高频PCB电路布线经验总结

合集下载

高频PCB设计技巧

高频PCB设计技巧

高频PCB设计技巧数字器件正朝着高速、低耗、小体积、高抗干扰性的方向发展,这一发展趋势对印刷电路板的设计提出了很多新要求。

作者根据多年在硬件设计工作中的经验,总结一些高频布线的技巧,供大家参考。

(1)高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。

(2)高速电路器件管脚间的引线弯折越少越好。

高频电路布线的引线最好采用全直线,需要转折,可用45°折线或圆弧转折,满足这一要求可以减少高频信号对外的发射和相互间的耦合。

(3)高频电路器件管脚间的引线越短越好。

(4)高频电路器件管脚间的引线层间交替越少越好。

所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好,据测,一个过孔可带来约0.5pF的分布电容,减少过孔数能显著提高速度。

(5)高频电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅度减少干扰。

同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。

(6)对特别重要的信号线或局部单元实施地线包围的措施,即绘制所选对象的外轮廓线。

利用此功能,可以自动地对所选定的重要信号线进行所谓的“包地”处理,当然,把此功能用于时钟等单元局部进行包地处理对高速系统也将非常有益。

(7)各类信号走线不能形成环路,地线也不能形成电流环路。

(8)每个集成电路块的附近应设置一个高频去耦电容。

(9)模拟地线、数字地线等接往公共地线时要用高频扼流环节。

在实际装配高频扼流环节时用的往往是中心孔穿有导线的高频铁氧体磁珠,在电路原理图上对它一般不予表达,由此形成的网络表(netlist)就不包含这类元件,布线时就会因此而忽略它的存在。

针对此现实,可在原理图中把它当做电感,在元件库中单独为它定义一个元件封装,布线前把它手工移动到靠近公共地线汇合点的合适位置上。

(10)模拟电路与数字电路应分开布置,独立布线后应单点连接电源和地,避免相互干扰。

PCB布线经验个人总结

PCB布线经验个人总结

PCB布线经验个人总结PCB布线经验个人总结PCB布线经验个人总结作为一个电子工程师设计电路是一项必备的硬功夫,但是原理设计再完美,如果电路板设计不合理性能将大打折扣,严重时甚至不能正常工作。

我自己的经验,总结出以下一些PCB设计中应该注意的地方,希望能对您有所帮助,其实不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。

(由于protel界面风格与windows视窗接近,操作习惯也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。

)原理图设计是前期准备工作,经常见到初学者为了省事直接就去画PCB板了,这样将得不偿失,对简单的板子,如果熟练流程,不妨可以跳过。

但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免出错。

在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。

由于,软件的差别有些软件会出现看似相连实际未连(电气性能上)的情况。

如果不用相关检测工具检测,万一出了问题,等板子做好了才发现就晚了。

因此一再强调按顺序来做的重要性,希望引起大家的注意。

原理图是根据设计的项目来的,只要电性连接正确没什么好说的。

下面我们重点讨论一下具体的制板程序中的问题。

l、制作物理边框封闭的物理边框对以后的元件布局、走线来说是个基本平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。

但这里一定要注意精确,否则以后出现安装问题麻烦可就大了。

还有就是拐角地方最好用圆弧,一方面可以避免尖角划伤工人,同时又可以减轻应力作用。

2、元件和网络的引入把元件和网络引人画好的边框中应该很简单,但是这里往往会出问题,一定要细心地按提示的错误逐个解决,不然后面要费更大的力气。

这里的问题一般来说有以下一些:元件的封装形式找不到,元件网络问题,有未使用的元件或管脚,对照提示这些问题可以很快搞定的。

PCB布线精华总结-14页word资料

PCB布线精华总结-14页word资料

印制线路板设计经验点滴对于电子产品来说,印制线路板设计是其从电原理图变成一个具体产品必经的一道设计工序,其设计的合理性与产品生产及产品质量紧密相关,而对于许多刚从事电子设计的人员来说,在这方面经验较少,虽然已学会了印制线路板设计软件,但设计出的印制线路板常有这样那样的问题,而许多电子刊物上少有这方面文章介绍,笔者曾多年从事印制线路板设计的工作,在此将印制线路板设计的点滴经验与大家分享,希望能起到抛砖引玉的作用。

笔者的印制线路板设计软件早几年是TANGO,现在则使用PROTEL2.7 FOR WINDOWS。

板的布局:1.印制线路板上的元器件放置的通常顺序:1.放置与结构有紧密配合的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK 功能将其锁定,使之以后不会被误移动;2.放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC 等;3.放置小器件。

