华南理工模式识别期末考试总结self

合集下载

模式识别 总结

模式识别 总结
模式识别是确定一个样本的类别属性的过程,即把某一样本归属于多个类型中的某个类型。模式识别系统包括学习过程、分类器训练、模式采集、预处理、特征取选择以及分类器判决等步骤。在模式识别中,有多种方法被广泛应用,包括统计判决、句法结构、模糊判决、逻辑推理和神经网络。统计判决方法基于统计学的原理,通过对特征的统计分析来确定模式的类别。句法结构方法则是通过分析模式的结构特征进行分类。模糊判决方法在处理模糊性和不确定性时具有优势。逻辑推理方法则通过推理规则来进行模式识别。而神经网络方法则通过模拟人脑神经网络的运作方式来进行模式识别。这些方法各有特点,在实际应用中需根据具体问题选择合适的方法。此外,聚类分析也是模式识别中的重要技术,它通过对无标签数据进行分组,使得同一组内的数据相似度高,不同组之间的数据相似度低。聚类分析的基本概念包括相似性测度、类间距离和聚类准则等,常见的聚类方法包括简单聚类、层次聚类和动态聚类等。

模式识别考试总结

模式识别考试总结

1.对一个染色体分别用一下两种方法描述:(1)计算其面积、周长、面积/周长、面积与其外接矩形面积之比可以得到一些特征描述,如何利用这四个值?属于特征向量法,还是结构表示法?(2)按其轮廓线的形状分成几种类型,表示成a、b、c等如图表示,如何利用这些量?属哪种描述方法?(3)设想其他的描述方法。

(1)这是一种特征描述方法,其中面积周长可以体现染色体大小,面积周长比值越小,说明染色体越粗,面积占外接矩形的比例也体现了染色体的粗细。

把这四个值组成特征向量可以描述染色体的一些重要特征,可以按照特征向量匹配方法计算样本间的相似度。

可以区分染色体和其它圆形、椭圆细胞结构。

(2)a形曲线表示水平方向的凹陷,b形表示竖直方向的凹陷,c形指两个凹陷之间的突起,把这些值从左上角开始,按顺时针方向绕一圈,可以得到一个序列描述染色体的边界。

它可以很好的体现染色体的形状,用于区分X和Y染色体很合适。

这是结构表示法。

(3)可以先提取待识别形状的骨架,在图中用蓝色表示,然后,用树形表示骨架图像。

2. 设在一维特征空间中两类样本服从正态分布,,两类先验概率之比,试求按基于最小错误率贝叶斯决策原则的决策分界面的x值。

答:由于按基于最小错误率的贝叶斯决策,则分界面上的点服从3、设两类样本的类内离散矩阵分别为,试用fisher准则求其决策面方程,并与第二章习题二的结构相比较。

答:由于两类样本分布形状是相同的(只是方向不同),因此应为两类均值的中点。

4,设在一个二维空间,A类有三个训练样本,图中用红点表示,B类四个样本,图中用蓝点表示。

试问:(1)按近邻法分类,这两类最多有多少个分界面(2)画出实际用到的分界面(3) A1与B4之间的分界面没有用到下图中的绿线为最佳线性分界面。

答:(1)按近邻法,对任意两个由不同类别的训练样本构成的样本对,如果它们有可能成为测试样本的近邻,则它们构成一组最小距离分类器,它们之间的中垂面就是分界面,因此由三个A类与四个B类训练样本可能构成的分界面最大数量为3×4=12。

