PCB高频布线工艺和PCB板选材重点讲义资料

合集下载

高频PCB制板工艺简介

高频PCB制板工艺简介

高频PCB制板工艺简介高频PCB即高频电路板,是应用于高频传输信号的印刷电路板。

由于其对信号传输的要求特别高,因此其制板工艺与普通印刷电路板的制作工艺有着很大的不同。

下面将详细介绍高频PCB制板工艺。

1. 材料选择高频电路板要求在高频下具有良好的物理性能,呈现低阻抗、低损耗和高稳定性,因此在材料的选择上非常讲究。

常用的高频材料包括聚四氟乙烯(PTFE)、聚酰亚胺(PI)等。

其中,聚四氟乙烯具有很好的绝缘性能、更高的机械稳定性和更好的耐化学腐蚀性,更适合于高频PCB的制作。

2. 设计在高频电路板的设计中,需要考虑信号路径、层间距等因素。

要保证电路布局的整洁合理,尽量避免过密集的布线和层间过近的设定。

同时需要考虑到金属元件的位置和放置顺序,如天线、RF模块和灵活电缆的接口等,以确保其正确的放置和焊接方式。

3. 制板高频PCB的制板过程需要注意许多事项。

首先是背景布反光问题。

亲水性的材料在制作过程中很容易产生背景反光,在高频条件下背景反光会发生反射和干扰,因此需要在材料表面涂抹特殊涂料,在高频信号下能够吸收反射光。

另外,高频电路板需要避免使用不锈钢丝网印刷,由于丝网和线路之间存在着电磁耦合和电感效应,丝网印刷会使信号衰减、干扰增强、抗干扰能力降低。

因此在高频PCB的制作过程中尽量采用光绘工艺和蚀刻工艺。

在高频电路板制作过程中,还需要注意到化学反应和金属离子散发的问题。

普通的工艺在制作时会产生氯和铜零离子,通过深度蚀刻技术可以减少一些化学反应和金属离子的扩散,从而降低高频信号的损失和干扰。

4. 检测高频PCB制板完成后,还需要进行严格的检测。

检测方式包括直流测试、微波测试和网络分析测试等。

直流测试通常用于测试电压、电流等,而微波测试和网络分析测试则是检查高频信号在电路板中的流通情况和性能的有效方式。

高频PCB在应用领域中的要求越来越高,其制作工艺也越来越复杂。

只有在制板过程中严格遵循各种制度和规范,采用严格的制作标准和检测措施,才能有效保证高频PCB的质量和稳定性。

PCB线路板基础知识讲义

PCB线路板基础知识讲义

制作流程
准备材料
01 根据设计要求,准备所需的铜
板、绝缘材料、导电材料等。
制作线路
02 根据设计图纸,使用各种制板
设备在铜板上制作线路。
添加阻焊剂
03 在PCB表面涂覆一层阻焊剂,
以保护线路和元器件免受损坏 。
表面处理
04 对线路板表面进行电镀、喷涂
等处理,以提高其导电性能和 耐腐蚀性。
组装元器件
机械应力
PCB在组装和使用过程中受到的机械应力可能导致线路断裂或焊 点脱落。
PCB的机械性能分析
01
02
03
耐冲击性
PCB应能承受一定程度的 冲击而不损坏。
耐弯曲性
PCB应能在一定程度的弯 曲后恢复原状,不发生断 裂或变形。
尺寸稳定性
PCB应能在温度和湿度变 化下保持稳定的尺寸和形 状。
PCB的热性能分析
设计原则
功能性原则
确保线路板实现所需的功能,满足电路连接 和信号传输的要求。
可靠性原则
保证线路板的稳定性和可靠性,能够承受一 定的机械和环境应力。
经济性原则
在满足功能和可靠性的前提下,尽量降低制 造成本。
维护性原则
设计应便于线路板的维修和保养,易于检测 和更换元件。
元件布局
按照电路功能分区布局
将电路中的元件按照功能划分区域,使布局更加清晰和易于管理。
环境适应性测试
模拟不同温度、湿度、盐雾等环境条件,检测 PCB的性能稳定性。
机械强度测试
对PCB进行振动、冲击、扭曲等试验,以评估其 在恶劣条件下的可靠性。
寿命测试
通过加速老化等方法检测PCB在不同使用条件下 的寿命。
THANKS FOR WATCHING

高频布线工艺和PCB板选材

高频布线工艺和PCB板选材

高频布线工艺和P C B板选材(总16页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March高頻佈線工藝和PCB板選材國家數位交換系統工程技術研究中心張建慧饒龍記 [鄭州1001信箱787號]摘要:本文通過對微帶傳輸特性、常用板材性能參數進行比較分析,給出用於無線通信類比前端、高速數位信號等應用中PCB板材選取方案,進一步從線寬、過孔、線間串擾、遮罩等方面總結高頻板PCB設計要點。

