第四章道路交通流理论.

合集下载

交通流理论-统计分布

交通流理论-统计分布

爱尔朗分布 爱尔朗分布也是较为通用的描述车头时距分布、速度分布等交通流参数分布的概率分布模型,根据分布函数中参数“l”的改变而有不同的分布函数。 爱尔朗分布形式如下: 其概率密度函数为:
交通流理论的发展历程
1959年12月,交通工程学应用数学方面学者100多人在底特律举行首届交通流理论国际研讨会,并确定每三年召开一次。从此,交通流理论的研究进入了一个迅速发展的时期。
1975年丹尼尔(Daniel I.G)和马休(marthow,J.H)汇集了各方面的研究成果,出版了《交通流理论》一书,较全面、系统地阐述了交通流理论的内容及其发展。
交通流的统计分布特性;
01
排队论的应用;
02
跟驰理论;
03
交通流的流体力学模拟理论;
04
本章交通流理论的内容
第二节 交通流的统计分布特性
一、交通流统计分布的含义与作用
在建设或改善交通设施,确定新的交通管理方案时,均需要预测交通流的某些具体特性,并且常希望能用现有的或假设的有限数据作出预报。如在信号灯配时设计时,需要预测一个信号周期到达的车辆数;在设计行人交通管制系统时,要求预测大于行人穿越时间的车头时距频率。交通流特性的统计分布知识为解决这些问题提供了有效的手段。
交通流理论的发展历程
20世纪30年代才开始发展,最早采用的是概率论方法。1933年,金蔡(Kinzer.J.P)论述了泊松分布应用于交通分析的可能性;1936年,亚当斯(Adams.W.F)发表了数值例题;格林希尔茨(Greenshields)发表了用概率论和数理统计的方法建立的数学模型,用以描述交通流量和速度的关系。 40年代,由于二战的影响,交通流理论的发展不多。 50年代,随着汽车工业和交通运输业的迅速发展,交通量、交通事故和交通阻塞的骤增, 交通流中车辆的独立性越来越小,采用的概率论方法越来越难以适应,迫使理论研究者寻求新的模型,于是相继出现了跟驰(Car Following)理论、交通波(Traffic Wave Theory)理论(流体动力学模拟)和车辆排队理论(Queuing Theory)。这一时期的代表人物有Wardrop、Reuschel、Pipes、Lighthill、Whitham、Newel、Webster、Edie、Foote、Herman、Chandler等。

第四章 交通流

第四章  交通流
2
[
]
从S与m的比值看,用泊松分布或负二项分布拟合可能是合适的. 若用泊松分布拟合,起分布参数m=5.254 若用负二项分布拟合,它的两个分布参数计算如下: p=m/ S=5.254/6.753=0.78 β= m/( S-m)=5.254 /(6.753-5.254)=18.4
P (0) = e m m P (k ) P ( k + 1) = k +1
1 N 1 g 2 S = (ki m ) = (k j m )2 f j ∑ ∑ N 1 i =1 N 1 j =1
2
应用举例
例题1 : 设60辆汽车随机分布在4km长的道路上,服从泊松分 60辆汽车随机分布在 辆汽车随机分布在4km长的道路上 长的道路上,
布,求任意400m路段上有4辆及4辆以上汽车的概率. 求任意400m路段上有 辆及4辆以上汽车的概率. 路段上有4
∑k
m=
j =1
g
j
fj =
N
1 × (0 × 2 + 1 × 15 + 2 × 20 + ......12 × 2) = 5.254 232
1 g 1 2 2 2 2 S = ( k j m )2 f j = × 2 × (0 5.254) + 15 × (1 5.254) + 20 × (2 5.254) + ... + 2 × (12 5.254) = 6.753 ∑ N 1 j =1 232 1
车辆到达数kj 包含kj的间隔出现次数 <3 3 4 5 6 7 8 9 10 11 12 >12 1 1 0
0 3 0 8 10 11 10 11 9
表4-1
上午高峰期间以15s间隔观测车辆到达的数据 上午高峰期间以 间隔观测车辆到达的数据

道路交通流理论-PPT课件

道路交通流理论-PPT课件
m
• 应用条件:车流密度不大,车流随机; • 泊松分布的均值M和方差D均为λt; • 均值m,方差S2;二者接近时可用。
i 1 n i i n n
f
i 1

i 1
i i
N
i
• 其中:n——观测数据分组数; • fi——计算间隔T内到达xi辆车(人)发生的次(频) • •
数; xi——计数间隔T内的到达数或各组的中值; N——观测的总计间隔数。
泊松分布
• 递推公式
P (X 0 ) e m P (X x ) P (X x 1 ) x
Greenshilds模型
• 1933年(Greenshields)在对大量观测数据进行分析之后,
提出了速度——密度的单段式直线性关系模型:
• V=a-bK • 当K=0时,畅行速度V=Vf ; • 得: a=Vf • 当密度达到最大值,即K=Kj时,车速V=0; • 得: b=Vf/Kj
K • 将a、b代人式(7-2)得: V V ( ) f 1 Kj
V Q K j (V ) Vf
2

