北师大版课标初中七年级数学上《一元一次方程我变胖了》三课时教学设计
《我变胖了》一元一次方程PPT课件教学课件
49.5
(cm3 )
V杯
7 2
2
9
110.25
(cm3 )
V简 V杯 所以,能装下。
设杯内水面的高度为 x 厘米。
7
2
x
49.5
2 x 4.04
杯内水面的高度为 4.04 厘米。
答案
解:因为
V筒 49.5 (cm3 )
V杯 110.25 (cm3 )
V简 V杯
所以,不能装下。
——讨 论 题——
在一个底面直径为3cm,高为22cm的量筒内装满 水,再将筒内的水到入底面直径为7cm,高为9cm的 烧杯内,能否完全装下?若装不下,筒内水还剩多高? 若能装下,求杯内水面的高度。
若将烧杯中装满水倒入量筒中,能否装下?若装 不下,杯内还剩水多高?
答案
解:V筒
3 2
2
22
长方形的周长一定时, 当且仅当长宽相等时 面积最大。
例(3)
思考
一个长方形的养鸡场的长边靠墙,墙长14米, 其他三边用竹篱笆围成,现有长为33米的竹篱笆, 小王打算用它围成一个鸡场,且尽可能使鸡场面 积最大,请你帮他设计。
长方形的周长
一定时,当且
墙壁
仅当长宽相等
时面积最大。
篱笆
你自己来尝试!
墙上钉着用一根彩绳围成的梯形形状的装饰物,小颖 将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形, 那么,小颖所钉长方形的长和宽各为多少厘米?
4、把你列的方程写在练习本上,与小组的人交流, 你列对了吗?
5、把它解出来,与同桌交流,看谁做得又快又准 确。
等量关系:锻压前的体积=锻压后的体积
根据等量关系,列出方程:
× 52×36= × 102 × x
北师大版初中七年级数学上册-《我变胖了》教学设计-03
《我变胖了》教学设计一、说教材的地位和作用本节课是七年级上册第五章第四节,也学生学习一元一次方程含义和解一元一次方程的解法后,通过分析图形问题中的数量关系,建立一元一次方程解决实际问题,认识方程模型的重要环节。
二、说教学目标:1、知识目标:①让学生通过分析实际问题中的“不变量”,建立方程解决问题。
②让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型。
2、能力目标:设未知数,正确求解,并验明解的合理性。
3、情感目标:激发学生的学习情绪,让学生在探索问题中学会合作。
三、说教学重点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
四、说教学难点:如何从实际问题中寻找等量关系建立方程。
五、说教学方法:三疑三探自探式六、数学思想方法:方程的思想、化归数学思想七、说教学过程:引入:情景1、放映“朝三暮四”的动画(附内容:从前有一个叫狙公的人养了一群猴子.每一天他都给足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴的直打筋斗)请大家谈自己的看法!1、设疑自探动手把自己的橡皮泥做作圆柱压一压,看看有什么变化!手压前和手压后有何变化?你发现了一个相等关系没有?能用自己的话告诉大家吗?①我为什么会变胖?变胖过程有那些量在变化,那些量没有变化?②利用一元一次方程怎样解决等体积变化问题?③利用一元一次方程等周长变形问题?④列方程的关键是什么?⑤周长不变,围成长方形图形和正方形,那种面积最大?⑥应用方程解决问题的一般步骤是什么?2、解疑合探问题1:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?第一步:引导学生审题第二步:假设未知数第三步:找等量关系第四步:列方程第五步:解方程第六步:解释其解的合理性第七步:答3、质疑再探问题2:①把一根铁丝围成一个长方形,有多少种围法?它们的周长改变了吗?它们的面积都相等吗?②用一根长为10米的铁丝围成一个长方形,使得该长方形的长比宽多1.4米,此时长方形的长、宽各是多少米呢?面积是多少?③使长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与第一次所围成的长方形相比,面积有什么变化?④若使长方形的长和宽相等,即围成一个正方形,此时正方形的边长是多少米?围成的面积与前两次围成的面积相比,又有什么变化?4、拓展运用①墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示。
北师大版七年级上册第五章:5.4我变胖了课程设计
北师大版七年级上册第五章:5.4我变胖了课程设计一、教材分析1. 教材基本情况《北师大版七年级上册》第五章“我的身体变化”中的5.4节,“我变胖了”是让学生认识到导致肥胖的原因和对健康带来的影响。
学生需要了解什么是肥胖,什么是BMI指数,以及该如何调整自己的饮食和运动习惯来保持健康。
2. 教材目标•了解肥胖与健康之间的关系;•掌握BMI指数及其计算方法;•能够通过控制饮食及适当的运动来避免肥胖问题。
二、教学设计1. 教学目标•知道什么是肥胖,了解肥胖对健康的影响;•讲解BMI指数及其计算方法,让学生了解自己的身体状况;•学习如何调整饮食和运动习惯来保持健康。
2. 教学重点和难点•重点:讲解BMI指数及其计算方法,控制饮食和运动的习惯。
•难点:掌握适量的饮食及运动是如何影响身体健康的。
3. 教学过程(1)引入新知识讲解肥胖是常见的慢性病,什么是BMI指数。
(2)讲解BMI指数及其计算方法•讲解BMI指数的定义和计算方法•让学生用体重和身高来计算自己的BMI指数•讨论BMI指数的意义及其与健康的关系(3)控制饮食•引导学生学习合理的饮食结构•讲解饮食的适量原则•指导学生如何选择健康的食物(4)适当的运动•讲解运动对身体的好处•指导学生如何选择适当的运动方式•强调运动的适度原则(5)小结对本课的重点内容进行总结,并回答学生提出的相关问题。
4. 教学辅助材料•PPT课件•BMI指数计算器三、教学反思此次教学中,我主要讲解了肥胖的原因及对健康的影响,BMI指数的定义与计算方法,以及饮食和运动习惯的控制对身体健康的重要性。
教学过程中,我利用PPT和计算器等教学工具,让学生更容易理解和掌握知识。
在教学过程中,我发现学生对于BMI指数的概念和计算方法还不是很清楚。
这需要我在今后的教学中给予更充分的讲解和引导。
因此,我将通过更多的实例让学生更容易理解BMI指数的概念和计算方法。
另外,我也需要注意教学时的语言和思路清晰,避免让学生产生困惑。
北师大版七年级上册《5.4 我变胖了》教学设计