2.元器件离板边缘的距离:可能的话所有的元器件均放置在离板的边缘3mm以内或至少大于板厚,这是由于在大批量生产的流水线插件和进行波峰焊时,要提供给导轨槽使用,同时也为了防止由于外形加工引起边缘部分的缺损,如果印制线路板上元器件过多,不得已要超出3mm范围时,可以在板的边缘加上3mm的辅边,辅边开V 形槽,在生产时用手掰断即可。

3.高低压之间的隔离:在许多印制线路板上同时有高压电路和低压电路,高压电路部分的元器件与低压部分要分隔开放置,隔离距离与要承受的耐压有关,通常情况下在2000kV时板上要距离2mm,在此之上以比例算还要加大,例如若要承受3000V的耐压测试,则高低压线路之间的距离应在3.5mm以上,许多情况下为避免爬电,还在印制线路板上的高低压之间开槽。

印制线路板的走线:1.印制导线的布设应尽可能的短,在高频回路中更应如此;印制导线的拐弯应成圆角,而直角或尖角在高频电路和布线密度高的情况下会影响电气性能;当两面板布线时,两面的导线宜相互垂直、斜交、或弯曲走线,避免相互平行,以减小寄生耦合;作为电路的输入及输出用的印制导线应尽量避免相邻平行,以免发生回授,在这些导线之间最好加接地线。

PCB图布线的经验总结

PCB图布线的经验总结

PCB图布线的经验总结1.组件布置组件布置合理是设计出优质的PCB图的基本前提。

关于组件布置的要求主要有安装、受力、受热、信号、美观六方面的要求。

1.1.安装指在具体的应用场合下,为了将电路板顺利安装进机箱、外壳、插槽,不致发生空间干涉、短路等事故,并使指定接插件处于机箱或外壳上的指定位置而提出的一系列基本要求。