關鍵字:PCB板材、PCB設計、無線通信、高頻信號近年來在無線通信、光纖通信、高速資料網路產品不斷推出,資訊處理高速化、無線模擬前端模組化,這些對數位信號處理技術、IC工藝、微波PCB設計提出新的要求,另外對PCB板材和PCB工藝提出了更高要求。

如商用無線通信要求使用低成本的板材、穩定的介電常數(εr變化誤差在±1-2%間)、低的介電損耗(0.005以下)。

具體到手機的PCB板材,還需要有多層層壓、PCB加工工藝簡易、成品板可靠性高、體積小、集成度高、成本低等特點。

為了挑戰日益激烈的市場競爭,電子工程師必須在材料性能、成本、加工工藝難易及成品板的可靠性間採取折衷。

目前可供選用的板材很多,有代表性的常用板材有:環氧樹脂玻璃布層壓板FR4、多脂氟乙烯PTFE、聚四氟乙烯玻璃布F4、改性環氧樹脂FR4等。

特殊板材如:衛星微波收發電路用到藍寶石基材和陶瓷基材;微波電路基材GX系列、RO3000系列、RO4000系列、TL系列、TP-1/2系列、F4B-1/2系列。

它們使用的場合不同,如FR4用於1GHz以下混合信號電路、多脂氟乙烯PTFE多用於多層高頻電路板、聚四氟乙烯玻璃布纖維F4用於微波電路雙面板、改性環氧樹脂FR4用於家用電器高頻頭(500MHz以下)。

由於FR4板材易加工、成本低、便於層壓,所以得到廣泛應用。

下面我們從微帶傳輸線特性、多層板層壓工藝、板材參數性能比較等多個方面分析,給出了對於特殊應用的PCB板材選取方案,總結了高頻信號PCB設計要點,供廣大電子工程師參考。

PCB及盘料培训资料

PCB及盘料培训资料

PCB及盘料培训资料一、PCB 简介PCB(Printed Circuit Board),中文名称为印制电路板,是电子元器件电气连接的提供者。

它的发展已有上百年的历史,在电子工业中占据着极其重要的地位。

PCB 的主要功能是为电子元器件提供固定、装配的机械支撑,实现电子元器件之间的布线和电气连接,同时还为自动插件、贴片、焊接等工序提供阻焊图形和标记。

二、PCB 的分类1、按层数分类单面板:仅在一面有导电图形的 PCB。

双面板:在两面都有导电图形的 PCB,通过金属化孔实现两面电路的连接。

多层板:有三层或以上导电图形层的 PCB,层与层之间通过绝缘材料和金属化孔进行连接。

2、按柔软度分类硬板:刚性 PCB,具有较高的机械强度和稳定性。

软板:柔性 PCB,具有可弯曲、折叠的特点,常用于一些对空间和形状有特殊要求的电子产品中。

软硬结合板:结合了硬板和软板的特点,在部分区域具有刚性,部分区域具有柔性。

3、按应用领域分类消费电子 PCB:如手机、电脑、电视等。

汽车电子 PCB:用于汽车的控制系统、娱乐系统等。

工业控制 PCB:在工业自动化设备中广泛应用。

医疗电子 PCB:满足医疗设备的高精度和高可靠性要求。

三、PCB 的制造工艺PCB 的制造过程较为复杂,涉及多个工序,以下是主要的工艺流程:1、设计电路原理图设计:根据产品的功能需求,设计出电路的连接关系和元件布局。

PCB 版图设计:将原理图转化为实际的 PCB 布线图,包括确定层数、布线规则、过孔设置等。

2、基板材料准备选择合适的基板材料,如 FR-4(玻璃纤维增强环氧树脂)、聚酰亚胺等,根据性能和成本要求进行选择。

3、内层制作内层图形转移:通过光刻工艺将设计好的内层线路图形转移到基板上。

蚀刻:去除不需要的铜箔,留下线路图形。

4、层压将内层板与半固化片(prepreg)交替叠放,通过高温高压使其粘结成为多层板。

5、钻孔使用钻孔机在 PCB 上钻出通孔,用于层间连接和元件安装。

PCB高频布线基本知识

PCB高频布线基本知识

高频布线基本知识内容目录1. 引言2. 信号完整性问题3. 电磁兼容性问题4. 电源完整性问题5. 高频电路设计一般规范6. 数模混合电路设计一般规范一:高频电路的定义*在数字电路中,是否是高频电路取决于信号的上升沿和下降沿,而不是信号的频率。

