第四章交通流理论(详细版)
第四章 交通流

[
]
从S与m的比值看,用泊松分布或负二项分布拟合可能是合适的. 若用泊松分布拟合,起分布参数m=5.254 若用负二项分布拟合,它的两个分布参数计算如下: p=m/ S=5.254/6.753=0.78 β= m/( S-m)=5.254 /(6.753-5.254)=18.4
P (0) = e m m P (k ) P ( k + 1) = k +1
1 N 1 g 2 S = (ki m ) = (k j m )2 f j ∑ ∑ N 1 i =1 N 1 j =1
2
应用举例
例题1 : 设60辆汽车随机分布在4km长的道路上,服从泊松分 60辆汽车随机分布在 辆汽车随机分布在4km长的道路上 长的道路上,
布,求任意400m路段上有4辆及4辆以上汽车的概率. 求任意400m路段上有 辆及4辆以上汽车的概率. 路段上有4
∑k
m=
j =1
g
j
fj =
N
1 × (0 × 2 + 1 × 15 + 2 × 20 + ......12 × 2) = 5.254 232
1 g 1 2 2 2 2 S = ( k j m )2 f j = × 2 × (0 5.254) + 15 × (1 5.254) + 20 × (2 5.254) + ... + 2 × (12 5.254) = 6.753 ∑ N 1 j =1 232 1
车辆到达数kj 包含kj的间隔出现次数 <3 3 4 5 6 7 8 9 10 11 12 >12 1 1 0
0 3 0 8 10 11 10 11 9
表4-1
上午高峰期间以15s间隔观测车辆到达的数据 上午高峰期间以 间隔观测车辆到达的数据
第四章 交通流理论

第一节 概述-2
交通流理论是发展中的科学,虽然现在还没有形成完 整的体系,但有很多理论在探讨各种交通现象,它们是: (1)交通流量、速度和密度的相互关系及量测方法;。 *(2)交通流的统计分布特性; *(3)排队论的应用; *(4)跟驰理论; (5)驾驶员处理信息的特; *(6)交通流的流体力学模拟理论; (7)交通流模拟。
8 10
3. 在交通工程学中应用二项分布时: (1)适用条件:车辆比较拥挤、自由行驶机会不多的车流。 (2)基本公式: (3)递推公式: p C p (1 p) , (k 0,1,2,, n)
k 1 k n k nk
p k 1
(4)分布的均值和方差分别为 M=np, D=np(1-p) (5)如果通过观测数据计算样本均值m和方差,则可分别 代替M和D,用下式求出p和n的估计值:
第二节 交通流的统计分布特性-11
P(t)的图象如图所示, 曲线是单调下降的,说明车头 时距愈短,其出现的概率愈大。 这种情形在不能超车的单列车 流中是不可能出现的。因为车 辆的车头至车头的间距至少为 一个大于零的最小值τ 。负指 数分布在应用中的局限性即在 于此。
第二节 交通流的统计分布特性-12
xn 1 (t T )为后车在时刻(t T )的加速度,
1 称为后车的反应; 称为敏感度; xn (t ) xn 1 (t ) T 称为时刻t的刺激。
反应 敏感度 刺激
第五节 流体动力学模拟理论-1
一、引言 A 连续理论: Q1=Q2 A1*V1=A2*V2 Q:立方米/秒 A2V2Q2
第五节 流体动力学模拟理论-3
虚线与运行轨迹的交点就是车队密度不同的两部分的 分界(对某一确定时刻而),而虚线则表示此分界既沿车 队向后一辆辆地传播下去,又沿着道路而移动,虚线的斜 率就是波速。虚线AB是低度状态向密度状态转变的分界, 它所体现的车流波称为集结波;而Ac是高密度状态向低密 度状态转变的分界,它所体现的车流波称为疏散波,两种 不同的车流波可统称为集散波。
交通流理论(4)

The theory of traffic flow
2009年3月 年 月
4.6 车流波理论
车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 建立车流的连续性方程。 建立车流的连续性方程。该理论把车流密度的疏密变化比拟成水波的 起伏而抽象成车流波。 起伏而抽象成车流波。当车流因道路或交通状况的改变而引起密度的 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 速度来得到流量、速度、密度三者之间的关系。 速度来得到流量、速度、密度三者之间的关系。 来得到流量
二、 车流中的波
流量密度曲线上的车流波分析
Q B
A C 0 Kj K
二、 车流中的波
车辆运行时间-空间轨迹图 车辆运行时间 空间轨迹图
X
Ⅲ G C Ⅱ D B E 1 2 3 4 F Ⅰ 5 6 t A
内容提要: 内容提要: 车流连续性方程 车流波 车流波的应用
一、车流连续性方程
q
k
q+dq
k -dk
Ⅰ
Ⅱ
由质量守恒定律可知:流入量-流出量 数量上的变化 由质量守恒定律可知:流入量-流出量=数量上的变化 (dk/ dt)+( dq / dx)=0 上述的守恒等式表明: 上述的守恒等式表明: 当流量随距离降低时,密度则随着时间而增大。 当流量随距车流中的波
波速公式
Vw V1 K1 A K2 X S B V2
波速公式:
VW=(q1-q2)/(K1-K2).