这里不再赘述。

1.2.受力电路板应能承受安装和工作中所受的各种外力和震动。

为此电路板应具有合理的形状,板上的各种孔(螺钉孔、异型孔)的位置要合理安排。

一般孔与板边距离至少要大于孔的直径。

同时还要注意异型孔造成的板的最薄弱截面也应具有足够的抗弯强度。

板上直接"伸"出设备外壳的接插件尤其要合理固定,保证长期使用的可靠性。

1.3.受热对于大功率的、发热严重的器件,除保证散热条件外,还要注意放置在适当的位置。

尤其在精密的模拟系统中,要格外注意这些器件产生的温度场对脆弱的前级放大电路的不利影响。

一般功率非常大的部分应单独做成一个模块,并与信号处理电路间采取一定的热隔离措施。

1.4.信号信号的干扰PCB版图设计中所要考虑的最重要的因素。

几个最基本的方面是:弱信号电路与强信号电路分开甚至隔离;交流部分与直流部分分开;高频部分与低频部分分开;注意信号线的走向;地线的布置;适当的屏蔽、滤波等措施。

这些都是大量的论着反复强调过的,这里不再重复。

1.5.美观不仅要考虑组件放置的整齐有序,更要考虑走线的优美流畅。

由于一般外行人有时更强调前者,以此来片面评价电路设计的优劣,为了产品的形象,在性能要求不苛刻时要优先考虑前者。

但是,在高性能的场合,如果不得不采用双面板,而且电路板也封装在里面,平时看不见,就应该优先强调走线的美观。

下一小节将会具体讨论布线的"美学"。

2.布线原则下面详细介绍一些文献中不常见的抗干扰措施。

考虑到实际应用中,尤其是产品试制中,仍大量采用双面板,以下内容主要针对双面板。

PCB布线经验总结

PCB布线经验总结

PCB布线经验总结首先,布局和走线是一个相互作用的过程。

在布线之前,需要对电路进行合理布局,尽量减少信号线的长度和走线的复杂度。

同时要注意将电源线和地线布置得合理稳定,母线和高速信号线之间要有足够的间距和屏蔽。

对于大规模的复杂电路,可以使用分区布局的方式,将不同功能的电路分开布置,以降低互相干扰的可能性。

其次,要合理规划信号线的走向。

在布线前要考虑信号的传输和接收方向,将走线和信号流的方向保持一致,尽量减少信号线的弯曲和交叉。

对于高速信号,可以使用直线走线或45度斜线走线的方式,减小信号的反射和串扰。

对于时钟信号和复杂的差分信号,应采用匹配长度的方法,以确保信号的同步性和稳定性。

第三,要注意信号线的长度匹配。

在布线时,可以通过减少信号线的弯曲和拉直首尾两端的方式,尽量使信号线的长度保持一致。

对于时序性要求较高的电路,要注意保持信号线的长度匹配,以防止因信号传输延时不同而引起的问题。

可以使用差分线路来进行信号传输,以提高抗干扰能力和信号传输速度。

第四,要合理分配信号线的宽度。

信号线的宽度对信号的传输速度和功耗都有影响,要根据电流大小和信号带宽来合理确定信号线的宽度。

一般来说,可以根据电流大小和信号带宽来选择合适的导线宽度,避免因过细或过粗导线而引起的问题。

第五,要注意功耗和散热。

在布线时,要考虑功耗和散热的问题。

对于功耗较大的器件,要确保其周围有足够的散热空间和散热手段,避免器件因过热而损坏。

可以在布线中合理安排散热片和风扇等散热装置,以保证电路的正常运行。

最后,布线结束后要进行必要的测试和验证。

在通过DRC检查和生成Gerber文件之前,可以使用SI仿真工具对信号线进行仿真分析,以确保布线的质量符合设计要求。

并且在PCB制造出来后,应进行必要的测试和验证,以确保电路的工作正常。

高速板4层以上布线总结

高速板4层以上布线总结

高速板4层以上布线总结高速板4层以上布线总结1、3点以上连线,尽量让线依次通过各点,便于测试,线长尽量短,如下图(按前一种):2、引脚之间尽量不要放线,特别是集成电路引脚之间和周围。

3、不同层之间的线尽量不要平行,以免形成实际上的电容。

4、布线尽量是直线,或45度折线,避免产生电磁辐射。

5、地线、电源线至少10-15mil以上(对逻辑电路)。

6、尽量让铺地多义线连在一起,增大接地面积。

线与线之间尽量整齐。

7、注意元件排放均匀,以便安装、插件、焊接操作。

文字排放在当前字符层,位置合理,注意朝向,避免被遮挡,便于生产。

8、元件排放多考虑结构,贴片元件有正负极应在封装和最后标明,避免空间冲突。

9、目前印制板可作4—5mil的布线,但通常作6mil线宽,8mil线距,12/20mil焊盘。

布线应考虑灌入电流等的影响。

10、功能块元件尽量放在一起,斑马条等LCD附近元件不能靠之太近。

11、过孔要涂绿油(置为负一倍值)。

12、电池座下最好不要放置焊盘、过空等,PAD和VIL尺寸合理。

13、布线完成后要仔细检查每一个联线(包括NETLABLE)是否真的连接上(可用点亮法)。

14、振荡电路元件尽量靠近IC,振荡电路尽量远离天线等易受干扰区。

晶振下要放接地焊盘。

15、多考虑加固、挖空放元件等多种方式,避免辐射源过多。

16、设计流程:A:设计原理图;B:确认原理;C:检查电器连接是否完全;D:检查是否封装所有元件,是否尺寸正确;E:放置元件;F:检查元件位置是否合理(可打印1:1图比较);G:可先布地线和电源线;H:检查有无飞线(可关掉除飞线层外其他层);I:优化布线;J:再检查布线完整性;K:比较网络表,查有无遗漏;L:规则校验,有无不应该的错误标号;M:文字说明整理;N:添加制板标志性文字说明;O:综合性检查。

如果您有PCB打样、中小批量板生产等需求的话,就来深圳捷多邦科技有限公司吧。

捷多邦总部位于深圳,在杭州设外贸事业部,在惠州、坪山、沙井设三大线路板厂区。

贴片电容电路板的高频PCB布线的设计与技巧

贴片电容电路板的高频PCB布线的设计与技巧

贴片电容电路板的高频PCB布线的设计与技巧多层板布线有力量的旅程信仰自由的飞翔PCB又被称为印刷电路板(Printed Circuit Board),它可以实现电子元器件间的线路连接和功能实现,也是电源电路设计中重要的组成部分。

今天就将以本文来介绍在PCB设计中的高频电路布线技巧。

多层板布线: 高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。

在PCB Layout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。

同种材料时,四层板要比双面板的噪声低20dB。

但是,同时也存在一个问题,PCB半层数越高,制造工艺越复杂,单位成本也就越高,这就要求在进行PCB Layout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。