公式:F2 =1/(Tr×π),Tr为信号的上升/下降延时间。

*F2 > 100MHz,就应该按照高频电路进行考虑,下列情况必须按高频规则进行设计–系统时钟频率超过50MHz–采用了上升/下降时间少于5ns的器件–数字/模拟混合电路*逻辑器件的上升/下降时间和布线长度限制上升/下主要谐波频谱分布最大传输线最大传输降时间Tr分量F2=1/Fmax=10*距离(微带)线距离(微带线)πTr F274HC 13-15ns24MHz 240 MHz 117cm 91cm74LS 9.5ns 34 MHz 340MHz 85.5cm 66.5cm74H 4-6ns 80 MHz 800MHz 35 2874S 3-4ns 106 MHz 1.1GHz 27 2174HCT 5-15ns 64 MHz 640MHz 45 3474ALS 2-10ns 160 MHz 1.6GHz 18 1374FCT 2-5ns 160 MHz 1.6GHz 18 1374F 1.5ns 212 MHz 2.1GHz 12.5 10.5ECL12K 1.5ns 212 MHz 2.1GHz 12.5 10.5ECL100K 0.75ns 424 MHz 4.2GHz 6 5传统的PCB设计方法效率低:原理图,传统的设计方法设计和输入布局、布线没有任何质量控制点,制作PCB每一步设计都是凭经验,发现问题就必须从头开始,功能、性能测试问题的查找非常困难信号完整性问题:1.反射问题2.串扰问题3.过冲和振荡4.时延反射问题:传输线上的回波。

信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则PCB(Printed Circuit Board)板是电子产品中常用的一种电路元件,它由导线和电子元器件组成。

在进行PCB板的设计时,需要遵循一些基础知识、布局原则、布线技巧和设计规则,以确保电路板的稳定性和可靠性。

一、PCB板基础知识1.PCB板的分类:单面板、双面板、多层板。

2.PCB板的材料:常用的材料有FR-4玻璃纤维布基板和铝基板。

3.PCB板的层次结构:底层、封装层(元器件的焊接)、布线层(导线的布局)。

4.PCB板的元器件封装:常用的有DIP封装、SMD封装和BGA封装。

二、布局原则1.分区布局原则:将整个电路板划分为功能区、电源区和信号区,使各个区域之间的干扰最小。

2.元件布局原则:将功能相似的元器件尽量靠近,减少导线长度,降低电磁干扰。

3.重要性能电路布局原则:将音频、射频等重要性能电路放置在相对比较靠近电源接口的位置,以避免电源和地的干扰。

4.高功率元件布局原则:高功率元件(如继电器、驱动板等)应远离低功率元件,以避免高功率元件的热与电磁干扰对低功率元件产生不利影响。

三、布线技巧1.信号线布线技巧:要尽量避免信号线的交叉,使信号线按照逻辑关系进行布线,减少互相干扰的可能。

2.电源线布线技巧:按照电流大小和电压的需求进行布线,尽量减小电源线的长度和电阻。

3.地线布线技巧:要保证地线的连续性和稳定性,避免形成环路和过长的回流路径。

4.时钟信号布线技巧:时钟信号的布线应尽量短且相等,以避免时钟偏差和信号失真。

5.差分信号布线技巧:差分信号的正负线要尽量靠近,长度要保持一致,以降低互相干扰的可能性。

四、设计规则1.间距规则:不同电压等级之间、信号与电源之间、信号与地之间要有足够的间距以保证安全性和稳定性。

2.导线规则:要根据电流大小和导线的宽度选择合适的线宽,以确保导线的稳定性和通气性。

3.焊盘规则:要根据元器件的引脚数目确定焊盘的大小,以保证焊接的可靠性和稳定性。

高频电路PCB布线技巧

高频电路PCB布线技巧

高频电路PCB布线技巧一、多层板布线:高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。

在PCBLayout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。

同种材料时,四层板要比双面板的噪声低20dB。

但是,同时也存在一个问题,PCB半层数越高,制造工艺越复杂,单位成本也就越高,这就要求在进行PCBLayout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。

1、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。

一个过孔可带来约0.5pF的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。

2、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB 线、HDMI线等高频信号线都是要求尽可能的走线越短越好。

3、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。

4、注意信号线近距离平行走线引入的“串扰”高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。

由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。

浅谈PCB高频板、板材材料及高频参数

浅谈PCB高频板、板材材料及高频参数

浅谈 PCB高频板、板材材料及高频参数摘要:随着通讯和计算机技术的迅速发展,对印制板技术的研发提出了越来越高的要求,系统工作频率从MHz频段向GHz频段转移,其所追求的即是信息处理的高速化、存储容量的海量化以及系统能耗的绿色化。

在这一发展方向下,作为海量信号载体的高频印制电路板应运而生,并承担着信息传输的艰巨任务。

主要对PCB高频板的定义与特点、常见板材类型和复介电常数进行了简单的论述。

关键词:PCB高频板;板材类型;复介电常数1.引言伴随着信息化的高速发展,计算机、无线通信、数据网络等已经融入到了我们生活中的方方面面。

电子设备高频化是发展趋势,尤其在无线网络、卫星通讯的发展过程中,信息产品走向高速与高频化,通信产品走向容量大速度快的无线传输,因此每一代新产品的诞生都离不开高频板。