二、 车流中的波
集结波与疏散波 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 前进波与后退波 当车流波的波速> 时 我们称为前进波; 当车流波的波速>0时,我们称为前进波; 当车流波的波速< 时 我们称为后退波。 当车流波的波速<0时,我们称为后退波。
交通工程学 第4章 交通流理论

k
j 1
g
j
fj
k
j 1
g
j
fj
fj
N
式中:g——观测数据分组数; fj——计算间隔t内到达kj辆车(人)这一事件发生的次(频)数; kj——计数间隔t内的到达数或各组的中值; N——观测的总计间隔数。
(2)递推公式
P(0) e m P(k 1) P(k ) k 1
(3)应用条件
• 在第一个环节上,重点研究设计什么样的模型才能对所 关心的交通流现象有一个很好的描述,此环节的关键是 对系统的识别,也即对所研究对象的充分认识。这种认 识越深刻,所建立的模型就越符合实际; • 在第二个环节上,重点研究如何确定模型中的参数使模 型得以具体应用,参数的确定是一项非常具体、细致的 工作,其好坏直接决定了模型的应用效果。优秀的交通 流模型应该只包含若干个有现实的变量和参数,而且它 们是容易测量的。 • 此外,一个好的模型还应在理论上前后一致,便于进行 数值模拟且能做出新的预测,简单而言,优秀的交通流 模型必须有鲁棒性、现实性、一致性和简单性。 • 无论是模型结构的建立还是模型参数的标定,简单和适 用是第一原则 ,但随着计算手段的改善和交通工程技 术人员素质的提高,复杂交通流模型推广和应用的也日 益广泛了。
§4-2 概率统计模型
本节内容
• • • • 离散型分布特征、分布函数 排队论模型的基本概念 M/M/N与N个M/M/1的指标计算与比较 流体模拟理论及实例分析
问题的提出
一个实际问题及其解决方法的思路分析
1.某随机车流,求30秒内平均到达的车辆数(均值)、方差(参考p74 4-8 4-10 ) 2.假定该车流服从泊松分布,求没有车到达的概率、到达四辆车的概率、到达 大于四辆车的概率分别是多少 )
交通流理论

第四章交通流理论交通流理论(TrafficFlowTheory)是研究交通流随时间和空间变化规律的模型和方法体系,被广泛应用于交通系统规划与控制的各个方面。
第一节交通流理论的发展历程在本节中,我们一起回顾交通流理论的发展历程。
交通流理论的兴起大致在20世纪30年代,在20世纪50年代到60年代经历了繁荣和快速发展,70年代以后,主要是对既有理论的发展完善和应用拓展。
一、交通流理论的萌芽期萌芽期从20世纪30年代到第二次世界大战结束。
由于发达国家汽车使用和道路建设的发展,需要探索道路交通流的基本规律,产生了研究交通流理论的初步需求。
Adams在1936发表的论文中将概率论用于描述道路交通流,格林息尔治(Greenshields)在1935年开创性提出了流量和速度关系式(也就是格林息尔治关系),并调查了交叉口的交通状态。
二、交通流理论的繁荣期繁荣期从第二次世界大战结束到20世纪50年代末。
汽车使用显着增长和道路交通系统建设加快,应用层面对交通特性和交通流理论的研究提出了急切需求。
此阶段是交通流理论最为辉煌的时期,经典交通流理论和模型几乎全部出自这一时期。
交通流理论中的经典方法、理论和模型相继涌现,如车辆跟驰(Car-following)模型、车流波动(KinematicWave)理论和排队论(QueuingTheory)。
这一时期群星闪耀,许多在自然科学其他领域中的大师级人物(如数学家、物理学家、力学家、经济学家)都投入到交通流理论的研究中,其中不乏诺贝尔奖金的获得者,如1977年的诺贝尔化学奖获得者伊利亚?普列高津(IlyaPrigogine)。
着名人物有赫曼(Herman)、鲁切尔(Reuschel)、沃德卢普(Wardrop)、派普斯(Pipes)、莱特希尔(Lighthill)、惠特汉(Whitham)、纽维尔(Newell)、盖热斯(Gazis)、韦伯斯特(Webster)、伊迪(Edie)、福特(Foote)和钱德勒(Chandler)。
4-3 交通流理论-跟驰模型

跟驰理论——研究在限制超车的单车道上,行驶车队中前 车速度的变化引起的后车反应。
研究条件——限制超车、单车道 研究前提——前车行驶状态变化 研究对象——后车的行驶状态 研究目的——单车道交通流特性
3/42
一、跟驰状态的判定
跟驰状态临界值的判定是车辆跟驰研究中的一个关键, 现有的研究中,对跟驰状态的判定存在多种观点。
10/42
最早出现的跟弛模型 形式简单 是其他跟弛模型的基础
2辆车跟驰
N+1 S(t) Xn+1(t)
某时刻N+1车位置 正常情况下两车间距 N车停车位置
