, f (4)=-47,函数f (x )在x =1处取得最大值, 最大值为f (1)=-29. 6. 问函数xx y 542-=(x <0)在何处取得最小值? 解 2542x x y +=', 在(-∞, 0)的驻点为x =-3. 因为 31082x y -='', 0271082)3(>+=-''y , 所以函数在x =-3处取得极小值. 又因为驻点只有一个, 所以这个极小值也就是最小值, 即函数在x =-3处取得最小值, 最小值为27)3(=-y .7. 问函数12+=x x y (x ≥0)在何处取得最大值?解 222)1(1+-='x x y . 函数在(0, +∞)内的驻点为x =1.因为当0<x <1时, y '>0; 当x >1时y '<0, 所以函数在x =1处取得极大值. 又因为函数在 (0, +∞)内只有一个驻点, 所以此极大值也是函数的最大值, 即函数在x =1处取得最大值, 最大值为f (1)=21. 8. 某车间靠墙壁要盖一间长方形小屋, 现有存砖只够砌20cm 长的墙壁, 问应围成怎样的长方形才能使这间小屋的面积最大?解 设宽为x 长为y , 则2x +y =20, y =20-2x , 于是面积为 S = xy =x (20-2x )=20x -2x 2. S '=20-4x =4(10-x ), S ''=-4.。
高等数学第3版答案
高等数学第3版答案【篇一:中国人民大学出版社(第四版)高等数学一第3章课后习题详解】t>习题3-1★1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出满足定理的数值?。
(1)f(x)?2x2?x?3,[?1,1.5];(2)f(x)?x?x,[0,3]。
知识点:罗尔中值定理。
2解:(1)∵f(x)?2x?x?3在[?1, 1.5]上连续,在(?1,1.5)内可导,且f(?1)?f(1.5)?0,∴(2)∵∴1?(?1,1.5)即为所求。
4f(x)?x?x在[0,3]上连续,在(0,3)内可导,且f(0)?f(3)?0, f(x)?x?x 在[0,3]上满足罗尔定理的条件。
令y?4x3?5x2?x?2在区间[0,1]上的正确性。
f(1)?f(0)1?032知识点:拉格朗日中值定理。
可验证定理的正确性。
1]连续,在(0,1)内可导,∴y?4x?5x?x?2在解:∵y?f(x)?4x?5x?x?2在[0,1]上满足拉格朗日中值定理的条件。
又区间[0,f?(?)?32f(1)??2,f(0)??2,f?(x)?12x2?10x?1,∴要使f(1)?f(0)5?0,只要:??(0,1),1?012∴???1?012★3.已知函数。
解:要使的?。
f(2)?f(1)32?1★★4.试证明对函数总是位于区间的正中间。
证明:不妨设所讨论的区间为[a,b],则函数y?px2?qx?r在[a,b]上连续,在(a,b)内可导,从而有f(b)?f(a)(pb2?qb?r)?(pa2?qa?r)b?ab?ab?a,结论成立。
2★5.函数f(x)?x3与g(x)?x2?1在区间[1,2]上是否满足柯西定理的所有条件?如满足,请求出满知识点:柯西中值定理。
思路:根据柯西中值定理的条件和结论,求解方程便为所求。
解:∵f(x)?x3及g(x)?x2?1在[1,2]上连续,在(1,2)内可导,且在(1,2)内的每一点处有g?(x)?2x?0,所以满足柯西中值定理的条件。
高等数学课后题答案(西工大版)第3章
2 1− x ex + sin x
=
1 2
.
(2)
lim
ln(1 + x2 )
⎜⎛ 0 ⎟⎞
⎝0⎠
====
lim
2x 1+ x2
x→0 sec x − cos x
x→0 tan x sec x + sin x
=
lim
x→0
sin
x
⋅
1
2 +x
2
x(sec2 x
+
1)
2
= lim 1 + x 2 = 1
⎝π
⎠
⎝π
⎠
ln⎜⎛ 2 arctan x ⎟⎞
lim ln y = lim x ln⎜⎛ 2 arctan x ⎟⎞ = lim
x →+∞
x→+∞ ⎝ π
⎠ x→+∞
⎝π x −1
⎠
1 21
⎜⎛ 0 ⎟⎞
=⎝=0=⎠ = lim x →+∞
2 arctan x π 1 + x2 π
− x−2
=
−
lim
令
f
(x)
=
ex x
,
g(x)
=
1 x
,易验证
f
(x)
和
g(x)
在 [x1,
x2 ] 上满足柯西中值定理的条件,于
是存在 ξ ∈ (x1, x2 ) ,使得
f (x2 ) − f (x1 ) = f '(ξ ) , g(x2 ) − g(x1 ) g'(ξ )
e x2 − e x1
xex− ex
x2 x1 = x2
武忠祥《2016高等数学辅导讲义》第三章解答
25.【解】 应填
. 4
原式 lim
1 1 1 ( 1 )2 1 ( 2 )2 1 ( n 1)2 1 x 2 dx 0 n n n n n 4
26.【解】 应填
2 2 1 2 x 2 2 .原式 1 cos x d x sin d x . 0 0 2
7.【解】应选(B).
