第4章交通流理论
第四章 交通流理论
第一节 概述-2
交通流理论是发展中的科学,虽然现在还没有形成完 整的体系,但有很多理论在探讨各种交通现象,它们是: (1)交通流量、速度和密度的相互关系及量测方法;。 *(2)交通流的统计分布特性; *(3)排队论的应用; *(4)跟驰理论; (5)驾驶员处理信息的特; *(6)交通流的流体力学模拟理论; (7)交通流模拟。
8 10
3. 在交通工程学中应用二项分布时: (1)适用条件:车辆比较拥挤、自由行驶机会不多的车流。 (2)基本公式: (3)递推公式: p C p (1 p) , (k 0,1,2,, n)
k 1 k n k nk
p k 1
(4)分布的均值和方差分别为 M=np, D=np(1-p) (5)如果通过观测数据计算样本均值m和方差,则可分别 代替M和D,用下式求出p和n的估计值:
第二节 交通流的统计分布特性-11
P(t)的图象如图所示, 曲线是单调下降的,说明车头 时距愈短,其出现的概率愈大。 这种情形在不能超车的单列车 流中是不可能出现的。因为车 辆的车头至车头的间距至少为 一个大于零的最小值τ 。负指 数分布在应用中的局限性即在 于此。
第二节 交通流的统计分布特性-12
xn 1 (t T )为后车在时刻(t T )的加速度,
1 称为后车的反应; 称为敏感度; xn (t ) xn 1 (t ) T 称为时刻t的刺激。
反应 敏感度 刺激
第五节 流体动力学模拟理论-1
一、引言 A 连续理论: Q1=Q2 A1*V1=A2*V2 Q:立方米/秒 A2V2Q2
第五节 流体动力学模拟理论-3
虚线与运行轨迹的交点就是车队密度不同的两部分的 分界(对某一确定时刻而),而虚线则表示此分界既沿车 队向后一辆辆地传播下去,又沿着道路而移动,虚线的斜 率就是波速。虚线AB是低度状态向密度状态转变的分界, 它所体现的车流波称为集结波;而Ac是高密度状态向低密 度状态转变的分界,它所体现的车流波称为疏散波,两种 不同的车流波可统称为集散波。
交通流理论(4)
The theory of traffic flow
2009年3月 年 月
4.6 车流波理论
车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 建立车流的连续性方程。 建立车流的连续性方程。该理论把车流密度的疏密变化比拟成水波的 起伏而抽象成车流波。 起伏而抽象成车流波。当车流因道路或交通状况的改变而引起密度的 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 速度来得到流量、速度、密度三者之间的关系。 速度来得到流量、速度、密度三者之间的关系。 来得到流量
二、 车流中的波
流量密度曲线上的车流波分析
Q B
A C 0 Kj K
二、 车流中的波
车辆运行时间-空间轨迹图 车辆运行时间 空间轨迹图
X
Ⅲ G C Ⅱ D B E 1 2 3 4 F Ⅰ 5 6 t A
内容提要: 内容提要: 车流连续性方程 车流波 车流波的应用
一、车流连续性方程
q
k
q+dq
k -dk
Ⅰ
Ⅱ
由质量守恒定律可知:流入量-流出量 数量上的变化 由质量守恒定律可知:流入量-流出量=数量上的变化 (dk/ dt)+( dq / dx)=0 上述的守恒等式表明: 上述的守恒等式表明: 当流量随距离降低时,密度则随着时间而增大。 当流量随距车流中的波
波速公式
Vw V1 K1 A K2 X S B V2
波速公式:
VW=(q1-q2)/(K1-K2).