• 已知车流速度与密度的关系V=88-1.6K,如限制车流的实 • • • • • • • • •
际流量不大于最大流量的0.8倍,求速度的最低值和密度 的最高值。 解:V=88-1.6K,则Q=VK=88K-1.6K2; V=0时,Kj=88/1.6=55辆/Km; K=0时,Vf=88Km/h Qm=KmVm=88/2*55/2=1210辆/h Q≤Qm*0.8=968辆/h 88K-1.6K2=968 得: K=(55±11)/2=39.8(不符,舍去)=15.2 故:Kmax=15.2辆/Km ; Vmin=88-1.6*15.2=63.7Km/h

交通工程学交通流理论习题解答

交通工程学交通流理论习题解答

《交通工程学第四章交通流理论》习题解答4-1在交通流模型中,假定流速 V 与密度k 之间的关系式为 V=a(1-bk)2,试依据两个边界条 件,确定系数a 、b 的值,并导出速度与流量以及流量与密度的关系式。

1解答:当 V=0 时,K =Kj ,••• b =—;k j当 K = 0 时,V =V f ,• a =V f ;2把a 和b 代入到 V=a(1-bk)K•- V =V f 1-—— l 心丿又 Q =KV流量与密度的关系 Q=V f K 1 4-2已知某公路上中畅行速度 V f =82km/h ,阻塞密度 K j =105辆/km,速度与密度用线性关系模型,求:(1) 在该路段上期望得到的最大流量; (2) 此时所对应的车速是多少?解答:(1) V — K 线性关系,V f =82km/h , K j =105 辆/km•- V m =V f /2=41km/h , K m =K j /2=52.5 辆/km, •- Q m =V m K m =2152.5 辆/h (2) V m = 41km/h4-3对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有 如下形式:乂 =35.9 ln 180k式中车速V s 以km/h 计;密度k 以/km 计,试问在该路上的拥塞密度是多少?_ 180解答:V =35.9In ——k拥塞密度K j 为V=0时的密度,,180 门…ln 0K j•- K j =180 辆/km4-5某交通流属泊松分布,已知交通量为 1200辆/h,求: (1 )车头时距t> 5s 的概率;(2) 车头时距t> 5s 所出现的次数; (3) 车头时距t> 5s 车头间隔的平均值。

解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q=1200辆/h流量与速度的关系Q=K j 1V f r-t—x 」翅(1) P(h t—5)=e i 二e 3600二e3=0.189(2) n=P(h K5)XQ=226 辆/h5»訂水4-6已知某公路q=720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。

[工学]交通流理论

[工学]交通流理论
Fi 为理论上观测数值出现在第i组的频数。
且有:∑fi =N,∑Fi =N
3、确定统计量的临界值χ2a
χ2a值与置信水平α和自由度DF有关,α通常取0.05 。
DF=g-q-1,式中,q为约束数,指原假设中需确定的未知数的个 数,对泊松分布q=1(只有m需确定),对二项分布和负二项分布 q=2(需确定P、n两个参数)。
N1=λ·P(h≥a1)= λe-λa1 主要道路车流中车头时距大于a2的数目:N2= λe-λa2
…… 则,主要道路车流中允许一辆车穿过的车头间隔数目为:N1-N2
主要道路车流中允许二辆车穿过的车头间隔数目为:N2-N3 主要道路车流中允许三辆车穿过的车头间隔数目为:N3N4
……
15
∴到达率为λ的车流允许穿越的车辆数总和为: Q次=1(N1-N2)+2(N2-N3)+3(N3-N4)+… =N1+N2+N3+N4+…=λ[e-λa1 + e-λa2 + e-λa3 +…] =λ[e-λa + e-λ(a+a0) + e-λ(a+2a0) +…]
P(h≥t) =e-λ(t-τ) t≥τ 其概率密度函数为: λe-λ(t-τ) t≥τ
P(t) =
0
t<τ
1
1
移位负指数分布的均值M= +τ ,方差D= 2
用样本的均值(平均车头时距)m和方差S2代替M、D,即可求
得λ和τ。
17
2、适用条件 用于描述不能超车的单列车流和车流量低的车流的车头时距分布。 3、移位负指数分布的局限性
2
第一节 离散型概率统计模型
我们在观测交通量或车辆的车头时距时,会发现在固定的计 数时间间隔内,每个间隔内查到的车辆数是变化的,所观测到 的连续车头时距也是不同的,这说明车辆的到达是有一定随即 性的,为了描述这种随机性而采用的概率统计方法可分为两种: 离散型和连续型。

