第一中学2019-2020学年高二上学期寒假作业数学(理科)试题三—附答案
2019-2020年高二上学期学业水平测试数学试卷(理科) 含解析
2019-2020年高二上学期学业水平测试数学试卷(理科)含解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1个B.2个C.4个D.8个2.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.a(c2+1)>b(c2+1)D.a|c|>b|c|3.设m,n是两条不同直线,α,β是两个不同的平面,下列命题正确的是()A.m∥α,n∥β且α∥β,则m∥n B.m⊥α,n⊥β且α⊥β,则m⊥nC.m⊥α,n⊂β,m⊥n,则α⊥βD.m⊂α,n⊂α,m∥β,n∥β,则α∥β4.函数f(x)=(x2﹣2x﹣3)的单调减区间是()A.(3,+∞)B.(1,+∞)C.(﹣∞,1)D.(﹣∞,﹣1)5.化简=()A.1 B.2 C.D.﹣16.已知非零向量,满足||=||,(﹣)⊥,则向量与的夹角大小为()A.30°B.60°C.120°D.150°7.在等比数列中{a n}中,若a3a5a7a9a11=243,则的值为()A.9 B.1 C.2 D.38.高一年级某班63人,要选一名学生做代表,每名学生当选是等可能的,若“选出代表是女生”的概率是“选出代表是男生”的概率的,这个班的女生人数为()A.20 B.25 C.30 D.359.若实数x、y满足=1,则x2+2y2有()A.最大值3+2 B.最小值3+2C.最大值6 D.最小值610.某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.711.已知直线3x+2y﹣3=0与6x+my+7=0互相平行,则它们之间的距离是()A.4 B. C.D.12.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.B.C.2000cm3D.4000cm3二、填空题:本大题共4小题,每小题5分,共20分.将答案写在答题卡上相应的位置13.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于.+a n=16,若S n=50,则n的值14.已知S n是等差数列{a n}的前n项和,S3=6,a n﹣2为.15.已知变量x、y满足,则z=2x+y的最大值.16.过圆x2+y2﹣2x+4y﹣4=0内一点M(3,0)作圆的割线l,使它被该圆截得的线段最短,则直线l的方程是.三、解答题:本大题共6小题,共52分.解答时应写出必要的文字说明、证明过程或演算步骤17.等差数列{a n}的前n项和为S n,已知a2=1,S10=45(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b n=,求数列{b n}的前n项和T n.18.已知在△ABC中,a,b,c分别是角A,B,C所对的边,且.①求角A的大小.②若.19.某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列.(1)求第五、六组的频数,补全频率分布直方图;(2)若每组数据用该组区间中点值(例如区间[70,80)的中点值是75作为代表,试估计该校高一学生历史成绩的平均分;(3)估计该校高一学生历史成绩在70~100分范围内的人数.20.如图所示,直三棱柱ABC﹣A1B1C1的各条棱长均为a,D是侧棱CC1的中点.(1)求证:平面AB1D⊥平面ABB1A1;(2)求异面直线AB1与BC所成角的余弦值;(3)求平面AB1D与平面ABC所成二面角(锐角)的大小.21.已知定义域为R的函数是奇函数.(1)求实数a,b的值;(2)判断f(x)在(﹣∞,+∞)上的单调性;(3)若f(k•3x)+f(3x﹣9x+2)>0对任意x≥1恒成立,求k的取值范围.22.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.2015-2016学年黑龙江省哈尔滨六中高二(上)学业水平测试数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1个B.2个C.4个D.8个【考点】子集与真子集.【专题】集合.【分析】通过已知条件便知,3是B的元素,1,2可以是集合的元素,所以B的可能情况为:B={3},{1,3},{2,3},{1,2,3},所以集合B的个数便是4.【解答】解:A={1,2},A∪B={1,2,3};∴3∈B,1,2可能是集合B的元素;∴B={3},{1,3},{2,3},或{1,2,3};∴集合B的个数是4.故选C.【点评】考查并集的概念及运算,以及元素与集合的关系.2.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.a(c2+1)>b(c2+1)D.a|c|>b|c|【考点】不等关系与不等式.【专题】不等式的解法及应用.【分析】题中给了一个条件a>b,四个选项就是在考四条不等式的基本性质.逐个选项应用性质进行简单证明,即可得出正确答案.【解答】解:当ab>0时,∵a>b,∴,但A选项中没有ab>0的条件,如果a>0,b<0,则a>b时,,∴A选项不正确;当a>0,b>0时,∵a>b,∴a2>b2,但B选项中没有a>0,b>0的条件,如果a=3,b=﹣5,则a>b,∴a2=32=9,b2=(﹣5)2=25,即a2<b2,所以B选项也不正确;在C选项中,∵c2+1>0,a>b,∴a(c2+1)>b(c2+1),即C选项为正确选项;在D选项中,∵|c|≥0,a>b,∴a|c|≥b|c|,∴D选项也不正确.故选C.【点评】本题考查不等式的性质,考查学生分析解决问题的能力,正确运用不等式的性质是关键.3.设m,n是两条不同直线,α,β是两个不同的平面,下列命题正确的是()A.m∥α,n∥β且α∥β,则m∥n B.m⊥α,n⊥β且α⊥β,则m⊥nC.m⊥α,n⊂β,m⊥n,则α⊥βD.m⊂α,n⊂α,m∥β,n∥β,则α∥β【考点】平面与平面垂直的性质.【专题】证明题;空间位置关系与距离.【分析】对于A、由面面平行的判定定理,得A是假命题对于B、由m⊥α,n⊥β且α⊥β,可知m与n不平行,借助于直线平移先得到一个与m或n都平行的平面,则所得平面与α、β都相交,根据m与n所成角与二面角平面角互补的结论.对于C、通过直线与平面平行的判定定理以及平面与平面平行的性质定理,判断正误即可;对于D、利用平面与平面平行的判定定理推出结果即可.【解答】解:对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A错;对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题B正确.对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正确;对于D,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以D不成立.故选B.【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.4.函数f(x)=(x2﹣2x﹣3)的单调减区间是()A.(3,+∞)B.(1,+∞)C.(﹣∞,1)D.(﹣∞,﹣1)【考点】复合函数的单调性.【专题】计算题.【分析】根据函数f(x)=(x2﹣2x﹣3)的解析式,根据对数的真数部分必须为正,我们可以求出函数的定义域,在各个区间上分类讨论复合函数f(x)=(x2﹣2x﹣3)的单调性,即可得到函数f(x)=(x2﹣2x﹣3)的单调减区间.【解答】解:要使函数f(x)=(x2﹣2x﹣3)的解析式有意义x2﹣2x﹣3>0解得x<﹣1,或x>3当x∈(﹣∞,﹣1)时,内函数为减函数,外函数也为减函数,则复合函数f(x)=(x2﹣2x﹣3)为增函数;当x∈(3,+∞)时,内函数为增函数,外函数为减函数,则复合函数f(x)=(x2﹣2x﹣3)为减函数;故函数f(x)=(x2﹣2x﹣3)的单调减区间是(3,+∞)故选A【点评】本题考查的知识点是复合函数的单调性,其中复合函数单调性的确定原则“同增异减”是解答问题的关键,但解题中易忽略函数的定义域而错选B.5.化简=()A.1 B.2 C.D.﹣1【考点】二倍角的余弦;三角函数中的恒等变换应用.【专题】三角函数的求值.【分析】用倍角公式化简后,再用诱导公式即可化简求值.【解答】解:===2.故选:B.【点评】本题主要考察了二倍角的余弦公式的应用,三角函数中的恒等变换应用,属于基本知识的考查.6.已知非零向量,满足||=||,(﹣)⊥,则向量与的夹角大小为()A.30°B.60°C.120°D.150°【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据向量数量积的定义公式进行求解即可.【解答】解:∵(﹣)⊥,∴(﹣)•=0,即2﹣•=0,即•=2,∵||=||,∴2||=||,则向量与的夹角满足cosθ==,则θ=30°,故选:A.【点评】本题主要考查向量夹角的计算,根据向量数量积的应用是解决本题的关键.7.