二、 车流中的波
集结波与疏散波 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 前进波与后退波 当车流波的波速> 时 我们称为前进波; 当车流波的波速>0时,我们称为前进波; 当车流波的波速< 时 我们称为后退波。 当车流波的波速<0时,我们称为后退波。
[工学]交通流理论
且有:∑fi =N,∑Fi =N
3、确定统计量的临界值χ2a
χ2a值与置信水平α和自由度DF有关,α通常取0.05 。
DF=g-q-1,式中,q为约束数,指原假设中需确定的未知数的个 数,对泊松分布q=1(只有m需确定),对二项分布和负二项分布 q=2(需确定P、n两个参数)。
N1=λ·P(h≥a1)= λe-λa1 主要道路车流中车头时距大于a2的数目:N2= λe-λa2
…… 则,主要道路车流中允许一辆车穿过的车头间隔数目为:N1-N2
主要道路车流中允许二辆车穿过的车头间隔数目为:N2-N3 主要道路车流中允许三辆车穿过的车头间隔数目为:N3N4
……
15
∴到达率为λ的车流允许穿越的车辆数总和为: Q次=1(N1-N2)+2(N2-N3)+3(N3-N4)+… =N1+N2+N3+N4+…=λ[e-λa1 + e-λa2 + e-λa3 +…] =λ[e-λa + e-λ(a+a0) + e-λ(a+2a0) +…]
P(h≥t) =e-λ(t-τ) t≥τ 其概率密度函数为: λe-λ(t-τ) t≥τ
P(t) =
0
t<τ
1
1
移位负指数分布的均值M= +τ ,方差D= 2
用样本的均值(平均车头时距)m和方差S2代替M、D,即可求
得λ和τ。
17
2、适用条件 用于描述不能超车的单列车流和车流量低的车流的车头时距分布。 3、移位负指数分布的局限性
2
第一节 离散型概率统计模型
我们在观测交通量或车辆的车头时距时,会发现在固定的计 数时间间隔内,每个间隔内查到的车辆数是变化的,所观测到 的连续车头时距也是不同的,这说明车辆的到达是有一定随即 性的,为了描述这种随机性而采用的概率统计方法可分为两种: 离散型和连续型。
交通工程学 第4章 交通流理论
k
j 1
g
j
fj
k
j 1
g
j
fj
fj
N
式中:g——观测数据分组数; fj——计算间隔t内到达kj辆车(人)这一事件发生的次(频)数; kj——计数间隔t内的到达数或各组的中值; N——观测的总计间隔数。
(2)递推公式
P(0) e m P(k 1) P(k ) k 1
(3)应用条件
• 在第一个环节上,重点研究设计什么样的模型才能对所 关心的交通流现象有一个很好的描述,此环节的关键是 对系统的识别,也即对所研究对象的充分认识。这种认 识越深刻,所建立的模型就越符合实际; • 在第二个环节上,重点研究如何确定模型中的参数使模 型得以具体应用,参数的确定是一项非常具体、细致的 工作,其好坏直接决定了模型的应用效果。优秀的交通 流模型应该只包含若干个有现实的变量和参数,而且它 们是容易测量的。 • 此外,一个好的模型还应在理论上前后一致,便于进行 数值模拟且能做出新的预测,简单而言,优秀的交通流 模型必须有鲁棒性、现实性、一致性和简单性。 • 无论是模型结构的建立还是模型参数的标定,简单和适 用是第一原则 ,但随着计算手段的改善和交通工程技 术人员素质的提高,复杂交通流模型推广和应用的也日 益广泛了。
§4-2 概率统计模型
本节内容
• • • • 离散型分布特征、分布函数 排队论模型的基本概念 M/M/N与N个M/M/1的指标计算与比较 流体模拟理论及实例分析
问题的提出
一个实际问题及其解决方法的思路分析
1.某随机车流,求30秒内平均到达的车辆数(均值)、方差(参考p74 4-8 4-10 ) 2.假定该车流服从泊松分布,求没有车到达的概率、到达四辆车的概率、到达 大于四辆车的概率分别是多少 )
交通流理论
第四章交通流理论交通流理论(TrafficFlowTheory)是研究交通流随时间和空间变化规律的模型和方法体系,被广泛应用于交通系统规划与控制的各个方面。
第一节交通流理论的发展历程在本节中,我们一起回顾交通流理论的发展历程。
交通流理论的兴起大致在20世纪30年代,在20世纪50年代到60年代经历了繁荣和快速发展,70年代以后,主要是对既有理论的发展完善和应用拓展。