1.PCB高频板1.PCB高频板的定义高频板是指电磁频率较高的特种线路板,用于高频率(频率大于300MHz或者波长小于1米)与微波(频率大于3GHz或者波长小于0.1米)领域的PCB,是在微波基材覆铜板上利用普通刚性线路板制造方法的部分工序或者采用特殊处理方法而生产的电路板。

一般来说,高频板可定义为频率在1GHz以上线路板。

1.1.PCB高频板的特点1.效率高介电常数小的高频电路板,损耗也会很小,而且先进的感应加热技术能够实现目标加热的需求,效率非常高。

当然,注重效率的同时,也有环保的特性,十分适合当今社会的发展方向。

1.1.1.速度快由于传输速度与介电常数的平方根成反比,那么介电常数越小,传输速度就越快。

这正是高频电路板的优点所在,它采用特殊材质,不仅保证了介电常数小的特性,还保持运行的稳定,对于信号传导来说非常重要。

1.1.1.可调控度大高频电路板广泛应用于各个行业。

如对精密金属材质加热处理需求的高频电路板,在其领域的工艺中,不仅可实现不同深度部件的加热,而且还能针对局部的特点进行重点加热,无论是表面还是深层次、集中性还是分散性的加热方式,都能轻松完成。

PCB技术大全(PCB基础知识、布线规则经验、PCB技术、封装介绍)

PCB技术大全(PCB基础知识、布线规则经验、PCB技术、封装介绍)

PCB技术大全(PCB基础知识、布线规则经验、PCB技术、封装介绍)PCB板的分类根据不同种方法的分类,可以将PCB板分为不同种类。

但主要有二种分类方法:一是按照基材类型划分,PCB板分为柔性PCB板(Flexible Printed Circuit Board)、刚性PCB板(RPC)和刚柔结合PCB板;二是按照层数的划分,PCB板分为多层板(MLB)、双面板(DSP)和单面板(SSB)。