在等比数列中{a n}中,若a3a5a7a9a11=243,则的值为()A.9 B.1 C.2 D.3【考点】等比数列的性质.【专题】计算题.【分析】利用等比中项的性质可知,a3a11=a72,a5a9=a72,代入题设等式求得a7,进而利用等比中项的性质求得的值.【解答】解:a3a5a7a9a11=a75=243∴a7=3∴=a7=3故选D【点评】本题主要考查了等比数列的性质.解题过程充分利用等比中项的性质中G2=ab的性质.等比中项的性质根据数列的项数有关.8.高一年级某班63人,要选一名学生做代表,每名学生当选是等可能的,若“选出代表是女生”的概率是“选出代表是男生”的概率的,这个班的女生人数为()A.20 B.25 C.30 D.35【考点】等可能事件的概率.【专题】计算题.【分析】根据题意,设班中的女生数为x,由班级的总人数可得“选出代表是女生”的概率与“选出代表是男生”的概率,依题意可得=,解可得x的值,即可得答案.【解答】解:根据题意,设班中的女生数为x,则“选出代表是女生”的概率为,“选出代表是男生”的概率为1﹣,则有==,解可得x=30,故选C.【点评】本题考查概率的运用,关键是根据题意用x表示出“选出代表是女生”与“选出代表是男生”的概率.9.若实数x 、y 满足=1,则x 2+2y 2有( )A .最大值3+2B .最小值3+2C .最大值6D .最小值6【考点】基本不等式. 【专题】不等式的解法及应用.【分析】由题意可得 x 2+2y 2=( x 2+2y 2)•()=1+2++,再利用基本不等式求得它的最小值,从而得出结论.【解答】解:由题意可得 x 2+2y 2=( x 2+2y 2)•()=1+2++≥3+2,当且仅当=时,即 x=±y 时,等号成立,故x 2+2y 2有最小值为 3+2,故选 B .【点评】本题主要考查基本不等式的应用,式子的变形是解题的关键,属于基础题.10.某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7【考点】程序框图. 【专题】算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量k 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当S=0时,满足继续循环的条件,故S=1,k=1; 当S=1时,满足继续循环的条件,故S=3,k=2; 当S=3时,满足继续循环的条件,故S=11,k=3; 当S=11时,满足继续循环的条件,故S=2059,k=4; 当S=2049时,不满足继续循环的条件, 故输出的k 值为4, 故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.已知直线3x+2y ﹣3=0与6x+my+7=0互相平行,则它们之间的距离是( )A .4B .C .D .【考点】两条平行直线间的距离.【专题】计算题;规律型;转化思想;直线与圆.【分析】利用直线平行关系求出m ,然后求解平行线之间的距离. 【解答】解:直线3x+2y ﹣3=0与6x+my+7=0互相平行, 可得m=4,直线3x+2y ﹣3=0与3x+2y+=0,它们之间的距离是: =.故选:B .【点评】本题考查两条直线平行,平行线之间距离的求法,考查计算能力.12.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A.B.C.2000cm3D.4000cm3【考点】由三视图求面积、体积.【专题】计算题;作图题.【分析】由三视图可知,几何体是四棱锥,一个侧面垂直底面,底面是正方形,根据数据计算其体积.【解答】解:如图,几何体是四棱锥,一个侧面PBC⊥底面ABCD,底面ABCD是正方形,.故选B.【点评】本题考查三视图、椎体的体积,考查简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.二、填空题:本大题共4小题,每小题5分,共20分.将答案写在答题卡上相应的位置13.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于180.【考点】二项式定理.【专题】计算题.【分析】如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间那项的二次项系数最大,由此可确定n的值,进而利用展开式,即可求得常数项.【解答】解:如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间项的二次项系数最大.∵展开式中只有第六项的二项式系数最大,∴n=10∴展开式的通项为=令=0,可得r=2∴展开式中的常数项等于=180故答案为:180【点评】本题考查二项展开式,考查二项式系数,正确利用二项展开式是关键.+a n=16,若S n=50,则n的值为10.14.已知S n是等差数列{a n}的前n项和,S3=6,a n﹣2【考点】等差数列的前n项和.【专题】等差数列与等比数列.+a n=16可得公差d=,利用S n=50计算即【分析】通过S3=3a2=6可得a2=2,利用a n﹣2得结论.【解答】解:∵S3=3a2=6,∴a2=2,+a n=16,又a n﹣2化为:a2+d(n﹣4)+a2+d(n﹣2)=16,∴4+d(2n﹣6)=16,即d(n﹣3)=6,∴d=,而S n=na1+d=n(2﹣)+=50,化简得:(n﹣3)(n﹣10)=0,解得n=10或n=3(增根,舍去),故答案为:10.【点评】本题考查等差数列的相关知识,注意解题方法的积累,属于中档题.15.已知变量x、y满足,则z=2x+y的最大值12.【考点】简单线性规划.【专题】计算题;作图题;不等式的解法及应用.【分析】由题意作出其平面区域,将z=2x+y化为y=﹣2x+z,z相当于直线y=﹣2x+z的纵截距,由几何意义可得.【解答】解:由题意作出其平面区域,将z=2x+y化为y=﹣2x+z,z相当于直线y=﹣2x+z的纵截距,由可解得,x=5,y=2;故z=2x+y的最大值为2×5+2=12;故答案为:12.【点评】本题考查了简单线性规划,作图要细致认真,属于中档题.16.过圆x2+y2﹣2x+4y﹣4=0内一点M(3,0)作圆的割线l,使它被该圆截得的线段最短,则直线l的方程是x+y﹣3=0.【考点】直线与圆的位置关系.【专题】综合题;方程思想;综合法;直线与圆.【分析】将圆的方程化为标准方程,找出圆心A的坐标,由垂径定理得到与直径AM垂直的弦最短,根据A和M的坐标求出直线AM的斜率,利用两直线垂直时斜率的乘积为﹣1,求出直线l的斜率,由求出的斜率及M的坐标,即可得到直线l的方程.【解答】解:将圆的方程化为标准方程得:(x﹣1)2+(y+2)2=9,∴圆心A坐标为(1,﹣2),又M(3,0),∵直线AM的斜率为=1,∴直线l的斜率为﹣1,则直线l的方程为y=﹣(x﹣3),即x+y﹣3=0.故答案为:x+y﹣3=0.【点评】此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,两直线垂直时斜率满足的关系,以及直线的点斜式方程,根据垂径定理得到与直径AM垂直的弦最短是解本题的关键.三、解答题:本大题共6小题,共52分.解答时应写出必要的文字说明、证明过程或演算步骤17.等差数列{a n}的前n项和为S n,已知a2=1,S10=45(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b n=,求数列{b n}的前n项和T n.【考点】数列的求和;等差数列的性质.【专题】等差数列与等比数列.【分析】(Ⅰ)由已知条件利用等差数列的通项公式和前n项和公式,求出首项和公差,由此能求出a n=n﹣1.(Ⅱ)由(Ⅰ)知b n==2﹣(n﹣1)=,由此能求出数列{b n}的前n项和T n.【解答】解:(Ⅰ)∵等差数列{a n}的前n项和为S n,a2=1,S10=45,∴,解得a1=0,d=1,∴a n=n﹣1.(Ⅱ)由(Ⅰ)知:b n==2﹣(n﹣1)=,∴T n==2﹣.【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意等比数列的性质的灵活运用.18.已知在△ABC中,a,b,c分别是角A,B,C所对的边,且.①求角A的大小.②若.【考点】解三角形;三角函数中的恒等变换应用.【专题】计算题.【分析】①把已知等式的左边去括号后,分别利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式变形,得出sin(2A﹣)的值为1,根据A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;②利用三角形的面积公式表示出三角形ABC的面积,将sinA及已知的面积代入求出bc的值,利用余弦定理得到a2=b2+c2﹣2bccosA,根据完全平方公式变形后,将cosA,a及bc的值代入,求出b+c的值,将bc=8与b+c=2联立组成方程组,求出方程组的解集即可得到b与c的值.