高等数学(同济大学版)第三章练习(含答案)

合集下载

高等数学(同济大学版)第三章练习(含答案)

高等数学(同济大学版)第三章练习(含答案)

第三章 微分中值定理与导数的应用一、要求:1、罗尔定理,拉格朗日定理应用;2、洛必达法则;3、函数单调性、极值、最值、凹凸性、拐点的判断,函数图形的描绘;4、简单不等式证明;5、最值在实际问题中的应用。

二、练习1. 在区间 [ 1,1] 上满足罗尔定理条件的函数是 ().A.1 B.f ( x ) | x | C. f ( x) 1 x 2D. f ( x ) x22 x 1.f ( x)x 22. 函数 f ( x) arctan x 在 [ 0 ,1] 上满足拉格郎日中值定理的值是 ().A.4B.41C. 1D. 4.11 3.4设函数 f ( x ) ( x 1)( x2)( x 3),则方程 f ( x )0 有个零点,这些零点所在的范围是;.3. 设函数 f ( x ) ( x 1)( x 2)( x 3),则方程 f ( x )0 有个零点,这些零点所在的范围是.4. 函数 f ( x ) ln xx2在(0,) 内的零点的个数为.e5. 曲线6. 函数yxe x 的拐点 ,凹区间,凸区间.yln x1x 2的单调区间.7. 曲线 f ( x) e x的渐近线为.x 18. 计算:5 x 4x11(12(2) lim (cos x )(1) limx 1xx) (3) limtan 2 xx1xe 1x 0arctan x x(1 x 2 )1 / 31 ;1( 4) lim ;(5) lim(6) lim (cscx ) ;x 0x ln(1 2 x 2 )xcosx1x 0x( 7) lim x 3 (sin 11 sin2 ) ;( ) lim (tanx )2 x;( 9) limx;exx2x8x ln xx29. 证明 2 arctanxarcsin2 xx1 .21 x10. 证明方程x5x10 在区间( 1, 0)内有且只有一个实根.11. 证明多项式f x3 3 x a 在0,1上不可能有两个零点 .x12. 证明:当0x时, x sin x 22x13.证明:当x0时,1x2arctan x xx14. 设 f x32bx在 x 1 处有极值-2,试确定系数 a , b ,并求x axy f x 的所有极值点与拐点.15. 求内接于椭圆x2y2221 而面积最大的矩形的各边之长.a b16.由直线 y0,x8及抛物线 y x2围成一个曲边三角形 ,在曲边 y x2上求一点 , 使曲线在该点处的切线与直线y0 及 x 8 所围成的三角形面积最大.17.描绘 (1)y 3 x2,(2) y21的图形 .2( x1) ( x 1) 2( x 1)18.要做一个容积为 2 的密闭圆柱形罐头筒,问半径和筒高如何确定才能使所用材料最省?19.要造一个长方体无盖蓄水池,其容积为500 立方米,底面为正方形。

同济大学《高等数学》(第四版)第三章习题课

同济大学《高等数学》(第四版)第三章习题课
一 点 的 个 , 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 任 点 ,除 点 0外 f (x) < f (x0 )均 立就 何 x 了 x , 成 , 称 f (x0)是 数 (x)的 个 大 ; 函 f 一 极 值 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 何 x 了 x , 任 点 ,除 点 0外 f (x) > f (x0 )均 立就 成 , 称 f (x0)是 数 (x)的 个 小 . 函 f 一 极 值
上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第三章 微分中值定理与导数的应用【圣才出

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第三章 微分中值定理与导数的应用【圣才出

有且仅有三个实根,它们分别位于区间(1,2),(2,3),(3,4)
3 / 91
圣才电子书

十万种考研考证电子书、题库视频学习平 台
6.证明恒等式: 证:取函数 f(x)=arcsinx+arccosx,x∈[-1,1].因
所以 f(x)≡C.取 x=0,得
.因此
7.若方程 正根 x=x0,证明方程

,所以
(2)取函数
,因为函数 f(t)在[1,x]上连续,在(1,x)内可导,则由
拉格朗日中值定理知,至少存在一点 ξ∈(1,x),使
6 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平



.又 1<ξ<x,所以 eξ>e,因此

ex>x·e.
12.证明方程 x5+x-1=0 只有一个正根. 证:取函数 f(x)=x5+x-1,f(x)在[0,1]上连续,
的正根. 证:取函
有一个 必有一个小于 x0