一、交通流理论的萌芽期萌芽期从20世纪30年代到第二次世界大战结束。
由于发达国家汽车使用和道路建设的发展,需要探索道路交通流的基本规律,产生了研究交通流理论的初步需求。
Adams在1936发表的论文中将概率论用于描述道路交通流,格林息尔治(Greenshields)在1935年开创性提出了流量和速度关系式(也就是格林息尔治关系),并调查了交叉口的交通状态。
二、交通流理论的繁荣期繁荣期从第二次世界大战结束到20世纪50年代末。
汽车使用显着增长和道路交通系统建设加快,应用层面对交通特性和交通流理论的研究提出了急切需求。
此阶段是交通流理论最为辉煌的时期,经典交通流理论和模型几乎全部出自这一时期。
交通流理论中的经典方法、理论和模型相继涌现,如车辆跟驰(Car-following)模型、车流波动(KinematicWave)理论和排队论(QueuingTheory)。
这一时期群星闪耀,许多在自然科学其他领域中的大师级人物(如数学家、物理学家、力学家、经济学家)都投入到交通流理论的研究中,其中不乏诺贝尔奖金的获得者,如1977年的诺贝尔化学奖获得者伊利亚?普列高津(IlyaPrigogine)。
着名人物有赫曼(Herman)、鲁切尔(Reuschel)、沃德卢普(Wardrop)、派普斯(Pipes)、莱特希尔(Lighthill)、惠特汉(Whitham)、纽维尔(Newell)、盖热斯(Gazis)、韦伯斯特(Webster)、伊迪(Edie)、福特(Foote)和钱德勒(Chandler)。
4-3 交通流理论-跟驰模型
跟驰理论——研究在限制超车的单车道上,行驶车队中前 车速度的变化引起的后车反应。
研究条件——限制超车、单车道 研究前提——前车行驶状态变化 研究对象——后车的行驶状态 研究目的——单车道交通流特性
3/42
一、跟驰状态的判定
跟驰状态临界值的判定是车辆跟驰研究中的一个关键, 现有的研究中,对跟驰状态的判定存在多种观点。
10/42
最早出现的跟弛模型 形式简单 是其他跟弛模型的基础
2辆车跟驰
N+1 S(t) Xn+1(t)
某时刻N+1车位置 正常情况下两车间距 N车停车位置
N
Xn(t) 某时刻N车的位置
N车开始减速位置
d3:N车的制动距离
N+1 N+1 N
d1
反应时间T内N+1 车的行驶距离
d2
N+1车的制动距离
线性模型的缺憾!!!
(t T ) [ X (t ) X (t )] X n 1 n n 1
两边对时间积分
n 1 (t T ) [ xn (t ) xn 1 (t )] C0 x
n 1 (t T ) [ xn (t ) xn 1 (t )] C0 x
(t T ) [ X (t ) X (t )] X n 1 n n 1
1/ T
Xn1(t T) [ Xn (t) Xn1(t)]
反 应
灵敏度
刺 激
反应 灵敏度 刺激
驾驶员,T约为1.5秒
8/42
3、传递性
由制约性可知,第一辆车的运行状态制约着第二辆车的运
行状态,第二辆车又制约着第三辆车,…,第n辆车制约 着第n+1辆。一旦第一辆车改变运行状态,它的效应将会 一辆接一辆的向后传递,直至车队的最后一辆,这就是传 递性。
第四章 交通流理论ppt课件
达时间间隔),为确定设施规模、信号配时、安全对策提供依 据;
.
4.2.1 离散型分布
车辆的到达具有随机性
描述对象:
在一定的时间间隔内到达的车辆数, 在一定长度的路段上分布的车辆数
4.2 概率统计模型
.
4.2 概率统计模型
4.2.1 离散型分布
2. 二项分布:
适用条件:车辆比较拥挤、自由行驶机会不多的车流 基本模型:计数间隔t内到达k辆车的概率
P (k)C n k n t k 1 n t nk,k1 ,2,.n ..
λ:平均到达率(辆或人/秒) 令:p=λt/n, 0 <p <1
出分布参数 p 和 n;
.
4.2 概率统计模型
4.2.1 离散型分布
3. 负二项分布:
适用条件:到达的车流波动性很大时适用。 典型:信号交叉口下游的车流到达。
4. 离散型分布拟合优度检验——χ2检验
用于根据现场实测数据来判断交通流服从何种分布 原理和方法:
1) 建立原假设:随机变量X服从某给定的分布 2) 选择合适的统计量 3) 确定统计量的临界值 4) 判断检验结果
.