4-3 交通流理论-跟驰模型

4-3 交通流理论-跟驰模型
2/42
跟驰理论——研究在限制超车的单车道上,行驶车队中前 车速度的变化引起的后车反应。
研究条件——限制超车、单车道 研究前提——前车行驶状态变化 研究对象——后车的行驶状态 研究目的——单车道交通流特性
3/42
一、跟驰状态的判定
跟驰状态临界值的判定是车辆跟驰研究中的一个关键, 现有的研究中,对跟驰状态的判定存在多种观点。
10/42
最早出现的跟弛模型 形式简单 是其他跟弛模型的基础
2辆车跟驰
N+1 S(t) Xn+1(t)
某时刻N+1车位置 正常情况下两车间距 N车停车位置
N
Xn(t) 某时刻N车的位置
N车开始减速位置
d3:N车的制动距离
N+1 N+1 N
d1
反应时间T内N+1 车的行驶距离
d2
N+1车的制动距离
线性模型的缺憾!!!
(t T ) [ X (t ) X (t )] X n 1 n n 1
两边对时间积分
n 1 (t T ) [ xn (t ) xn 1 (t )] C0 x
n 1 (t T ) [ xn (t ) xn 1 (t )] C0 x
(t T ) [ X (t ) X (t )] X n 1 n n 1
1/ T
Xn1(t T) [ Xn (t) Xn1(t)]
反 应
灵敏度
刺 激
反应 灵敏度 刺激
驾驶员,T约为1.5秒
8/42
3、传递性
由制约性可知,第一辆车的运行状态制约着第二辆车的运
行状态,第二辆车又制约着第三辆车,…,第n辆车制约 着第n+1辆。一旦第一辆车改变运行状态,它的效应将会 一辆接一辆的向后传递,直至车队的最后一辆,这就是传 递性。

第四章 交通流理论ppt课件

第四章  交通流理论ppt课件
度的时间内到达某场所交通的间隔时间的统计分布; 4) 研究交通分布的意义:预测交通流的到达规律(到达数及到
达时间间隔),为确定设施规模、信号配时、安全对策提供依 据;
.
4.2.1 离散型分布
车辆的到达具有随机性
描述对象:
在一定的时间间隔内到达的车辆数, 在一定长度的路段上分布的车辆数
4.2 概率统计模型
.
4.2 概率统计模型
4.2.1 离散型分布
2. 二项分布:
适用条件:车辆比较拥挤、自由行驶机会不多的车流 基本模型:计数间隔t内到达k辆车的概率
P (k)C n k n t k 1 n t nk,k1 ,2,.n ..
λ:平均到达率(辆或人/秒) 令:p=λt/n, 0 <p <1
出分布参数 p 和 n;
.
4.2 概率统计模型
4.2.1 离散型分布
3. 负二项分布:
适用条件:到达的车流波动性很大时适用。 典型:信号交叉口下游的车流到达。
4. 离散型分布拟合优度检验——χ2检验
用于根据现场实测数据来判断交通流服从何种分布 原理和方法:
1) 建立原假设:随机变量X服从某给定的分布 2) 选择合适的统计量 3) 确定统计量的临界值 4) 判断检验结果
.
4.2 概率统计模型
4.2.1 离散型分布
1. 泊松分布:
递推公式:由参数m及数量k可递推出Pk+1;
P0 em
Pk1
m k 1Pk
分布的均值M与方差D皆等于λt,这是判断交通流到达规律是否 服从泊松分布的依据。
运用模型时的留意点:关于参数m=λt可理解为时间间隔 t 内的 平均到达车辆数。
4. 有效性指标——延误

《交通工程学 第四章 交通流理论》习题解答 答案

《交通工程学 第四章 交通流理论》习题解答 答案

《交通工程学 第四章 交通流理论》习题解答 4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。

解答:当V = 0时,j K K =, ∴ 1jb k =; 当K =0时,f V V =,∴ f a V =;把a 和b 代入到V = a (1 - bk )2∴ 21f j K V V K ⎛⎫=- ⎪ ⎪⎝⎭, 又 Q KV = 流量与速度的关系1j Q K V ⎛= ⎝ 流量与密度的关系 21f j K Q V K K ⎛⎫=- ⎪ ⎪⎝⎭ 4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求:(1)在该路段上期望得到的最大流量;(2)此时所对应的车速是多少?解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km ,∴ Q m = V m K m = 2152.5辆/h(2)V m = 41km/h解答:35.9ln V k= 拥塞密度K j 为V = 0时的密度,∴ 180ln 0jK =∴ K j = 180辆/km 4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求:(1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数;(3)车头时距 t > 5s 车头间隔的平均值。