模式识别与机器学习期末总结

模式识别与机器学习期末总结
1.1.样本(sample, object):一类事物的一个具体体现,对具体的个别事物进行观测所得到的某 种形式的信号。模式(pattern):表示一类事物,如印刷体 A 与手写体 A 属同一模式。B 与 A 则属于不同模式。样本是具体的事物,而模式是对同一类事物概念性的概括。模式类与模式 联合使用时,模式表示具体的事物,而模式类则是对这一类事物的概念性描述。模式识别是 从样本到类别的映射。样本模式识别类别。 1.2.数据获取 .测量采样-预处理.去噪复原-特征提取与选择.寻找有利于分类的本质特征-分类 器设计-分类决策.做出关于样本类别的判断。 1.3.先验概率 :根据大量统计确定某类事物出现的比例,类条件概率密度函数 :同一类事物的各 个属性都有一定的变化范围,在其变化范围内的分布概率用一种函数形式表示 ,后验概率:一 个具体事物属于某种类别的概率。 1 exp( 1 (x μ)T 1 (x μ)) 2.1.最小错误率准则即最大后验准则, , p ( x) 1/ 2 2 (2 )n / 2 计 算 两 类 后 验 。 最 小 风 险 准 则 , x ( x1 , x2 ,..., xn )T , 通过保证每个观测之下的条件风险最小,使得它的期望 μ E (x) ( 1 , 2 ,..., n )T , i E ( xi ) 风险最小。 E (x μ)(x μ)T ( ij2 )n*n 2.2.多元正态分布的 pdf、均值、协方差矩阵如下。等概 率密度轨迹为超椭球面,主轴方向由协方差矩阵的特征 ij2 E ( xi i )( x j j ) 向量决定,轴长度由其特征值决定。 1 T T 2.3.最小距离分类器,线性分类器 g i ( x) (2μT i x μ i μ i ) w i x wi 0 2 2 2.4.医生判断病人是否有病:先验,似然,后验。Bayes 决 1 1 T w i 2 μi , wi 0 2 μi μi 策的三个前提: 类别数确定,各类的先验概率 P(ωi)已知,各类 2 的条件概率密度函数 p(x|ωi)已知.问题的转换 :基于样本估 p(x) c (x μ)T 1 (x μ) 2 计概率密度,基于样本直接确定判别函数. 3.1.一元正态分布的最大似然估计:假设样本 x 服从正态分布 N(μ,σ2);已获得一组样本 x1 , x2 , … , xN 。解:似然函数:l(θ) = p(K|θ) = p(x1 , x2 , … , xN |θ) = ∏N k=1 p(xk |θ),其对数似然 函数:H(θ) = ∑N 。样本服从正 k=1 ln⁡p(xk |θ).最大似然估计 N 态 分 布 N(μ,σ2) , 则 n 2 p(xk ; μ, σ2 ) = 1/√2πσ2 exp⁡ *−(xk − μ)2 /2σ2 + , ⁡H(μ, σ2 ) = ∑N k=1 ln p(xk ; μ, σ ) = − ln(2π) −

模式识别复习重点总结

模式识别复习重点总结

模式:存在于时间,空间中可观察的事物,具有时偶尔空间分布的信息; 模式识别:用计算机实现人对各种事物或者现象的分析,描述,判断,识别。

模式识别的应用领域: (1)字符识别; (2) 医疗诊断; (3)遥感; (4)指纹识别 脸形识别; (5)检测污染分析,大气,水源,环境监测; (6)自动检测; (7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断; (8)军事应用。

(1) 信息的获取:是通过传感器,将光或者声音等信息转化为电信息;(2) 预处理:包括A\D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图象处理; (3) 特征抽取和选择: 在测量空间的原始数据通过变换获得在特征空间最能反映分类本质的特征; (4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低。

把这些判决规则建成标准库; (5) 分类决策:在特征空间中对被识别对象进行分类。

(1)模式(样本)表示方法: (a )向量表示; (b )矩阵表示; (c )几何表示; (4)基元(链 码)表示; (2)模式类的紧致性:模式识别的要求:满足紧致集,才干很好地分类;如果不满足紧 致集,就要采取变换的方法,满足紧致集(3)相似与分类; (a)两个样本x i ,x j 之间的相似度量满足以下要求:① 应为非负值② 样本本身相似性度量应最大 ③ 度量应满足对称性④ 在满足紧致性的条件下,相似性应该是点间距离的单调函数 (b) 用各种距离表示相似性(4)特征的生成:特征包括: (a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化; (b)方差标准化二维情况: (a )判别函数: g(x) = w x + w x + w ( w 为参数, x , x 为坐标向量)1 12 23 1 2(b )判别边界: g(x)=0;(c )判别规则: (> 0, Xg i(x) =〈< 0, X1 n 维情况: (a )判别函数: g(x) = w 1x 1 + w2 x 2 + ...... + w n x n + w n +1也可表示为: g(x) = W T XW = (w , w ,..., w , w )T 为增值权向量,1 2 n n +1X =(x , x ,..., x ,x +1)T 为增值模式向量。