1、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。

一个过孔可带来约0.5pF的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。

2、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI线等高频信号线都是要求尽可能的走线越短越好。

3、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。

 4、注意信号线近距离平行走线引入的“串扰” 高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。

设计师多年经验之谈---高频pcb电路板布线

设计师多年经验之谈---高频pcb电路板布线

设计师多年经验之谈---高频pcb电路板布线高频pcb电路板在高频、高速、高密度已逐步成为现代电子产品的显著发展趋势之一。

特别是信号传输高频化和高速数字化,PCB走向微小孔与埋/盲孔化、导线精细化、介质层均匀薄型化,高频高速高密度多层PCB设计技术已成为一个重要的研究领域。

今天小编讲述的是从高频pcb电路板布线方面的技巧经验分享。

什么是高频电路板?高频电路板是电磁频率较高的特种电路板,一般来说,高频可定义为频率在1GHz以上。

其各项物理性能、精度、技术参数要求非常高,常用于汽车防碰撞系统、卫星系统、无线电系统等领域。

该实用新型提供的这种高频电路板,于芯板中空槽的上开口和下开口边缘处设有可阻挡流胶的挡边,这样,芯板与置于其上表面和下表面的覆铜板粘合时流胶不会进入中空槽内,即一次压合即可完成粘接操作,较现有技术需经二次压合才能完成的高频电路板,该实用新型中的高频电路板结构简单,成本低,易于制造。

高频pcb电路板如何布线?一、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。

一个过孔可带来约0.5pF的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。

二、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。

三、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB 线、HDMI线等高频信号线都是要求尽可能的走线越短越好。

四、注意信号线近距离平行走线引入的“串扰”高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。

高频PCB板布线规则

高频PCB板布线规则

高频PCB板布线规则1. 元件排列规则1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴IC等放在底层。

2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。

3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电、击穿而引起意外短路。

4).带高电压的元件应尽量布置在调试时手不易触及的地方。

5).位于板边缘的元件,离板边缘至少有2个板厚的距离6).元件在整个板面上应分布均匀、疏密一致。

2. 按照信号走向布局原则1).通常按照信号流程逐个安排各个功能电路单元位置,以每个功能电路的核心元件为中心,围绕它进行布局。

2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。

多数情况下,信号的流向安排为从左到右或从上到下,与输入、输出端直接相连的元件应当放在靠近输入、输出接插件或连接器的地方。

3. 防止电磁干扰1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。

2).尽量避免高低电压器件相互混杂、强弱信号的器件交错在一起。

3).对于会产生磁场的元件,如变压器、扬声器、电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。

4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。

5).在高频工作的电路,要考虑元件之间的分布参数的影响。

4. 抑制热干扰1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。

2).一些功耗大的集成块、大或中功率管、电阻等元件,要布置在容易散热的地方,并与其它元件隔开距离。

3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。

高频PCB板布线规则

高频PCB板布线规则

高频PCB板布线规则1. 元件排列规则1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴IC等放在底层。

2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。

3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电、击穿而引起意外短路。

4).带高电压的元件应尽量布置在调试时手不易触及的地方。

5).位于板边缘的元件,离板边缘至少有2个板厚的距离6).元件在整个板面上应分布均匀、疏密一致。

2. 按照信号走向布局原则1).通常按照信号流程逐个安排各个功能电路单元位置,以每个功能电路的核心元件为中心,围绕它进行布局。

2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。

多数情况下,信号的流向安排为从左到右或从上到下,与输入、输出端直接相连的元件应当放在靠近输入、输出接插件或连接器的地方。

3. 防止电磁干扰1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。

2).尽量避免高低电压器件相互混杂、强弱信号的器件交错在一起。

3).对于会产生磁场的元件,如变压器、扬声器、电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。

4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。

5).在高频工作的电路,要考虑元件之间的分布参数的影响。

4. 抑制热干扰1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。

2).一些功耗大的集成块、大或中功率管、电阻等元件,要布置在容易散热的地方,并与其它元件隔开距离。

3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。

高频在pcb中的布线规则

高频在pcb中的布线规则

1)注意晶振布线,见图1。

晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。

此措施可解决许多疑难问题。

图1 正确配置晶振2)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响,见图2。

注意高频电容的布线,图a和图b的效果相差很大,图c比图b的效果更好。

图a的布线增大了电容的等效串联电阻,影响了滤波效果。

/xuexishequ/UploadFiles_9463/200609/20060904104533276.gif图2 IC并接高频电容3)布线时避免90度折线,减少高频噪声发射,见图3。