【解答】解:①∵cosA(sinA﹣cosA)=,∴sinAcosA﹣cos2A=sin2A﹣(1+cos2A)=sin2A﹣cos2A﹣=,即sin(2A﹣)=1,又A为三角形的内角,∴2A﹣=,解得:A=;②∵a=2,S△ABC=2,sinA=,∴bcsinA=2,即bc=8①,由余弦定理得:a2=b2+c2﹣2bccosA=(b+c)2﹣3bc,即8=(b+c)2﹣24,解得:b+c=4②,联立①②,解得:b=c=2.【点评】此题属于解三角形的题型,涉及的知识有:二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,三角形的面积公式,余弦定理,以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键.19.某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列.(1)求第五、六组的频数,补全频率分布直方图;(2)若每组数据用该组区间中点值(例如区间[70,80)的中点值是75作为代表,试估计该校高一学生历史成绩的平均分;(3)估计该校高一学生历史成绩在70~100分范围内的人数.【考点】用样本的数字特征估计总体的数字特征;频率分布直方图.【专题】图表型.【分析】(1)利用频率分布直方图中利用纵坐标乘以组距求出第四组的频率,利用频率乘以样本容量求出频数,利用等比数列的中项列出方程求出第五、六组的频数.(2)利用各个小矩形的中点乘以各个矩形的面积求出高一学生历史成绩在70~100分范围内的人数.【解答】解:(1)设第五、六组的频数分别为x,y由题设得,第四组的频数是0.024×10×50=12则x2=12y又x+y=50﹣(0.012+0.016+0.03+0.024)×10×50即x+y=9∴x=6,y=3补全频率分布直方图(2)该校高一学生历史成绩的平均分+75×0.024+85×0.012+95×0.006)=67.6(3)该校高一学生历史成绩在70~100分范围内的人数:500×(0.024+0.012+0.006)×10=210【点评】解决频率分布直方图时一定要注意直方图的纵坐标为:;频数=样本容量×频率.20.如图所示,直三棱柱ABC﹣A1B1C1的各条棱长均为a,D是侧棱CC1的中点.(1)求证:平面AB1D⊥平面ABB1A1;(2)求异面直线AB1与BC所成角的余弦值;(3)求平面AB1D与平面ABC所成二面角(锐角)的大小.【考点】平面与平面垂直的判定;异面直线及其所成的角;与二面角有关的立体几何综合题.【专题】证明题;综合题;转化思想.【分析】(1)取AB1的中点E,AB的中点F.连接DE、EF、CF.证明DE的平行线CF 垂直平面ABB1A1,内的相交直线AB,BB1,即可证明平面AB1D⊥平面ABB1A1;(2)建立空间直角坐标系,求出中的相关向量,直接求异面直线AB1与BC所成角的余弦值;(3)求平面AB1D的一个法向量,以及平面ABC的一个法向量,利用向量的数量积求平面AB1D与平面ABC所成二面角(锐角)的大小.【解答】解:(1)证明:取AB1的中点E,AB的中点F.连接DE、EF、CF.故.又.∴四边形CDEF为平行四边形,∴DE∥CF.又三棱柱ABC﹣A1B1C1是直三棱柱.△ABC为正三角形.CF⊂平面ABC,∴CF⊥BB1,CF⊥AB,而AB∩BB1=B,∴CF⊥平面ABB1A1,又DE∥CF,∴DE⊥平面ABB1A1.又DE⊂平面AB1D.所以平面AB1D⊥平面ABB1A1.(2)建立如图所示的空间直角坐标系,则设异面直线AB1与BC所成的角为θ,则,故异面直线AB1与BC所成角的余弦值为,(3)由(2)得,设=(1,x,y)为平面AB1D的一个法向量.由得,,即显然平面ABC的一个法向量为m(0,0,1).则,故.即所求二面角的大小为.【点评】本题考查平面与平面垂直的判定,异面直线及其所成的角,二面角及其度量,考查空间想象能力,计算能力,是中档题.21.已知定义域为R的函数是奇函数.(1)求实数a,b的值;(2)判断f(x)在(﹣∞,+∞)上的单调性;(3)若f(k•3x)+f(3x﹣9x+2)>0对任意x≥1恒成立,求k的取值范围.【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】(1)根据f(x)为R上的奇函数便可得到,这样便可求出a=2,b=1;(2)分离常数可以得到,根据指数函数y=2x的单调性可以判断出x 增大时,f(x)减小,从而可判断出f(x)在(﹣∞,+∞)上单调递减;(3)根据f(x)的奇偶性和单调性便可由f(k•3x)+f(3x﹣9x+2)>0得到(3x)2﹣(k+1)•3x﹣2>0对于任意的x≥1恒成立,可设3x=t,从而有t2﹣(k+1)t﹣2>0对于任意的t≥3恒成立,可设g(t)=t2﹣(k+1)t﹣2,从而可以得到,这样解该不等式组便可得出k的取值范围.【解答】解:(1)f(x)在R上为奇函数;∴;∴;解得a=2,b=1;(2);x增大时,2x+1增大,减小,f(x)减小;∴f(x)在(﹣∞,+∞)上单调递减;(3)∵f(x)为奇函数,∴由f(k•3x)+f(3x﹣9x+2)>0得,f(k•3x)>f(9x﹣3x﹣2);又f(x)在(﹣∞,+∞)上单调递减;∴k•3x<9x﹣3x﹣2,该不等式对于任意x≥1恒成立;∴(3x)2﹣(k+1)3x﹣2>0对任意x≥1恒成立;设3x=t,则t2﹣(k+1)t﹣2>0对于任意t≥3恒成立;设g(t)=t2﹣(k+1)t﹣2,△=(k+1)2+8>0;∴k应满足:;解得;∴k的取值范围为.【点评】考查奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,减函数的定义,指数函数的单调性,根据减函数的定义解不等式,换元法的运用,要熟悉二次函数的图象.22.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.【考点】直线与圆的位置关系.【专题】综合题.【分析】(1)当截距不为0时,根据圆C的切线在x轴和y轴的截距相等,设出切线方程x+y=a,然后利用点到直线的距离公式求出圆心到切线的距离d,让d等于圆的半径r,列出关于a的方程,求出方程的解即可得到a的值,得到切线的方程;当截距为0时,设出切线方程为y=kx,同理列出关于k的方程,求出方程的解即可得到k的值,得到切线的方程;(2)根据圆切线垂直于过切点的半径,得到三角形CPM为直角三角形,根据勾股定理表示出点P的轨迹方程,由轨迹方程得到动点P的轨迹为一条直线,所以|PM|的最小值就是|PO|的最小值,求出原点到P轨迹方程的距离即为|PO|的最小值,然后利用两点间的距离公式表示出P到O的距离,把P代入动点的轨迹方程,两者联立即可此时P的坐标.【解答】解:(1)∵切线在两坐标轴上的截距相等,∴当截距不为零时,设切线方程为x+y=a,又∵圆C:(x+1)2+(y﹣2)2=2,∴圆心C(﹣1,2)到切线的距离等于圆的半径,即,解得:a=﹣1或a=3,当截距为零时,设y=kx,同理可得或,则所求切线的方程为x+y+1=0或x+y﹣3=0或或.(2)∵切线PM与半径CM垂直,∴|PM|2=|PC|2﹣|CM|2.∴(x1+1)2+(y1﹣2)2﹣2=x12+y12.。
高二(理)上学期数学寒假作业3 含答案
1、数列{}n a 的前n 项和为n S ,若1(1)na n n =+,则19S 等于( )A .1819B .2019C .1920D .21202、设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( ) A .1 B .1- C .2 D .213、在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 4、 设n S 为等差数列{}n a 的前项和,若36324S S ==,,则9a =( )A. 15B. 45C. 192D. 27 5、已知{}n a 是等比数列,a n>0,且a 4a 6+2a 5a 7+a 6a 8=36,则a 5+a 7等于 ( )A .6B .12C .18D .24 6、两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a=___________7、数列{}n a 的前n项的和S n=3n 2+ n +1,则此数列的通项公式 .8、设n S 是等差数列{}n a 的前n 项和,且8765S S S S >=< ,则下列结论一定正确的有(1).0<d(2).07=a(3)59S S > (4)01<a (5).6S 和7S 均为n S 的最大值9.在等比数列{a n }中,a 1+a n =66,a 2·a n -1=128,且前n 项和S n =126,求n 及公比q .10、已知:等差数列{n a }中,4a =14,前10项和18510=S .(1)求n a ;(2)将{n a }中的第2项,第4项,…,第n2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .11.已知数列{}n a 是等差数列,且.12,23211=++=a a a a(1)求数列{}n a 的通项公式;(2)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.12、 在数列{}n a 中,11a =,2112(1)n n a a n+=+⋅.