模式识别期末试题及答案

模式识别期末试题及答案

模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。

通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。

2.2 请解释监督学习和无监督学习的区别。

监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。

通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。

而无监督学习则没有标签或输出信息。

无监督学习的目标是从未标记的数据中找到模式和结构。

这种学习方法通常用于聚类、降维和异常检测等任务。

3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。

请简要解释逻辑回归模型的原理,并说明它适用的场景。

逻辑回归模型是一种用于解决二分类问题的监督学习算法。

其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。

这个映射的概率可以被解释为某个样本属于正类的概率。

逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。

模式识别总结

模式识别总结
13
模式识别压轴总结
另外,使用欧氏距离度量时,还要注意模式样本测量值的选取,应该是有效 反映类别属性特征(各类属性的代表应均衡) 。但马氏距离可解决不均衡(一个 多,一个少)的问题。例如,取 5 个样本,其中有 4 个反映对分类有意义的特征 A,只有 1 个对分类有意义的特征 B,欧氏距离的计算结果,则主要体现特征 A。
信息获取 预处理 特征提取与选择 聚类 结果解释
1.4 模式识别系统的构成 基于统计方法的模式识别系统是由数据获取, 预处理, 特征提取和选择, 分类决策构成
2
模式识别压轴总结
1.5 特征提取和特征选择 特征提取 (extraction):用映射(或变换)的方法把原始特征变换为较少 的新特征。 特征选择(selection) :从原始特征中挑选出一些最有代表性,分类性能最 好的特征 特征提取/选择的目的,就是要压缩模式的维数,使之便于处理。 特征提取往往以在分类中使用的某种判决规则为准则,所提取的特征使在 某种准则下的分类错误最小。为此,必须考虑特征之间的统计关系,选用 适当的变换,才能提取最有效的特征。 特征提取的分类准则:在该准则下,选择对分类贡献较大的特征,删除贡 献甚微的特征。 特征选择:从原始特征中挑选出一些最有代表性、分类性能最好的特征进 行分类。 从 D 个特征中选取 d 个,共 CdD 种组合。 - 典型的组合优化问题 特征选择的方法大体可分两大类: Filter 方法:根据独立于分类器的指标 J 来评价所选择的特征子集 S,然后 在所有可能的特征子集中搜索出使得 J 最大的特征子集作为最优特征子 集。不考虑所使用的学习算法。 Wrapper 方法:将特征选择和分类器结合在一起,即特征子集的好坏标准 是由分类器决定的,在学习过程中表现优异的的特征子集会被选中。

模式识别学习心得体会

模式识别学习心得体会

模式识别学习心得体会篇一:最新模式识别与智能系统专业毕业自我总结最模式识别与智能系统专业大学生毕业自我总结优秀范文个人原创欢迎下载模式识别与智能系统专业毕业论文答辩完成之际,四年大学生活也即将划上一个句号,而我的人生却仅仅是个逗号,我即将开始人生的又一次征程。

作为×××大学(改成自己模式识别与智能系统专业所在的大学)毕业生的我即将告别大学生活,告别亲爱的模式识别与智能系统专业的同学和敬爱的老师,告别我的母校——×××大学。

回顾在×××大学模式识别与智能系统专业的求学生涯,感慨颇多,有酸甜苦辣,有欢笑和泪水,有成功和挫折!大学——是我由幼稚走向成熟的地方,在此,我们认真学习模式识别与智能系统专业知识,拓展自己的知识面,培养自己的模式识别与智能系统实践活动能力。

在思想道德上,×××大学(改成自己就读模式识别与智能系统专业所在的大学)学习期间我系统全面地学习了思政课程的重要思想,不断用先进的理论武装自己的头脑,热爱祖国,热爱人民,坚持四项基本原则,树立了正确的人生观、价值观、世界观,使自己成为思想上过硬的模式识别与智能系统专业合格毕业生。

在模式识别与智能系统专业学习上,我严格要求自己,刻苦钻研篇二:最新模式识别与智能系统专业毕业自我个人小结优秀范文原创最模式识别与智能系统专业大学生毕业个人总结优秀范文个人原创欢迎下载在×××(改成自己模式识别与智能系统就读的大学)模式识别与智能系统专业就读四年青春年华时光,匆匆而过。

四年的时间足以证明了,我爱上了×××(改成自己模式识别与智能系统就读的大学)的一草一木,一人一事。

回想四年里有过多少酸甜苦辣、曾经模式识别与智能系统班级里的欢声笑语,曾经期末考试备战中的辛勤汗水……所有的一切都历历在目。

模式识别与数据挖掘期末总结

模式识别与数据挖掘期末总结

模式识别与数据挖掘期末总结第一章概述1.数据分析是指采用适当的统计分析方法对收集到的数据进行分析、概括和总结,对数据进行恰当地描述,提取出有用的信息的过程。

2.数据挖掘(Data Mining,DM) 是指从海量的数据中通过相关的算法来发现隐藏在数据中的规律和知识的过程。

3.数据挖掘技术的基本任务主要体现在:分类与回归、聚类、关联规则发现、时序模式、异常检测4.数据挖掘的方法:数据泛化、关联与相关分析、分类与回归、聚类分析、异常检测、离群点分析、5.数据挖掘流程:(1)明确问题:数据挖掘的首要工作是研究发现何种知识。