一、按照基材类型划分:(1)柔性PCB板(挠性板)柔性板是由柔性基材制成的印刷线路板,其优点是可以弯曲,便于电器部件的组装。

FPC在航天、军事、移动通讯、手提电脑、计算机外设、PDA、数字相机等领域或产品上得到了广泛的应用。

(2)刚性PCB板是由纸基(常用于单面)或玻璃布基(常用于双面及多层),预浸酚醛或环氧树脂,表层一面或两面粘上覆铜箔再层压固化而成。

这种PCB覆铜箔板材,我们就称它为刚性板。

再制成PCB,我们就称它为刚性PCB刚性板是由不易弯曲、具有一定强韧度的刚性基材制成的印刷电路板,其优点是可以为附着其上的电子元件提供一定的支撑。

(3)刚柔结合PCB板(刚挠结合板)刚柔结合板是指一块印刷电路板上包含一个或多个刚性区和柔性区,由刚性板和柔性板层压在一起组成。

刚柔结合板的优点是既可以提供刚性印刷板的支撑作用,又具有柔性板的弯曲特性,能够满足三维组装的需求。

二、按照层数类型划分:(1)多层板为了增加可以布线的面积,多层板采用更多单或双面的布线板。

多层板使用数片双面板,并在每层板间放进一层绝缘层后黏牢。

电路板的层数代表有几层独立的布线层,通常层数为偶数,并且包含最外侧的两层。

(2)双面板这种电路板的两面都有布线。

为了使两面的导线能够联通,必须要在两面间有适当的电路连接,这种电路间的连接叫做导孔。

导孔是在印刷电路板上,充满或涂上金属的小洞,它可以与两面的导线相连接。

因为双面板的面积比单面板扩大一倍,且布线可以互相交错(可以绕到另一面),因此双面板可以使用在比单面板更复杂的电路上。

PCB板材质选择及工艺要求

PCB板材质选择及工艺要求

PCB板材质选择及工艺要求PCB板材质的选择是PCB设计中非常重要的一环。

不同的板材材质可以影响到电路板的性能、可靠性和成本等方面。

在PCB板材质的选择过程中,需要考虑电路板的工作环境、频率和功耗等因素。

下面将对PCB板材质的选择及工艺要求进行详细讨论。

一、PCB板材质选择要考虑的因素1.工作环境PCB板的工作环境可以分为室内和室外两种。

在室内环境下,选择一般的FR-4材质即可。

而在室外环境下,由于面临更恶劣的气候条件,需要选择具有更高阻燃性和耐候性能的材料。

2.频率对于高频电路,需要选择较低的介电常数材料,以降低信号的传输损耗。

常用的高频材料有BT、PTFE和射频(RF)材料等。

3.功耗对于高功耗电路,需要选择具有较高导热性能的材料,以便有效地散热并防止电路过热损伤。

常用的导热材料有金属基板和陶瓷基板等。

4.成本材料的选择还需考虑成本因素。

一般来说,FR-4是一种性能和价格均衡的材料,适用于大多数一般应用。

而对于高性能系统,可能需要选择更贵的高频或导热材料。

二、常用的PCB板材质1.FR-4FR-4是一种常用的玻纤增强聚合物基板材料,具有良好的电气特性和机械强度。

它具有较高的介电常数和介电损耗,适用于大多数一般应用。

2.高频材料高频材料具有较低的介电常数和介电损耗,适用于高频电路和微波应用。

常见的高频材料有BT、PTFE和射频(RF)材料等。

3.金属基板金属基板是由铝基板或铜基板和绝缘层组成的,具有良好的导热特性。

它适用于高功耗电路和散热要求较高的应用。

4.陶瓷基板陶瓷基板具有良好的导热性能和高温稳定性,适用于高功耗和高温环境下的应用。

常见的陶瓷材料有铝氧化物(Al2O3)和氮化铝(AlN)等。

三、PCB板的工艺要求1.层压工艺层压板是将多层电路板通过热压技术合成的。

在层压工艺中,需要确保各层之间的电气连接和机械强度。

同时,还需要控制层压板的板厚和层压压力,以保证工艺的稳定性。

2.阻焊工艺阻焊是在PCB表面覆盖一层绿色或其他颜色的胶粘剂,以保护电路板并提高焊接效果。

高频电路PCB布线技巧

高频电路PCB布线技巧

高频电路PCB布线技巧一、多层板布线:高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。

在PCBLayout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。

同种材料时,四层板要比双面板的噪声低20dB 。

但是,同时也存在一个问题,PCB 半层数越高,制造工艺越复杂,单位成本也就越高,这就要求在进行PCBLayout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。

1、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。

一个过孔可带来约0.5pF 的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。

2、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI 线等高频信号线都是要求尽可能的走线越短越好。

3、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。

4、注意信号线近距离平行走线引入的“串扰” 高频电路布线要注意信号线近距离平行走线所引入的“串扰” ,串扰是指没有直接连接的信号线之间的耦合现象。

由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。

PCB板基础知识、布局原则、布线技巧、设计规则

PCB板基础知识、布局原则、布线技巧、设计规则

PCB 板基础知识一、PCB 板的元素1、 工作层面对于印制电路板来说,工作层面可以分为6大类,信号层 (signal layer )内部电源/接地层 (internal plane layer )机械层(mechanical layer ) 主要用来放置物理边界和放置尺寸标注等信息,起到相应的提示作用。

EDA软件可以提供16层的机械层。

防护层(mask layer ) 包括锡膏层和阻焊层两大类。

锡膏层主要用于将表面贴元器件粘贴在PCB上,阻焊层用于防止焊锡镀在不应该焊接的地方。

丝印层(silkscreen layer ) 在PCB 板的TOP 和BOTTOM 层表面绘制元器件的外观轮廓和放置字符串等。

例如元器件的标识、标称值等以及放置厂家标志,生产日期等。

同时也是印制电路板上用来焊接元器件位置的依据,作用是使PCB 板具有可读性,便于电路的安装和维修。

其他工作层(other layer ) 禁止布线层 Keep Out Layer钻孔导引层 drill guide layer钻孔图层 drill drawing layer复合层 multi-layer2、 元器件封装是实际元器件焊接到PCB 板时的焊接位置与焊接形状,包括了实际元器件的外形尺寸,所占空间位置,各管脚之间的间距等。

元器件封装是一个空间的功能,对于不同的元器件可以有相同的封装,同样相同功能的元器件可以有不同的封装。

因此在制作PCB 板时必须同时知道元器件的名称和封装形式。

(1) 元器件封装分类通孔式元器件封装(THT ,through hole technology )表面贴元件封装 (SMT Surface mounted technology )另一种常用的分类方法是从封装外形分类: SIP 单列直插封装DIP 双列直插封装PLCC 塑料引线芯片载体封装PQFP 塑料四方扁平封装SOP 小尺寸封装TSOP 薄型小尺寸封装PPGA 塑料针状栅格阵列封装PBGA 塑料球栅阵列封装CSP 芯片级封装(2) 元器件封装编号编号原则:元器件类型+引脚距离(或引脚数)+元器件外形尺寸例如 AXIAL-0.3 DIP14 RAD0.1 RB7.6-15 等。

PCB及盘料培训资料(2024)

PCB及盘料培训资料(2024)