解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h(1)1536003(5)0.189Q t t t P h e e e λ-⨯-⨯-≥====(2)n = (5)t P h Q ≥⨯ = 226辆/h(3)55158s t t e tdt e dt λλλλλ+∞-+∞-⎰⋅=+=⎰4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。

第四章 交通流理论

第四章 交通流理论

各种类型的“顾客”按怎样的规律到达

定长输入:顾客等时距到达; 泊松输入:顾客到达时距符合负指数分布; 爱尔朗输入:顾客到达时距符合爱尔朗分布;
(2)排队规则
排 队 论 基 本 原 理
到达的“顾客”按怎样的次序接受服务

损失制:顾客到达时,若所有服务台被占,该顾
客就自动消失,永不再来;
第三节 排队论的应用
The Application of Queuing Theory

排 队 论 概 述
排队论也称随机服务系统理论,是研究“服务” 系统因“需求”拥挤而产生的等待行列或排队的 现象,以及合理协调“需求”与“服务”关系的 一种数学理论。是运筹学中以概率论为基础的一 个重要分支。 在交通工程中,排队论在研究车辆延误、通行能 力、信号配时以及停车场、收费厅、加油站等交 通设施的设计与管理诸方面得到广泛的应用。


Poisson distribution belongs to discrete function with only one parameter. In traffic engineering Poisson distribution equation is used to describe the arrivals of vehicles at intersections or toll booth, as well as number of accident (crash) Poisson distribution is appropriate to describe vehicle’s arrival when traffic volume is not high. When field data shows that the mean and variance have significant difference, we can no longer apply Poisson distribution.

道路交通流理论

道路交通流理论

F
(t
)

1 exp (t )_(t

0
_______________(t
) )
爱尔朗(Erlang)分布
• 爱尔朗(Erlang)分布的概率密度函数为
f (t) et (t)k1
(k 1)!
• 积分得 P(h t) l1 (lt)i elt
泊松分布
• 到达数小于x辆车(人)的概率
P( X x) x1 miem
i0 i!
• 到达数大于x的概率:
P(X x) 1 P(X x) 1 x miem
i0 i!
参数m的计算:
n
n
观测的总车辆数
xi fi
xi fi
m 总计间隔数
i1 n
• 然而,总是存在一个合理的比较一致的驾驶员行
为范围,也就存在着一个合理一致的交通流表现 范围。
交通设施种类
• 连续流设施:无内部设施会导致交通流
周期性中断。长路段、高速公路。
• 间断流设施:由外部设备而导致交通流
周期性中断。信号灯等,引起车群。
• 一般认为,3.2Km可以使车群分散成连续流。
三参数之间的关系
离散型分布
• 泊松分布 • 二项分布 • 负二项分布
泊松分布
• 基本公式 P( X x) (t)x et mxem
x!
x!
• 式中P(X=x)——在计数间隔T内到达x辆车或x个
人的概率;
• λ——单位时间间隔的平均到达率(辆/s或人/s); • T——每个计数间隔持续的时间(s)或距离(m); • m=λT为在计数间隔T内平均到达的车辆(人)数。
• 三参数:交通量Q(辆/h) • 行车速度(空间平均车速)(Km/h) • 车流密度K(辆/Km) • 三个参数之间相互联系,相互制约。

交通工程学-第4章-道路交通流理论

交通工程学-第4章-道路交通流理论

连续流设施
间断流设施
无外部因素导致周期性中断。 高速公路、限制出入的一般公路路
段。
由于外部设备导致交通流周期性中断。 一般道路交叉口。
6
4.1 交通流特性
二、连续流特征(Characteristics of Uninterrupted Flow)
7
4.1 交通流特性
二、连续流特征(Characteristics of Uninterrupted Flow)
4
0.1954 0.6289
P(k8) 0.95
具有95%置信度的来车数不多于8辆。
32
4.2 概论统计模型
2、二项分布 ➢ ⑴ 基本公式
P (k)C n kpk(1p)nk
式中:
P(k)—在计数间隔t 内到达k 辆车的概率; λ—平均到车率(辆/s);
t —每个计数间隔持续的时间(s);
n—正整数 ;
计算机技术
交通规划 交通控制 交通工程设施设计
4
4.1 交通流特性
交通流定性和定量的特征称为交通流特性。它可用交通流 量、速度和交通密度三个基本参数来描述。
一、交通设施种类(Types of Facilities)
1、连续流设施:指在该设施下无外部因素而导致交通流周期性中断 的设施。
➢ (Uninterrupted-flow facilities are those on which no external factors cause periodic interruption to the traffic stream.)
p—二项分布参数, pt/n。
均值M和方差D分别为: :
33
4.2 概论统计模型
2、二项分布