5、4 我变胖了教学目标:1、让学生通过分析实际问题中的“不变量”,建立方程解决问题2、让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型3、设未知数,正确求解,并验明解的合理性4、激发学生的学习情绪,让学生在探索问题中学会合作教学重点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性教学难点:如何从实际问题中寻找等量关系建立方程教具:多媒体、量杯、两瓶矿泉水(容量一样,一个短而宽,一个长而窄)教学过程:情景:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄)问到那个水多?学生1:A多学生2:B多学生3:一样多教师拿出两个相同的量杯,让学生1把两瓶矿泉水分别倒进两个量杯中,结果全体同学就说一样多,没有说对的同学,不好意思的笑了。
教师:不要紧张,现在还有一个机会证明自己,请看找出下列问题中的等量关系问题一:将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?1、它在锻压前和锻压后有何变化?2、你发现有什么相等关系?3、你能用你的语言表达出来吗?4、你能用数学表达式表示出来吗?5、把你列的方程写在草稿本上,与你的同桌交流,你做对了吗?6、把它解出来,与同桌交流,看谁做得又快又准确。
注意,验明解的合理性。
问题二:小明用10米的铁丝围成一个长方形。
长比宽多1.4米和0.8米和长宽一样时,找出长方形里的等量关系。
教师让学生回答学生:问题1的体积是等量学生:问题2铁丝的长度是等量问题三:问题2中的铁丝在围成什么图形的时候面积最大,大多少?学生通过合作比较之后提出圆形的面积最大,并求出具体的数值课堂练习:P165、随堂练习1.用两根等长的铁丝,分别绕成一个正方形和一个圆. 求这两根等长的铁丝绕成的正方形和圆计算说明谁的面积大?2. 墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示。
小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示。
《我变胖了》一元一次方程PPT课件
我 胖 了
Hale Waihona Puke 学一学例:用一根长为10米的铁线围成一个长方形. (1)使得该长方形的长比宽多1.4 米,此时长方 形的长、宽各是多少米呢?面积是多少? (2)使得该长方形的长比宽多0.8米,此时长方形 的长、宽各为多少米?它所围成的长方形(1)所 围成的长方形相比,面积有什么变化? (3)使得该长方形的长和宽相等,即围成一个 正方形,此时正方形的边长是多少米?围成的 面积与(2)所围成的面积相比,又有什么变化?
解得
x9
因此,高变成了9厘米。
1、在将较高的玻璃杯中水倒入较矮玻璃杯的
过程中,不变的是 水的体积 .
2、将一块橡皮泥由一个瘦高的圆柱捏成一个 矮胖的圆柱,其中变的是 底面半径和高 , 不变的是 橡皮泥的体积 . 3、将一根12cm长的细绳围成一个长3cm的正方 形,再改成一个长4cm、宽2cm的长方形,不 变的是 细绳的长度 。
例(3)
面积: 2.5 × 2.5 =6. 25
思 考
一个长方形的养鸡场的长边靠墙,墙长14米, 其他三边用竹篱笆围成,现有长为33米的竹篱笆, 小王打算用它围成一个鸡场,且尽可能使鸡场面 积最大,请你帮他设计。
长方形的周长 一定时,当且 仅当长宽相等 时面积最大。
墙壁
篱笆
你自己来尝试!
墙上钉着用一根彩绳围成的梯形形状的装饰物,小颖 将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形, 那么,小颖所钉长方形的长和宽各为多少厘米? 分析:等量关系是 变形前后周长相等 解:设长方形的长是 x 厘米,由题意得:
——讨 论 题——
在一个底面直径为3cm,高为22cm的量筒内装满 水,再将筒内的水到入底面直径为7cm,高为9cm的 烧杯内,能否完全装下?若装不下,筒内水还剩多高? 若能装下,求杯内水面的高度。 若将烧杯中装满水倒入量筒中,能否装下?若装 不下,杯内还剩水多高?
《我变胖了》教案 2022年北师大版数学七上1
学习目标1. 通过分析实际问题中的数量关系,建立方程解应用题。
2.用实例对一些数学猜测做出检验,从而增加猜测的可信程度或推翻猜测。
学习过程前置准备:一个面团压扁前有什么关系?自主学习:请同学自己完成教材P182的问题中的表格,并让同位交流问题中等量关系的寻找方法。
合作交流:首先自主学习例1,然后与同伴交流你的学习方法.归纳总结:同桌交流归结此类应用题的解题思想方法。
例题解析:教材P186,问题解决2。
当堂训练:1上课时,同学们将自制的橡皮泥圆柱体制成了不同的几何体;长方体、正方体等,这些几何体中不变的是〔〕A、颜色B、形状C、体积D、外表积学习笔记:1.我掌握的知识。
2.我不明白的问题。
课下训练:1、一个梯形的上底是6cm,下底是12cm,它的面积是144cm2,那么梯形的高是。
2、假设把一个圆柱加粗,使它的半径是原来的三倍,那么其体积变为原来的倍。
中考真题:〔2021年年杭州〕用直径为120mm的圆钢锻造成重的工件,每间立方米的圆钢重,问需要截取的圆钢的长是多少?一、课题§二、教学目标1.使学生在理解线段概念的根底上,了解线段的长度可以用正数来表示,因而线段可以度量、比拟大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.2.使学生学会线段的两种比拟方法及表示法.3.通过本课的教学,进一步培养学生的动手能力、观察能力.三、教学重点和难点对线段与数之间的关系的认识,掌握线段比拟的正确方法,是本节的重点,也是难点.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程〔一〕、复习线段的概念,引出线段的长度的度量和表示1.学生动手画出(1)直线AB.(2)射线OA.(3)线段CD.2.提出问题:能否量出直线、射线、线段的长度?(如果有学生将直线、射线也量出了长度,借此复习直线和射线的概念.)3.提出数与形的问题:线段是一个几何图形,而线段的长度可用一个正数表示.这就是数与形的结合.4.线段的两种度量方法:(1)直接用刻度尺.(2)圆规和刻度尺结合使用.(教师可让学生自己寻找这两种方法)5.教师再讲表示法:线段AB=7cm.二、通过实例,引导学生发现线段大小的比拟方法教师设计以下过程由学生完成.1.怎样比拟两个学生的身高?提出为什么要站在一起,脚底要在一个平面上?2.怎样比拟两座大山的上下?只要量出它们的高度.由此引导学生发现线段大小比拟的两种比拟方法:重叠比拟法将两条线段的各一个端点对齐,看另一个端点的位置.教师为学生演示,步骤有三:(1)将线段AB的端点A与线段CD的端点C重合.(2)线段AB沿着线段CD的方向落下.