c 3 x ,故 c 90 3
3 n 2 1 n 1 1 , n n 1
an
3 2n
n n 1 0
(1 x ) d(1 x n )
e t 偶函数,则 e t dt 奇函数.
0
原式 2
π 2 0
π
cos 2 x sin 2 xdx 2 2 (1 sin 2 x ) sin 2 xdx
0
π . 8
21.【解】
原式
π π π π 2 4 cos x cos x d x | cos x | sin xdx 0 0 2 2 2
1 1 x x e sin nx d x cos nx 0 0 e d n 1
1
27.【解】 应填 0.
1 1 1 1 1 1 x e x cos nx e x cos nx d x 1 e cos n 0 e cos nx d x 0 n n n 0
1 n 2
1 (1 x ) n
n 3 n 1 n 2 0
3 n 2 3 n 1 2 故 lim nan lim 1 1 ( 1 e ) 1. n n n 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 微分中值定理习题课一、判断题(每题3分)1.函数)(x f 在0x 点处可导,且在0x 点处取得极值,那么0)(0='x f .(√)2.函数)(x f 在0x 点处可导,且0)(0='x f ,那么)(x f 在0x 点处取得极值.(× )3.若0x 是()f x 的极值点,则0x 是()f x 的驻点. ( ×)4.函数()x f 在区间()b a ,内的极大值一定大于极小值 . (×)5.若()0,(,)f x x a b ''>∈,则()f x '在(,)a b 内单调增加 .( √ )6.0()0f x '=且0()0f x ''<是函数()y f x =在0x 处取得极大值的充要条件.( ×)7.函数()arctan fx x x =的图形没有拐点. ( √ )8.因为函数y =0x =点不可导,所以()0,0点不是曲线y =.( × )二、选择题(每题3分)1.下列函数中,在闭区间[-1,1]上满足罗尔定理条件的是( D ). A .x e B .ln x C .x D .21x - 2.对于函数()211f x x=+,满足罗尔定理全部条件的区间是(D ).(A )[]2,0-;(B )[]0,1;(C );[]1,2-(D )[]2,2-3. 设函数()()()12sin f x x x x =--,则方程()0f x '=在 (0,)π内根的个数( D )(A) 0个 ; (B)至多1个; (C) 2个; (D)至少3个.4.已知函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的条件,使得该定理成立的ξ=( D ).(A )13(B 1(C )12(D 15.若函数)(),(x g x f 在区间),(b a 上的导函数相等,则该两函数在),(b a 上( C ). A.不相等 B .相等 C.至多相差一个常数 D.均为常数6.arcsin y x x =- 在定义域内( B ).A. 单调减函数B.单调增函数C. 有单调增区间也有单调减区间D. 没有单调性7. 函数2129223-+-=x x x y 的单调减少区间是 ( C ). (A )),(+∞-∞ (B ))1,(-∞(C ))2,1((D )),2(+∞8.设(),a b 内()0f x ''>,则曲线()y f x =在(),a b 内的曲线弧位于其上任一条切线的( A ). (A )上方;(B )下方;(C )左方;(D )右方.9.曲线32y ax bx =+的拐点为(1,3),则(A ). (A )3,30a b a b +=+= (B )0,30a b a b +=+= (C )2,320a b a b +=+=(D )0,340a b a b +<+=10. 设函数()y f x =在开区间(,)a b 内有()'0f x <且()"0f x <,则()y f x =在(,)a b 内( C )A.单调增加,图像是凹的B.单调减少,图像是凹的C.单调减少,图像是凸的D. 单调增加,图像是凸的11.函数2y ax c =+在区间()0,+∞内单调增加,则a 和c 应满足( C ). (A )0a <且0c =; (B )0a >且c 是任意实数; (C )0a <且0c ≠;(D )0a <且c 是任意实数.12. 函数23++=x x y 在其定义域内( B ) (A )单调减少 (B) 单调增加 (C) 图形是凹的(D) 图形是凸的13.若()()00,x f x 为连续曲线()y f x =上凹弧与凸弧的分界点,则( A ). (A )()()00,x f x 必为曲线的拐点; (B )()()00,x f x 必为曲线的驻点; (C )0x 点必为曲线的极值点;(D )0x x =必为曲线的拐点.14.函数()2ln f x x x =-的驻点是( B ). (A )1x =(B )12x =(C )(1,2)(D) 1(,1ln 2)2+15.函数2ln(1)y x x =-+的极值( D ). A .是1ln 2-- B .是0 C .是1ln 2- D .不存在16.