N
Xn(t) 某时刻N车的位置
N车开始减速位置
d3:N车的制动距离
N+1 N+1 N
d1
反应时间T内N+1 车的行驶距离
d2
N+1车的制动距离
线性模型的缺憾!!!
(t T ) [ X (t ) X (t )] X n 1 n n 1
两边对时间积分
n 1 (t T ) [ xn (t ) xn 1 (t )] C0 x
n 1 (t T ) [ xn (t ) xn 1 (t )] C0 x
(t T ) [ X (t ) X (t )] X n 1 n n 1
1/ T
Xn1(t T) [ Xn (t) Xn1(t)]
反 应
灵敏度
刺 激
反应 灵敏度 刺激
驾驶员,T约为1.5秒
8/42
3、传递性
由制约性可知,第一辆车的运行状态制约着第二辆车的运
行状态,第二辆车又制约着第三辆车,…,第n辆车制约 着第n+1辆。一旦第一辆车改变运行状态,它的效应将会 一辆接一辆的向后传递,直至车队的最后一辆,这就是传 递性。
交通工程学——交通流理论

29
二、排队论的基本概念
排队系统的三个组成部分: 输入过程:是指各种类型的“顾客(车辆或行人)”按怎样的规律到达。 输入方式包括:
泊松输入、定长输入、爱尔朗输入 排队规则:是指到达的顾客按怎样的次序接受服务。排队规则包括:
等待制、损失制、混合制 服务方式: 指同一时刻多少服务台可接纳顾客,每一顾客服务了多 少时间。服务时间分布包括:
28
二、排队论的基本概念
“排队”与“排队系统” 当一队车辆通过收费站,等待服务(收费)的车辆和正在被服务
(收费)的车辆与收费站构成一个“排队系统”。 等候的车辆自行排列成一个等待服务的队列,这个队列则称为“排
队”。 “排队车辆”或“排队(等待)时间”都是指排队的本身。 “排队系统中的车辆”或“排队系统消耗时间”则是在指排队系
由λ=360/3600=0.1
P(ht ) e t 同样P,(来自车10头) 时e距小0.1于1010s的0.概37率为:
P(ht) 1 et 0.63
19
二、连续性分布
由上例可见,设车流的单向流量为Q(辆/h),则λ=Q/3600,
于是负指数公式可改写成:
Qt
P(ht) e 3600
负指数M分布的1 均值M和方差D分别为:
6辆及其以上的概率为: P(k5) 0.4456
至少为3辆但不多于6辆的概率P为(k:6) 1 P(k5) 0.5544
恰好为5辆车的概率为:
P(3k6) 0.5442
P(5) 0.1606
9
一、离散型分布
例2:已知某信号灯周期为60s,某一个入口的车流量为240辆/h,车 辆到达符合泊松分布,求: 在1s、2s、3s内无车的概率; 求有95%的置信度的每个周期来车数。 解:1)1s、 2s、3s内无车的概率
第四章 交通流理论

各种类型的“顾客”按怎样的规律到达
定长输入:顾客等时距到达; 泊松输入:顾客到达时距符合负指数分布; 爱尔朗输入:顾客到达时距符合爱尔朗分布;
(2)排队规则
排 队 论 基 本 原 理
到达的“顾客”按怎样的次序接受服务
损失制:顾客到达时,若所有服务台被占,该顾
客就自动消失,永不再来;
第三节 排队论的应用
The Application of Queuing Theory
排 队 论 概 述
排队论也称随机服务系统理论,是研究“服务” 系统因“需求”拥挤而产生的等待行列或排队的 现象,以及合理协调“需求”与“服务”关系的 一种数学理论。是运筹学中以概率论为基础的一 个重要分支。 在交通工程中,排队论在研究车辆延误、通行能 力、信号配时以及停车场、收费厅、加油站等交 通设施的设计与管理诸方面得到广泛的应用。
Poisson distribution belongs to discrete function with only one parameter. In traffic engineering Poisson distribution equation is used to describe the arrivals of vehicles at intersections or toll booth, as well as number of accident (crash) Poisson distribution is appropriate to describe vehicle’s arrival when traffic volume is not high. When field data shows that the mean and variance have significant difference, we can no longer apply Poisson distribution.