4.2 概率统计模型
4.2.1 离散型分布
1. 泊松分布:
递推公式:由参数m及数量k可递推出Pk+1;
P0 em
Pk1
m k 1Pk
分布的均值M与方差D皆等于λt,这是判断交通流到达规律是否 服从泊松分布的依据。
运用模型时的留意点:关于参数m=λt可理解为时间间隔 t 内的 平均到达车辆数。
4. 有效性指标——延误
第四章交通流理论(详细版)
二、排队论的基本原理
幻灯片 35§4-3 排队论的应用 2.排队系统的组成 (2)排队规则:指到达的顾客按怎样的次序接受服务。 例如: 损失制:顾客到达时,若所有服务台均被占,该顾客就自动消失,永不再来。 等待制:顾客到达时,若所有服务台均被占,他们就排成队伍,等待服务,服务次序有先到先服务(这是最通常的
36
二、排队论的基本原理
幻灯片 37-3 排队论的应用 2.排队系统的组成 (3) 服务方式:指同一时刻多少服务台可接纳顾客,每一顾客服务了多少时间。每次服务可以成批接待,例如公
7.5m
Q=360辆/h
Qt
3607.5
P(h7.5) e 3600 e 3600 0.4724
360 0.4724 170
(次)
幻灯片 27 当 Q = 900 辆/h 时,车头时距大于 7.5s 的概率为:
26 §4-2 交通流的统计分布特性
1h 内车头时距次数为 900,其中 h≥7.5s 的车头时距为可以安全横穿的次数:
33
二、排队论的基本原理
幻灯片 34§4-3 排队论的应用 2.排队系统的组成 (1) 输入过程:就是指各种类型的"顾客(车辆或行人)"按怎样的规律到达。有各式各样的输入过程,例如: D—定长输入:顾客等时距到达。 M—泊松输入:顾客到达时距符合负指数分布。 Ek—爱尔朗输入:顾客到达时距符合爱尔朗分布。
p m s2 m
m
1 N
N
i
i 1
n
m2 m s2
s 2
1 N 1
N i 1
(i
m)2
14 幻灯片 15 【例 4-2】:在一交叉口,设置左转弯信号相,经研究来车符合二项分布,每一周期平均来车 30 辆,其中有 30%
第4章 交通流理论
其他常用分布形式
爱尔兰分布:
kt e p(h t ) i! i 0 T
T:观测时间间隔的平均值 T:车头时距(s) H:车头时距的观测值 当k=1时,为负指数分布 当k>1时,为爱尔兰分布
k 1
i
kt T
K:确定分布曲线形状的参数
T2 k 2 s
a) 车头时距t > 5s的概率; b)在1小时内,车头时距t>5s所出现的次数;
在次要车流通行能力研究中的应用
e e c Q次 1 e 0 1 e c 0
e Q次 1 e 0
4.2.3 连续型分布
4.2.3.1 负指数分布
4.2.3.2 移位负指数分布
4.2.3.1 负指数分布
(1) 基本公式:
P(h t ) e t
P(h>t)——到达的车头时距h大于t秒的概率;
λ ——车流的平均到达率(辆/s)。 推导:由 P e t 可知,在计数间隔t内没 k 有车辆(k=0)到达的概率 P e t ,这表 0 明,在具体的时间间隔t内,无车辆到达,则上 次车到达和下次车到达之间,车头时距至少有t, t 即 P(h t ) e 。
– 参数模型:交通流参数之间的关系 – 宏观模型:描述车队的运动规律 – 微观模型:描述单个车辆的运动规律 – 静态模型:不随时间改变的稳恒交通 流随空间分布的规律 – 动态模型:时间改变的稳恒交通流随 空间分布的规律
4.2 交通流的统计分布特性
4.2.1 交通流统计分布的含义
4.2.2 离散型分布
4.2.2.3
基本公式:
负二项分布
• 适用条件:车流受到干扰。车辆到达起伏幅度比较
第四章 交通流理论
各种类型的“顾客”按怎样的规律到达
定长输入:顾客等时距到达; 泊松输入:顾客到达时距符合负指数分布; 爱尔朗输入:顾客到达时距符合爱尔朗分布;
(2)排队规则
排 队 论 基 本 原 理
到达的“顾客”按怎样的次序接受服务
损失制:顾客到达时,若所有服务台被占,该顾
客就自动消失,永不再来;
第三节 排队论的应用
The Application of Queuing Theory
排 队 论 概 述
排队论也称随机服务系统理论,是研究“服务” 系统因“需求”拥挤而产生的等待行列或排队的 现象,以及合理协调“需求”与“服务”关系的 一种数学理论。是运筹学中以概率论为基础的一 个重要分支。 在交通工程中,排队论在研究车辆延误、通行能 力、信号配时以及停车场、收费厅、加油站等交 通设施的设计与管理诸方面得到广泛的应用。
Poisson distribution belongs to discrete function with only one parameter. In traffic engineering Poisson distribution equation is used to describe the arrivals of vehicles at intersections or toll booth, as well as number of accident (crash) Poisson distribution is appropriate to describe vehicle’s arrival when traffic volume is not high. When field data shows that the mean and variance have significant difference, we can no longer apply Poisson distribution.