设()[0,1]()f x x f x ''=在上有<0,则下述正确的是( A )( A ) (1)f '<)0()1(f f -<(0)f '; ( B ) (0)f '<)0()1(f f -<(1)f '; ( C ) (1)f '<(0)f '<)0()1(f f -; ( D ) (0)f '<(1)f '<)0()1(f f -17.设()f x 具有二阶连续的导数,且2()lim 3,ln(1)x f x x →=-+则(0)f 是()f x 的( A )(A )极大值; (B )极小值; (C )驻点; (D )拐点.18.设函数()y f x =在0x x =处有()0f x '=0,在1x x =处导数不存在,则( C ). A. 0x x =,1x x =一定都是极值点 B.只有0x x =可以是极值点C. 0x x =, 1x x =都可能不是极值点D. 0x x =,1x x =至少有一个是极值点三、 解答题(求极限每题4分其余每题 8分)1.求极限220000011sin sin 1cos 2(1)lim lim lim lim lim 0sin sin 22→→→→→---⎛⎫-===== ⎪⎝⎭x x x x x xx x x x x xx x x x x x (2)11lim 1ln x x x x →⎛⎫⎪⎝⎭--=()()11ln 1ln 11lim lim 11ln ln x x x x x x x x x x x→→--+-=--+11ln ln 11limlimln 1ln 22x x x x x x x x x →→+===+-+0(3)11lim 1→⎛⎫ ⎪⎝⎭--x x x e 01lim (1)→--=-xx x e x x e 0011lim lim 12xxx x x x x x x e e e xe e e xe →→-===-+++ (4)211ln(1)ln(1)lim ()limlimln(1)ln(1)x x x x x x x x xx x x→→→-+-+-==++0011111limlim lim 22(1)2(1)2x x x x x x x x x →→→-+====++ 20sin (5)lim tan →-x x x x x22sin 1cos limlimtan 3x x x x x x xx→→--==0sin 1lim66x x x→==22221(6)lim(1)→---xxx exx e2241lim→--=xx ex x22322211limlim42xxx x xexexx→→--==12=222322tan tan sec 1tan 1(7)limlimlimlimln(1)333→→→→---====+x x x x x x x xx x x x xxx1ln 1(8)lim cot →+∞⎛⎫+ ⎪⎝⎭x x arc x 1lim cot →+∞=x x arc x 222211limlim111x x x xx xx→+∞→+∞-+===+-+sin sin cos (9)limlimcos 1→→-==-x ax ax ax a x a2220021sec 77ln tan 7tan 2sec 77tan 7(10)lim lim lim 11ln tan 2tan 7sec 22sec 22tan 2+++→→→⋅⋅⋅===⋅⋅⋅x x x x xx x x x x x x x(11)lim arctan 2→+∞⎛⎫- ⎪⎝⎭x x x π22221arctan 12lim limlim1111→+∞→+∞→+∞--+====+-x x x x xxxxxπ2lim ln(arctan )2(12)lim arctan →+∞→+∞⎛⎫= ⎪⎝⎭x xx x x x eππ2lim ln(arctan )→+∞x x x π222211lnarctan lnln arctan arctan 1limlimlim 111→+∞→+∞→+∞+⋅+===-x x x x x x xxxxππ2222lim1x xxππ→+∞=-=-+22lim arctan -→+∞⎛⎫∴= ⎪⎝⎭xx x e ππ .()tan1(13)lim 2→-xx x π解:()()()11sinln 22limlim tanln 2costan2221lim 2x x x x x x xxx x eeππππ→→--→-==1122sinlim22x xx e eπππ→---⋅==tan 0(14)1lim +→⎛⎫⎪⎝⎭xx x 011lim tan lnlim ln++→→⋅⋅==x x x x xxe e2001110ln limlim1x x x xxxe ee++→→---====2.验证罗尔中值定理对函数32452y x x x =-+-在区间[]0,1上的正确性.解:()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,()()012f f ==-满足罗尔定理条件.(3分)令()2121010f x x x '=-+=,得()50,112x ±=∈,满足罗尔定理结论.3.试证明对函数2y px qx r =++应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明:在区间[],a b 上,()()()f b f a f b aξ-'=-代入:()()222pbqb r pa qa r p q b aξ++-++=+-解得:2a b ξ+=.4.