(3)假设端点B与端点D重合,那么得到线段AB等于线段CD,可以记AB=CD.假设端点B落在D上,那么得到线段AB小于线段CD,可以记作AB<CD.假设端点B落在D外,那么得到线段AB大于线段CD,可以记作AB>CD.如图1-6.教师讲授此局部时,应用几个木条表示线段AB和线段CD,这样可以更加直观和形象.也可以用圆规截取线段的方法进行.数量比拟法用刻度尺分别量出线段AB和线段CD的长度,将长度进行比拟.可以用推理的写法,培养学生的推理能力.写法如下:因为量得AB=××cm,CD=××cm,所以 AB=CD(或AB<CD或AB>CD).总结:现在我们学会了比拟线段的大小,还会比拟什么?学生可以答复出,可以比拟数的大小,进而再问:数的大小如何比拟?(数轴)再问:比拟线段的大小与比拟数的大小有什么联系?引导学生得到:比拟线段的大小就是比拟数的大小.三、应用实例,变式练习:1.如图1-7,量出以下列图形中各条线段的长度,比拟它们的大小.并比拟一个三角形中任意两边的和与第三边的关系.可以得出什么结论?2.如图1-8,根据图形填空.AD=AB+______+______,AC=______+______,CD=AD-______.3.如图1-9,线段AB,量出它的长度并找出它的中点、三等分点、四等分点.4.如图1-10,根据图形填空,(1)AB=______+______+______.(2)AB-a=______+______.〔四〕、小结1.教师提问:怎样表示线段的长度?怎样比拟线段的大小?通过本节课你对图形与数之间的关系有什么了解?2.根据学生答复的情况,教师重点总结数与形的结合以及比拟线段大小的两种方法.七、练习设计p.18,1.2题.p21,2.3.4题.九、教学后记1.本课的教学时间为1课时45分钟.2.本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识.为将来的学习打下根底,这节课是一堂起始课,它为学生的思维开拓了一个新的天地.在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比拟线段的方法,没有从数形结合的高度去认识.实际上这节课大有可讲,可以挖掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容无视,在日常的教学中要时时注意.3.学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识.4.在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短〞这一结论有一个感性的认识,并为下面的教学做一个铺垫.5.为防止本节课的枯燥,可以用提问的形式,出现悬念.如:开始的提问“线段是几何图形,它与数字有什么联系?〞“在我们学过的知识和生活中,什么东西可以比拟大小?〞等.这样就会调动学生的学习的积极性,提高他们的学习兴趣,积极思维,使课堂的气氛更加活泼.6.如果感觉课堂密度小,还可以增加一些培养动手能力的题.如:(1)量一量老师的大三角板中的等腰三角形各边的长,然后再量一量自己手中同样的小三角板各边的长,算一算相等的角所对的边长度的比值,是否相等.(为相似三角形的内容做一些铺垫)(2)量一量课桌四条边的长,再量一量课本四条边的长,算一算长边与长边的比、短边与短边的比.(得到角相等的图形,边不一定成比例)(3)在同一时间下,两棵高矮不同的大树的影子的长度自己量出,然后比拟大小,想一想这两棵树哪一棵高?(对相似三角形的边角关系有一定的感性认识)以上的三个题对学有余力的同学是很好的认识数学世界的实例.使本节课的内容更加生动丰富,课堂气氛更加活泼.。
《我变胖了》教案 北师大版数学七上3
我变胖了教学目标知识与能力通过分析实际问题中的数量关系,建立方程解决问题,进一步提高分析解决问题能力。
过程与方法通过主体参实验操作及独立思考,体会运用方程解决问题的关键是寻找应用问题中的等量关系。
情感态度与价值观鼓励学生积极参与数学学习活动,激发学生的好奇心和主动学习的欲望,建立学好数学的自信心。
教学重点难点:寻找面体积问题中的等量关系。
教学过程创设情景、引发探究本节课我们学习的课题是《我变胖了》,刚看见这个题目时,我下意识的摸摸自己的脸,看看自己的身材以为我真的胖了呢?事实上原来不是这回事,同学们你们想知道这是怎么一回事吗?探究新知、学习概念做一做:请同学们看我的演示,这是一块圆柱形橡皮泥,我用力向下一压,你们看它怎么了?〔它矮了,也就胖了!哦,原来是说圆柱胖了啊!〕刚刚的演示与轧钢工厂里的锻压过程完全雷同。
请看下面的例子有一位工人师傅要锻造底面直径为20厘米的“矮胖〞形圆柱,可他手边只有底面直径是10厘米,高为36厘米的“瘦长〞形圆柱,这位师傅想知道将这个“瘦长〞形圆柱锻压成“矮胖〞形圆柱。
高就变成了多少?你能帮他吗?在这个过程中,圆柱体的哪些量发生了变化?而哪些量没有变化?〔底面半径增大、高度减小、体积没变、重量没变〕我们如果设锻压后的高为x厘米,通过填写下表来看一下锻压前的体积解:设锻压后圆柱的高为x 厘米,根据题意,列出方程:3652⨯⨯π=x ⨯⨯210π解,得x=9答:高变成了解情况厘米。
我们再来看一个例子〔课本164P 例1〕[例1]用一根长为10米的铁丝围成一个长方体。
〔1〕使得该长方形的长比宽多,此时长方形的长、宽各为多少米?〔2〕使得该长方形的长比宽多,此时长方形的长、宽各为多少米?它围成的长方形与〔1〕中所围成的长方形相比,面积有何变化?〔3〕使得该长方形的长与宽相等,围成一个正方形,此时,正方形的边长是多少米?它所围成的面积与〔2〕中相比有何变化?[分组讨论]1、用你手里的铁丝亲自动手操作,根据你的生活经验和操作过程以及用一元一次方程解决实际问题的根底,分组独立完成例1中的〔1〕〔2〕〔3〕三个问题。
我变胖了
课题《我变胖了》教学设计教学目标(一)教学知识点1.图形问题中的基本等量关系,并由此关系列方程解相关的应用题.2.进一步了解一元一次方程在解决实际问题中的应用.(二)能力训练要求1.通过分析图形问题中的数量关系,建立方程、解决问题.进一步提高分析问题、解决问题的能力.2.进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.(三)情感与价值观要求使学生在动手、独立思考、方程意识建立的过程中,体会数学应用的价值,鼓励学生大胆进行质疑和创新,激发学生的好奇心和主动学习的欲望.教学重点运用方程解决实际问题.教学难点寻找问题中的等量关系.教学准备学生准备橡皮泥,等长的线绳.教学过程一、情景导入(教师讲故事)故事:有一个“又矮又胖”的圆柱,它总抱怨自己的身材不好看,工人叔叔就把它锻造成了“又瘦又长”的圆柱,它望着镜中的自己,说“我变瘦了”.(教师板书课题——我变瘦了,然后出示幻灯片1)二、新课1.请同学们根据自己的理解分别画出“矮胖”形圆柱和“瘦长”形圆柱.2.请同学们用橡皮泥做“矮胖形”形圆柱形,然后将它“变高变瘦”一些.3.出示幻灯片2,让学们观察图中前后的圆柱有什么变化?具体从底面半径、高、体积来叙述.结论:“矮胖”→“瘦长”.底面半径变小,高变长,体积不变.例1:将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱,锻压成底面直径是20厘米的“矮胖”的形圆柱,高变成了多少?分析:展示幻灯片3(1)填写下图中的有关数据.(2)完成下表:(3)在这个问题中的相等关系是:锻压前的________=锻压后的________________.让学生利用等量关系,列出方程,并解方程.教师根据情况讲方程中 的处理方程方法,让学生积累数学经验.解:出示幻灯片4。