第四章 交通流理论
4.4 跟驰模型
4.4.3 线性跟驰模型的稳定性
跟驰的稳定性
局部稳定性——前后两车间距摆动大小,大则不稳定,小则稳 定;只在车队的局部发生。 渐进稳定性——引导车的状态变化向后传播,传播过程中,状 态变化的振幅越来越大(发散),则不稳定,状态变化振幅越 来越小(收敛)则稳定。
4.4 跟驰模型
4.4.3 线性跟驰模型的稳定性
4.4 跟驰模型
4.4.4 非线性跟驰模型
线性跟驰模型的局限性
后车的反应仅与两车的相对速度有关,而与车辆间距无关。
非线性跟驰模型
1959,Gazis 灵敏度系数λ与车头间距成反比
xn1 t T
其中 Vm
Vf 2
k t k
P(k ) Cn 1 n n
λ:平均到达率(辆或人/秒) 令:p=λt/n, 0 <p <1
t
n k
, k 1,2,...n
P(k ) C P 1 p
k n k
nk
, k 1,2,...n
4.2 概率统计模型
4.3 排队论模型
4.3.3 M/M/N系统
简述——两类多通道服务
1)单路排队多通道服务——排成一条队等待数 条通道服务
4.3 排队论模型
2)多路排队多通道服务——每个通道各排一队,每个通道只为 其相对应的一队顾客服务,顾客不能随意换队。
计算公式由M/M/1系统的计算公式确定
4.4 跟驰模型
4.4 跟驰模型
1. 简述
定义:研究在无法超车的单一车道上车辆列队行驶时,后车跟 随前车行驶的状态,并且借数学和动力学的模式表达并加以分 析的一种理论。 研究目的:通过观察各个车辆逐一跟驰的方式来了解单车道交 通流的特性,并用来检验管理技术和通讯技术,以预测短途车 辆对市区交通流的影响,在稠密交通时使尾撞事故减到最低限 度等
第4章 交通流理论
P(0) e 0.067 0.9355
当t=2s时, m= λt =0.133, 当t=2s时, m= λt =0. 3,
P( 0 ) e 0.133 0.875 P( 0 ) e 0.3 0.819
2)有95%置信度的每个周期来车数的含义为:来 车数小于或等于k辆的概率≥95%时的k值,即: P( k ) 0.95 ,求这时的k 即λ=240/3600(辆/s ),当t=60s时,m=λt=4 来车的分布为: k k m m 4 4 P( k ) e e k! k! 求:
递推公式:
P( 0 ) (1 P )n nk p P( k 1) P( k ) k 1 1 p
均值M和方差D分别为: M=np D=np(1-p)
例3:在一交叉口,设置左转弯信号相,经研究来车 符合二项分布,每一周期平均来车30辆,其中有 30%的左转弯车辆,试求: 到达的5辆车中,有2辆左转弯的概率; 到达的5辆车中,少于2辆左转弯的概率; 某一信号周期内没有左转弯车辆的概率。 解:1)由: p =30%,n=5,k=2 k k 由 :P( k ) Cn p (1 p) nk
负指数分布的应用
——确定左转车流的饱和流量
得下表
可穿越的车辆数
1
对应的车头时距出现的概率
P(1)=p(α≤h<α+α0)
理论频数
N•p(1)
汽车车辆数
1•NP(1)
2
┇ k ┇ n
P(2)=p(α+α0≤h<α+2α0)
N•p(2)
2•NP(2)
P(k)=p(α+(k-1)α0≤h<α+kα0)
例5 :在一条有隔离带的双向四车道道路上,单向 流量为360辆/h,该方向路宽7.5m,设行人步行 速度为1m/s,求1h中提供给行人安全横过单向车 道的次数,如果单向流量增加到900辆/h, 1h中 提供给行人安全横过单向车道的次数是增加还是 减少 。
交通工程学-第4章-道路交通流理论
连续流设施
间断流设施
无外部因素导致周期性中断。 高速公路、限制出入的一般公路路
段。
由于外部设备导致交通流周期性中断。 一般道路交叉口。
6
4.1 交通流特性
二、连续流特征(Characteristics of Uninterrupted Flow)
7
4.1 交通流特性
二、连续流特征(Characteristics of Uninterrupted Flow)
4
0.1954 0.6289
P(k8) 0.95
具有95%置信度的来车数不多于8辆。
32
4.2 概论统计模型
2、二项分布 ➢ ⑴ 基本公式
P (k)C n kpk(1p)nk
式中:
P(k)—在计数间隔t 内到达k 辆车的概率; λ—平均到车率(辆/s);
t —每个计数间隔持续的时间(s);
n—正整数 ;
计算机技术
交通规划 交通控制 交通工程设施设计
4
4.1 交通流特性
交通流定性和定量的特征称为交通流特性。它可用交通流 量、速度和交通密度三个基本参数来描述。
一、交通设施种类(Types of Facilities)
1、连续流设施:指在该设施下无外部因素而导致交通流周期性中断 的设施。
➢ (Uninterrupted-flow facilities are those on which no external factors cause periodic interruption to the traffic stream.)