引言概述:PCB(PrintedCircuitBoard)是电子设备中重要的组成部分,它通过将电子元器件和导线印刷在一块绝缘板上,为电子设备提供电路连接和支持。

而盘料(substrate)则是制作PCB的基板材料。

本文旨在提供一份详细且专业的PCB及盘料培训资料,以帮助读者了解PCB的制造过程、盘料的特性以及相关技术细节。

正文内容:一、PCB制造过程1.板材选择1.1常见的板材类型及其特点1.2板材厚度的选择及其影响1.3板材的层压结构2.印刷制作2.1线路设计与布局2.2钻孔与铣削2.3异构结构如盖板、过孔和盖铜的加工处理2.4化学镀铜技术及其应用2.5阻焊与喷锡3.板级组装与测试3.1贴片技术3.2焊接技术(手工焊接、波峰焊接和热风炉焊接)3.3测试与验证3.43DAOI(三维自动光学检测)的应用3.5质量控制与品质管理二、盘料的特性与选择1.盘料的种类1.1有机盘料(OrganicSubstrate)1.2无机盘料(InorganicSubstrate)2.盘料的热性能与电性能2.1热传导性能2.2热膨胀系数2.3电气绝缘性能2.4电气传导性能2.5盘料的功率密度3.盘料的尺寸与层次3.1尺寸与厚度的选择3.2盘料的叠层结构3.3盘料上的层次排列4.盘料的可靠性与稳定性4.1盘料的耐热性与抗湿气性能4.2盘料的机械强度与抗冲击性能4.3盘料的耐候性与耐化学性能4.4盘料的阻燃性能与安全性5.盘料的环境友好与可持续性5.1盘料的可回收性与可再利用性5.2盘料的低污染性与环境排放标准5.3盘料的能耗与碳排放量5.4盘料的生命周期评估与环境影响分析总结:PCB制造过程中,合理选择板材、灵活运用印刷制作技术以及严格的质量控制是确保PCB质量的关键。

而在选择盘料时,需要考虑热性能、电性能、尺寸与层次、可靠性与稳定性以及环境友好与可持续性等因素。

通过对PCB制造过程及盘料特性的深入了解,可以提高PCB制造质量,并逐步实现绿色、环保的电子产品生产。

PCB板设计中高频电路的布线技巧解析

PCB板设计中高频电路的布线技巧解析

PCB板设计中高频电路的布线技巧解析1、多层板布线高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。

在PCB Layout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。

有资料显示,同种材料时,四层板要比双面板的噪声低20dB。

但是,同时也存在一个问题,PCB 半层数越高,制造工艺越复杂,单位成本也就越高,这就要求我们在进行PCB Layout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。

2、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。

3、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB 线、HDMI线等高频信号线都是要求尽可能的走线越短越好。

4、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。

据侧,一个过孔可带来约0.5pF的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。

5、注意信号线近距离平行走线引入的“串扰”高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。

由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频布线工艺和PCB板选材-----需要探讨工艺和加工细节,可以联系QQ:748985601摘要:本文通过对微带传输特性、常用板材性能参数进行比较分析,给出用于无线通信模拟前端、高速数字信号等应用中PCB板材选取方案,进一步从线宽、过孔、线间串扰、屏蔽等方面总结高频板PCB设计要点。

关键字:PCB板材、PCB设计、无线通信、高频信号近年来在无线通信、光纤通信、高速数据网络产品不断推出,信息处理高速化、无线模拟前端模块化,这些对数字信号处理技术、IC工艺、微波PCB设计提出新的要求,另外对PCB板材和PCB工艺提出了更高要求。

如商用无线通信要求使用低成本的板材、稳定的介电常数(εr变化误差在±1-2%间)、低的介电损耗(0.005以下)。

具体到手机的PCB板材,还需要有多层层压、PCB加工工艺简易、成品板可靠性高、体积小、集成度高、成本低等特点。

为了挑战日益激烈的市场竞争,电子工程师必须在材料性能、成本、加工工艺难易及成品板的可靠性间采取折衷。

目前可供选用的板材很多,有代表性的常用板材有:环氧树脂玻璃布层压板FR4、多脂氟乙烯PTFE、聚四氟乙烯玻璃布F4、改性环氧树脂FR4等。

特殊板材如:卫星微波收发电路用到蓝宝石基材和陶瓷基材;微波电路基材GX系列、RO3000系列、RO4000系列、TL系列、TP-1/2系列、F4B-1/2系列。

它们使用的场合不同,如FR4用于1GHz以下混合信号电路、多脂氟乙烯PTFE多用于多层高频电路板、聚四氟乙烯玻璃布纤维F4用于微波电路双面板、改性环氧树脂FR4用于家用电器高频头(500MHz以下)。

由于FR4板材易加工、成本低、便于层压,所以得到广泛应用。

下面我们从微带传输线特性、多层板层压工艺、板材参数性能比较等多个方面分析,给出了对于特殊应用的PCB板材选取方案,总结了高频信号PCB设计要点,供广大电子工程师参考。