设高变成了x厘米,根据题意,得x=36答:高变成了36厘米.做一做:用等长的线绳首尾相接围成长方形,(分小组进行)比较各小组的结果,你发现了什么?(具体从长、宽,周长、面积等叙述.)结论:长、宽不同,周长相同,面积不变.(保留不同意见,例2后再给予肯定.)例2:用一根长10米的铁丝围成一个长方形,(1)使得该长方形的长比宽多1.4米,此时长方形的长宽各是多少米?它围成的面积是多少?展示幻灯片5(2)使得该长方形的长比宽多0.8米,此时长方形的长宽各是多少米?它围成的面积是多少?展示幻灯片6(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少?面积是多少?展示幻灯片7(4)上面(1)、(2)、(3)中的面积有什么变化?展示幻灯片8让学生通过动手操作、思考,寻找等量关系,列方程,解答,发现围成的长方形的长和宽在发生变化,周长不变,并且长与宽越接近,面积越大.围成的四边形中正方形的面积最大.以上结果都由学生总结,补充得出.思考题:用同样长的线绳可以围很多不同的平面图形,当围成什么图形时面积最大?(圆面积最大)此题具有一定的开放性,教师对学生得到的结论给予补充肯定,并告之具体原因会在高中阶段学到.三、练习:1、展示幻灯片9墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示,小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示,小颖所钉长方形的长、宽各为多少厘米?让学生按题目要求将自己围成的等腰梯形变为长方形,思考前后的等量关系是什么?再解答.2、展示幻灯片10:“小明要考考你”3、展示幻灯片11:思考。
北师大版七上《我变胖了》word教案(2)
年级:七年级学科:数学执笔:审核:内容:5.4我变胖了课型:新授时间:2011年月日年班小组姓名学习目标:1、用实例对一些数学猜想做出检验,从而增加猜想的可信程度.2、通过分析图形问题中的基本等量关系,建立方程的解决问题.3、培养学生敢于面对和克服数学活动中困难的能力.学习重点:学会分析图形中等量关系来列方程、解方程.学习难点:学会分析图形中等量关系来列方程、解方程.学习过程:一、预习导学:1、填空:长方形的周长= 面积=长方体的体积= 正方体的体积=圆的周长== 面积 = 圆柱的体积= 2、如果长方形的面积是56平方厘米,它的长与宽相差1厘米,请问这个长方形的长、宽各是多少厘米?(只列方程)3、一圆柱的体积是314立方厘米,底面圆的半径是5厘米,此圆柱的高为多少厘米?(只列方程)4、周长一定的图形变形的基本关系式:变形前的周长=5、等积变形的基本关系式:变形前的体积= 。
二、合作探究:阅读教材182--184页,完成下列内容:(一)等体积变形问题的基本关系式:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?分析:锻压前的体积=锻压后的体积那么在这个问题中有如下的等量关系:解:设锻压后圆柱的高为x厘米,填写下表:径根据等量关系,列出方程:解得答:高变成了厘米。
组内交流:形状发生了变化,而没变.练习:(只列方程)1、要锻造直径是100mm,高为80mm的圆柱形毛坯,需截取直径为80mm的圆钢长为多少?2、将一个底面直径是10cm、高为36cm的“瘦长”形圆柱锻压成底面直径为20cm的“矮胖”形圆柱,高变成了多少?(二)长方形的长、宽变化与面积变化之间的关系:用一根长10米的铁丝围成一个长方形。
(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?面积呢?解:设长方形的宽为x米,则长为米,根据题意列方程得(2)使得长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?面积呢?(3)若长与宽相等,此时正方形边长为多少米?面积为多少平方米?(4)若用10米长的铁丝围成一个圆,则半径约为多少米?面积为多少平方米?(5)你能得到结论?组内交流:形状发生了变化,而没变.三、小结:说说你有哪些收获,与同伴分享;还有哪些困惑一起解决。
七上第五章一元一次方程集体备课5.4我变胖了-教案
阅读课本P182-184内容,完成书中提出的问题.
(议一议)你认为利用方程解决问题的关键是什么?在寻找图形问题中的等量关系时,你有什么秘诀?
例1用一根长为10米的铁丝围成一个长方形.
(1)使得该长方形的长比宽多1.4米,此长方形的长、宽各为多少米?面积是多少?
(2)若长比宽多0.8米,此时长方形的长、宽各为多少米?面积呢?
教学重点
使学生进一步体会运用方程解决问题的关键是抓住等量关系,认识方程
教学难点
抓住锻压变化中的不变量——物体的体积
教学过程
集备意见
个案补充
一.情境设置
小时候,大家玩过橡皮泥吗?(展示准备好的模型)这是用橡皮泥捏成的高为10厘米的圆柱,现在要将它改捏成高为3厘米的圆柱,但不能剩余橡皮泥,哪位同学愿意试试(不要求很准确)?你能描述一下它的外形变化吗?(课题:我变胖了)在这个过程中,圆柱的体积是否发生变化?在工业上,许多零件的制造都运用了这个原理,称为“锻压”.
五.小结:学完本节课你有什么收获?
作业布置
课本P186习题5.7数学理解1及问题解决2;《课堂作业》
板书设计
5.4我变胖了
一、例题解析二、列方程解应用题的注意事项
课后反思
2.在一个底面直径为3cm,高为22cm的量筒内装满水,再将筒内的水到入底面直径为7cm,高为9cm的烧杯内,能否完全装下?若装不下,筒内水还剩多高?若能装下,求杯内水面的高度.
3.若将烧杯中装满水到入量筒中,能否装下?若装不下,杯内还剩水多高?
4.第一块实验田的面积比第二块实验田的3倍还多100平方米,这两块实验田共2900平方米,两块实验田的面积分别是多少平方米?