p—二项分布参数, pt/n。
均值M和方差D分别为: :
33
4.2 概论统计模型
2、二项分布
第4章 道路交通流理论
������=������ ������
������������ ������������
= ������������
������=������
������������ ������������
������
东南大学交通学院
������=������
一. 离散型分布
(2)递推公式
������ ������ = ������−������ ������ ������ ������ + ������ = ������ ������ ������ + ������
式中:Km—为最大交通量时的密度。
交通工程基础
东南大学交通学院
三. 连续流的数学关系
(K1,V1) (K2,V2)
交通工程基础
东南大学交通学院
三. 连续流的数学关系
流量与密度的关系
������ = ������������������ 流量与速度关系 ������ = ������������ ������ = ������������ ������ ������ − ������������ ������ ������ − ������������ ������������ ������ − ������������
交通工程基础
东南大学交通学院
一. 离散型分布
④ 到达数大于等于k的概率:
������(≥ ������) = ������ − ������(< ������) = ������ −
������=������ ������−������
������������ ������−������ ������!
交通工程基础 东南大学交通学院
4第四章 交通流理论
2. 渐近稳定
是引导车向后面各车传播速度变化。
如扩大其速度振幅,叫做不稳定,如振幅逐渐衰 弱,则叫做稳定,这称为渐近稳定。
36
4.3
线性模型的稳定性
随着C值的增加,两车之间的车头间距逐渐的成为不稳定。这是 由于,如果对出现的事件,延迟反映的时间T过长,反应太强烈 (������大,表现在油门过大,或脚刹车踏得过重),则在作出反应 时,情况可能已偏离实际上的需求。
3
Contents 目录
1、概述 2、交通流的统计分布特性 3、排队论的应用
4、跟驰理论简介
5、流体动力学模拟理论
4
2.1
交通流统计分布的含义与作用
交通的到达在某种程度上具有随机性,描述这种随 机性的统计规律有两种方法。一种是以概率论中的
离散型分布为工具,考察在一段固定长度的时间内
到达某场所的交通数量的波动性;另一种是以概率 论中的连续性分布为工具,研究上述事件发生的间 隔时间的统计特性。
dk d (kv ) 0 dt dx
用流体力学的理论建立交通流的运动方程:
dk dv 0 dx dt
41
5.1
Q K
车流连续性方程
△x △t
Q
(K-△K,Q+△Q ) (K,Q)
Q+△Q K-△K
Ⅰ
Ⅱ
K
42
5.2
车流波动理论
列队行驶的车辆在信号灯交叉口遇到红灯后,即陆续停车排 队而集结成密度高的队列,绿灯启亮后,排队的车辆又陆续
单路多通道系统(M/M/4系统)计算各相应指标并比
较之。
25
3.2
M/M/1系统及其应用举例
26
3.2
M/M/1系统及其应用举例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
概述
交通流理论是发展中的科学,有很多理论在探讨 各种交通现象: 交通流量、速度和密度的相互关系及量测方法; 交通流的统计分布特性; 排队论的应用; 跟驰理论; 交通流的流体力学模拟理论; 交通波理论。
2015-6-11
3 3
第二节 交通流的统计分布特性
2015-6-11
第四章 交通流理论
第一节 概述
2015-6-11
1 1
概述
作为交通工程学理论基础的交通流理论是运用 物理和数学的方法来描述交通特性的一门边缘科 学,它用分析的方法阐述交通现象及其机理,使 我们能更好地理解交通现象及其本质,并使城市 道路与公路的规划设计和营运管理发挥最大的功 效。
2015-6-11
1 M 1 D 2
2015-6-11