.f(x)在[0,x0]
上连续,在(0,x0)内可导,且 f(0)=f(x0)=0,由罗尔定理知至少存在一点
ξ∈(0,x0),使
,即方程
正根.
必有一个小于 x0 的
8.若函数 f(x)在(a,b)内具有二阶导数,且 f(x1)=f(x2)=f(x3),其中
4 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平


a<x1<x2<x3<b.证明:在(x1,x3)内至少有一点 ξ,使得

证:根据题意知函数 f(x)在[x1,x2],[x2,x3]上连续,在(x1,x2),(x2,x3)内可导

,所以由罗尔定理知至少存在点 ξ1∈(x1,x2),

同济大学《高等数学》第七版上、下册答案(详解),DOC

同济大学《高等数学》第七版上、下册答案(详解),DOC
(4)2 12 (7 z)2 32 52 (2 z)2
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.

大一上学期同济版高数第三章习题课xgPPT课件

大一上学期同济版高数第三章习题课xgPPT课件
微分中值定理的主要应用有: (1) 研究函数或导数的性态
(2) 证明恒等式或不等式
(3) 证明有关中值问题的结论 5
3. 有关中值问题的解题方法
利用逆向思维 , 设辅助函数 . 一般解题方法: (1) 证明含一个中值的等式或根的存在 , 多用罗尔定理,
可用原函数法找辅助函数 . (2) 若结论中涉及到含中值的两个不同函数 , 可考虑用
高等数学
第二十一讲
1
整体概述
概述一
点击此处输入
相关文本内容
பைடு நூலகம்
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
习题课
第三章
中值定理及导数的应用
一、 微分中值定理及其应用 二、 导数应用
3
一、 微分中值定理及其应用
1. 微分中值定理及其相互关系
罗尔定理
f(a)f(b) 拉格朗日中值定理
(n 1 1 )!f(n 1 )()x ( x0)n 1 4
2. 微分中值定理的主要应用 微分中值定理是揭示函数及其导数之间的内在联系
的公式。 这些公式对于利用某函数导数所具有的性质 去推断函数本身应具有的性质是极为重要的。
微分中值定理也构成微分学基本理论的重要内容。 有关中值定理的证明题和计算题是它的重要组成部分。
xa
这表明左端点不取最小值:
同样 f b0, f b x l b im fx x b fb 0
由极限的保号性定理知,必存在 b2,b 使
fxfb0 则有 fxfb,
xb
12
这表明右端点也不取最小值:
fx C 1[a,b]必有最小值,且必有极小值 f ,
a,b. 由费马定理可知,f 0 a ,b .

同济大学线性代数课后答案 第三章

同济大学线性代数课后答案 第三章

0 0
10⎟⎟⎠A⎜⎜⎝00
1 0
10⎟⎟⎠ = ⎜⎜⎝ 74
5 8
96⎟⎟⎠ ,
求 A.

⎜⎜⎝⎛100
1 0 0
100⎟⎟⎠⎞ 是初等矩阵 E(1, 2),
其逆矩阵就是其本身.
⎛1 0 1⎞ ⎜0 1 0⎟ 是初等矩阵 E(1, 2(1)), 其逆矩阵是 ⎜⎝0 0 1⎟⎠
⎛ 1 0 −1⎞
E(1, 2(−1))
⎜⎝0 0 0 1 4⎟⎠
⎛1 0 2 0 −2⎞
~
⎜ ⎜
0 0
1 −1 −1 00 1
−1⎟ 4⎟ (下一步: r2+r3. )
⎜ ⎝
0
0
0
0
0⎟⎠
~
⎜⎛
⎜ ⎜⎝
1 0 0 0
0 1 0 0
2 −1 0 0
0 0 1 0
−32⎟⎞
4 0
⎟ ⎟⎠
.
⎛0 1 0⎞ ⎛1 0 1⎞ ⎛1 2 3⎞
2.
设 ⎜⎜⎝ 10
0 0 0
0 0 3
0 1⎟
0 2
00⎟⎟⎠
~
⎜⎛
⎜ ⎜⎝
1 0 0 0
0 1 0 0
3 2 0 0
2 −1 0 0
70⎟⎞ 01⎟⎟⎠
,
0 7 −5 矩阵的秩为 3, 5 8 0 =70≠0 是一个最高阶非零子式.
32 0
10. 设 A、B 都是 m×n 矩阵, 证明 A~B 的充分必要条件是
R(A)=R(B). 证明 根据定理 3, 必要性是成立的.