第4章交通工程学交通流理论习题解答

第4章交通工程学交通流理论习题解答

《交通工程学 第四章 交通流理论》习题解答 4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。

解答:当V = 0时,j K K =, ∴ 1jb k =; 当K =0时,f V V =,∴ f a V =;把a 和b 代入到V = a (1 - bk )2∴ 21f j K V V K ⎛⎫=- ⎪ ⎪⎝⎭, 又 Q KV = 流量与速度的关系1j f V Q K V V ⎛⎫=- ⎪ ⎪⎝⎭流量与密度的关系 21f j K Q V K K ⎛⎫=- ⎪ ⎪⎝⎭4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求:(1)在该路段上期望得到的最大流量;(2)此时所对应的车速是多少?解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km ,∴ Q m = V m K m = 2152.5辆/h(2)V m = 41km/h4-3 对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有如下形式:18035.9ln s V k= 式中车速s V 以 km/h 计;密度 k 以 /km 计,试问在该路上的拥塞密度是多少? 解答:18035.9ln V k= 拥塞密度K j 为V = 0时的密度,∴ 180ln 0jK =∴ K j = 180辆/km4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求:(1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数;(3)车头时距 t > 5s 车头间隔的平均值。

解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h(1)1536003(5)0.189Q t t t P h e e e λ-⨯-⨯-≥====(2)n = (5)t P h Q ≥⨯ = 226辆/h(3)55158s t t e tdt e dt λλλλλ+∞-+∞-⎰⋅=+=⎰4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。

中职教育-《交通工程学》课件:第4章 道路交通流理论1(吴芳 主编 人民交通出版社).ppt

中职教育-《交通工程学》课件:第4章 道路交通流理论1(吴芳 主编  人民交通出版社).ppt
1.某随机车流,求30秒内平均到达的车辆数(均值)、方差(参考p74 4-8 4-10) 2.假定该车流服从泊松分布,求没有车到达的概率、到达四辆车的概率、到达
大于四辆车的概率分别是多少 )
❖ 离散型分布与连续型分布描述事件的内容
– 离散型分布主要描述一段固定时间或距离内到达交通的波动性
– 连续型分布描述事件之间时间间隔的分布称为连续型分布。连续型分布 常用来描述车头时距、或穿越空档、速度等交通流特性的分布特征
若令m=λt为在计数间隔内平均到达的车辆(人)数,则上 式可写成为:
① 到达数小于k辆车(人)的概率:
P( k ) k1 miem
i0 i!
② 到达数小于等于k的概率:
P( k ) k miem
i0 i!
③ 到达数大于k的概率:
P( k) 1 P( k) 1 k miem
i0 i!
λ——平均到达率(辆/s或人/s);
t——每个计数间隔持续的时间(s)或距离(m);
n——正整数;
Cnk
n! k!(n
k )!
通常记p=λt/n,则二项分布可写成:
P(k ) Cnk pk (1 p)nk , k 0,1,2, , n
式中:0<p<1,n、p称为分布参数。
对于二项分布,其均值M=np,方差D=np(1-p),M>D。 因此,当用二项分布拟合观测数时,根据参数p、n与方差, 均值的关系式,用样本的均值m、方差S2代替M、D,p、n 可按下列关系式估算:
• 在第一个环节上,重点研究设计什么样的模型才能对所 关心的交通流现象有一个很好的描述,此环节的关键是 对系统的识别,也即对所研究对象的充分认识。这种认 识越深刻,所建立的模型就越符合实际;
• 在第二个环节上,重点研究如何确定模型中的参数使模 型得以具体应用,参数的确定是一项非常具体、细致的 工作,其好坏直接决定了模型的应用效果。优秀的交通 流模型应该只包含若干个有现实的变量和参数,而且它 们是容易测量的。

4道路交通流理论

4道路交通流理论

1.车辆的到达具有随机性,描述这种随机性的方法有两种:一种是离散型分布,研究在一定时间内到达的交通数量的波动性;另一种是连续型分布,研究车辆间隔时间、车速等交通流参数的统计分布。