试一试:学校要依一段长为50米的围墙围出一个学生单车棚,现有120米的铁栅栏可用,你能设计一种方案,既经济又使单车棚的面积尽可能大吗?
北师大版七上《我变胖了》word教案(2)
年级:七年级学科:数学执笔:审核:内容:5.4我变胖了课型:新授时间:2011年月年班小组姓名学习目标:1、用实例对一些数学猜想做出检验,从而增加猜想的可信程度•2、通过分析图形问题中的基本等量关系,建立方程的解决问题.3、培养学生敢于面对和克服数学活动中困难的能力.学习重点:学会分析图形中等量关系来列方程、解方程.学习难点:学会分析图形中等量关系来列方程、解方程.学习过程:一、预习导学:1、填空:长方形的周长= _____________ 面积= ____________长方体的体积 =____________ 正方体的体积 = _________圆的周长==面积=圆柱的体积= _________________________________________ 2、如果长方形的面积是56平方厘米,它的长与宽相差1厘米,请问这个长方形的长、宽各是多少厘米?(只列方程)3、一圆柱的体积是314立方厘米,底面圆的半径是5厘米,此圆柱的高为多少厘米?(只列方程)4、周长一定的图形变形的基本关系式:变形前的周长= _________________________5、等积变形的基本关系式:变形前的体积 = ____________________________ 。
、合作探究:阅读教材182--184页,完成下列内容:(一)等体积变形问题的基本关系式:将一个底面直径是10厘米、高为36厘米的“瘦长” 面直径为20厘米的“矮胖”形圆柱,高变成了多少?分析:锻压前的体积二锻压后的体积那么在这个问题中有如下的等量关系:解:设锻压后圆柱的高为x厘米,填写下表:根据等量关系,列出方程:解得_________________答:高变成了____________ 厘米。
组内交流:形状发生了变化,而__________ 没变•练习:(只列方程)1、要锻造直径是100mm高为80mm勺圆柱形毛坯,需截取直径为80mm勺圆钢长为多少?2、将一个底面直径是10cm高为36cm的“瘦长”形圆柱锻压成底面直径为20cm 的“矮胖”形圆柱,高变成了多少?(二)长方形的长、宽变化与面积变化之间的关系: 用一根长10米的铁丝围成一个长方形。
北师大版数学七年级上册《 第五章 一元一次方程 》教学设计
北师大版数学七年级上册《第五章一元一次方程》教学设计一. 教材分析北师大版数学七年级上册第五章《一元一次方程》是初中学段数学教学的重要内容,主要让学生了解和掌握一元一次方程的定义、解法及其应用。
本章通过实际问题引入方程的概念,让学生感受数学与实际生活的联系,培养学生的数学应用能力。
教材内容安排合理,由浅入深,既注重基础知识的教学,又重视学生能力的培养。
二. 学情分析初入学段的七年级学生在数学知识、技能、思维方式等方面具有一定的基础,但方程概念、解法及应用对于他们来说还是一个新的领域。
因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发他们的求知欲望,引导学生主动探究、合作交流,逐步掌握一元一次方程的知识。
三. 教学目标1.知识与技能目标:使学生了解一元一次方程的概念,掌握一元一次方程的解法,能运用一元一次方程解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生发现规律、解决问题的能力。
3.情感态度与价值观目标:培养学生热爱数学、勇于探究的精神,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:一元一次方程的概念、解法及应用。
2.难点:一元一次方程的解法,以及如何将实际问题转化为方程问题。
五. 教学方法1.情境教学法:通过生活实例引入方程概念,让学生感受数学与实际生活的联系。
2.启发式教学法:引导学生主动思考、探究,发现方程的解法及应用。
3.合作学习法:鼓励学生之间相互讨论、交流,提高解决问题的能力。
4.反馈评价法:及时了解学生的学习情况,针对性地调整教学方法及策略。
六. 教学准备1.教学课件:制作生动、直观的课件,辅助教学。
2.教学案例:准备一些实际问题,用于引导学生解决方程问题。
3.练习题库:准备一定数量的练习题,用于巩固所学知识。
4.教学用具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活实例引入方程的概念,如“小明买书”问题,引导学生感受数学与实际生活的联系。
北京课改版数学七年级上册2.5.1《一元一次方程》教学设计
北京课改版数学七年级上册2.5.1《一元一次方程》教学设计一. 教材分析《一元一次方程》是北京课改版数学七年级上册第2.5.1节的内容,主要包括一元一次方程的定义、性质和解法。
本节内容是学生学习方程的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于代数知识有一定的了解。
但一部分学生可能对于方程的概念和性质理解不够清晰,需要通过实例和练习来加深理解。
同时,学生对于解方程的技巧和方法还需要进一步的引导和培养。
三. 教学目标1.了解一元一次方程的定义和性质。
2.学会解一元一次方程的基本方法。
3.能够应用一元一次方程解决实际问题。
四. 教学重难点1.一元一次方程的定义和性质的理解。
2.解一元一次方程的方法和技巧的掌握。
五. 教学方法采用问题驱动法和案例教学法,通过引入实际问题和实例,引导学生主动思考和探索,培养学生的逻辑思维和解题能力。
同时,结合分组讨论和合作交流,提高学生的参与度和积极性。
六. 教学准备1.准备相关的实际问题和案例。
2.准备一元一次方程的解法演示和练习题目。
七. 教学过程1.导入(5分钟)通过引入实际问题,引发学生对一元一次方程的思考,激发学生的学习兴趣。
例如,可以使用购物结算的问题,让学生思考如何表示商品的单价和总价。
2.呈现(10分钟)引导学生通过观察和分析实际问题,总结出一元一次方程的定义和性质。
通过示例和讲解,让学生了解一元一次方程的形式和特点。
3.操练(10分钟)给学生提供一些练习题目,让学生独立解答。
通过解题的过程,巩固学生对一元一次方程的理解,并培养学生的解题技巧。
4.巩固(5分钟)学生进行小组讨论,分享解题的心得和方法。
通过互相交流和讨论,加深学生对一元一次方程的理解。
5.拓展(5分钟)引导学生思考一元一次方程在实际生活中的应用,提出一些实际问题,让学生尝试解决。
通过实际问题的解决,培养学生的应用能力。
6.小结(5分钟)对本节课的内容进行总结,强调一元一次方程的定义和性质,以及解题的方法和技巧。
七年级数学上册 我变胖了教案 北师大版
我变胖了教学设计教学设计思想改变传统以讲解例题为主的教学方式,让学生经历试验、猜想、探索发现问题的过程,通过实际问题的解决,增强用数学方法解决问题的意识,教学中注意培养学生学习数学的主动性。