⎜1 ⎜⎝ 1
−1 3
2 −4
−1⎟ 4⎟⎠

同济大学数学系《高等数学》第7版上册配套题库【课后习题(1-3章)】【圣才出品】

同济大学数学系《高等数学》第7版上册配套题库【课后习题(1-3章)】【圣才出品】

(4)
,故其定义域为(-2,2).
(5)x≥0,故其定义域为[0,+∞).
(6)
,故其定义域为{x|x∈R 且
,k∈Z}.
(7)
,故其定义域为[2,4].
(8)3-x≥0 且 x≠0,故其定义域为(-∞,0)∪(0,3].
(9)
,故其定义域为(-1,+∞).
(10)x≠0,故其定义域为(-∞,0)∪(0,+∞).
圣才电子书

十万种考研考证电子书、题库视频学习平台
第一章 函数与极限
习题 1-1 映射与函数 1.求下列函数的自然定义域:
解:(1)
,故其定义域为

(2)
,故其定义域为(-∞,-1)∪(-1,1)∪(1,+∞).
(3)x≠0 且
且|x|≤1,故其定义域为[-1,0)∪(0,1].
故 G(x)为偶函数. 设 f(x)为偶函数,g(x)为奇函数,则 f(-x)=f(x),g(-x)=-g(x).令 ,于是
故 H(x)为奇函数.
7.下列函数中哪些是偶函数,哪些是奇函数,哪些既非偶函数又非奇函数?
4 / 172
圣才电子书 十万种考研考证电子书、题库视频学习平台

3 / 172
圣才电子书 十万种考研考证电子书、题库视频学习平台

令 F(x)=f1(x)+f2(x),于是 F(-x)=f1(-x)+f2(-x)=f1(x)+f2(x)=F(x)
故 F(x)为偶函数. 设 g1(x),g2(x)均为奇函数,则 g1(-x)=-g1(x),g2(-x)=-g2(x).令 ,于是 G(-x)=g1(-x)+g2(-x)=-g1(x)-g2(x)=-G(x)
故 G(x)为奇函数. (2)设 f1(x),f2(x)均为偶函数,则 f1(-x)=f1(x),f2(-x)=f2(x).令 ,于是 F(-x)=f1(-x)·f2(-x)=f1(x)f2(x)=F(x)

同济大学数学习题及答案

同济大学数学习题及答案
x→a x→a x→a
⑵ 若 lim f ( x ) ⋅ g ( x ) 及 lim f (x ) 都存在,则 lim g ( x ) 也存在。
x→a x→a x→a
2. 求下列极限: ⑴ lim e ;
x → +∞ 1 x
⑵ lim e
x →0

100 x

⑶ lim−
x→0
1 1+ a
1 x
(a > 0) 。
sin αx (β ≠ 0) ; x → 0 sin β x
tan 5 x ; sin 3 x
⑵ lim 2 n sin
n→∞
x ( x 为不等于零的常数) ; 2n
⑶ lim
x→0
⑷ lim
x→0
x ; sin (sin x )
1 − cos 2 x ; x sin x
⑸ lim+ x cot x ;
⎧1 ⎪ x sin x, ⎪ ⑴ f ( x ) = ⎨k , ⎪ 1 ⎪ x sin + 1, x ⎩
x<0 x=0 x>0 0 ≤ x <1 ⎧2 x, ⑵ f (x ) = ⎨ 。 ⎩k − 3 x , 1 ≤ x < 2
3. 研究下列函数的连续性,并画出函数的图形。
⎧x2 , ⑴ f (x ) = ⎨ ⎩2 − x,
2
(
)
⑵ sin x ;

[ f (x )]y ( x ) ( f (x ) > 0) ;
4. 设 f ( x ) = e x , f [φ ( x )] = 1 − x ,且 φ ( x ) ≥ 0 ,求 φ ( x ) 并写出它的定义域。
⎧1, x < 1 ⎪ 5. 设 f ( x ) = ⎨0, x = 1 , g ( x ) = e 2 ,求 f [g ( x )] 和 g [ f ( x )] ,并作这两个函数的图形。 ⎪ ⎩− 1, x > 1 6. 收音机每台售价为 90 元,成本为 60 元,厂方为鼓励销售商大量采购,决定凡是订 购量超过 100 台以上的,每多订购一台,售价就降低 1 分,但最低价为每台 75 元, ⑴ 将每台的实际售价 P 表示为订购量 x 的函数; ⑵ 将厂方所获的利润 P 表示程订购量 x 的函数; ⑶ 某一商行订购了 1000 台,厂方可获利润多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 微分中值定理与导数的应用
一、要求:
1、罗尔定理,拉格朗日定理应用;
2、洛必达法则;
3、函数单调性、极值、最值、凹凸性、拐点的判断,函数图形的描绘;
4、简单不等式证明;
5、最值在实际问题中的应用。