(Ⅰ)证明数列2{}n a n 是等比数列,并求{}n a 的通项公式;(Ⅱ)令112n n n b a a +=-,求数列{}n b 的前n 项和n S ;(Ⅲ)求数列{}n a 的前n 项和n T .答案1—5CCAAA6、12657、a n =⎩⎨⎧≥-=2,261,5n n n 8(1)(2)(5)、 9、 [解析] ∵a 1a n =a 2a n -1=128,又a 1+a n =66,∴a 1、a n 是方程x 2-66x +128=0的两根,解方程得x 1=2,x 2=64,∴a 1=2,a n =64或a 1=64,a n =2,显然q ≠1.若a 1=2,a n =64,由a 1-a n q 1-q =126得2-64q =126-126q ,∴q =2,由a n =a 1q n -1得2n -1=32,∴n =6.若a 1=64,a n =2,同理可求得q =12,n =6.综上所述,n 的值为6,公比q =2或12.10、解析:(1)由41014185a S =⎧⎨=⎩ ∴11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 由23,3)1(5+=∴⋅-+=n a n a n n(2)设新数列为{n b },由已知,2232+⋅==n n n a b.2)12(62)2222(3321n n G n n n +-=+++++=∴Λ *)(,62231N n n G n n ∈-+⋅=∴+11、解:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21=∴=d a所以.2n a n =(Ⅱ)解:令,21n n b b b S +++=Λ则由,2nn n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=-Λ①,2)22(42132++-+++=n n n nx x n x x xS Λ②当1≠x 时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n nn nx xx x nxx x x S x Λ所以.12)1()1(212xnxx x x S n n n ----=+当1=x 时, )1(242+=+++=n n n S n Λ,综上可得当1=x 时,)1(+=n n S n当1≠x 时,.12)1()1(212x nx x x x S n n n ----=+ 12解:(Ⅰ)由条件得1221(1)2n n a a n n +=⋅+,又1n =时,21n a n =, 故数列2{}n a n 构成首项为1,公式为12的等比数列.从而2112n n a n -=,即212n n n a -=.(Ⅱ)由22(1)21222n n n n n n n b ++=-=得23521222nnn S +=+++L , 231135212122222n n n n n S +-+⇒=++++L ,两式相减得 :23113111212()222222n n n n S ++=++++-L , 所以 2552n n n S +=-.(Ⅲ)由231121()()2n n n S a a a a a a +=+++-+++L L 得1112n n n n T a a T S +-+-= 所以11222n n n T S a a +=+-2146122n n n -++=-.。
2019-2020年高二上学期第三次月考数学试卷(理科) 含解析
2019-2020年高二上学期第三次月考数学试卷(理科)含解析一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(﹣1,3)且与直线2x+y+3=0垂直的直线方程为()A.x﹣2y+7=0 B.2x﹣y+5=0 C.x﹣2y﹣5=0 D.2x+y﹣5=02.双曲线﹣=1的焦点到其渐近线距离为()A.1 B. C. D.23.下列说法不正确的是()A.若“p且q”为假,则p,q至少有一个是假命题B.命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0”C.当a<0时,幂函数y=x a在(0,+∞)上单调递减D.“φ=”是“y=sin(2x+φ)为偶函数”的充要条件4.在空间四边形OABC中,,,,点M在线段OA上,且OM=2MA,N为BC的中点,则等于()A.﹣+B.﹣++C. D.5.下列命题中正确命题的个数是()①过空间任意一点有且仅有一个平面与已知平面垂直;②过空间任意一条直线有且仅有一个平面与已知平面垂直;③过空间任意一点有且仅有一个平面与已知的两条异面直线平行;④过空间任意一点有且仅有一条直线与已知平面垂直.A.1 B.2 C.3 D.46.P为抛物线y2=﹣4x上一点,A(0,1),则P到此抛物线的准线的距离与P 到点A的距离之和的最小值为()A. B. C. D.7.某几何体的三视图如图所示,则该几何体的体积是()A.2π+B.4π+C.4π+4 D.2π+48.已知圆C:x2+y2=12,直线l:4x+3y=25,圆C上任意一点A到直线l的距离小于2的概率为()A. B. C. D.9.正四棱锥S﹣ABCD中,O为顶点在底面上的射影,P为侧棱SB的中点,且SO=OD,则直线BC与AP所成的角的余弦值为()A. B. C. D.10.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.11.如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是()A.B.C.D.12.已知点P为椭圆+=1上的动点,EF为圆N:x2+(y﹣1)2=1的任一直径,求最大值和最小值是()A.16,12﹣4 B.17,13﹣4 C.19,12﹣4 D.20,13﹣4二、填空题(每小题5分,共20分,把答案填在答题卡的相应位置.)13.长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,则这个球的表面积为.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=.15.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为.16.圆x2+y2=9的切线MT过双曲线﹣=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|﹣|PT|=.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知命题p:“+=1是焦点在x轴上的椭圆的标准方程”,命题q:∃x1∈R,8x12﹣8mx1+7m﹣6=0.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.18.如图,在四棱锥O﹣ABCD中,底面ABCD是边长为1的菱形,∠ABC=,OA ⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(1)证明:直线MN∥平面OCD.(2)求三棱锥N﹣CDM的体积.19.已知抛物线x2=4y的焦点为F,P为该抛物线上的一个动点.(1)当|PF|=2时,求点P的坐标;(2)过F且斜率为1的直线与抛物线交与两点AB,若P在弧AB上,求△PAB 面积的最大值.20.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.21.如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.(1)证明:BE⊥CD′;(2)求二面角D′﹣BC﹣E的余弦值.22.已知椭圆G的中心是原点O,对称轴是坐标轴,抛物线的焦点是G的一个焦点,且离心率.(Ⅰ)求椭圆G的方程;(Ⅱ)已知圆M的方程是x2+y2=R2(1<R<2),设直线l与圆M和椭圆G都相切,且切点分别为A,B.求当R为何值时,|AB|取得最大值?并求出最大值.xx重庆市杨家坪中学高二(上)第三次月考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(﹣1,3)且与直线2x+y+3=0垂直的直线方程为()A.x﹣2y+7=0 B.2x﹣y+5=0 C.x﹣2y﹣5=0 D.2x+y﹣5=0【考点】待定系数法求直线方程.【分析】过点(m,n)且与直线Ax+By+C=0垂直的直线方程为B(x﹣m)﹣A (y﹣n)=0,代入可得答案.【解答】解:过点(﹣1,3)且与直线2x+y+3=0垂直的直线方程为(x+1)﹣2(y﹣3)=0,即x﹣2y+7=0,故选:A.2.双曲线﹣=1的焦点到其渐近线距离为()A.1 B. C. D.2【考点】双曲线的简单性质.【分析】由双曲线方程求出焦点坐标及一条渐近线方程,在由点到直线的距离公式求得答案.【解答】解:由双曲线﹣=1,得a2=2,b2=3,c2=a2+b2=5,∴双曲线的右焦点F(,0),一条渐近线方程为y=x=x,即2y﹣x=0.由点到直线的距离公式得,焦点到其渐近线的距离d==.故选C.3.下列说法不正确的是()A.