1微带传输线传输特性板材的性能指标包括有介电常数εr、损耗因子(介质损耗角正切)tgδ、表面光洁度、表面导体导电率、抗剥强度、热涨系数、抗弯强度等。

其中介电常数εr、损耗因子是主要参数。

高速数据信号或高频信号传输常用到微带线(Microstrip Line),由附着在介质基片两边的导带和导体Array接地板构成,且导带一部分暴露在空气中,信号在介质基片和空气这两种介质中传播引起传输相速不等会产生辐射分量、如果合理选用微带尺寸这种分量很小。

图一基片结构示意如图一基片结构所示,铜皮厚t 一般很小,在0.5OZ (17μm 、0.7mil )到1 OZ (35μm 、1.35mil ),导带特性有基片介电常数εr 、线宽W 、板厚d 决定。

(1)微带传输线特性阻抗微带传输线的特性阻抗Z 0计算如下:当w/d ≤1,微带传输线的特性阻抗Z 0表示为:当 w/d ≥1,微带传输线的特性阻抗Z 0表示为:其中εe 叫有效介电常数,是把两种介质对微带特性阻抗的贡献等效为一种假想的均匀介质。

图二说明了Z 0和W/d 、εr 间的关系,W/d 愈大Z 0愈低、εr 愈大Z 0愈低。

图 二 Z 0和W/d 、εr 间的关系⎪⎭⎫ ⎝⎛+d w w de 48ln 60επ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+*++444.1ln 667.0393.1100d w d w e επwdr r 12112121e +*-++=εεε传输线特性阻抗与W/d501001502000.10.20.30.50.81234W/d特性阻抗有效介电常数与W/d123450.50.81234W/d有效介电常数以汕头超声印制板厂提供的板厚1.68mm(顶层厚0.3mm)的FR4/S1139为例,表一 50欧姆/75欧姆微带传输线线宽参数同样在六层板和八层板微带传输线设计中如果已知微带线的介质厚度d ,根据W/d 值可以计算出微带传输线线宽W 。

(2)微带传输线损耗微带传输线损耗由三个因素决定:半开放性引起的辐射(这种损耗很小);介质热损耗αd (板材原因);高频趋肤效应引起的导体损耗αc 。

导体损耗是主要的,导体损耗αc 与W/h (h 为基片厚度)成反比,也与光洁度有关。

当W/h 一定,介质损耗与损耗因子和频率成正比。

(3)微带色散特性当频率高到微带尺寸相对λ/4或λ/2足够大时,将出现严重色散特性还增加了辐射损耗。

如果固定在某个频率,在此频率下色散效应可不考虑。

阻抗越低、基片越厚、εr 越高,微带色散越严重,或板材确定后,频率愈高色散愈严重。

(4)信号在介质中的传输波长和相速λc 为实际在自由空间中传播波长。

由此可见εe 越高波长减短,信号在传输线中的相速降低。

由相速和传输线长可得传播时延t=V p *L 。

2 带状线传输特性微带传输线在介质基片和空气两种媒质中传输,带状线在同一媒质中传输,有边缘电容。

其传输特性阻抗、损耗、相似,与W/b,t/b 有关,与微带传输线不同的是t 对传输特性阻抗的影响较大。

图三为带状线传输示意。

1.6mm 厚、八层PCB 板、FR4 板材的PCB 单板,其50欧姆/75欧姆带状输线线宽参数见表二。

ec c ελλ/'=ec c p f f v ελλ/00'*=*=表二50欧姆/75欧姆带状线传输线线宽参数3 PCB板层压工艺及分层要求PCB板多层层压板总厚度和层数等参数受到板材特性限制。

特殊板材一般可提供的不同厚度的板材品种有限,因而设计者在PCB设计过程中必须靠虑板材特性参数、PCB加工工艺的限制。

FR4板材有各种厚度,适用于多层层压的板材品种齐全,表四以FR4板材为例给出一种多层板层压结构和板材厚度分配参数,以供PCB设计工程师参考。

表三FR4层压板结构参数六层板、完成板厚度为1.6mm,其层压结构如图四所示。

图四六层板层压结构4 常用板材性能参数比较由上所述,板材对PCB设计和加工影响最大的参数主要是介电常数和损耗因子。

对于多层板设计,板材选取还需考虑加工冲孔、层压性能。

下面是表三板材主要参数性能比较由以上传输线特性阻抗、损耗、传播波长分析和板材比较,产品设计须考虑成本,市场因素。

因此建议在PCB设计中,设计者选取板材考虑如下关键因素:(1)信号工作频率不同对板材要求不同。

(2)工作在1GHz以下的PCB可以选用FR4,成本低、多层压制板工艺成熟。

如信号入出阻抗较低(50欧姆),在布线时需要严格考虑传输线特性阻抗和线间耦合,缺点是不同厂家以及不同批生产的FR4板材掺杂不同,介电常数不同(4.2-5.4)且不稳定。