证明方程531x x -=在()1,2之间有且仅有一个实根.证明:令()531f x x x =--,()11310f =--<, ()522610f =-->所以 ()0f x =在()1,2上至少一个根,又()4'53f x x =-,当()1,2x ∈时()'0f x >,所以单增,因此在()1,2上至多有一个根. ()0f x =在()1,2上有且仅有一个根.5. 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()0f a f b ==,证明:至少存在一个(,)a b ξ∈,使得()()0f f ξξ'+=. 提示:令()()xF x e f x =证明:令()()x F x e f x =,显然()F x 在[,]a b 上连续,在(,)a b 内可导,且()()()()xF x ef x f x ''=+(3分)由Larange 中值定理,则至少(,)a b ξ∈,使得()()()F b F a F b aξ-'=-又 ()()0f a f b ==∴()()0f f ξξ'+= 6.设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=.提示:令 ()()F x xf x =.证明:构造辅助函数()()F x xf x =, ()f x 在[0,]a 上连续,在(0,)a 内可导∴()F x 在[0,]a 上连续,在(0,)a 内可导,()()()F x f x xf x ''=+且(0)()0F F a ==由Rolle 定理,至少(0,)a ξ∃∈,有()0F ξ'= 即()()0f f ξξξ'+= 7.证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根证:令()()()()323,33311fx x x b f x x x x '=-+=-=+-()1,1x ∈-时,0,,f f '< 故()fx 在区间[]1,1-上至多有一个实根.8.证明:当1x >时,xe x e >⋅.证明: 令()xf x e x e =-⋅,显然()f x 在[1,]x 上满足Lagrange 中值定理的条件,由中值定理,至少存在一点(1,)x ξ∈,使得()(1)(1)()(f x f x f x e eξξ'-=-=-- 即()(1)0f x f >=又即xe x e >⋅9.证明:当0x >时,112x +>证:()()111022f x x f x '=+-=-=>()()00f x f >=,即有112x +>10.求证:1,(0,)>+∈+∞x e x x证明:令()1,,[0,)x f x e x x =--∈+∞当(0,)x ∈+∞时,()10x f x e '=->故在区间[0,)+∞上,()f x 单调递增从而当(0,)x ∈+∞时,()(0)0f x f >=即1x e x >+或者:证明:()221112!2xf ee x x x x x ξξ''=++=++>+……8分11. 当1>x 时,证明:13>-x.答案参看课本p148 例6 12.证明:当0x >时,ln(1).1x x x x<+<+答案参看课本P132 例1 13.设0,1a b n >>>,证明:11()()n n n n nb a b a b naa b ---<-<-.证明:令()nf x x =,显然()f x 在[,]b a 上满足lagrange 定理条件,故至少存在一点(,)b a ξ∈,使得()()()()f a f b f a b ξ'-=-即1()nnn a b n a b ξ--=-又由b a ξ<<及1(1)n n n ξ->的单增性,得11()()n n n n nba b a b naa b ---<-<-14.设0a b >>,证明:lna b b a b aa b--<<证明:令()ln f x x =,在区间[],b a 上连续,在区间(,)b a 内可导,有拉格朗日中值定理,至少存在一点(),b a ξ∈,使得1ln ln ()a b a b ξ-=-,又因为1110,abξ<<<因此,lna b a a b abb--<<.15. 证明恒等式()arcsin arccos ,112x x x π+=-≤≤.证:令()arcsin arccos f x x x =+则()fx 在[]1,1-上连续.在()1,1-内有:()0,f x f C '=-≡≡令0,,arcsin arccos 22x C x x ππ==+=在()1,1-内成立.再根据()f x 在[]1,1-上的连续性,可知上式在[]1,1-上成立.16.求函数2y x =-的极值点和单调区间.解:132(1)y x -'=-因此,2y x =-在定义域(,)-∞+∞内有不可导点10x =和驻点21x =列表17.求函数32535y x x x =-++的单调区间,拐点及凹或凸的区间.解:23103y x x '=-+,易得函数的单调递增区间为1(,)(3,)3-∞+∞ ,单调减区间1(,3)3.610y x ''=-,令0y ''=,得53x =.当53x -∞<<时,0y ''<,因此曲线在5(,]3-∞上是凸的;当53x <<+∞时,0y ''>,因此曲线在5[,)3+∞上是凹的,故520(,)327是拐点18.