若“p且q”为假,则p,q至少有一个是假命题B.命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0”C.当a<0时,幂函数y=x a在(0,+∞)上单调递减D.“φ=”是“y=sin(2x+φ)为偶函数”的充要条件【考点】特称命题.【分析】A根据复合命题的真假性,即可判断命题是否正确;B根据特称命题的否定是全称命,写出它的全称命题即可;C根据幂函数的图象与性质即可得出正确的结论;D说明充分性与必要性是否成立即可.【解答】解:对于A,当“p且q”为假时,p、q至少有一个是假命题,是正确的;对于B,命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0”,是正确的;对于C,a<0时,幂函数y=x a在(0,+∞)上是减函数,命题正确;对于D,φ=时,y=sin(2x+φ)=cos2x是偶函数,充分性成立,y=sin(2x+φ)为偶函数时,φ=kπ+,k∈Z,必要性不成立;∴是充分不必要条件,命题错误.故选:D.4.在空间四边形OABC中,,,,点M在线段OA上,且OM=2MA,N为BC的中点,则等于()A.﹣+B.﹣++C. D.【考点】向量加减混合运算及其几何意义.【分析】由题意结合图形,直接利用,求出,然后即可解答.【解答】解:因为空间四边形OABC如图,,,,点M在线段OA上,且OM=2MA,N为BC的中点,所以=.所以=.故选B.5.下列命题中正确命题的个数是()①过空间任意一点有且仅有一个平面与已知平面垂直;②过空间任意一条直线有且仅有一个平面与已知平面垂直;③过空间任意一点有且仅有一个平面与已知的两条异面直线平行;④过空间任意一点有且仅有一条直线与已知平面垂直.A.1 B.2 C.3 D.4【考点】平面的基本性质及推论.【分析】为了对各个选项进行甄别,不必每个选项分别构造一个图形,只须考查正方体中的线面即可.【解答】解:考察正方体中互相垂直的线和平面.对于①:过空间任意一点不是有且仅有一个平面与已知平面垂直;如图中平面A1D和平面A1B与平面AC垂直;故错;对于②:过空间任意一条直线有且仅有一个平面与已知平面垂直;这是正确的,如图中,已知平面A1D和平面A1B与平面AC垂直;故正确;对于③:过空间任意一点不是有且仅有一个平面与已知的两条异面直线平行;如图中:过C1的与A1B1与AD都平行的平面就不存在;故错;对于④:过空间任意一点有且仅有一条直线与已知平面垂直是正确的.故选B.6.P为抛物线y2=﹣4x上一点,A(0,1),则P到此抛物线的准线的距离与P 到点A的距离之和的最小值为()A. B. C. D.【考点】抛物线的简单性质.【分析】通过抛物线方程可知焦点F(﹣1,0),利用两点间距离公式可知|AF|=,通过抛物线定义可知点P到准线的距离d与|PF|相等,P到此抛物线的准线的距离与P到点A的距离之和的最小值.【解答】解:∵抛物线方程为y2=﹣4x,∴焦点F(﹣1,0),又∵A(0,1),∴|AF|==,由抛物线定义可知点P到准线的距离d与|PF|相等,∴d+|PA|=|PF|+|PA|≥|AF|=,故选:D.7.某几何体的三视图如图所示,则该几何体的体积是()A.2π+B.4π+C.4π+4 D.2π+4【考点】由三视图求面积、体积.【分析】由题意,几何体的直观图是三棱锥与圆柱的的组合体,三棱锥的底面是直角边长为2的等腰三角形,高为2,圆柱的底面半径是2,高为2,即可求出几何体的体积.【解答】解:由题意,几何体的直观图是三棱锥与圆柱的的组合体,三棱锥的底面是直角边长为2的等腰三角形,高为2,圆柱的底面半径是2,高为2,所以体积为+=2π+,故选:A.8.已知圆C:x2+y2=12,直线l:4x+3y=25,圆C上任意一点A到直线l的距离小于2的概率为()A. B. C. D.【考点】几何概型.【分析】试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,根据题意做出符合条件的弧长对应的圆心角是60°,根据几何概型概率公式得到结果.【解答】解:由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,∵圆心到直线的距离是=5,∴在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P==故选A.9.正四棱锥S﹣ABCD中,O为顶点在底面上的射影,P为侧棱SB的中点,且SO=OD,则直线BC与AP所成的角的余弦值为()A. B. C. D.【考点】异面直线及其所成的角.【分析】以O为原点建立空间直角坐标系O﹣xyz,利用向量法能求出直线BC与AP所成的角的余弦值.【解答】如图所示,以O为原点建立空间直角坐标系O﹣xyz.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),S(0,0,a),C(﹣a,0,0),P(0,,).则=(﹣a,﹣a,0),=(﹣a,,),C=(a,a,0).设直线BC与AP所成的角为θ,则cosθ===.∴直线BC与AP所成的角的余弦值为.故选:C.10.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.【考点】椭圆的简单性质.【分析】求出A的对称点的坐标,然后求解椭圆长轴长的最小值,然后求解离心率即可.【解答】解:A(﹣1,0)关于直线l:y=x+3的对称点为A′(﹣3,2),连接A′B 交直线l于点P,则椭圆C的长轴长的最小值为|A′B|=2,所以椭圆C的离心率的最大值为:==.故选:A.11.如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是()A.B.C.D.【考点】棱柱的结构特征;函数的图象与图象变化.【分析】球面与正方体的表面都相交,我们考虑三个特殊情形:①当x=1;②当x=;③当x=.其中①③两种情形所得弧长相等且为函数f(x)的最大值,根据图形的相似,②中弧长为①中弧长的一半.对照选项,即可得出答案.【解答】解:如图,球面与正方体的表面都相交,根据选项的特点,我们考虑三个特殊情形:①当x=1;②当x=;③当x=.①当x=1时,以A为球心,1为半径作一个球,该球面与正方体表面的交线分别是图中的红色的弧线,其弧长为:3××2π×1=,且为函数f(x)的最大值;②当x=时,以A为球心,为半径作一个球,该球面与正方体表面的交线分别是图中的兰色的弧线,根据图形的相似,其弧长为①中弧长的一半;③当x=.以A为球心,为半径作一个球,该球面与正方体表面的交线分别是图中的粉红色的弧线,其弧长为:3××2π×1=,且为函数f(x)的最大值;对照选项,B正确.故选B.12.已知点P为椭圆+=1上的动点,EF为圆N:x2+(y﹣1)2=1的任一直径,求最大值和最小值是()A.16,12﹣4 B.17,13﹣4 C.19,12﹣4 D.20,13﹣4【考点】椭圆的简单性质.【分析】根据题意,得|NE|=|NF|=1且,由此化简得=﹣1,根据椭圆方程与两点的距离公式,求出当P的纵坐标为﹣3时,取得最大值20,由此即得=﹣1的最大值,当P的纵坐标为时,取得最小值,由此即得=﹣1的最小值.【解答】解:∵EF为圆N的直径,∴|NE|=|NF|=1,且,则=(+)•(+)=(+)•()==﹣1,设P(x0,y0),则有即x02=16﹣y02又N(0,1),∴=,而y0∈[﹣2,2],∴当y0=﹣3时,取得最大值20,则=﹣1=20﹣1=19,当y0=时,取得最小值,则=﹣1=﹣1=.∴最大值和最小值是:19,.故选:C.二、填空题(每小题5分,共20分,把答案填在答题卡的相应位置.)13.长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,则这个球的表面积为50π.【考点】球内接多面体.【分析】设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.【解答】解:设球的半径为R,由题意,球的直径即为长方体的体对角线的长,则(2R)2=32+42+52=50,∴R=.R2=50π.∴S球=4π×故答案为:50π.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=﹣7.【考点】直线的一般式方程与直线的平行关系.【分析】根据两直线平行的条件可知,(3+a)(5+a)﹣4×2=0,且5﹣3a≠8.进而可求出a的值.【解答】解:直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则(3+a)(5+a)﹣4×2=0,即a2+8a+7=0.解得,a=﹣1或a=﹣7.又∵5﹣3a≠8,∴a≠﹣1.∴a=﹣7.故答案为:﹣7.15.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为.【考点】直线与平面所成的角.【分析】取AD中点E,连结CE,过B作BO⊥CE,交CE于点O,则∠BCO就是线BC与平面ACD所成角,由此能求出结果.【解答】解:如图,取AD中点E,连结CE,过B作BO⊥CE,交CE于点O,则∠BCO就是线BC与平面ACD所成角,设正四面体ABCD的棱长为2,则CO===,∴cos∠BCO==,∴sin∠BCO==.