20 20
二、连续性分布
车头时距服从负指数分布的车流特性 见图,曲线 是单调下降的,说明车头时距愈短,出现的概率 愈大。这种情形在不 能超车的单列车流中 是不可能出现的,因 为车辆的车头与车头 之间至少存在一个车 长,所以车头时距必 有一个大于零的最小 值τ。
P( h7.5) e
e
0.1534
1h内车头时距次数为900,其中h≥7.5s的车头时 距为可以安全横穿的次数:
900 0.1534 138 (次)
2015-6-11
26 26
第三节
排队论的应用
2015-6-11
27 27
一、引言
排队论是研究“服务”系统因“需求”拥挤而产 生等待行列(即排队)的现象,以及合理协调“ 需求”与“服务”关系的一种数学理论,是运筹 学中以概率论为基础的一门重要分支,亦称随机 服务系统理论。 排队论是20世纪初由丹麦电信工程师欧兰最先提 出,在二战期间排队论在战时后勤保障、军事运 输等方面得到了广泛应用,发展成为军事运筹学 的一个重要分支。 在交通工程中,排队论被用来研究车辆延迟、信 号配时、收费站、加油站等设施的设计与管理。
分布的均值M和方差D分别为: 1 1 M D 2
22 22
2015-6-11
二、连续性分布
移位负指数分布的局限性: 服从移位负指数分布的车头时距愈接近τ出现的 可能性愈大。这在一般情况下是不符合驾驶员的 心理习惯和行车特点的。 车头时距分布的概率密度曲线一般总是先升后 降。
2015-6-11
m 6
2015-6-11
8 8
一、离散型分布
无车的概率为: P(0) 0.0025 小于5辆车的概率为: P( k5) 0.2850 不多于5辆车的概率为:P( k5) 0.4456
P( k6) 1 P( k5) 0.5544 6辆及其以上的概率为:
至少为3辆但不多于6辆的概率为: P( 3k6) 0.5442
2015-6-11
P( 0 ) e 0.3 0.819
10 10
一、离散型分布
2)有95%臵信度的每个周期来车数的含义为:来 车数小于或等于k辆的概率≥95%时的k值,即: P( k ) 0.95 ,求这时的k 即λ=240/3600(辆/s ),当t=60s时,m=λt=4 来车的分布为: m k m 4 k 4 P( k ) e e k! k! 求:P( k ) 0.95 的k值。
21 21
2015-6-11
二、连续性分布
移位负指数分布 适用条件:用于描述不能超车的单列车流的车头 时距分布和车流量低的车流的车头时距分布。 移位负指数分布公式:
P( ht ) e ( t ) P( ht ) 1 e ( t )
(t ) (t )
28 28
2015-6-11
二、排队论的基本概念
“排队”与“排队系统” 当一队车辆通过收费站,等待服务(收费)的车 辆和正在被服务(收费)的车辆与收费站构成一 个“排队系统”。 等候的车辆自行排列成一个等待服务的队列,这 个队列则称为“排队”。 “排队车辆”或“排队(等待)时间”都是指 排队的本身。 “排队系统中的车辆”或“排队系统消耗时间 ”则是在指排队系统中正在接受服务(收费)和 排队的统称。
23 23
二、连续性分布
例5 :在一条有隔离带的双向四车道道路上,单向 流量为360辆/h,该方向路宽7.5m,设行人步行速 度为1m/s,求1h中提供给行人安全横过单向车道 的次数,如果单向流量增加到900辆/h, 1h中提 供给行人安全横过单向车道的次数是增加还是减 少。
Q=360辆/h
7.5m
恰好为5辆车的概率为:P( 5) 0.1606
2015-6-11 9 9
一、离散型分布
例2:已知某信号灯周期为60s,某一个入口的车流 量为240辆/h,车辆到达符合泊松分布,求: 在1s、2s、3s内无车的概率; 求有95%的臵信度的每个周期来车数。 解:1)1s、 2s、3s内无车的概率 λ=240/3600(辆/s ),当t=1s时, m= λt=0.067 P(0) e 0.067 0.9355 当t=2s时, m= λt =0.133, P( 0 ) e 0.133 0.875 当t=2s时, m= λt =0. 3,
2015-6-11 16 16
二、连续性分布