试确定,,a b c 的值,使曲线32y x ax bx c =-++在(1,1-)为一拐点,在0x =处有极值,并求曲线的凹凸区间.解:232y x ax b '=-+62y x a ''=-(1,1)-为拐点,则062a =-3a ∴=由0y '=,则2360x x b -+= , 代入0x =,则0b =.11,1a b c c -++=-=曲线为3231y x x =-+, 66y x ''=-. 凸区间为(,1)-∞-, 凹区间为(1,)+∞.19.求函数()7ln 124-=x x y 的单调区间,拐点及凹或凸的区间.解:34314(12ln 7)124(12ln 4)y x x x x x x'=-+⋅⋅=-,易得函数的单调递增区间为13(,)e +∞,单调减区间13(0,)e .()232112(12ln 4)412144ln 0y x x x x x x x''=-+⋅⋅=>,令0y ''=,得1x =.当01x <<时,0y ''<,因此曲线在(0,1]上是凸的;当1x <<+∞时,0y ''>,因此曲线在[1,)+∞上是凹的,故(1,7)-是拐点 20.求函数arctan x y e =的单调区间,拐点及凹或凸的区间.解:arctan 211x y e x'=⋅+>0,因此单调增区间是R ,arctan arctan arctan 2222221212(1)(1)(1)xxx x x y eee x x x ⎡⎤⎡⎤-''=+-=⎢⎥⎢⎥+++⎣⎦⎣⎦, 令0y ''=,得12x =.当12x -∞<<时,0y ''>,因此曲线在1(,]2-∞上是凹的;当12x <<+∞时,0y ''<,因此曲线在1[,)2+∞上是凸的,故1arctan21(,)2e是拐点21.求函数1234+-=x x y 的拐点和凹凸区间.解:3246y x x '=-2121212(1)y x x x x ''=-=- 令0y ''=,得10x =,21x = 列表 (4分)22.求函数32391=+-+y x x x 的极值.解:2'3693(1)(3)y x x x x =+-=-+''66y x =+ 令0'=y 得驻点:121,3x x ==-.当21x =时,''0,y >取得极小值,其值为4-. 当33x =-时,''0y <,取得极大值,其值为28.23.求函数23(1)1=-+y x 的极值.解: 226(1)y x x '=-22226(1)24(1)y x x x ''=-+-令0y '=,得1231,0,1x x x =-==(0)60y ''=>,故20x =是极小值点.(1)0y ''±=, 无法用第二充分条件进行判定.在11x =-的附近的左右两侧取值均有0y '<,故11x =-不是极值点. 在21x =的附近的左右两侧取值均有0y '>,故21x =不是极值点. 极小值(0)0y =24.求函数32(1)(23)=-+y x x 的极值点和单调区间.解:22323(1)(23)4(1)(23)(1)(23)(105)0y x x x x x x x '=-++-+=-++=所以,驻点11x =,232x =-,312x =-列表∴()f x 在32x =-处取得极大值3()02f -=()f x 在12x =-处取得极小值127()22f -=-单调递增区间31(,],[,)22-∞--+∞,单调递增区间31[,]22--25.试问a 为何值时,函数1()sin sin 23=+f x a x x 在3π处取得极值?它是极大值还是极小值?并求此极值.解:2()cos cos 23f x a x x '=+()f x 在3π处取得极值22121()coscos03333232f a a πππ'∴=+=⋅-⋅= 23a ∴=即 ()2()cos cos 23f x x x '=+()2()sin 2sin 23f x x x ''∴=--222()sin 2sin 203333322f πππ⎛⎛⎫''∴=--=-⋅+<⎪⎝⎭⎝⎭所以它是极大值,极大值为212()sinsin333332f πππ∴=+=26.求函数3223y x x =-在区间[]1,4上的最大值与最小值. 解:212660,0,1y x x x x '=-===(舍去0x =)()()11,480,f f =-=,故最大值为80,最小值为-1.27.、某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20m 长的墙壁.问应围成怎样的长方形才能使这间小屋的面积最大?解:设小屋长 x m ,宽 y m ,220,102x x y y +==-.2101022x x S x x ⎛⎫=-=- ⎪⎝⎭,100,10S x x '=-==故小屋长10米,宽5米时,面积最大.28.某厂每批生产产品x 单位的总费用为()5200C x x =+(元),得到的收入是()2100.01R x x x =-(元).问每批生产多少个单位产品时总利润()L x 最大?解:()()()22100.0152000.015200L x x x x xx =--+=-+-()0.0250,250L x x x '=-+==(单位)()0.020L x ''=-<,故250x =单位时总利润最大.。