故答案为:.16.圆x2+y2=9的切线MT过双曲线﹣=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|﹣|PT|=2﹣3.【考点】圆与圆锥曲线的综合;双曲线的简单性质.【分析】由双曲线方程,求得c=,根据三角形中位线定理和圆的切线的性质,可知|PO|=|PF′|,|PT|=|MF|﹣|FT|,并结合双曲线的定义可得|PO|﹣|PT|=|FT|﹣(|PF|﹣|PF′|)=2﹣3.【解答】解:设双曲线的右焦点为F′,则PO是△PFF′的中位线,∴|PO|=|PF′|,|PT|=|MF|﹣|FT|,根据双曲线的方程得:a=3,b=2,c=,∴|OF|=,∵MF是圆x2+y2=9的切线,|OT|=3,∴Rt△OTF中,|FT|==2,∴|PO|﹣|PT|=|PF′|﹣(|MF|﹣|FT|)=|FT|﹣(|PF|﹣|PF′|)=2﹣3,故答案为:2﹣3.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知命题p:“+=1是焦点在x轴上的椭圆的标准方程”,命题q:∃x1∈R,8x12﹣8mx1+7m﹣6=0.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.【考点】命题的真假判断与应用;复合命题的真假.【分析】若p∨q为真命题,p∧q为假命题,则p,q一真一假,进而可得实数m的取值范围.【解答】解:如果p为真命题,则有,即1<m<2;若果q为真命题,则64m2﹣32(7m﹣6)≥0,解得m≤或m≥2.因为p∨q为真命题,p∧q为假命题,所以p和q一真一假,若p真q假,则<m<2,若p假q真,则m≤1或m≥2.所以实数m的取值范围为(∞,1]∪(,+∞).18.如图,在四棱锥O ﹣ABCD 中,底面ABCD 是边长为1的菱形,∠ABC=,OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点.(1)证明:直线MN ∥平面OCD .(2)求三棱锥N ﹣CDM 的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)取AD 中点E ,连结ME ,NE ,推导出平面MNE ∥平面CDO ,由此能证明直线MN ∥平面OCD .(2)三棱锥N ﹣CDM 的体积V N ﹣CDM =V M ﹣CDN ,由此能求出结果.【解答】证明:(1)取AD 中点E ,连结ME ,NE ,∵M 为OA 的中点,N 为BC 的中点,∴ME ∥OD ,NE ∥CD ,∵ME ∩NE=E ,OD ∩CD=D ,ME ,NE ⊂平面MNE ,OD ,CD ⊂平面CDO , ∴平面MNE ∥平面CDO ,∵MN ⊂平面MNE ,∴直线MN ∥平面OCD .解:(2)∵OA ⊥底面ABCD ,OA=2,M 为OA 的中点,∴AM ⊥平面CDN ,且AM=1,∵底面ABCD 是边长为1的菱形,∠ABC=,∴=,∴三棱锥N ﹣CDM 的体积V N ﹣CDM =V M ﹣CDN ===.19.已知抛物线x2=4y的焦点为F,P为该抛物线上的一个动点.(1)当|PF|=2时,求点P的坐标;(2)过F且斜率为1的直线与抛物线交与两点AB,若P在弧AB上,求△PAB 面积的最大值.【考点】抛物线的简单性质.【分析】(1)当|PF|=2时,利用抛物线的定义,即可求点P的坐标;(2)先求出|AB|,再计算抛物线上点到直线的最大距离,即可求出△PAB的面积的最大值.【解答】解:(1)设P(x,y),则y+1=2,∴y=1,∴x=±2,∴P(±2,1);(2)过F的直线方程为y=x+1,代入抛物线方程,可得y2﹣6y+1=0,可得A(2﹣2,3﹣2),B(2+2,3+2),∴|AB|=•|2+2﹣2+2|=8.平行于直线l:x﹣y+1=0的直线设为x﹣y+c=0,与抛物线C:x2=4y联立,可得x2﹣4x﹣4c=0,∴△=16+16c=0,∴c=﹣1,两条平行线间的距离为=,∴△PAB的面积的最大值为=4.20.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.【考点】直线与圆相交的性质.【分析】(1)分类讨论,利用待定系数法给出切线方程,然后再利用圆心到切线的距离等于半径列方程求系数即可;(2)可先利用PM(PM可用P点到圆心的距离与半径来表示)=PO,求出P点的轨迹(求出后是一条直线),然后再将求PM的最小值转化为求直线上的点到原点的距离PO之最小值.【解答】解:(1)将圆C配方得(x+1)2+(y﹣2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得=,即k=2±,从而切线方程为y=(2±)x.…②当直线在两坐标轴上的截距不为零时,设直线方程为x+y﹣a=0,由直线与圆相切得x+y+1=0,或x+y﹣3=0.∴所求切线的方程为y=(2±)xx+y+1=0或x+y﹣3=0.…(2)由|PO|=|PM|得,x12+y12=(x1+1)2+(y1﹣2)2﹣2⇒2x1﹣4y1+3=0..…即点P在直线l:2x﹣4y+3=0上,|PM|取最小值时即|OP|取得最小值,直线OP⊥l,∴直线OP的方程为2x+y=0.…解方程组得P点坐标为(﹣,).…21.如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.(1)证明:BE⊥CD′;(2)求二面角D′﹣BC﹣E的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(1)由已知得BE⊥EC.从而BE⊥面D'EC,由此能证明BE⊥CD'.(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,则∠D'FM是二面角D'﹣BC﹣E的平面角.由此能求出二面角D'﹣BC﹣E的余弦值.法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z 轴,建立空间直角坐标系.利用向量法能求出二面角D'﹣BC﹣E的余弦值.【解答】证明:(1)∵AD=2,AB=1,E是AD的中点,∴△BAE,△CDE是等腰直角三角形,∵AB=AE=DE=CD,∠BAE=∠CDE=90°,∴∠BEC=90°,∴BE⊥EC.又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC,∴BE⊥面D'EC,又CD'⊂面D'EC,∴BE⊥CD'.…解:(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,连接D'M,D'F,则D'M⊥EC,∵平面D'EC⊥平面BEC,∴D'M⊥平面BEC,∴D'M⊥BC,∴BC⊥平面D′MF,∴D'F⊥BC,∴∠D'FM是二面角D'﹣BC﹣E的平面角.在Rt△D'MF中,D'M=,,∴,∴二面角D'﹣BC﹣E的余弦值为.…法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z 轴,建立如图空间直角坐标系.则,,,.设平面BEC的法向量为,平面D'BC的法向量为,则,取x2=1,得=(1,1,1),cos<>==,∴二面角D'﹣BC﹣E的余弦值为.…22.已知椭圆G的中心是原点O,对称轴是坐标轴,抛物线的焦点是G的一个焦点,且离心率.(Ⅰ)求椭圆G的方程;(Ⅱ)已知圆M的方程是x2+y2=R2(1<R<2),设直线l与圆M和椭圆G都相切,且切点分别为A,B.求当R为何值时,|AB|取得最大值?并求出最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I)依题意可设椭圆G的方程,利用抛物线的焦点是G的一个焦点,且离心率,求得几何量,即可求椭圆G的方程;(II)直线方程与椭圆方程联立,利用直线与圆、椭圆相切,确定参数之间的关系,表示出|AB|,利用基本不等式,可求|AB|最大值.【解答】解:(I)依题意可设椭圆G的方程为,则因为抛物线的焦点坐标为,所以,又因为,所以,所以,故椭圆G的方程为.…(II)由题意知直线l的斜率存在,所以可设直线l:y=kx+m,即kx﹣y+m=0∵直线l和圆M相切,∴,即m2=R2(k2+1)①联立方程组消去y整理可得(1+4k2)x2+8kmx+4m2﹣4=0,∵直线l和椭圆G相切,∴△=64k2m2﹣4(1+4k2)(4m2﹣4)=0,即m2=4k2+1②由①②可得设点B的坐标为(x0,y0),则有,,所以,所以等号仅当,即取得故当时,|AB|取得最大值,最大值为1.…xx2月7日。
寒假作业(三)不等式、基本不等式-【新教材】人教A版(2019)高中数学必修第一册
2.解: 3a 4b 0 , ab 0 ,a 0 . b 0
log4 (3a 4b) log2 ab ,log4 (3a 4b) log4 (ab) 3a 4b ab , a 4 , a 0 . b 0
b 3a 0 a4
,
a 4
,
则
a
b
a
3a a4
a
3(a
4) 12 a4
A. lg(x2 1 ) lgx(x 0) 4
B. sin x 1 2(x k , k Z ) sin x
C. x2 1 2 | x | (x R)
D.