第四章 交通流理论

4.4 跟驰模型
4.4.3 线性跟驰模型的稳定性
跟驰的稳定性
局部稳定性——前后两车间距摆动大小,大则不稳定,小则稳 定;只在车队的局部发生。 渐进稳定性——引导车的状态变化向后传播,传播过程中,状 态变化的振幅越来越大(发散),则不稳定,状态变化振幅越 来越小(收敛)则稳定。
4.4 跟驰模型
4.4.3 线性跟驰模型的稳定性
4.4 跟驰模型
4.4.4 非线性跟驰模型
线性跟驰模型的局限性
后车的反应仅与两车的相对速度有关,而与车辆间距无关。
非线性跟驰模型
1959,Gazis 灵敏度系数λ与车头间距成反比
xn1 t T
其中 Vm
Vf 2
k t k
P(k ) Cn 1 n n
λ:平均到达率(辆或人/秒) 令:p=λt/n, 0 <p <1
t
n k
, k 1,2,...n
P(k ) C P 1 p
k n k
nk
, k 1,2,...n
4.2 概率统计模型
4.3 排队论模型
4.3.3 M/M/N系统
简述——两类多通道服务
1)单路排队多通道服务——排成一条队等待数 条通道服务
4.3 排队论模型
2)多路排队多通道服务——每个通道各排一队,每个通道只为 其相对应的一队顾客服务,顾客不能随意换队。
计算公式由M/M/1系统的计算公式确定
4.4 跟驰模型
4.4 跟驰模型
1. 简述
定义:研究在无法超车的单一车道上车辆列队行驶时,后车跟 随前车行驶的状态,并且借数学和动力学的模式表达并加以分 析的一种理论。 研究目的:通过观察各个车辆逐一跟驰的方式来了解单车道交 通流的特性,并用来检验管理技术和通讯技术,以预测短途车 辆对市区交通流的影响,在稠密交通时使尾撞事故减到最低限 度等
现代交通流理论

用 检验判别这两种分布拟和的优劣。 对于泊松分布,把理论频数小于5的到达数合并后,并成10组,可算得: =172/12.1+202/20.7+。。。142/9.8-232=20.04, DF=10-1-1=8 查表得: =15.51< 可见泊松分布拟合是不可接受的 同理计算负二项分布,负二项分布是可以接受的。
4.2 交通流特性的统计分布 离散型分布 1)泊松分布: ——递推公式:由参数m及数量k可递推出Pk+1 ; P0=e-m, Pk+1=mPk/k+1 ——分布的均值与方差皆等于t,这是判断交通流到达规律是否服从泊松分布的依据。试证明之。 ——运用模型时的留意点:关于参数 m 可理解为时间间隔 t 内的平均到达车辆数,也可以理解为距离 l 内的平均车辆数;
02
1)简述
4.3 排队论及其应用
2)排队论的基本原理及应用 (1)基本概念 排队:单指等待服务的,不包括正在服务的,排队系统,则包括两者 排队系统的三个组成部分 排队系统输 来自 过 程排 队 规 则
服 务 方 式
定 长 输 入(D)
泊松 输 入(M)
爱尔朗输入
损 失 制
等 待 制
主干道
优先
次干道
优先
07
停让
08
计算次干道通行能力
4.2 交通流特性的统计分布
连续型分布 2)移位负指数分布 (1)基本假定:不能超车的单列交通流和车流量低的车头时距分布 (2)基本模型:车流平均到达率为(辆/秒),最小车头时距为 时,到达的车头时距 h 大于 t 秒的概率为 P (h>t) = e- (t-) (3)分布的均值与方差: M=1/ + m(样本均值); D=1/ 2 s 2 (样本方差)
道路交通流理论

F
(t
)
1 exp (t )_(t
0
_______________(t
) )
爱尔朗(Erlang)分布
• 爱尔朗(Erlang)分布的概率密度函数为
f (t) et (t)k1
(k 1)!