(2)数据准备(数据收集和数据预处理):数据选取、确定操作对象,即目标数据,一般是从原始数据库中抽取的组数据;数据预处理一般包括:消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换。

(3)数据挖掘:确定数据挖掘的任务,例如:分类、聚类、关联规则发现或序列模式发现等。

确定了挖掘任务后,就要决定使用什么样的算法。

(4)结果解释和评估:对于数据挖掘出来的模式,要进行评估,删除冗余或无关的模式。

如果模式不满足要求,需要重复先前的过程。

6.分类(Classification)是构造一个分类函数(分类模型),把具有某些特征的数据项映射到某个给定的类别上。

7.分类过程由两步构成:模型创建和模型使用。

8.分类典型方法:决策树,朴素贝叶斯分类,支持向量机,神经网络,规则分类器,基于模式的分类,逻辑回归9.聚类就是将数据划分或分割成相交或者不相交的群组的过程,通过确定数据之间在预先指定的属性上的相似性就可以完成聚类任务。

划分的原则是保持最大的组内相似性和最小的组间相似性10.机器学习主要包括监督学习、无监督学习、半监督学习等1.(1)标称属性(nominal attribute):类别,状态或事物的名字(2):布尔属性(3)序数属性(ordinal attribute):尺寸={小,中,大},军衔,职称【前面三种都是定性的】(4)数值属性(numeric attribute): 定量度量,用整数或实数值表示●区间标度(interval-scaled)属性:温度●比率标度(ratio-scaled)属性:度量重量、高度、速度和货币量●离散属性●连续属性2.数据的基本统计描述三个主要方面:中心趋势度量、数据分散度量、基本统计图●中心趋势度量:均值、加权算数平均数、中位数、众数、中列数(最大和最小值的平均值)●数据分散度量:极差(最大值与最小值之间的差距)、分位数(小于x的数据值最多为k/q,而大于x的数据值最多为(q-k)/q)、说明(特征化,区分,关联,分类,聚类,趋势/跑偏,异常值分析等)、四分位数、五数概括、离群点、盒图、方差、标准差●基本统计图:五数概括、箱图、直方图、饼图、散点图3.数据的相似性与相异性相异性:●标称属性:d(i,j)=1−m【p为涉及属性个数,m:若两个对象匹配为1否则p为0】●二元属性:d(i,j)=p+nm+n+p+q●数值属性:欧几里得距离:曼哈顿距离:闵可夫斯基距离:切比雪夫距离:●序数属性:【r是排名的值,M是排序的最大值】●余弦相似性:第三章数据预处理1.噪声数据:数据中存在着错误或异常(偏离期望值),如:血压和身高为0就是明显的错误。

10-11学年第二学期期末考试《模式识别及其应用》试卷(B)(1)

10-11学年第二学期期末考试《模式识别及其应用》试卷(B)(1)

……………………………… 密 ……………………………… 封 ………………………………… 线 ……………………………… 安 徽 工 业 大 学 试 题 纸(二)
二 、 简答题 ( 任 选 四 个 小 题 作 答 , 每 小 题 5 分 , 共 3 0 分 ) (1)试说明应用线性判别函数方法和 Bayes 决策方法进行模式分类各自的前提是什么? (2)为什么要进行特征选择与特征提取?特征选择的基本原则是什么? (3)定性说明基于参数方法和非参数方法的概率密度估计有什么区别,用于模式识别各有什么优缺点。 (4)试给出线性分类器中,Fisher 准则、感知器准则和最小平方误差准则函数的具体定义形式。 (5)对于M 类( ω1 ,……, ωM )的分类问题,假设将第 j 类样本分到第 i 类的损失为 λij ,给定每一类的先验概率 P(ωi ) 和条件概率密度 p ( x ωi ) 。请用公 式叙述基于最小风险的贝叶斯决策过程,说明在什么情况下最小风险决策等价于最大后验概率决策。 (6)试说明基于统计方法的模式识别系统主要由哪几部分构成,各有什么功能?
(4)设 ωmax 为类别状态,此时对所有的 i ( i =1 ,…, c ) ,有 P(ωmax x ) ≥ P(ωi x) , ①证明 P(ωmax x ) ≥1 c ; ②证明对于最小错误率的 Bayes 决策规则,平均误差概率为 P(e ) =1− ∫ P(ωmax x ) p ( x )d x ; ③利用这两个结论证明 P (e ) ≤ (c −1) c 。
……………………………… 密……………………………… 封 ………………………………… 线 ……………………………… 安
三、非主观题: 本大题 8 分) ( 似然比决策准则为:若 l ( x ) =