学生填表时,发现有些同学半径与直径混淆,方程中直接用3.14替代π,圆柱体的体积公式遗忘等,教师应及时加以纠正。
鼓励让学生谈想法和体会,关注学生课堂活动参与意识,使课堂活动富有生气。
联系生活实际,用数学方法解决实际问题,逐步改变教师的教学行为。
教学目标知识与技能1.能找到图形问题中的基本等量关系,并由此关系列方程解相关的应用题.2.进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.过程与方法通过分析图形问题中的数量关系,建立方程、解决问题.进一步提高分析问题、解决问题的能力.情感态度价值观在动手、独立思考、方程意识建立的过程中,进行大胆质疑和创新,体会数学应用的价值,激发主动学习的欲望.教学重点1.寻找图形问题中的等量关系,建立方程.2.根据具体问题列出的方程,掌握其简单的解方程的方法.教学难点寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化.教学方法直观——自主探索的方法在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化.教具准备橡皮泥、细铁丝.课时安排1课时教学过程Ⅰ.创新问题情境,引入新课[师]在我们的现代社会里,人们不经意地就会听到或看到一些“减肥”的广告.一听别人说自己最近胖了,就考虑怎样减去多余的脂肪.可我们今天不研究“减肥”,研究什么呢?我们今天研究“我变胖了”.Ⅱ.学生通过直观感知、操作等活动,寻找图形问题中的等量关系.1.做一做[师]现在拿出你们准备好的橡皮泥,先用这块橡皮泥捏出一个“瘦长”的圆柱体;然后再让这个“瘦长”的圆柱“变胖”,变成一个又矮又胖的圆柱,随后思考两个问题:(1)在你操作的过程中,圆柱由“瘦”变“胖”的过程中,圆柱的底面直径变了没有?圆柱的高度呢?(2)在这个变化过程,是否有不变的量?是什么没变?(让学生亲自动手操作,在动手操作的过程中,体会哪些量发生了变化,哪些量没有变化?教师对基础差的同学可适当引导)[生]在我操作的过程中,圆柱的直径和高度都发生了变化,而橡皮泥的体积没有变.[师]很好.我这儿有一个问题:有一位工人师傅要锻造底面直径为20厘米的“矮胖”形圆柱,可他手边只有底面直径是10厘米,高为36厘米的“瘦长”形圆柱,这位师傅想知道将这个“瘦长”形圆柱锻压成“矮胖”形圆柱.高就变成了多少?你能帮他吗?[生]用一元一次方程来解.这个问题的等量关系:锻压前的体积=锻压后的体积.[师]这位同学的分析很好.下面我们如果设锻压后的高为x厘米,通过填写下表来看一下锻压前的体积和锻压后的体积.请一位同学填写.[生]锻压前的圆柱的底面半径为10÷2=5(厘米),高为36厘米,所以锻压前的圆柱的体积为π×52×36(立方厘米).锻压后的圆柱的底面半径为20÷2=10厘米,高设为x厘米,所以锻压后的体积为π×102×x.[师生共析]由等量关系我们便可得到方程:π×52×36=π×102×x.[师]列出方程我们只是走完“万里长征”的重要的第一步,如何解这个方程呢?[生]将π换成3.14,算出x的系数π×102,然后将系数化为1就解出了方程.[生]我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单.[师]这位同学的想法很好.下面我们共同把这个题的过程写一下.解:设锻压后圆柱的高为x厘米,根据题意,列出方程:π×52×36=π×102×x解,得x=9答:高变成了9厘米.[师]我们再来看一个例子.(课本P164例1)[例1]用一根长为10米的铁丝围成一个长方体.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有何变化?(3)使得该长方形的长与宽相等,围成一个正方形,此时,正方形的边长是多少米?它所围成的面积与(2)中相比有何变化?[分组讨论](1)用你手里的铁丝亲自动手操作,根据你的生活经验和操作过程以及用一元一次方程解决实际问题的基础,分组独立完成例1中的(1)(2)(3)三个问题.(2)请每一小组派一个代表汇报三个小问题的解答过程.(3)反思各组的解答过程讨论:解决这道题的关键是什么?从解这道题中你有何收获和体验.[小组汇报]解:(1)设此时长方形的宽为x米,则它的长为(x+1.4)米,根据题意,得[x+(x+1.4)]×2=102x=5-1.42x=3.6x=1.8x+1.4=1.8+1.4=3.2此时长方形的长和宽分别为3.2米、1.8米.(2)此时长方形的宽为x米,则它的长为(x+0.8)米,根据题意,得[x+(x+0.8)]×2=102x=5-0.82x=4.2x=2.1x+0.8=2.1+0.8=2.9此时长方形的长和宽分别是2.9米和2.1米.它围成的长方形的面积为2.1×2.9=6.09(米2).而(1)中长方形的面积为3.2×1.8=5.76(米2).此时长方形的面积比(1)中面积增大6.09-5.76=0.33(米2)(3)设正方形的边长为x米.根据题意得4x=10x=2.5正方形的边长为2.5米,它所围成的面积为2.5×2.5=6.25(米2).比(2)中面积增大6.25-6.09=0.16(米2).[师生共析]我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米.由此便可建立“等量关系”.但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大.[师]是不是用10米长的铁丝围成的正方形的面积最大.同学们不妨下去继续讨论这个问题.[例2]一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?分析:是否符合实际关键看和墙相对的一边不能超过14米,所以我们就需要根据小王和小赵的设计求出这一边的长度和14米比较.而此时就需找到“等量关系”建立方程.解:根据小王的设计可以设宽为x米,长为(x+5)米,根据题意,得2x+(x+5)=353x=30x=10因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计是不符合实际的.再来看小赵的设计可以设宽为x米,长为(x+2)米,根据题意,得2x+(x+2)=353x=33x=11因此小赵的设计的长为x+2=11+2=13(米).而墙的长度是14米,显然小赵的设计符合要求.此时,鸡场的面积为11×13=143(米2).Ⅲ.课堂练习(课本P165)1.解:设长方形的长为x厘米,根据题意得,2(x+10)=10×4+6×2.解,得x=16答:小颖所钉长方形的长和宽为16厘米,10厘米.Ⅳ.课时小结本节课通过分析一些图形如圆柱、长方形等的数量关系,建立方程解决问题.进一步体会到运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.Ⅴ.课后作业1.课本习题5.7,2.预习下一节《打折销售》并作市场调查.Ⅵ.活动与探究参看《读一读·“瞎转圈”的道理》过程:组织全班学生阅读此材料,并开展交流与体验,亲自到操场实际体会这一现象.过程:分小组进行,先让第一小组做实验,将他们的眼睛蒙上,然后叫他们一直向前走.看会有什么现象出现.其他组也做类似的实验.结果:他们每个人有些渐渐向右偏,有些渐渐向左偏转,最后都转起圈来,又踏上自己已走过的路径.上面的现象很神秘,也很有趣.但其中的道路很简单.可参看教材P166的解释.板书设计。