• 积分得 P(h t) l1 (lt)i elt
泊松分布
• 到达数小于x辆车(人)的概率
P( X x) x1 miem
i0 i!
• 到达数大于x的概率:
P(X x) 1 P(X x) 1 x miem
i0 i!
参数m的计算:
n
n
观测的总车辆数
xi fi
xi fi
m 总计间隔数
i1 n
• 然而,总是存在一个合理的比较一致的驾驶员行
为范围,也就存在着一个合理一致的交通流表现 范围。
交通设施种类
• 连续流设施:无内部设施会导致交通流
周期性中断。长路段、高速公路。
• 间断流设施:由外部设备而导致交通流
周期性中断。信号灯等,引起车群。
• 一般认为,3.2Km可以使车群分散成连续流。
三参数之间的关系
离散型分布
• 泊松分布 • 二项分布 • 负二项分布
泊松分布
• 基本公式 P( X x) (t)x et mxem
x!
x!
• 式中P(X=x)——在计数间隔T内到达x辆车或x个
人的概率;
• λ——单位时间间隔的平均到达率(辆/s或人/s); • T——每个计数间隔持续的时间(s)或距离(m); • m=λT为在计数间隔T内平均到达的车辆(人)数。
• 三参数:交通量Q(辆/h) • 行车速度(空间平均车速)(Km/h) • 车流密度K(辆/Km) • 三个参数之间相互联系,相互制约。
交通工程学第4章道路交通流理论

➢ 在间断流中,速度、密度等指标不足以表征服务水平。而延误通常用于 表征间断流服务水平的一个指标。大体说来,有两类延误: ➢ ①停车延误:指车辆用于横穿公路所消耗的停车总时间; ➢ ②运行延误:指车辆理想运行时间与实际运行时间的差值,它包括 停车延误和由运行速度低于理想速度而造成的延误。 ➢ 相比之下,停车延误用得较多。
(1
K Kj
)
K=0 → V=Vf K=Kj → V=0 K=Km → V=Vm
Q → Qmax
图4–3的三个特殊点A、C、E,其中C点的速度为Vm,
密度为Km,即Qm=Vm·Km等于矩形面积。
10
4.1 交通流特性
二、连续流特征(续)
➢ (2)对数模型——格林柏(Greenberg)模型
➢ 1959年,格林柏(Greenberg)提出了用于密度很大时的对数 模型。
p—二项分布参数, pt/n 。
均值M和方差D分别为: M=np D=np(1-p)
参数p、n 的计算(n 取整数):
33
4.2 概论统计模型
2、二项分布
➢ ⑵ 递推公式
P(0) (1 P)n
P(k1)
nk k 1
p 1 p
P(k)
均值M和方差D分别为: M=np D=np(1-p)
➢ ⑶ 应用条件
2)流量与密度关系
➢ 根据格林希尔茨公式及三参数 的基本关系式可得:
Q
KV
f (1
K) Kj
V f(K
K2 )
Kj
上式对Q 求导,并令:
dQ dK
Vf
2V f Kj
K
0
可求出当:
K K j 时, Q 最大。 2
第4章 交通流理论

P(0) e 0.067 0.9355
当t=2s时, m= λt =0.133, 当t=2s时, m= λt =0. 3,
P( 0 ) e 0.133 0.875 P( 0 ) e 0.3 0.819
2)有95%置信度的每个周期来车数的含义为:来 车数小于或等于k辆的概率≥95%时的k值,即: P( k ) 0.95 ,求这时的k 即λ=240/3600(辆/s ),当t=60s时,m=λt=4 来车的分布为: k k m m 4 4 P( k ) e e k! k! 求:
递推公式:
P( 0 ) (1 P )n nk p P( k 1) P( k ) k 1 1 p
均值M和方差D分别为: M=np D=np(1-p)