模式识别学习心得体会

模式识别学习心得体会

模式识别学习心得体会篇一:模式识别与智能系统专业毕业自我鉴定范文下载注:毕业生自我鉴定的撰写,简言之,就是毕业生对自己在校期间思想政治、道德品质、专业学习、课外活动、社会工作等方面的总结,严肃认真,实事求是,以肯定成绩、实践能力为主,并提出今后的努力和发展方向,以便在今后的学习、工作中发扬优点,克服缺点。

希望本范文模板能给毕业生提供帮助。

模式识别与智能系统专业毕业生自我鉴定光阴似箭,转眼间四年的大学生活即将结束,从二0XX年进入XX 大学模式识别与智能系统专业就读以来,经过老师的精心指导和自己的刻苦努力,本人各方面都有较大提高,顺利完成了学业。

回首四年,对我来说是不平凡的四年,是收获的四年,是不断汲取养分的四年,是成长的四年,是值得怀念的四年。

在毕业之际,总结了这四年来的点点滴滴,我成长了不少,同时也深刻的认识到:学无止境,需要加紧步伐去完善自己,提高技能,实现人生价值。

模式识别与智能系统专业是专业性很强的学科,在老师的教诲下我系统全面地学习了模式识别与智能系统专业的理论基础知识,牢固的掌握了模式识别与智能系统专业知识和技能,同时把所学的模式识别与智能系统专业理论知识应用于实践活动中,把所学知识转化为动手能力、应用能力和创造能力,力求理论和实践的统一。

在学习和掌握本专业理论知识和应用技能的同时,还努力拓宽自己的知识面,培养自己其他方面的能力,广泛的涉猎其他学科的知识,从而提高了自身的思想文化素质。

英语、计算机、普通话等方面的等级考试已达标,除了在模式识别与智能系统专业知识方面精益求精外,还利用课余时间专修计算机专业知识,使我能够熟练的操作各种办公软件,从而提高了自身的思想文化素质。

(此部分可按照自己实际情况简单写一下自己在模式识别与智能系统专业上取得的有代表性的成绩)在思想方面,通过大学四年全面系统地学习了马列主义、毛泽东思想、邓小平理论重要思想,学会用先进的理论武装自己的头脑,树立了正确的世界观、人生观、价值观。

模式识别期末复习总结

模式识别期末复习总结

1、贝叶斯分类器贝叶斯分类器的定义:在具有模式的完整统计知识的条件下,按照贝叶斯决策理论进行设计的一种最优分类器。

贝叶斯分类器的分类原理:通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。

贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。

贝叶斯的公式:什么情况下使用贝叶斯分类器:对先验概率和类概率密度有充分的先验知识,或者有足够多的样本,可以较好的进行概率密度估计,如果这些条件不满足,则采用最优方法设计出的分类器往往不具有最优性质。

2、K近邻法kNN算法的核心思想:如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。

假设有N个已知样本分属c个类,考察新样本x在这些样本中的前K个近邻,设其中有个属于类,则类的判别函数就是决策规则:若则∈什么情况下使用K近邻法:kNN只是确定一种决策原则,在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别,并不需要利用已知数据事先训练出一个判别函数,这种方法不需要太多的先验知识。

在样本数量不足时,KNN法通常也可以得到不错的结果。

但是这种决策算法需要始终存储所有的已知样本,并将每一个新样本与所有已知样本进行比较和排序,其计算和存储的成本都很大。

对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。

3、PCA和LDA的区别Principal Components Analysis(PCA):uses a signal representation criterionLinear Discriminant Analysis(LDA):uses a signal classification criterionLDA:线性判别分析,一种分类方法。

它寻找线性分类器最佳的法线向量方向,将高维数据投影到一维空间,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。