图3 正确布线4)提高敏感器件抗干扰性能的常用措施如下:(a)布线时尽量减少回路环的面积,以降低感应噪声,见图4。

(b)布线时,电源线和地线要尽量粗。

除减小压降外,更重要的是降低耦合噪声。

(c)对于单片机闲置的I/O口,不要悬空,要接地或接电源。

其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。

图4 减少回路环面积由于时钟频率越高,高频能量辐射越强,因此在数字电路中不要使用过高的时钟频率。

线路板上的总线、较大的环路面积和较长的导线都是强辐射源,因此,除非必要,要尽量避免这些情况的出现。

线路板上的走线是主要的辐射源。

走线产生辐射主要是由于逻辑电路中电流的突变,在导线的电感上产生了感应电压,这个电压会产生较强的辐射。

另外,由于导线其着辐射天线的作用,因此导线的长度越长,辐射的效率越高。

因此,线路板布线的基本原则是,减小导线的电感,例如使用最短的走线电流较大的电源线和地线要粗一些。

5)电容特性电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低。

因此在实际工程中,要使电容器的引线尽量短,电容器的正确安装方法和不正确安装方法如图5 所示。

图5 滤波电容的正确安装方法与错误安装方法根据LC 电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低。

高频信号PCB布局经验

高频信号PCB布局经验

高频信号PCB布局经验(2011-08-31 14:21:00)转载▼标签:元器件焊盘电路高频信号线it1 布局的设计先采用手工布局的方法优化调整部分元器件的位置,再结合自动布局完成PCB的整体设计。

布局的合理与否直接影响到产品的寿命、稳定性、EMC (电磁兼容)等,必须从电路板的整体布局、布线的可通性和PCB的可制造性、机械结构、散热、EMI(电磁干扰) 、可靠性、信号的完整性等方面综合考虑。

一般先放置与机械尺寸有关的固定位置的元器件,再放置特殊的和较大的元器件,最后放置小元器件。

同时,要兼顾布线方面的要求,高频元器件的放置要尽量紧凑,信号线的布线才能尽可能短,从而降低信号线的交叉干扰等。

1.1 与机械尺寸有关的定位插件的放置电源插座、开关、PCB之间的接口、指示灯等都是与机械尺寸有关的定位插件。

通常,电源与PCB之间的接口放到PCB的边缘处,并与PCB 边缘要有3 mm~5 mm的间距;指示发光二极管应根据需要准确地放置;开关和一些微调元器件,如可调电感、可调电阻等应放置在靠近PCB 边缘的位置,以便于调整和连接;需要经常更换的元器件必须放置在器件比较少的位置,以易于更换。

1.2 特殊元器件的放置大功率管、变压器、整流管等发热器件,在高频状态下工作时产生的热量较多,所以在布局时应充分考虑通风和散热,将这类元器件放置在PCB上空气容易流通的地方。

大功率整流管和调整管等应装有散热器,并要远离变压器。

电解电容器之类怕热的元件也应远离发热器件,否则电解液会被烤干,造成其电阻增大,性能变差,影响电路的稳定性。

易发生故障的元器件,如调整管、电解电容器、继电器等,在放置时还要考虑到维修方便。

对经常需要测量的测试点,在布置元器件时应注意保证测试棒能够方便地接触。

由于电源设备内部会产生50 Hz泄漏磁场,当它与低频放大器的某些部分交连时,会对低频放大器产生干扰。

因此,必须将它们隔离开或者进行屏蔽处理。

放大器各级最好能按原理图排成直线形式,如此排法的优点是各级的接地电流就在本级闭合流动,不影响其他电路的工作。

高频电路PCB布线技巧

高频电路PCB布线技巧

高频电路PCB布线技巧一、多层板布线:高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。

在PCBLayout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。

同种材料时,四层板要比双面板的噪声低20dB 。

但是,同时也存在一个问题,PCB 半层数越高,制造工艺越复杂,单位成本也就越高,这就要求在进行PCBLayout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。

1、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。

一个过孔可带来约0.5pF 的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。

2、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI 线等高频信号线都是要求尽可能的走线越短越好。

3、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。

4、注意信号线近距离平行走线引入的“串扰” 高频电路布线要注意信号线近距离平行走线所引入的“串扰” ,串扰是指没有直接连接的信号线之间的耦合现象。

由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。

高频布线

高频布线

高频PCB布线:1、高频电路器件管脚间的引线层间交替越少越好2、高频电路器件管脚间的引线越短越好3、高速电子器件管脚间的引线弯折越少越好4、注意信号线近距离平行走线引入的“串扰”5、高频数字信号的地线和模拟信号地线做隔离6、集成电路块的电源引脚增加高频退藕电容7、避免走线形成的环路8、必须保证良好的信号阻抗匹配1、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。