例3:在一交叉口,设置左转弯信号相,经研究来车 符合二项分布,每一周期平均来车30辆,其中有 30%的左转弯车辆,试求: 到达的5辆车中,有2辆左转弯的概率; 到达的5辆车中,少于2辆左转弯的概率; 某一信号周期内没有左转弯车辆的概率。 解:1)由: p =30%,n=5,k=2 k k 由 :P( k ) Cn p (1 p) nk
负指数分布的应用
——确定左转车流的饱和流量
得下表
可穿越的车辆数
1
对应的车头时距出现的概率
P(1)=p(α≤h<α+α0)
理论频数
N•p(1)
汽车车辆数
1•NP(1)
2
┇ k ┇ n
P(2)=p(α+α0≤h<α+2α0)
N•p(2)
2•NP(2)
P(k)=p(α+(k-1)α0≤h<α+kα0)
例5 :在一条有隔离带的双向四车道道路上,单向 流量为360辆/h,该方向路宽7.5m,设行人步行 速度为1m/s,求1h中提供给行人安全横过单向车 道的次数,如果单向流量增加到900辆/h, 1h中 提供给行人安全横过单向车道的次数是增加还是 减少 。
第4章_交通流理论

Pk—在计数间隔t内到达k辆车或k个人的概率;
λ —单位时间间隔的平均到达率(辆/s或人/s);
t—每个计数间隔持续的时间(s)。
若令m=λ t为计数间隔t内平均到达的车辆(人)数,
P 则 k
mkem k!
,当m为已知时,可求出在计数
间隔t内恰好有k辆车(人)到达的概率。
4.2.2.1 泊松分布(续)
4.2.2.2 二项分布
(1)基本公式:
P k C n k( n t)k(1 n t)n k,k=0,1,2,…
Pk—在计数间隔t内到达k辆车或k个人的概率;
λ —单位时间间隔的平均到达率(辆/s或人/s);
t—每个计数间隔持续的时间(s)或距离(m); n—观测次数,正整数。
通常记
能超车的单列车流中 是不可能出现的,因 为车辆的车头与车头 之间至少存在一个车 长,所以车头时距必 有一个大于零的最小 值τ。
4.2.3.2 移位负指数分布
(1)基本公式 为克服负指数分布的车头时距趋近于零其频率出现
愈大这一缺点,可将负指数分布曲线从原点O沿t向右移 一个最小间隔长度τ ,得到移位负指数分布曲线:
连续型分布:描述事件之间时间间隔的连续型分布为工具,
研究事件发生的间隔时间或距离的统计分布特性。 车头时距分布、速度分布和可穿越空档分布。
4.2.2 离散型分布
4.2.2.1 泊松分布 4.2.2.2 二项分布
4.2.2.1 泊松分布
(1)基本公式
P (t)k
k
k!
e,t
k=0,1,2,…
(2)递推公式:
P0 e,m Pk1km 1Pk
(3)适用条件:车流密度不大,车辆间相互影响较弱,其他外 界干扰因素基本上不存在,即车流是随机的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、排队论的基本原理
幻灯片 35§4-3 排队论的应用 2.排队系统的组成 (2)排队规则:指到达的顾客按怎样的次序接受服务。 例如: 损失制:顾客到达时,若所有服务台均被占,该顾客就自动消失,永不再来。 等待制:顾客到达时,若所有服务台均被占,他们就排成队伍,等待服务,服务次序有先到先服务(这是最通常的
36
二、排队论的基本原理
幻灯片 37-3 排队论的应用 2.排队系统的组成 (3) 服务方式:指同一时刻多少服务台可接纳顾客,每一顾客服务了多少时间。每次服务可以成批接待,例如公
7.5m
Q=360辆/h
Qt
3607.5
P(h7.5) e 3600 e 3600 0.4724
360 0.4724 170
(次)
幻灯片 27 当 Q = 900 辆/h 时,车头时距大于 7.5s 的概率为:
26 §4-2 交通流的统计分布特性
1h 内车头时距次数为 900,其中 h≥7.5s 的车头时距为可以安全横穿的次数:
33
二、排队论的基本原理