1 x2 1
1( x
R)
7.设正实数 x , y , z 满足 x2 3xy 4y2 z 0 .则当 xy 取得最大值时, 2 1 2 的最大
若 1 1 1,可取 a 7 , b 7 ,则 a b 1 , B 错误;
ba
8
若 | a b | 1 ,则可取 a 9 , b 4 ,而 | a b | 5 1, C 错误;
由 | a3 b3 | 1,
若 a b 0 ,则 a3 b3 1 ,即 (a 1)(a2 a 1) b3 , a2 1 a b2 , a 1 b ,即 a b 1
20.合肥六中德育处为了更好的开展高一社团活动,现要设计如图的一张矩形宣传海报,该 海报含有大小相等的左右三个矩形栏目,这三栏的面积之和为 60000cm2 ,四周空白的宽度 为10cm ,栏与栏之间的中缝空白的宽度为 5cm .
(1)怎样确定矩形栏目高与宽的尺寸,能使整个矩形海报面积最小,并求最小值;
有最小值,故选: A .
5.解:由题意可得若 p f ( ab) ln( ab) 1 lnab 1 (lna lnb) ,
2019-2020学年高二上学期第三次月考数学(理)试题 Word版含解析
2019~2020学年度第一学期第三次检测高二年级数学(理科)试题注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号填写在答题卡上;条形码粘贴在指定位置.2.每小题选出★答案★后,用铅笔把答题卡上对应题目的★答案★标号涂黑.如需改动,用橡皮擦干净后,再选涂其它★答案★标号.在试卷纸上作答无效.如需作图先用铅笔定型,再用黑色签字笔描绘.第Ⅰ卷(选择题共60分)一、选择题: 1. 椭圆24251xy+=的一个焦点坐标是( ) A. (3,0) B. (0,3) C. (1,0) D. (0,1)【★答案★】D 【解析】 试题分析:由椭圆方程24251xy+=可知其焦点在y 轴,且25,24a b ==,2221c a b ∴=-=,1c ∴=.所以焦点为(0,1),(0,1)-.故D 正确.考点:椭圆的焦点.2. 直线x ﹣y+2=0与圆x 2+(y ﹣1)2=4的位置关系是( ) A. 相交 B. 相切C. 相离D. 不确定【★答案★】A 【解析】 【分析】求得圆心到直线的距离,然后和圆的半径比较大小,从而判定两者位置关系,得到★答案★. 【详解】由题意,可得圆心(0,1) 到直线的距离为|012|2222d -+==<,所以直线与圆相交. 故选A .【点睛】本题主要考查了直线与圆的位置关系判定,其中解答中熟记直线与圆的位置关系的判定方法是解答的关键,着重考查了推理与计算能力,属于基础题. 3. “1x >”是“21x >”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【★答案★】A 【解析】 【分析】判断充分条件还是必要条件,就看由题设能否推出结论,和结论能否推出题设,本着这个原则,显然1x >能推出21x >,但是21x >不一定能推出1x >,有可能1x <-,所以可以判断“1x >”是“21x >”的充分不必要条件.【详解】因为由1x >⇒21x >,由21x >推不出1x >,有可能1x <-, 所以“1x >”是“21x >”的充分不必要条件,故本题选A.【点睛】本题考查了充分条件和必要条件的判定,解题的关键是理解掌握它们定义,对于本题正确求解不等式也很关键.4. 总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为 7816 6572 0802 631407024369972801983204 9234493582003623486969387481A. 08B. 07C. 02D. 01【★答案★】D从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力. 5. 阅读如图所示的程序框图,该程序输出的结果是( )A. 25B. 50C. 125D. 250【★答案★】A 【解析】 【分析】列举出算法的每一步,由此可得出输出的s 的值.【详解】第一次循环,13a =≥不成立,155s =⨯=,112a =+=; 第二次循环,23a =≥不成立,5525s =⨯=,213a =+=;33a =≥成立,跳出循环体,输出s 的值为25.故选:A.【点睛】本题考查利用算法框图计算输出结果,一般将算法的每一步列举出来,考查计算能力,属于基础题.6. 某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距样本,将全体会员随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号),若第5组抽出的号码为23,则第1组至第3组抽出的号码依次是( ) A. 3,8,13 B. 2,7,12 C. 3,9,15 D. 2,6,12【★答案★】A【分析】根据系统抽样原理求出抽样间距,再根据第5组抽出的号码求出第1组抽出的号码,即可得出第2组,第三组抽出的号码.【详解】解:根据系统抽样原理知,抽样间距为200405÷=, 当第五组抽出的号码为23时,即23453=⨯+, 所以第1组至第3组抽出的号码依次是3,8,13. 故选:A.【点睛】本题考查了系统抽样方法的应用问题,属于基础题. 7. 下列有关命题的说法正确的是( )A. 命题“若21x =,则1x =”的否命题为:“若21x =则1x ≠”B. 若p 为真命题,q 为假命题,则,p q p q ∨∧均为假命题C. 命题“若,,a b c 成等比数列,则2b ac =”的逆命题为真命题D. 命题“若x y =,则sin sin x y =”的逆否命题为真命题 【★答案★】D 【解析】 【分析】分别写出命题的否命题,可判定A 不正确;根据复合命题的真假判定,可判定B 不正确;根据等比数列的定义,即可判定C 不正确;根据四种命题的关系,可判定D 正确,得到★答案★.【详解】对于A 中,命题“若21x =,则1x =”的否命题为:“若21x ≠则1x ≠”,所以不正确; 对于B 中,由p 为真命题,q 为假命题,则p q ∨为真命题,p q ∧均为假命题,所以不正确; 对于C 中,命题“若,,a b c 成等比数列,则2b ac =”的逆命题为“若2b ac =,则,,a b c 成等比数列”为假命题,所以不正确;对于D 中,命题“若x y =,则sin sin x y =”为真命题,所以命题的逆否命题也是真命题,故选D.【点睛】本题主要考查了命题的真假判定及应用为载体考查了四种命题的概念,及其四种命题的真假关系,着重考查了推理与运算能力,属于基础题.8. 已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k = A.12B. 12-C. 2D. 2-【★答案★】A 【解析】 【分析】本道题目先联立直线方程和双曲线方程,得到12x x +,然后用这个表示2k ,即可.【详解】设直线l 的方程为1y k x b =+,代入双曲线方程2212x y -=得到2221112102k x bk x b ⎛⎫----= ⎪⎝⎭,得到11221212k bx x k +=-设()()111212,,,M x k x b N x k x b ++,则()11212,22k x x x x N b ⎛⎫+++ ⎪⎝⎭则21121212b k k x x k =+=+,故1212k k ⋅=,故选A .【点睛】本题考查了直线与圆锥曲线的位置关系问题,通常的做法是联解直线方程和双曲线然后找出规律,即可得出★答案★.9. 若圆()22:418C x y +-=与圆()()222:11D x y R -+-=的公共弦长为62,则圆D 的半径为( ) A. 5B. 25C. 26D. 27【★答案★】D 【解析】 【分析】先由题,求出两圆的公共弦,再求得圆C 的直径等于公共弦长为62,可得公共弦过圆C 的圆心,可得★答案★.【详解】联立()()()2222241811x yx y R ⎧+-=⎪⎨-+-=⎪⎩,得2264x y R-=-,因为圆C 的直径为62,且圆C与曲线D 的公共弦长为62,所以直线2264x y R-=-经过圆C的圆心()0,4,则2220644,28R R⨯-⨯=-=,所以圆D的半径为27.故选D【点睛】本题考查了圆与圆的位置关系,两圆的公共弦的求法是解题的关键,属于中档题.10. 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A. B. C. D.【★答案★】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,它们第一次闪亮的时候相差不超过2秒,则|x﹣y|≤2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:=11. 已知空间直角坐标系O xyz-中,()1,2,3OA=,()2,1,2OB=,()1,1,2OP=,点Q在直线OP上运动,则当QA QB⋅取得最小值时,点Q的坐标为()A. 131,,243⎛⎫⎪⎝⎭B. 133,,224⎛⎫⎪⎝⎭C. 448,,333⎛⎫⎪⎝⎭D. 447,,333⎛⎫⎪⎝⎭【★答案★】C 【解析】 【分析】设(,,)Q x y z ,根据点Q 在直线OP 上,求得(,,2)Q λλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB ⋅取得最小值,即可求解. 