2.离散型分布(描述一定的时间间隔内事件发生的次数):泊松分布(适用条件:车流密度不大,车辆间的相互影响比较微弱。

)二项分布(应用条件:车流比较拥挤、自由行驶机会不多的车流用二项分布拟合较好。

)负、二项分布(适用条件:当到达的车流波动性很大或以一定的计算间隔观测到达的车辆数(人数)其间隔长度一直延续到高峰期间与非高峰期间两个时段时,所得数据可能具有较大的方差)3.泊松分布是一种离散概率分布,应用于一个区间内某一事件的发生。

随即变量k是这个事件在此区间内的发生次数。

这个区间可以是时间、距离、面积、体积或其他类似的单位。

泊松分布服从下列条件:1、随即变量k是一个事件在某区间内的发生次数;2、事件的发生必须是随机的;3、事件的发生必须是互相独立的;4、在所使用的区间内,事件的发生必须是统一的分布。

4.连续型分布(描述事件之间时间间隔的分布称为连续型分布):(1).负指数分布 (2).移位负指数分布。

负指数分布适用于车辆到达是随机的、有充分超车机会的单列车流和密度不大的多列车流的情况。

移位负指数分布适合描述限制超车的单列车流车头时距分布和低流量时多列车流的车头时距分布。

连续型分布常用来描述车头时距、或穿越空档、速度等交通流特性的分布特征。

5.排队论:定义:排队论也称随机服务系统,是研究“服务”系统因“需求”拥挤而产生等待行列即排队现象以及合理协调“需求”与“服务”关系的一种数学理论,是运筹学的一个重要分支。

6.排队单指等待服务的车辆,不包括正在被服务的车辆;排队系统则既包括等待服务的车辆,又包括正在被服务的车辆7.排队”与“排队系统”当一队车辆通过收费站,等待服务(收费)的车辆和正在被服务(收费)的车辆与收费站构成一个“排队系统”。

交通流理论第四章

交通流理论第四章

第四章 跟驰理论与加速度干扰本章将主要讨论单车道情况下的车辆跟驰现象,介绍跟驰理论,建立相应的跟驰理论模型,最后简要介绍一下加速度干扰问题。

跟驰理论是运用动力学方法研究在限制超车的单车道上,行驶车队中前车速度的变化引起的后车反应。

车辆跟驰行驶是车队行驶过程中一种很重要的现象,对其研究有助于理解交通流的特性。

跟驰理论所研究的参数之一就是车辆在给定速度u 下跟驰行驶时的平均车头间距s ,平均车头间距则可以用来估计单车道的通行能力。

在对速度—间距关系的研究中,单车道通行能力的估计基本上都是基于如下公式:s u C /1000⋅= (4—1)式中:C ——单车道通行能力(veh/h );u ——速度(km/h ); s ——平均车头间距(m )。

研究表明,速度—间距的关系可以由下式表示:2u u s γβα++= (4—2)式中系数α、β、γ可取不同的值,其物理意义如下:α——车辆长度,l ;β——反应时间,T ;γ——跟驰车辆最大减速度的二倍之倒数。

附加项2u γ保证了足够的空间,使得头车在紧急停车的情况下跟驰车辆不与之发生碰撞,γ的经验值可近似取为英尺。

一般情况下γ是非线性的,对于车速恒定(或近似恒定)、车头间距相等的交通流,γ的近似计算公式可取为:()115.0---=l f a a γ (4—3)式中:f a 、l a ——分别为跟车和头车的最大减速度。

跟驰理论除了用于计算平均车头间距以外,还可用于从微观角度对车辆跟驰现象进行分析,近似得出单车道交通流的宏观特性。

总之,跟驰理论是连接车辆个体行为与车队宏观特性及相应流量、稳定性的桥梁。

第一节 线性跟驰模型的建立单车道车辆跟驰理论认为,车头间距在100~125m 以内时车辆间存在相互影响。

分析跟驰车辆驾驶员的反应,可将反应过程归结为以下三个阶段:感知阶段:驾驶员通过视觉搜集相关信息,包括前车的速度及加速度、车间距离(前车车尾与后车车头之间的距离,不同于车头间距)、相对速度等;决策阶段:驾驶员对所获信息进行分析,决定驾驶策略;控制阶段:驾驶员根据自己的决策和头车及道路的状况,对车辆进行操纵控制。