一个过孔可带来约0.5pF的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。

2、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI线等高频信号线都是要求尽可能的走线越短越好。

3、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。

4、注意信号线近距离平行走线引入的“串扰”高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。

由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。

PCB板层的参数、信号线的间距、驱动端和接收端的电气特性以及信号线端接方式对串扰都有一定的影响。

所以为了减少高频信号的串扰,在布线的时候要求尽可能的做到以下几点:(1)在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线或地平面,可以起到隔离的作用而减少串扰;(2)当信号线周围的空间本身就存在时变的电磁场时,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅减少干扰;(3)在布线空间许可的前提下,加大相邻信号线间的间距,减小信号线的平行长度,时钟线尽量与关键信号线垂直而不要平行;(4)如果同一层内的平行走线几乎无法避免,在相邻两个层,走线的方向务必却为相互垂直;(5)在数字电路中,通常的时钟信号都是边沿变化快的信号,对外串扰大。

高频PCB设计-射频电路的布局的走线

高频PCB设计-射频电路的布局的走线

高频PCB设计:射频电路的布局的走线1、射频电路的布局和连接尽可能地短由于传输线拐角处的阻抗突变会造成信号反射,高频信号将作为电磁场能量辐射到空间中。

结果,经“拐角”之后的信号电平值可能下降。

因此,在设计高频电路时,必须精心设计RF布局以使得RF走线拐角角度尽可能的小。

设计RF电路时,如果板上有足够的空间,则将RF相关元器件布置成尽可能直线化。

通过直线化布局布线布线,可以避免信号反射,防止信号电平值降低,以满足设计指标。

设计要点:在低频电路的时,信号走线成直角也可以正常工作。

然而,在高频电路中,即使走线铜箔宽度的细微变化也会产生影响,因为走线宽度变化,特征阻抗就会受到影响,发生信号反射,降低信号电平值,达不到设计指标。

2、在RF走线的拐角处通过放置元件或者圆弧走线的方式来降低特性阻抗突变造成的影响还是围绕老wu第一点说的【避免特征阻抗突变】的原则,如果板上空间富裕,优先通过布局实现RF走线的短和直,如果布局空间不允许,需要拐角走线,一定避免直角或45°拐角走线,要走圆弧走线,如果实在要走直角了,可以通过放置元件通过元件的摆位的方式来替代走线来做90°角的转折,这样可以最大化避免阻抗突变造成的信号反射影响。

设计要点:在高频电路的情况下,重要的是改善RF线路的布局,即遵循【避免特征阻抗突变】的原则3、为接地焊盘单独接地,避免共用接地过孔设计高频电路时,必须认真处理RF信号走线和GND之间的连接。

在上图的反例中,RF元件的接地焊盘共用一个接地过孔与GND平面连接。

下图的改进实例中,为每个接地焊盘就近打了接地过孔与GND平面连接,接地环路更小,将噪声降至最低。

设计要点:与常规电路相比,高频电路对于与GND的连接必须严格处理,为每个接地焊盘单独提供一个接地过孔以最短的途径与地平面进行连接。

4、射频巴伦差分走线要保持对称设计高频电路时,必须注意同一电路部分的接线。

比如上面的反例图示是射频巴伦(balun)电路,左右走线不对称。

PCB设计经验总结报告(共5篇)

PCB设计经验总结报告(共5篇)

PCB设计经验总结报告(共5篇)第一篇:PCB设计经验总结报告1、走线宽度:铜箔的宽度只与电流有关,与电压无关。

1mm铜箔可通过1A电流,如果电流很大,不建议大幅度增加铜箔宽度,可以在铜箔中间镀锡。

电压高的话,只需增加与邻近铜箔的距离,无需调整铜箔宽度,必要时可以在覆铜板上开槽以增加耐压强度。

2、覆铜切换到要铺铜的层,按p再按G,在设置中选择网络,勾选去死铜,选择全铜或风格铜并设置风格大小,完毕后圈出你要覆的区域后右键,OK3、铜模厚度常见的都是12微米,18微米,35微米(行业内叫做1OZ);有些特别需求的还有7微米,9微米,甚至厚的还有70微米的,看你具体何种用途?铜箔厚一般用来走大电流,但是越厚的铜箔越难制作精细线路,现在手机里面的控制板一般是75微米线宽间距,所以手机PCB用的铜厚一般是35微米多第二篇:pcb设计!1.DOS版Protel软件设计的PCB文件为何在我的电脑里调出来不是全图?有许多老电子工程师在刚开始用电脑绘制PCB线路图时都遇到过这样的问题,难道是我的电脑内存不够吗? 我的电脑可有64M内存呀!可屏幕上的图形为何还是缺胳膊少腿的呢?不错,就是内存配置有问题,您只需在您的CONFIG.SYS文件(此文件在C:根目录下,若没有,则创建一个)中加上如下几行,存盘退出后重新启动电脑即可。