北师大版七年级上册第五章:5.4我变胖了课程设计 (2)
北师大版七年级上册第五章:5.4我变胖了课程设计一、教学目标1.知识目标:•了解人体如何储存脂肪,以及什么因素会导致人们变胖。
•掌握科学的减肥方法,以及如何保持健康的饮食习惯和生活方式。
2.能力目标:•培养学生的科学探究能力和分析问题的能力。
•提高学生的交流、合作、创新和运用知识的能力。
3.情感目标:•培养学生的健康意识和生活习惯,争取健康成长。
•培养学生的自信心和人际交往能力,同时增强对健康的重视。
二、教学内容1.人体储存脂肪的原因和作用。
2.引发变胖的主要因素,如不良的饮食习惯、缺乏体育锻炼、基因等。
3.科学减肥方法,如合理饮食、适量运动、保持良好的生活习惯。
4.如何树立正确的减肥观和健康观。
三、教学过程1. 导入环节1.通过情景模拟或图片比较,引出本课主题。
2.给学生讲述一则身体变化的故事,引导学生从个人经历出发思考减肥的原因和影响因素。
2. 讲授环节1.介绍人体脂肪的结构、特点等基本知识。
2.讲解人体脂肪储存的原因和作用。
3.分析引发变胖的主要因素,如不良饮食习惯、缺乏体育锻炼、基因等。
4.介绍科学的减肥方法,包括合理饮食、适量运动、保持良好的生活习惯等。
5.引导学生了解如何树立正确的减肥观和健康观。
3. 活动环节1.拆分成小组,让学生在小组内讨论自己的饮食习惯。
2.分析小组内同学的饮食习惯,让学生相互检视并制定合理的饮食计划,并给予提示和建议。
3.制定运动计划,鼓励学生进行各种创新的、有趣的小组运动,并形成反馈。
4. 总结环节1.教师总结本课的重难点内容。
2.引导学生反思、总结本次活动中的收获与不足,并提出自主学习计划。
四、教学评价1.反馈式评价:回顾本次活动的学生表现,采用学生自评、教师点评等方式,给予实时反馈。
2.组织式评价:根据学生表现和参与情况等相应综合评价,如班级贡献、小组创新、学生表现等。
五、课后拓展1.阅读并分析相关的科学减肥理论和方法。
2.进行健康饮食、适度运动等相关练习。
2019-2020学年七年级数学上册《5.4 我变胖了》教案 北师大版.doc
2019-2020学年七年级数学上册《5.4 我变胖了》教案北师大版教学目标:1.让学生通过分析实际问题中的“不变量”,建立方程解决问题2.让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型3.设未知数,正确求解,并验明解的合理性4.激发学生的学习情绪,让学生在探索问题中学会合作教学重点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.教学难点:如何从实际问题中寻找等量关系建立方程.教学方法:引导发现教学过程:引入:情景1、放映“朝三暮四”的动画(附内容:从前有一个叫狙公的人养了一群猴子.每一天他都给足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴的直打筋斗)学生看到这里都笑了起来.教师把动画关了教师:有什么值大家这么高兴?学生:是猴子,他们蠢死了.4+3和3+4都是一样的.情景2:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄)问到那个水多?学生1:A多学生2:B多学生3:一样多教师拿出两个相同的量杯,让学生1把两瓶矿泉水分别倒进两个量杯中,结果全体同学就说一样多,没有说对的同学,不好意思的笑了.教师:不要紧张,现在还有一个机会证明自己,请看附:找出下列问题中的等量关系问题1:把一个长5厘米,宽2厘米,高40厘米的长方体铁块锻压成一个半径为4厘米的圆柱体,问圆柱体的高是多少?问题2:有个同学用20厘米的铁丝围成一个长比宽多2厘米的长方形,问长方形的长和宽各是多少?教师让学生回答学生4:问题1的体积是等量学生5:问题2铁丝的长度是等量教师:下面请大家用方程形式把他们表示出来,看哪一个小组做的最好教师巡视后,见到各组已做完.(对做的最快的进行表扬)教师:请大家把两个问题的结论找出来教师巡视后,把做的最好一组的过程放在实物投影仪上让其他学生观看,并在此时规范方程格式.问题3:问题2中的铁丝在围成什么图形的时候面积最大,大多少?学生通过合作比较之后提出圆形的面积最大,并求出具体的数值课堂练习P165、随堂练习让学生做完之后,进行小组检查教学后记。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版课标初中数学七年级七年级上一元一次方程我变胖了
教学设计学科名称:我变胖了(初中数学七年级)
所在班级情况,学生特点分析:七年级(3)班现有学生39人,其中男生20人,女生19人该班学生数学基础较好,对数学的学习兴趣较浓。
本章知识点在理解的基础上更易掌握。
教学课时:2课时
第一课时
学习目标
1. 通过分析实际问题中的数量关系,建立方程解应用题。
2.用实例对一些数学猜想做出检验,从而增加猜想的可信程度或推翻猜想。
学习过程
前置准备:
一个面团压扁前有什么关系?
自主学习:
请同学自己完成教材P182的问题中的表格,并让同位交流问题中等量关系的寻找方法。
合作交流:
1.请同学们首先自主学习例1,然后与同伴交流你的学习方法.
归纳总结:同桌交流归结此类应用题的解题思想方法。
例题解析:
教材P186,问题解决2。
当堂训练:
1上课时,同学们将自制的橡皮泥圆柱体制成了不同的几何体;长方体、正方体等,这些几何体中不变的是()
A、颜色
B、形状
C、体积
D、表面积
学习笔记:
1.我掌握的知识。
2.我不明白的问题。
课下训练:
1、一个梯形的上底是6cm,下底是12cm,它的面积是144cm2,则梯形的高是。
2、若把一个圆柱加粗,使它的半径是原来的三倍,则其体积变为原来的倍。
中考真题:
(2003年杭州)用直径为120mm的圆钢锻造成重5.9kg的工件,每间立方米的圆钢重7.8kg,问需要截取的圆钢的长是多少?
第二课时
一、教学目标
1.使学生知道形积问题的意义,能分析题中已知数与末知数之间的相等关系,列出一元一次方程解简单的应用题;
2.使学生了解列出一元一次方程解应用题的方法(含5个步骤)
二、教学重点和难点
列出一元一次方程解有关形积变化问题是重点;依题意准确把握形积问题中的相等关系是难点。
三、教学过程
(1).复习引入(课前复习)钢铁工人正在锻造车间工作(照片或挂图)
1.列方程解应用题应注意哪些事项?