(完整word版)模式识别试题及总结

(完整word版)模式识别试题及总结

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

广东模式识别期末试卷

广东模式识别期末试卷

广东模式识别期末试卷
一.简述典型的模式识别系统的各部分组成,分别阐述各个组成
部分的功能。

举例说明模式识别的应用。

(20分)
二.假设在某地区切片细胞中正常(ω1)和异常(ω2)两类的先
验概率分别为:P(ω1)=0.8,P(ω2)=0.2。

现有一待识别细胞呈现出
状态x,由其类条件概率密度分布曲线查得p(x|ω1)=0.2,p(x|ω
2)=0.5,
(1)试对细胞x进行分类(判断细胞为正常还是异常);
(2)在以上的基础上,当λ11=0,(λ11表示λ(α1|ω1)的简
写),λ12=6,λ21=1,λ22=0时,按最小风险贝叶斯决策进行分类。

(20分)
三、模糊集: A=0.4 / x1+ 0.6/ x2 +0.9/ x3 + 0/ x4 +0.4
/ x5 B=0.2 / x1 + 0.8/ x2 + 0/ x3 + 0.7/ x4 +1 / x5;(15分)
四、已知,;
试求模糊合成矩阵;(15分)
五、为什么说K-L变换是一种独特的正交变换(它的特点);(10
分)
六、设有一维空间二次判别函数
试映射成广义齐次线性判别函数;并总结把高次函数映射成齐次
线性判别函数的方法。