(3)工作在622Mb/s 以上的光纤通信产品和1G 以上3GHz 以下的小信号微波收发信机,可以选用改性环氧树脂材料如S1139,由于其介电常数在10GHz 时比较稳定、成本较低、多层压制板工艺与FR4相同。

如622Mb/s 数据复用分路、时钟提取、小信号放大、光收发信机等处建议采用此类板材,以便于制作多层板且板材成本略高于FR4(高4分/cm 2左右),缺点是基材厚度没有FR4品种齐全。

或者,采用RO4000系列如RO4350,但目前国内一般用的是RO4350双面板。

缺点是:这两种板材不同板厚品种数量不齐全,由于板厚尺寸要求,不便于制作多层印制板。

如RO4350,板材厂家生产的规格有10mil/20mil/30mil/60mil 等四种板厚,而目前国内进口品种更少,因此限制了层压板设计。

(4)3GHz 以下的大信号微波电路如功率放大器和低噪声放大器建议选用类似RO4350的双面板材,RO4350介电常数相当稳定、损耗因子较低、耐热特性好、加工工艺与FR4相当。

其板材成本略高于FR4(高6分/cm 2左右)。

(5)10GHz 以上的微波电路如功率放大器、低噪声放大器、上下变频器等对板材要求更高,建议采用性能相当于F4的双面板材。

(6)无线手机多层板PCB 板材要求板材介电常数稳定度、损耗因子较低、成本较低、介质屏蔽要求高,建议选用性能类似PTFE (美国/欧洲等多用)的板材,或FR4和高频板组合粘接组成低成本、高性能层压板。

图五 典型射频/数字多层板结构典型射频/数字多层板结构,基于RO4350板材的层压板,其可能的带状线和微带传输线结构见图五。

5高频板PCB 工艺根据以上对传输线特性介绍,进一步可以从线宽、过孔、线间串扰、屏蔽等四个方面说明高频PCB设计需要注意的细节地方。

(1)传输线线宽传输线线宽设计基于阻抗匹配理论。

图六阻抗匹配当入出阻抗以及传输线阻抗匹配时,系统输出功率最大(信号总功率最小),入出反射最小。

对于微波电路,阻抗匹配设计还需要考虑器件的工作点。

信号线过孔会引起阻抗传输特性变化,TTL、CMOS逻辑信号线特性阻抗高,这种影响不计。

但在50欧姆等低阻抗、高频电路这种影响需要考虑。

一般要求信号线没有过孔。

(2)传输线线间串扰当两根平行微带线间距很小时产生偶合,引起彼此线间串扰并且影响传输线特性阻抗。

对于50欧姆和75欧姆高频电路尤其需要注意,并在电路设计上采取措施。

实际电路设计中还用到这种偶合特性,如手机发射功率测量和功率控制就是一例。

下面的分析对高频电路和ECL高速数据(时钟)线有效,对微小信号电路(如精密运算放大电路)有参考价值。

设线间偶合度为C,C的大小与εr 、W/d、S、平行线长L有关。

间距S愈小,偶合愈强;L愈长、偶合愈强。

为了增加感性认识,举例:利用这种特性做成的50欧姆定向偶合器。

如 1.97GHz PCS频端基站功率放大器,其中d=30 mil、εr=3.48:10dB定向偶合器PCB尺寸:S=5mil,l=920mil,W=53mil20dB定向偶合器PCB尺寸:S=35mil,l=920mil,W=62mil为了减小信号线间串扰,建议A、高频或高速数据平行信号线间距离S是线宽的一倍以上。

B、尽量减少信号线间平行的长度。

C、高频小信号、微弱信号避开电源和逻辑信号线等强干扰源。

(3)接地过孔电磁分析。

无论IC器件管脚接地还是其它阻容器件接地,在高频电路中都要求接地过孔尽可能地靠近管脚,其理论依据是:高频信号接地线通路以理想传输线终端接地等效,其驻波状态如图八所示。

图八 驻波状态图由于接地线很短,接地传输线相当于一个感性阻抗(n-pH 量级),同时接地过孔也近似相当于一个感性阻抗,这影响了对高频信号滤波功效。

这是接地过孔尽可能地靠近管脚的原因。

为了减小传输线感性负载,微波电路要求接地管脚的过孔多于一个,相当于在低频电路中增加接地面电流能力,保证各接地点均为等0电平。

(4)电源滤波。

TTL 、CMOS 电路为了减少信号逻辑对电源的影响(过冲),在靠近电源管脚处加滤波电容。

但在高频、微波电路中仅仅采取这种措施还不够。

下面以制造工艺为例说明高频信号对电源的干扰。

相关文档
最新文档