4第四章 交通流理论

4第四章 交通流理论

2. 渐近稳定
是引导车向后面各车传播速度变化。
如扩大其速度振幅,叫做不稳定,如振幅逐渐衰 弱,则叫做稳定,这称为渐近稳定。
36
4.3
线性模型的稳定性
随着C值的增加,两车之间的车头间距逐渐的成为不稳定。这是 由于,如果对出现的事件,延迟反映的时间T过长,反应太强烈 (������大,表现在油门过大,或脚刹车踏得过重),则在作出反应 时,情况可能已偏离实际上的需求。
3
Contents 目录
1、概述 2、交通流的统计分布特性 3、排队论的应用
4、跟驰理论简介
5、流体动力学模拟理论
4
2.1
交通流统计分布的含义与作用
交通的到达在某种程度上具有随机性,描述这种随 机性的统计规律有两种方法。一种是以概率论中的
离散型分布为工具,考察在一段固定长度的时间内
到达某场所的交通数量的波动性;另一种是以概率 论中的连续性分布为工具,研究上述事件发生的间 隔时间的统计特性。
dk d (kv ) 0 dt dx
用流体力学的理论建立交通流的运动方程:
dk dv 0 dx dt
41
5.1
Q K
车流连续性方程
△x △t
Q
(K-△K,Q+△Q ) (K,Q)
Q+△Q K-△K


K
42
5.2
车流波动理论
列队行驶的车辆在信号灯交叉口遇到红灯后,即陆续停车排 队而集结成密度高的队列,绿灯启亮后,排队的车辆又陆续
单路多通道系统(M/M/4系统)计算各相应指标并比
较之。
25
3.2
M/M/1系统及其应用举例
26
3.2
M/M/1系统及其应用举例

交通流

交通流
2
k = 1,2,L
1 p


参 数
n,M,N
0≤M ≤ N, 0≤n ≤N
概 率 分 布
期 望
方 差
超几何 分 布 H(n, M,N)
P( X = k ) = CC C
k M n−k N −M n
N
nM N
nM N M ) N N − n × ( ) N − 1 × (1 −
k = 0,1,L, n
2
t 分
布 t(n)
n ≥1
0
n , n−2 n>2
− ( n +1 ) / 2
分 布
参 数
概 率 密 数学期 方 度 望 差
f ( x) =
F 分
布 F(n , n )
1 2
n ,n
1
2
⎧ Γ[(n + n ) / 2] ⎪ Γ(n / 2)Γ(n / 2) ⎪ ⎪ n n ⎪× ( n )( n x) ⎪ ⎨ ⎪× (1 + n x) , ⎪ n ⎪ x>0 ⎪ ⎪ 0, 其它 ⎩
1 2 1 2 1 1 ( n1 + n2 ) / 2 2 2 1 − ( n1 + n2 ) / 2 2
n , n −2
2 2
2n × n ( n − 4)
2 2 1 2
n >2
2
( n + n − 2) ( n − 2)
1 2 2 2
分 布 柯 西 分 布
参 数
概率密度
数学期 望
方 差
α, λ>0
3) 服务机构 可能是一个或者多个服务台; 多个服务台可能是串联也可能并联; 服务方式可能是单个的,也可以是成批的; 服务时间可能是确定的,也可能是随机的; 服务时间的分布可能是平稳的,也可能是非平稳 的;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