(20分)。

模式识别心得体会

模式识别心得体会

模式识别心得体会模式识别是一种非常重要的思维能力,能够帮助我们从大量的信息中提取出关键的模式和规律,进而做出更加准确和高效的决策。

在我学习和应用模式识别的过程中,我深刻地体会到模式识别对个人和社会的重要性,以下是我的心得体会。

首先,模式识别可以帮助我们更好地理解世界。

世界是复杂多变的,充满了各种各样的信息和现象。

通过模式识别,我们可以将这些看似杂乱无章的信息归类和整理,找出它们之间的关联和规律。

这样一来,我们就能够更好地理解事物的本质和发展趋势,提高对世界的认知水平。

其次,模式识别有助于我们做出科学的预测和预测。

通过对历史和现实中的模式进行观察和分析,我们可以发现一些规律和趋势,并据此做出相应的预测。

例如,在股市投资中,通过对历史股价的走势进行模式识别,投资者可以判断出未来的走势,从而做出科学合理的投资决策。

这种通过模式识别进行预测的能力,在经济、政治和科学领域都有广泛的应用。

此外,模式识别还可以提高我们的问题解决能力。

在面对各种问题和挑战时,通过观察和分析问题的模式和规律,我们可以迅速找到解决问题的方法和途径。

比如,在解决数学问题时,我们可以通过找出问题中的模式和规律来推导出解题的思路和步骤。

同样,在解决实际生活中的问题时,模式识别也能够帮助我们更加高效地解决问题。

模式识别也对我们的创造力有着积极的促进作用。

通过对不同领域中的模式进行观察和分析,我们可以发现不同事物之间的联系和共性,从而找到新的创意和想法。

许多伟大的发明和创新,都是建立在对模式的识别和理解的基础上的。

因此,培养和提升自己的模式识别能力,能够有效地激发创造力和创新能力,推动社会的进步和发展。

然而,模式识别也是一项复杂而需要持续学习和实践的能力。

在实际应用中,模式识别需要我们不断观察和思考,积累大量的经验和知识。

同时,模式识别也需要我们拥有批判性的思维和分析能力,能够辨别和排除一些看似有规律实际上是偶然现象的情况。

只有通过不断地学习和实践,我们才能够不断提高自己的模式识别能力。

模式识别期末复习笔记

模式识别期末复习笔记

模式识别期末复习笔记模式识别ch2 贝叶斯决策1.贝叶斯公式2.贝叶斯决策的特例a)先验概率相同(均匀先验概率):决策仅依赖于类条件概率密度b)类条件概率密度相同:决策仅依赖于先验概率3.计算题(医学测试⽅法)4.计算题(车⾝⾼低)5.贝叶斯决策的最优性a)最⼩化误差概率的⾓度i.每次均选择概率⼤的类做判断结果,因此错误概率永远是最⼩的b)最⼩化风险的⾓度i.每次均选择条件风险最⼩的结果,因此总风险最⼩6.对于两类分类问题,最⼩风险贝叶斯决策a)可以基于似然⽐进⾏决策b)p(x|ω1)p(x|ω2)≥λ12?λ22λ21?λ11p(ω2)p(ω1)则判断为1类,否则为2类c)似然⽐超过某个阈值(θ),那么可判决为ω1类7.0-1损失(误判是等价的):最⼩化风险就是最⼤化后验,也就是选择后验最⼤的a)最⼩化误差概率与最⼩化风险等价,即选择最⼤后验的分类,即满⾜最⼩误差概率,也满⾜最⼩风险8.先验概率未知时如何设计风险最⼩的分类器?a)使先验概率取任意值时的总风险的最坏情况尽可能⼩b)极⼩化极⼤准则:i.极⼩化指的是贝叶斯风险,因为它是总风险的最⼩值ii.极⼤化指的是使贝叶斯风险达到最⼤iii.贝叶斯风险是和先验有关的,其最⼤也就是其极值,就是导数等于0 的时候c)极⼩化极⼤风险是最坏的贝叶斯风险9.从最⼩化误差概率的意义上讲,贝叶斯是最优的;贝叶斯决策得到的总风险也是最⼩的10.判别函数a)对于两类分类,根据判别函数的正负进⾏类的判断;对于多类问题,两两组成两类问题b)两类问题下:g(x)=g1(x)?g2(x)i.若g(x)≥0,即g1(x)≥g2(x),则判断为1类,否则为2类c)g1(x),g2(x)的设计i.最⼩总风险贝叶斯分类器1.g1(x)=?R(α1|x),风险的相反数ii.最⼩误差概率贝叶斯分类器1. g 1(x )=p (ω1|x )2. g 1(x )=p (x|ω1)p (ω1)3. g 1(x )=log(p (x|ω1))+log(p (ω1))11.12. 计算题(决策边界为何下偏)ch3 参数估计1. 模式分类的途径(截图)2. 当可⽤数据很多以⾄于减轻了先验知识的作⽤时,贝叶斯估计可退化为最⼤似然估计。

模式识别学习心得

模式识别学习心得

模式识别学习心得
模式识别是一门非常有趣且实用的学科,它是用于从数据中自动提取出结构和规律的
技术和方法。

在我学习模式识别的过程中,我深刻体会到模式识别的重要性以及它对日常
生活和工作的贡献。

本文将就我的学习心得进行分享。

首先,模式识别是一个非常广泛的学科,它涉及到数学、统计学、计算机科学、工程
学等多个学科领域。

因此,我在学习过程中,需要有一定的数学和计算机基础才能更好地
理解和掌握课程内容。

其次,模式识别的核心问题在于如何从数据中提取特征,并根据这些特征构建模型进
行分类、识别等。

对于数据的预处理、特征提取和选择、模型构建和优化等方面,需要进
行深入学习和实践。

在学习过程中,实际应用和实践是非常重要的。

课程中许多知识点是通过实例和案例
进行讲解的,而且还需要我们自己动手实践。

只有在实际应用中,才能更好地理解理论知识,发现问题并解决问题。

模式识别的应用非常广泛,包括图像识别、语音识别、生物信息学、金融分析等领域。

在我以前的工作中,我曾经应用模式识别技术进行金融分析,用于风险控制和价格预测等
方面。

这些技术都是非常好的解决方案,能够快速、准确地处理大量数据,提高工作效率
和准确性。

模式识别试题及总结

模式识别试题及总结

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有(1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南理工模式识别期末考试总结
前言
本人是华工17级学生,作为对刚刚的模式识别课程学习的总结,此篇文章只供参考
借鉴使用。

基本考纲就在本文章中,对于考纲内容,不分是做了解释,部分是想到哪写到哪。

对于哪些是考试重点,已经标出,希望可以帮助到大家!
另,附联系方式QQ:2049945431,欢迎喜欢模式识别课程的同学们一起讨论。

由于部分内容是截取课程PPT,所以如果有版权问题,也请按如上方式联系。

第一章绪论
✓监督模式识别与非监督模式识别
1)有监督模式识别——分类(classification)➢给出若干已知答案的样本(训练样本
training samples)➢由机器从这些样本中进行学习(训练training/learning)➢
学习的目的在于从这些样本中总结规律,使之能够对新的样本进行判断
2)无监督模式识别——聚类(clustering)➢所面对的只有未知答案的样本➢由机
器从这些样本中进行学习(自学习)➢学习的目的在于从这些样本中发现规律,这种规律应该是某种固有的关系,或者依据这种规律对对象的分类有某种功用
✓模式识别系统的典型构成
组成:信息获取与预处理、特征提取与选择、分类或聚类、后处理等四个部分。

第二章贝叶斯决策理论(必考)
✓多维正太分布(17级考点)
✓最小错误率贝叶斯决策(17级考点)
1)贝叶斯公式
2)各种概率样本x,类别ω
先验概率:除固有条件外没有其他条件情况下,类发生的概率,P(ω)。