一是正确审清题意,找准“等量关系” ;
二是列出方程正确求解;
三是判明方程解的合理性;
2.列出方程解应用题的5个步骤是什么?
3.填空:
长方形的周长= 面积=
长方体的体积= 正方体的体积=
圆的周长== 面积 =
圆柱的体积=
(2).例题讲解
例1、将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20厘米的“矮胖”形圆柱,高变成了多少?
分析:
设锻压后圆柱的高为x 厘米,填写下表:
锻压前锻压后
底面半径cm cm
高36cm xcm
体积∏*()2 *36∏*()2 *x
解:设锻压后圆柱的高为x 厘米,
根据等量关系,列出方程:
解得 x =9 因此,高变成了9厘米。
例2、用一根长10米的铁丝围成一个长方形。
(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?面积呢?
分析:由题意知,长方形的周长始终是不变的,在解决这个问题中,要抓住这个等量关系。
解:(1)设此时长方形的宽为x米,则它的长为(x+1.4)米。
根据题意,得
2x =3.6 x= 1.8
1.8+1.4 = 3.2 面积 = 1.8*3.2=5.76
此时长方形的长为3.2米,宽为1.8米;面积为5.76平方米。
(2)使得长方形的长比宽多0.8米,此时长方形的长为( 2.9 )米,宽为( 2.1 )米,面积为( 6.09 )平方米。
此时长方形的面积比(1)中面积增大( 0.33 )平方米。
(3)若长与宽相等,此时正方形边长为(2.5)米,面积为( 6.25 )平方米。
比(2)中面积增大( 0.16 )平方米。
(4)若用10米长的铁丝围成一个圆,则半径约为( 1.59 )米,面积为( 7.96 )平方米,比(3)中面积增大( 1.71 )平方米。
有何结论?---同样长的铁丝可以围更大的地方!
(3).随堂练习:你自己来尝试!
墙上钉着用一根彩绳围成的梯形形状的装饰物,小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,那么,小颖所钉长方形的长和宽各为多少厘米?
分析:等量关系是变形前后周长相等
解:设长方形的长是x厘米。
则
解得 x = 16
因此,小颖所钉长方形的长是16厘米,宽是10厘米。
(4).开拓思维
把一块长、宽、高分别为5cm、3cm、3cm的长方体木块,浸入半径为4cm的圆柱形玻璃杯中(盛有水),水面将增高多少?(不外溢)相等关系:水面增高体积=长方体体积
解:设水面增高x厘米。
则
解得
因此,水面增高约为0.9厘米。
(5).——讨论题——
1.在一个底面直径为3cm,高为22cm的量筒内装满水,再将筒内的水到入底面直径为7cm,高为9cm的烧杯内,能否完全装下?若装不下,筒内水还剩多高?若能装下,求杯内水面的高度。
2.若将烧杯中装满水到入量筒中,能否装下?若装不下,杯内还剩水多高?
答案1
解:
所以,能装下。
设杯内水面的高度为x厘米。
杯内水面的高度为 4.04 厘米。
答案2
解:因为
所以,不能装下。
设杯内还剩水高为x厘米。
因此,杯内还剩水高为 4.96 厘米。
(6).小结:学完本节课你有什么收获?(7).作业布置
P/186页习题5.7 共3题
第三课时
教学目标
知识与能力
通过分析实际问题中的数量关系,建立方程解决问题,进一步提高分析解决问题能力。
过程与方法
通过主体参实验操作及独立思考,体会运用方程解决问题的关键是寻找应用问题中的等量关系。
情感态度与价值观
鼓励学生积极参与数学学习活动,激发学生的好奇心和主动学习的欲望,建立学好数学的自信心。
教学重点难点:寻找面体积问题中的等量关系。
教学过程
创设情景、引发探究
本节课我们学习的课题是《我变胖了》,刚看见这个题目时,我下意识的摸摸自己的脸,看看自己的身材以为我真的胖了呢?事实上原来不是这回事,同学们你们想知道这是怎么一回事吗?
探究新知、学习概念
做一做:请同学们看我的演示,这是一块圆柱形橡皮泥,我用力向下一压,你们看它怎么了?
(它矮了,也就胖了!哦,原来是说圆柱胖了啊!)
刚才的演示与轧钢工厂里的锻压过程完全雷同。
请看下面的例子有一位工人师傅要锻造底面直径为20厘米的“矮胖”形圆柱,可他手边只有底面直径是10厘米,高为36厘米的“瘦长”形圆柱,这位师傅想知道将这个“瘦长”形圆柱锻压成“矮胖”形圆柱。
高就变成了多少?你能帮他吗?
在这个过程中,圆柱体的哪些量发生了变化?而哪些量没有变化?
(底面半径增大、高度减小、体积没变、重量没变)
我们如果设锻压后的高为x厘米,通过填写下表来看一下锻压前的体积和锻压后的体积。
解:设锻压后圆柱的高为x厘米,根据题意,列出方程:
=
解,得x=9
答:高变成了解情况厘米。
我们再来看一个例子(课本例1)
[例1]用一根长为10米的铁丝围成一个长方体。
(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?
(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有何变化?
(3)使得该长方形的长与宽相等,围成一个正方形,此时,正方形的边长是多少米?它所围成的面积与(2)中相比有何变化?
[分组讨论]1、用你手里的铁丝亲自动手操作,根据你的生活经验和操作过程以及用一元一次方程解决实际问题的基础,分组独立完成例1中的(1)(2)(3)三个问题。
2、请每一小组派一个代表汇报三个小问题的解答过程。
3、反思各组的解答过程讨论解决这道题的关键是什么?从解这道题中你有何收获和体验。
[师生共析]我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米,由此便可建立“等量关系”。
但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大。
[例2]一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?
分析:是否符合实际关键看和墙相对的一边不能超过14米,所以我们就需要根据小王和小赵的设计求出这一边的长度和14米比较,而此时就需找到“等量关系”建立方程。
课堂练习
课本第一题
课时小节
本节课通过分析一些图形如圆柱、长方形等的数量关系,建立方程解决问题。
进一步体会到运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性。
课后作业
1、课本习题5.7,1、
2、3
2、预习下一节《打折销售》并作市场调查。
活动与探究
附录(教学资料及资源)
自我问答:
参看的《读一读“瞎转圈”的道理》
组织全班学生阅读此材料,并开展交流与体验,亲自到操场实际体会这一现象。