幻灯片 34§4-3 排队论的应用 2.排队系统的组成 (1) 输入过程:就是指各种类型的"顾客(车辆或行人)"按怎样的规律到达。有各式各样的输入过程,例如: D—定长输入:顾客等时距到达。 M—泊松输入:顾客到达时距符合负指数分布。 Ek—爱尔朗输入:顾客到达时距符合爱尔朗分布。
p m s2 m
m
1 N
N
i
i 1
n
m2 m s2
s 2
1 N 1
N i 1
(i
m)2
14 幻灯片 15 【例 4-2】:在一交叉口,设置左转弯信号相,经研究来车符合二项分布,每一周期平均来车 30 辆,其中有 30%
的左转弯车辆,试求: 到达的 5 辆车中,有 2 辆左转弯的概率; 到达的 5 辆车中,少于 2 辆左转弯的概率; 某一信号周期内没有左转弯车辆的概率。 解:1)由: p =30%,n=5,k=2
32
二、排队论的基本原理
幻灯片 33§4-3 排队论的应用
1.基本概念 (5) 队长:有排队顾客数与排队系统中顾客数之分,平均顾客数(期望值)。 (7) 等待时间:顾客到达时起至开始接受服务时止的这段时间。 (8) 逗留时间:一个顾客在系统中停留的时间。 (9) 忙期:服务台连续繁忙的时期。
31
二、排队论的基本原理
幻灯片 32§4-3 排队论的应用
1.基本概念 (1) 顾客:要求服务的人或物(车)。 (2) 服务台:为顾客服务的人或物。(交叉口、收费站) (3) 排队:等待服务的顾客,不包括正在被服务的顾客。 (4) 排队系统:既包括了等待服务的顾客,又包括了正在被服务的顾客。
P(h t ) 1 et 0.63
20
1.负指数分布 幻灯片 214-2 交通流的统计分布特性 由上例可见,设车流的单向流量为 Q(辆/h),则λ=Q/3600,于是负指数公式可改写成: 指数分布的均值 M 和方差 D 分别为:
Qt M 1
P(h t) e 3600
D
1
2
21
1.负指数分布
1. 泊松分布
统计规律用的是离散型分布 4-2 交通流的统计分布特性 (1) 适用条件
车流密度不大,车辆之间相互影响较小,其他外界干扰因素基本上不存在,即车流是随机的。 (2) 基本公式
Pk—在计数间隔 t 内到达 k 辆车的概率 λ—单位时间间隔的平均到达率,辆/s t—每个计数间隔持续的时间(s) e—自然对数的底,取值 2.71828
Pk
(t)k et
k!
k=0,1,2,…
幻灯片 10§4-2 交通流的统计分布特性
9
计数间隔 t 内平均到达的车 辆数
1. 泊松分布
P e m t m
(3) 递推公式 0
Pk
(t)k et
k!
Pk 1
m k 1 Pk
4) 特征
t
分布的均值 M 和方差 D 都等于
10 幻灯片 11§4-2 交通流的统计分布特性
【例 4-1】设 60 辆车随机分布在 4km 长的道路上,服从泊松分布,求任意 400 米路段上有 4 辆及 4 辆车以上的概率。
解:t=400 m,λ=60/4000 辆/m,m=λt=6 辆
幻灯片 12
11 §4-2 交通流的统计分布特性
C
k n
n! k!(n k )!
(1) 适用条件 车辆比较拥挤、自由行驶机会不多的车流。 (2) 基本公式
分布的均值 M 和方差 D 分别为:
பைடு நூலகம்
P(h t ) e (t ) P(h t ) 1 e (t )
(t ) (t )
M 1
D
1
2
23
2.移位负指数分布
幻灯片 24§4-2 交通流的统计分布特性
移位负指数分布的局限性:
服从移位负指数分布的车头时距愈接近τ出现的可能性愈大。这在一般情况下是不符合驾驶员的心理习惯和行车 特点的。
车辆到达符合泊松分布,则车头时距就是负指数分布。 18
1.负指数分布
幻灯片 19§4-2 交通流的统计分布特性
(2) 基本公式
P(h t ) e t
式中,P(h >t)—到达的车头时距 h 大于 t 秒的概率。 λ—车流的平均到达率(辆/s)。
(t )k et
Pk
k!