二、练习
1. 在区间 [ 1,1] 上满足罗尔定理条件的函数是 (
).
A.
1 B.
f ( x ) | x | C. f ( x) 1 x 2
D. f ( x ) x
2
2 x 1
.
f ( x)
x 2
2. 函数 f ( x) arctan x 在 [ 0 ,1] 上满足拉格郎日中值定理的
值是 (
).
A.
4
B.
4
1
C. 1
D. 4
.
1
1 3.
4
设函数 f ( x ) ( x 1)( x
2)( x 3)
,则方程 f ( x )
0 有
个零点,这些零点
所在的范围是
;.
3. 设函数 f ( x ) ( x 1)( x 2)( x 3)
,则方程 f ( x )
0 有
个零点,这些零点所在
的范围是
.
4. 函数 f ( x ) ln x
x
2在(0,
) 内的零点的个数为
.
e
5. 曲线
6. 函数
y
xe x 的拐点 ,凹区间
,凸区间
.
y
ln x
1
x 2
的单调
区间
.
7. 曲线 f ( x) e x
的渐近线为
.
x 1
8. 计算:
5 x 4
x
1
1
(1
2
(2) lim (
cos x )
(1) lim
x 1
x
x
) (3) lim
tan 2 x
x
1
x
e 1
x 0
arctan x x
(1 x 2 )1 / 3
1 ;
1
( 4) lim ;
(5) lim
(6) lim (csc
x ) ;
x 0
x ln(1 2 x 2 )
x
cos
x
1
x 0
x
( 7) lim x 3 (sin 1
1 sin
2 ) ;( ) lim (tan
x )
2 x
;( 9) lim
x

e
x
x
2
x
8
x ln x
x
2
9. 证明 2 arctan
x
arcsin
2 x
x
1 .
2
1 x
10. 证明方程x5x10 在区间( 1, 0)内有且只有一个实根.
11. 证明多项式f x3 3 x a 在0,1上不可能有两个零点 .
x
12. 证明:当0x时, x sin x 2
2
x
13.证明:当x0时,1x
2arctan x x
x
14. 设 f x32bx在 x 1 处有极值-2,试确定系数 a , b ,并求
x ax
y f x 的所有极值点与拐点.
15. 求内接于椭圆x2
y
2
22
1 而面积最大的矩形的各边之长.
a b
16.由直线 y0,x8及抛物线 y x2围成一个曲边三角形 ,在曲边 y x2上求一点 , 使曲线在该点处的切线与直线y0 及 x 8 所围成的三角形面积最大.
17.描绘 (1)y 3 x2,(2) y21的图形 .
2( x1) ( x 1) 2
( x 1)
18.要做一个容积为 2 的密闭圆柱形罐头筒,问半径和筒高如何确定才能使所
用材料最省?
19.要造一个长方体无盖蓄水池,其容积为500 立方米,底面为正方形。

设底面与四壁所使用材料的单位造价相同,问底边和高为多少米时,才能使所用材料费最省?
20. 选做题:若函数 f ( x )有lim f ( x )0, lim f ( x )1,
x x x
lim[ f ( x)x] 2, lim
f ( x )
x x x
f ( x )0 ( x 2 ), 当 x (1 / 2, 2)
(1)函数 f ( x ) 的单调区间
0, lim f ( x),并且当 x(0 ,1)时 , f ( x ) 0 ,否则x 2
时, f ( x )0 ,否则 f ( x)0 ( x0), 则
(注明增减)是 _______.
(2)函数曲线的凹向和拐点是 _______ .
(3)当 x _______ 时,函数取得极大值_______ .
(4)函数的渐近线有 _______ .
(5) 设f (0 ) 5 / 4, f (1 / 2) 3 / 4 , f (1) 1 / 2, f ( 7 / 4) 0 , 试作出 y f ( x) 的描述性图形.。

相关文档
最新文档