DEVICE=C:WINDOWSSETVER.EXEDEVICE=C:WINDOWSHIMEM. SYSDEVICE=C:WINDOWSEMM386.EXE 160002.如何确定大电流导线线宽?请见1989年国防工业出版社出版的《电子工业生产技术手册》Vol12中的图形说明。

3.为何要将PCB文件转换为GERBER文件和钻孔数据后交PCB厂制板?大多数工程师都习惯于将PCB文件设计好后直接送PCB厂加工,而国际上比较流行的做法是将PCB文件转换为GERBER文件和钻孔数据后交PCB厂,为何要“多此一举”呢?因为电子工程师和PCB工程师对PCB的理解不一样,由PCB工厂转换出来的GERBER文件可能不是您所要的,如您在设计时将元件的参数都定义在PCB文件中,您又不想让这些参数显示在PCB成品上,您未作说明,PCB厂依葫芦画瓢将这些参数都留在了PCB成品上。

pcb布局布线实验总结(汇总10篇)

pcb布局布线实验总结(汇总10篇)

pcb布局布线实验总结第1篇1.过孔的种类尽可能的少,不能太多,最好提前确定好过孔的种类,不然生成Gerber文件的时候,会提示钻孔超限。

提示:过孔的大小可以和直插元件的焊盘过孔设置相同尺寸,这样可以减小过孔种类。

2.过孔不能放置到焊盘上,不能离焊盘太近,避免回流焊时焊料流失,造成焊接不可靠;3.过孔比例一般按照1:2进行设置;4.过孔在检查完元器件位号丝印后,遮盖绿油;5.过孔应该行对齐或者列对齐;6.整板画完后,需要打地孔;7.最小的过孔与厂家联系;8.过孔镀层较薄,经不起大电流,可通过增大孔径,增加过孔数量的方法,透过0欧直插电阻,0欧直插磁珠的方式增大载流量。

9.推荐1000mil打地过孔,地孔过多,会影响电源的完整性。

pcb布局布线实验总结第2篇1.本来没有使用的接口引出来,便于使用。

2.将容值相同,封装不同的个数较少的电容种类合并;3.将JTECK接口改到顶层;4.对封装相同的的比如DSP的封装换成能够兼容增强型散热封装,便于芯片更换。

提高PCB的升级可能性。

(例如:TMS320F28335PGFA为铺铜DSP,TMS320F28335PTPQ为散热增强型DSP,后者增加了散热焊盘,其余两个芯片完全一样。

)5.圆形敷铜,大粗线将改为圆弧角;pcb布局布线实验总结第3篇1.先添加泪滴,再铺地;2.注意晶振同层铺地,背面不能走线;3.注意铺地不能出现直角或者锐角;可以多铺几次,选择最合理的铺地;4.隔离芯片输出需要铺隔离地;5.大功率器件,慎重使用敷铜,避免增大散热面积,而使焊接不良;6.设计规则改变,铺地可以刷新;7.低频实心铜,高频网格铜;8.铺地间距:单独设置。

例如:(InPolygon) toOnLa yer(‘KeepOutLayer’)设置距离板边禁止布线层的距离;(InPolygon) toAll设置铺铜距离其他的一切的距离;9.铺地,采用热风焊盘格式,用直连焊盘会导致SMD焊盘出现只连接几个点,而出现许多锐角。

PCB走线总结

PCB走线总结

PCB走线总结:元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开。

2.遵照“先大后小,先难后易”等的布置原则,即重要的单元电路、核心元器件应当优先布局。

3.布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件。

4.布局应该尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流、低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。

5.相同结构电路部分,尽可能采用“对称式”标准布局。

6.器件布局栅格的设置,一般IC器件布局时,栅格应为50-100mil、小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil.7.同类型插装元器件在X或Y方向上应朝一个方向防止同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。

8.IC去耦电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。

9.元件布局时,应适当考虑使用同一种电源的器件尽量放在一起,以便于将来的电源分割。

10.用于阻抗匹配目的阻容器件的布局,要根据其属性合理布置。

串联匹配电阻的布局要靠近该信号的驱动端,距离一般不超过500mil。

匹配电阻、电容的布局一定要分清信号的源端和终端,对于多负载的终端匹配一定要在信号的最远端匹配。

11.表面贴装器件(SMD)相互间距离要大于0.7mm。

12.表面贴装器件焊盘外侧同相邻插件外形边缘距离要大于2mm。

13.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件。

14. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路。

15. 元器件的外侧距板边的距离为5mm。

16.BGA与相邻元件的距离>5mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频PCB电路布线经验总结
如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),通常就称为高频电路。