P0 e t P(h t )
幻灯片 17
16 §4-2 交通流的统计分布特性
三、连续型分布 车流到达的统计规律除了可用计数分布来描述外,还可用车头时距分布来描述,这种分布属于连续型分布。
幻灯片 18
17 §4-2 交通流的统计分布特性
1.负指数分布
(1) 适用条件 用于描述有充分超车机会的单列车流和密度不大的多列车流的车头时距分布,它常与计数的泊松分布相对应,若
2.二项分布
Pk 一在计数间隔 t 内到达 k 辆车的概率; λ 一平均到车率(辆/s);
t 一每个计数间隔持续的时间(s) n 一正整数,观测间隔 t 内可能到达的最大车辆数。
Pk
Cnk
(
t
n
)k
(1
t
n
)nk
k=0,1,2,…n p=λt/n 一辆车到达的概率
Pk Cnk p k (1 p) nk
12
2.二项分布 幻灯片 13§4-2 交通流的统计分布特性 (3) 递推公式
P (1 p)n
Pk Cnk p k (1 p)nk 0
Pk 1
nk p k 1 1 p
Pk
(4) 特征 均值 方差
M np D<M
D np(1 p)
13 2.二项分布 幻灯片 14§4-2 交通流的统计分布特性 ) 参数估计
幻灯片 22§4-2 交通流的统计分布特性
车头时距服从负指数分布的车流特性 见图,曲线是单调下降的,说明车头时距愈短,出现的概率愈大。这种情形在不 能超车 的单列车流中是不可 能出现的,因为车辆 的车头与车头之间至 少存在一个车长,所 以车头时距必有一个 大于零的最小值τ。
22 2.移位负指数分布
幻灯片 234-2 交通流的统计分布特性 适用条件:用于描述不能超车的单列车流的车头时距分布和车流量低的车流的车头时距分布。 移位负指数分布公式:
数是增加还是减少 。
幻灯片 26 解:行人横过单向行车道所需要的时间:
25 §4-2 交通流的统计分布特性
t =7.5/1=7.5s 因此,只有当 h≥7.5s 时,行人才能安全穿越,由于双车道道路可以充分超车,车头时距符合负指数分布,对于任 意前后两辆车而言,车头时距大于 7.5s 的概率为:
对于 Q=360 辆/h 的车流,1h 车头时距次数为 360,其中 h≥7.5s 的车头时距为可以安全横穿的次数:
Qt
9007.5
P(h7.5) e 3600 e 3600 0.1534
900 0.1534 138 (次)
4-3 排队论的应用
一、引言
1. 定义: 排队论是研究服务系统因“需求”拥挤而产生等待行列(即排队)的现象,以及合理协调“需求”与“服务"关系的
一种数学理论,是运筹学中以概率论为基础的一门重要分支,亦称"随机服务系统理论"。 【食堂、医院、超市、银行、买火车票等等】
29
一、引言
幻灯片 30§4-3 排队论的应用
2.发展:
1905 年:丹麦 爱尔朗 提出并应用于电话自动交换机设计;
1936 年:亚当斯用以考虑未设置交通信号交叉口的行人延误问题
1951 年:唐纳予以推广应用
1954 年:伊迪应用排队模型估计收费亭的延误
摩斯柯维茨的报告中,将其应用于车辆
等候交通流空档的实验报告。
情形)和优先权服务(如急救车、消防车优先)等多种规则。 混合制:顾客到达时,若队伍长小于 L,就排入队伍;若队伍长大于等于 L,顾客就离去,永不再来。
35
二、排队论的基本原理
幻灯片 36§4-3 排队论的应用 2.排队系统的组成 服务次序: 先到先服务(FCFS):按顾客到达的先后次序给予服务。 后到先服务(LCFS):电梯;钢板。 优先服务(PR):按照轻重缓急给予服务,重病号/轻病号、主干路/支路。 随机服务(RSS):当一个顾客服务完了,在排队中随机取一个,电话总机。
第四章 交通流理论 2
一、概念
§4-1 概述
交通流理论,是一门用以解释交通流现象或特性的理论,运用数学或物理的方法,从宏观和微观描述交通流运行 规律。 3
二、发展
在 20 世纪 30 年代才开始发展,概率论方法。 1933 年,Kinzer.J.P 泊松分布用于交通分析的可能性。 1936 年,Adams.W.F 发表数值例题。 1947 年,Greenshields 泊松分布用于交叉口分析。 20 世纪 50 年代,跟驰理论,交通波理论(流体动力学模拟)和车辆排队理论。 1975 年丹尼尔(DanieL lG)和马休(Marthow,J.H)出版了《交通流理论》一书。