描述车速和可穿越空档这类交通特性时,也用到连续分布理 论。在交通工程学中,离散型分布有时亦称计数分布;连续型分 布根据使用场合的不同而有不同的名称,如间隔分布、车头时距 分布、速度分布和可穿越空档分布等等。
二. 离散型分布
1. 泊松分布
2. 二项分布
3. 负二项分布
4. 离散型分布拟合优度检验——χ2检验
2. 数学描述
(1)速度与密度关系 格林希尔茨(Greenshields)提出了速度一密度线性 关系模型: K
V V f (1 Kj )
当交通密度很大时,可以采用格林柏(Grenberg)提 出的对数模型: Kj
V Vm ln K
式中:Vm—对应最大交通量时速度。 当密度很小时,可采用安德五德 (Underwood) 提出 K 的指数模型: K
一、四种交通流理论 二、当前交通流理论的主要内容 三、交通流的特性
一、四种交通流理论
1. 概率统计分布的应用;
2. 随机服务系统理论(排队论)的应用;
3. 流体力学模拟理论(波动理论)的应用;
4. 跟驰理论(动力学模拟理论)的应用。
二、当前交通流理论的主要内容
交通流量、速度和密度的相互关系及测量方法
① 到达数小于k辆车(人)的概率:
me P ( k ) i! i 0
k 1
i m
② 到达数小于等于k的概率:
mi e m P ( k ) i! i 0
k
③ 到达数大于k的概率:
me P( k ) 1 P( k ) 1 i! i 0
④ 到达数大于等于k的概率:
3.连续交通流的拥挤分析
(1) 交通拥挤的类型 ①周期性的拥挤 ②非周期性的拥挤 (2) 瓶颈处的交通流 (3) 交通密度分析
(4) 非周期性拥挤
§离散型分布 三、连续性分布
一、交通流统计分布的含义与作用
交通流的统计分布特性为设计新的交通设施和确定新的交通 管理方案,提供交通流的某些具体特性的预测,并且能利用现有 的和假设的数据,作出预报。 描述交通这种随机性的统计规律有两种方法。一种是以概率 论中的离散型分布为工具,考察在一段固定长度的时间内到达某 场所的交通数量的波动性;另一种是以概率论中的连续型分布为 工具,研究上述事件发生的间隔时间的统计特性,如车头时距的 概率分布。
V Vf e
m
式中:Km—为最大交通量时的速度。
(2)流量与密度的关系
K Q KV f (1 ) Kj
(3)流量与速度关系
V K K j (1 ) Vf
V2 Q K j (V ) Vf
综上所述,按格林希尔茨的速度—密度模型、流量—密度 模型、速度—流量模型可以看出,Qm、Vm和Km是划分交通是 否拥挤的重要特征值。当 Q≤Qm、K>Km、V<Vm 时,则交 通属于拥挤;当 Q≤Qm、K≤Km、V≥Vm 时,则交通属于不拥 挤。 例
例 设车流的速度密度的关系为V=88-1.6K,如限制车流的实际流量 不大于最大流量的0.8倍,求速度的最低值和密度的最高值?(假定 车流的密度<最佳密度Km)
解:由题意可知: 当K=0时,V=Vf=88km/h,当V=0时,K=Kj=55辆/km。 则:Vm=44Km/h, Km=27.5辆/km, Qm=VmKm=1210辆/h。 由Q=VK和V=88-1.6K,有Q=88K-1.6K2 (如图)。 当Q=0.8Qm时,由88K-1.6K2=0.8Qm=968,解得:KA=15.2, KB=39.8。 则有密度KA和KB与之对应,又由题意可知,所求密度小于Km, 故为KA。 故当密度为KA=15.2辆/km,其速度为: VA=88-1.6KA =88-1.6×15.2=63.68km/h 即 KA=15.2辆/km,VA=63.68km/h为所求密度最高值与速度最低 值。
k
i m
me P( k ) 1 P( k ) 1 i! i 0
第四章 道路交通流理论
§4-1 概述
§4-2 交通流的统计分布特性
§4-3 排队论的应用
§4-4 跟驰理论简介
§4-5 流体力学模拟理论
§4-1 概述
交通流理论是运用物理学与数学的定律来描述交通特征的一 门边缘科学,是交通工程学的基础理论。 它用分析的方法阐述交通现象及其机理,从而使我们能更好 地掌握交通现象及其本质,并使城市道路与公路的规划设计和营 运管理发挥最大的功效。
交通流模型关系曲线图
能反映交通流特性的一些特征变量:
(1)极大流量Qm,就是Q-V曲线上的峰值。
(2)临界速度Vm,即流量达到极大时的速度。
(3)最佳密度Km,即流量达到极大时的密量。
(4)阻塞密度Kj,车流密集到车辆无法移动(V=0)时的
密度。 (5) 畅行速度 Vf,车流密度趋于零,车辆可以畅行无 阻时的平均速度。
• 连续流主要存在于设置了连续流设施的高速 公路及一些限制出入口的路段。 • 间断流设施是指那些由于外部设备而导致了 交通流周期性中断的设置。
1. 总体特征
交通量Q、行车速度 V s 、车流密度K是表征交通流 特性的三个基本参数。 此三参数之间的基本关系为:
Q V s K
式中:Q——平均流量(辆/h); V s ——空间平均车速(km/h); K—平均密度(辆/km)。
交通流的统计分布特性
排队论的应用
跟驰理论
驾驶员处理信息的特性
交通流的流体力学模拟理论
交通流模拟
三、 交通流的特性
(一) 交通设施种类 (二)连续流特征
1. 总体特征 2. 数学描述 3.连续交通流的拥挤分析
(三)间断流特征
(一)交通设施种类
• 交通设施从广义上被分为连续流设施与间断 流设施两大类。
1. 泊松分布
(1)基本公式
(t ) k e t P(k ) , k 0,1,2, k! 式中:P(k)——在计数间隔t内到达k辆车或k个人的概率; λ——单位时间间隔的平均到达率(辆/s或人/s); t——每个计数间隔持续的时间(s)或距离(m); e——自然对数的底,取值为2.71828。 若令m= λt——在计数间隔t内平均到达的车辆数,则m又称 为泊松分布的参数。
相关文档
最新文档