高频电路设计是一个非常复杂的设计过程,其布线对整个设计至关重要!
【第一招】多层板布线
高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。

在PCB Layout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。

有资料显示,同种材料时,四层板要比双面板的噪声低20dB。

但是,同时也存在一个问题,PCB半层数越高,制造工艺越复杂,单位成本也就越高,这就要求我们在进行PCB Layout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。

【第二招】高速电子器件管脚间的引线弯折越少越好
高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强
度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。

【第三招】高频电路器件管脚间的引线越短越好
信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI线等高频信号线都是要求尽可能的走线越短越好。

【第四招】高频电路器件管脚间的引线层间交替越少越好
所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。

据侧,一个过孔可带来约0.5pF的分布电容,减少过孔数能显著提高速度和减少数据出错的可能性。

【第五招】注意信号线近距离平行走线引入的“串扰”
高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。

由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。

PCB板层的参数、信号线的间距、驱动端和接收端的电气特性以及信号线端接方式对串扰都有一定的影响。

所以为了减少高频信号的串扰,在布线的时候要求尽可能的做到以下几点:
在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线或地平面,可以起到隔离的作用而减少串扰。

当信号线周围的空间本身就存在时变的电磁场时,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅减少干扰。

在布线空间许可的前提下,加大相邻信号线间的间距,减小信号线的平行长度,时钟线尽量与关键信号线垂直而不要平行。

如果同一层内的平行走线几乎无法避免,在相邻两个层,走线的方向务必却为相互垂直。

在数字电路中,通常的时钟信号都是边沿变化快的信号,对外串扰大。

所以在设计中,时钟线宜用地线包围起来并多打地线孔来减少分布电容,从而减少串扰。

对高频信号时钟尽量使用低电压差分时钟信号并包地方式,需要注意包地打孔的完整性。

闲置不用的输入端不要悬空,而是将其接地或接电源(电源在高频信号回路中也是地),因为悬空的线有可能等效于发射天线,接地就能抑制发射。

实践证明,用这种办法消除串扰有时能立即见效。

【第六招】集成电路块的电源引脚增加高频退藕电容
每个集成电路块的电源引脚就近增一个高频退藕电容。

增加电源引脚的高频退藕电容,可以有效地抑制电源引脚上的高频谐波形成干扰。

【第七招】高频数字信号的地线和模拟信号地线做隔离
模拟地线、数字地线等接往公共地线时要用高频扼流磁珠连接或者直接隔离并选择合适的地方单点互联。

高频数字信号的地线的地电位一般是不一致的,两者直接常常存在一定的电压差,而且,高频数
字信号的地线还常常带有非常丰富的高频信号的谐波分量,当直接连接数字信号地线和模拟信号地线时,高频信号的谐波就会通过地线耦合的方式对模拟信号进行干扰。

所以通常情况下,对高频数字信号的地线和模拟信号的地线是要做隔离的,可以采用在合适位置单点互联的方式,或者采用高频扼流磁珠互联的方式。

【第八招】避免走线形成的环路
各类高频信号走线尽量不要形成环路,若无法避免则应使环路面积尽量小。

【第九招】必须保证良好的信号阻抗匹配
信号在传输的过程中,当阻抗不匹配的时候,信号就会在传输通道中发生信号的反射,反射会使合成信号形成过冲,导致信号在逻辑门限附近波动。

消除反射的根本办法是使传输信号的阻抗良好匹配,由于负载阻抗与传输线的特性阻抗相差越大反射也越大,所以应尽可能使信号传输线的特性阻抗与负载阻抗相等。

同时还要注意PCB上的传输线不能出现突变或拐角,尽量保持传输线各点阻抗连续,否则在传输线各段之间也将会出现反射。

这就要求在进行高速PCB布线时,必须要遵守以下布线规则:
USB布线规则。

要求USB信号差分走线,线宽10mil,线距6mil,地线和信号线距6mil。

HDMI布线规则。

要求HDMI信号差分走线,线宽10mil,线距6mil,每两组HDMI差分信号对的间距超过20mil。

LVDS布线规则。

要求LVDS信号差分走线,线宽7mil,线距6mil,目的是控制HDMI的差分信号对阻抗为100+-15%欧姆
DDR布线规则。

DDR1走线要求信号尽量不走过孔,信号线等宽,线与线等距,走线必须满足2W原则,以减少信号间的串扰,对DDR2及以上的高速器件,还要求高频数据走线等长,以保证信号的阻抗匹配。

【第十招】保持信号传输的完整性,防止由于地线分割引起的“地弹现象”。

相关文档
最新文档