负指数分布 适用条件:用于描述有充分超车机会的单列车流和 密度不大的多列车流的车头时距分布。 负指数分布常与泊松分布相对应,当来车符合泊 松分布时,车头时距则符合负指数分布。 由公式: P( 0) e t 可知,当车辆平均到达率为λ时 ,P(0)为计数间隔t 内无车到达的概率。 可见,在具体的时间间隔 t 内,如无车辆到达, 则在上一次车和下一次车到达之间车头时距h至 少有t,即h≥t。
24 24
2015-6-11
二、连续性分布
解:行人横过单向行车道所需要的时间: t =7.5/1=7.5s 因此,只有当h≥7.5s时,行人才能安全穿越,由 于双车道道路可以充分超车,车头时距符合负指 数分布,对于任意前后两辆车而言,车头时距大 于7.5s的概率为:
P( h7.5) e
Qt 3600
k k 由 :P( k ) Cn p (1 p) nk
P( 2) C 0.3 (1 0.3)
2 5 2
2015-6-11
5 2
0.309
15 15
一、离散型分布
2)由: p =30%,n=5,k=2
k k 根据: P( k ) Cn p (1 p) n k
P( 0 ) C 0.3 (1 0.3)
0 5 0
5 0
0.168
1 P(1) C5 0.3(1 0.3)51 0.36
P( k 2 ) P( 0 ) P(1) 0.528
3)由: p =30%,n=30,k=0
k k 根据: P( k ) Cn p (1 p) nk 0 P( 0 ) C30 0.30 (1 0.3) 30 0.000023
2015-6-11 17 17
二、连续性分布
或者说: P(0)也就是车头时距h大于或等于t 的概 率。对于任意的t ,如果在t 内没有车辆到达,上 一次车和下一次车到达之间车头时距必然大于或 等于t ,即: P( 0 ) e t P( h t )
P( h t ) e t 式中:λ—车辆平均到达率(辆/s) P(h≥t)—车头时距大于或等于t (s)的概率 车头时距小于t (s)的概率,可有下式求得:
P( ht ) 1 e
2015-6-11
t
18 18
二、连续性分布
例4:对于单向平均流量为360辆/h的车流,求车头 时距大于或等于10s的概率。 解:车头时距大于或等于10s的概率也就是10s以内 无车的概率。 由λ=360/3600=0.1 P( ht ) e t
P( h10 ) e 0.110 0.37
0.0298 0.9787
P( k8) 0.95
设计上具有95%臵信度的来车数不多于8辆。
2015-6-11 12 12
一、离散型分布
二项分布 适用条件:车辆比较拥挤、自由行驶机会不多的 车流。交通流具有较小的方差时,来车符合二项 分布。 k k nk P C p ( 1 p ) n 基本公式: ( k ) 式中: P(k)—在计数间隔t 内到达k 辆车的概率; λ—平均到车率(辆/s); t —每个计数间隔持续的时间(s); n—正整数 ; p—二项分布参数,p t / n 。
4 4
一、离散型分布
泊松分布 适用条件:车流密度不大,其他外界干扰因素基 本上不存在,即车流是随机的 。 基本公式:
P( k )
( t ) k t e k!
式中: P(k) —在计数间隔t 内到达 k 辆车的概率; λ —平均到车率(辆/s) ; t —每个计数间隔持续的时间(s) 。
同样,车头时距小于10s的概率为: t P( ht ) 1 e 0.63
2015-6-11 19 19
二、连续性分布
由上例可见,设车流的单向流量为Q(辆/h), 则λ=Q/3600,于是负指数公式可改写成:
P( ht ) e
Qt 3600
负指数分布的均值M和方差D分别为:
2015-6-11 5 5
一、离散型分布
k m e k!
递推公式:
P( 0 ) e
m
P( k 1)
m P( k ) k 1
分布的均值M和方差D都等于m
2015-6-11
6 6
一、离散型分布
应用举例 例1:设60辆车随机分布在10km长的道路上,其中 任意1km路段上,试求: 无车的概率; 小于5辆车的概率; 不多于5辆车的概率; 6辆及其以上的概率; 至少为3辆但不多于6辆的概率; 恰好为5辆车的概率。