后验概率:P(ω| x),样本x出现的条件下,类发生的概率。

类概率:P(x | ω),类ω条件下x的概率分布密度。

✓最小风险贝叶斯决策
第三章概率密度函数估计
✓最大似然估计
1)视参数为确定量,只是数值未知,最大化所观察样本概率得最优参数。

2)P(X | θ)=∏P(x | θ)
✓贝叶斯估计与贝叶斯学习
1)贝叶斯估计是连续化了的相对于贝叶斯决策。

2)视参数为服从某一先验概率密度分布的随机变量,对样本进行观察的过程,就是把
先验概率密度转化为后验概率密度,后验概率密度在待估测参数值附近取最大。

3)与极大似然估计类似,均已后验概率表示分类准则。

✓概率密度的非参数方法
1)非参数估计的基本原理
P(x)=k/(NV);k为落在窗口中的样本数、N为样本总数、V为样本大小
2)K近邻估计方法
窗口点数一定
3)Parzen窗(17级考了计算,QAQ)
窗口大小一定
4)样本、数窗宽对估计结果的影响
第四章线性分类器
1.线性判别函数
G(x)=(ω^T)x-ω0
| G(x) | =r‖w‖;r为x到G(x)的距离
2.Fisher线性判别分析(17级考点)
1)最佳法向量解:;常用阈值负的均值中点
✓感知器(17级考点)
1)增广——尾行添1(无论规范化正负);
2)规范化——第二类样本向量取反(说白了,加负号)
3)感知准则函数;迭代公式
✓线性支持向量机
1)思想:边界距离最大;由此可得全局最优解,且鲁棒性好。

2)数学表示:
求解
✓对偶问题拉格朗日因子与支持向量的关系
1)转化为对偶问题可以简化计算;可以引入核函数。

2)支持向量的拉格朗日乘子不为0
第五章非线性分类器(17级未考察,但之前有考察计算)
✓多层感知神经网络
1)Kolmogorov定理:任何一个判决都可以用三层神经网络实现。

2)激活函数
3)学习率和隐藏层节点数,两者对训练的影响
✓支持向量机
1)核函数
2)应用举例
第六章其他分类方法
✓近邻法
最近邻(左图);K-近邻法(右图,k=5)
✓决策树(随机森林)
1)预剪枝时间短简单,但会带来欠拟合风险
后剪枝泛化能力较强,但逐一导致训练时间长
2)划分纯度依据:信息增益、增益率、基尼指数
3)ID3算法——信息增益
信息熵;信息增益
✓错误率问题错误率(贝叶斯P0 最近邻P1 k近邻P2)P0<P1、P2<2P0 在k趋近无穷时p2趋近贝叶斯误差率=
第七章特征选择
✓特征子集的搜索
✓特征的评价准则
(可能是以有哪些判据,简要说明各判据方式考察)
1)类内类间距离的可分性判据(17级考察计算)
基于距离可分性准则J特征提取
1)概率分布的可分性判据
根据特征的概率密度分布曲线是否交叠,Jmax完全不交叠
2)熵的可分性判据
熵值越⼤,说明样本的类别不确定性越⼤
✓特征选择策论
1)过滤式特征选择发生在做脸至少。

2)包裹式将分类器的性能(维数、错误率)作为特征评估方法。

3)嵌入式特征选择可以学习器训练嵌入到一个过程完成。

✓总结
第八章特征提取
✓(特征提取与选择的区别)
✓基于类别可分判据的特征提取
✓主成分分析(PCA)——线性提取方法
方差最大化
✓KL变换(基于自相关矩阵的计算,17级考点)
1)基本原理
2)步骤
✓上述两种方法的关系
答:PCA是线性变换的特征提取方法达到降维目的;无监督;以方差最大化为评价标准。

KL是基于非线性KL变换,映射得到降维的特征空间;有监督;以均方误差的期望值最小为评价标准。

两者都是在原有特征集中进行正交化的整合处理得到维数更小的特征集合。

✓两者各自的不足之处及优点
第九章非监督模式识别
✓非监督处理的样本无标签
✓动态聚类算法——C均值算法(17级考点计算+概念,重点内容)
1)流程图
2)误差平方和准则
目标:使其最小化
✓分级聚类方法
第十章模式识别系统的评价
✓监督模式识别方法的错误率估计(17级考察基本概念)
交叉验证
N倍交叉验证
K轮N倍交叉验证
留一交叉验证
错误率估计方差变大,但错误率估计越趋近与极大似然估计。

相关文档
最新文档