【详解】设(,,)Q x y z , 由点Q直线OP 上,可得存在实数λ使得OQ OP λ=,即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q .故选:C.【点睛】本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得出关于λ的二次函数是解答的关键,着重考查运算与求解能力.12. 抛物线22(0)y px p =>的焦点为F ,准线为l ,,A B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB 的中点M 在l 上的投影为N ,则||||MN AB 的最大值是 ( ) A.12B. 1C.22 D.32【★答案★】B 【解析】 【分析】设|AF |=a ,|BF |=b ,连接AF 、BF .由抛物线定义得2|MN |=a +b ,由余弦定理可得|AB |2=(a +b )2﹣3ab ,进而根据基本不等式,求得|AB |的取值范围,从而得到本题★答案★.【详解】设|AF |=a ,|BF |=b ,连接AF 、BF ,由抛物线定义,得|AF |=|AQ |,|BF |=|BP |, 在梯形ABPQ 中,2|MN |=|AQ |+|BP |=a +b . 由余弦定理得,|AB |2=a 2+b 2﹣2ab cos60°=a 2+b 2﹣ab , 配方得,|AB |2=(a +b )2﹣3ab , 又∵ab 2()2a b +≤, ∴(a +b )2﹣3ab ≥(a +b )234-(a +b )214=(a +b )2 得到|AB |12≥(a +b ). ∴MN AB ≤1,即MN AB的最大值为1.故选B .【点睛】本题在抛物线中,利用定义和余弦定理求MN AB的最大值,着重考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等知识,属于中档题.第Ⅱ卷(非选择题共90分)二、填空题13. 已知F 是抛物线24x y=焦点,A ,B 是该抛物线上的两点,||||5AF BF +=,则线段AB的中点到x 轴的距离为__________. 【★答案★】32【解析】【分析】由抛物线方程求出准线方程,利用抛物线的定义将AF 和BF 转化为A ,B 到准线的距离,进而可以求出AB 的中点的纵坐标,即可求出★答案★.【详解】抛物线24x y =的焦点01F (,),准线方程1y =-,设11,A x y (),22,B x y (), 所以12115AF BF y y +=+++=, 解得123y y +=,所以线段AB 的中点的纵坐标为32, 故线段AB 的中点到x 轴的距离为32.【点睛】本题考查了抛物线定义的运用,属于基础题.14. 如图,已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧棱1CC 的中点,则异面直线1AB BM 和所成的角的大小是【★答案★】90︒【解析】 试题分析:取1A B 的中点N ,因为正三棱柱111ABC A BC-的各条棱长都相等,M是侧棱1C C 的中点,易证11ACM B CM∆≅∆,因为N是1A B 的中点,所以1A B MN ⊥,又11ABA B⊥,所以11A B ABM⊥平面,所以1,ABBM ⊥所以异面直线1A B BM和所成的角的大小是.考点:本小题主要考查异面直线所成的角的求解,考查学生的空间想象能力和推理论证能力. 点评:求异面直线所成的角关键是先做出两条异面直线所成的角. 15. 某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 3 4 5 6销售额y (万元) 25 30 40 45根据上表可得回归方程y bx a =+中的b 为7,据此模型预测广告费用为10万元时销售额为______万元.【★答案★】73.5 【解析】 【分析】根据题意求出x ,y ,代入求出回归方程,再将10x =代入,即可得出结果. 【详解】解:由题意可知3456 4.54x +++==,25304045354y +++==.因为回归方程y bx a =+中的b 为7, 所以357 4.5a =⨯+,则 3.5a =. 所以回归方程为7 3.5y x =+.当10x =时,710 3.573.5y =⨯+=.所以广告费用为10万元时销售额为73.5万元. 故★答案★为:73.5.【点睛】本题考查回归方程,考查利用回归方程进行预测,考查运算求解能力,属于基础题.16. 已知椭圆22221(0)x y a b a b +=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 .【★答案★】26[,]23【解析】【详解】∵B 和A 关于原点对称,∴B 也在椭圆上. 设左焦点为1F ,根据椭圆定义:|AF|+|A 1F |=2a 又∵|BF|=|A 1F | ∴|AF|+|BF|=2a ……① O 是Rt△ABF 的斜边中点,∴|AB|=2c 又|AF|=2csinα ……② |BF|=2ccosα ……③将②③代入① 2csinα+2ccosα=2a∴c 1sin cos a αα=+,即11e sin cos 2sin()4πααα==++,∵,124ππα⎡⎤∈⎢⎥⎣⎦,342πππα≤+≤∴32≤2sin()4πα+)≤1,故椭圆离心率的取值范围为26,23⎡⎤⎢⎥⎣⎦三、解答题17. 已知关于x 的二次函数()221f x ax bx =-+,设集合{}1,2,3P =和{}1,1,2,3,4Q =-,分别从集合P 和Q 中随机取一个数作为a 和b ,求函数()y f x =在区间[)2,+∞上是增函数的概率. 【★答案★】1315【解析】 【分析】由二次函数的性质,得到2b a ≤,分类讨论求得所求事件所包含的基本事件的个数,利用古典概型的概率计算公式,即可求解.【详解】由题意,函数()221f x ax bx =-+的图像的对称轴为b x a=, 要使()221f x ax bx =-+在区间[)2,+∞上为增函数,当且仅当0a >且2ba≤,即2b a ≤. 若1a =,则1b =-,1,2; 若2a =,则1b =-,1,2,3,4; 若3a =,则1b =-,1,2,3,4,所以该事件包含基本事件的个数是13,总的基本事件个数为3515⨯=. 所以所求事件的概率为1315p =. 【点睛】本题主要考查了古典概型及其概率的计算,以及二次函数的性质的应用,着重考查了分析问题和解答问题的能力.18. 如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD∥QA,QA =AB =12PD. (1)证明:平面PQC⊥平面DCQ ; (2)求直线D Q 与面PQC 成角的正弦值【★答案★】(1)见解析 (2)33【解析】 【分析】根据题意得以D 为坐标原点,线段DA 的长为单位长,射线DA ,DP,DC 分别为x ,y ,z 轴建立空间直角坐标系D ﹣xyz ;(1)根据坐标系,求出,,DQ DC PQ 的坐标,由向量积的运算易得•PQ DQ =0, •PQ DC =0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;(2)先求平面的PQC 的法向量n ,再求出cos <DQ ,n >,直线D Q 与面PQC 成角的正弦值等于cos <DQ ,n >即可. 【详解】如图,以D 为坐标原点,线段DA 的长为单位长,射线DA ,DP,DC 分别为x ,y ,z 轴建立空间直角坐标系D ﹣xyz ;(1)依题意有Q (1,1,0),C (0,0,1),P (0,2,0),D(0,0,0); 则=(1,1,0),=(0,0,1),=(1,﹣1,0),所以•=0,•=0;即PQ⊥DQ,PQ⊥DC,故PQ⊥平面DCQ ,又PQ ⊂平面PQC ,所以平面PQC⊥平面DCQ ; (2)依题意,=(1,﹣1,0),()0,2,1PC =-设=(x ,y ,z )是平面的PQC 法向量, 则n ?0n ?0PQ PC ⎧=⎨=⎩ 即x-y=0-2y+z=0⎧⎨⎩ ,可取=(1,1,2);=(1,1,0),所以cos <DQ ,n >=2222211112336211211⨯+⨯==⨯++⨯+ 设直线D Q 与面PQC 所成的角为α , sin α =cos <DQ ,n >=33.【点睛】本题考查的是面面垂直的判定和求线面角的正弦值,建立空间坐标系用向量法解决面面垂直的判定与线面角的求法要容易,注意准确写出点的坐标,也考查了计算,属于中档题. 19. 某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段[)40,50,[)50,60…[]90,100后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全频率分布直方图;(2)根据频率分布直方图估计这次考试的及格率(60分及以上为及格)和平均分. 【★答案★】(1)0.3,直方图见解析;(2)及格率为0.75,平均分为71 【解析】 【分析】(1)根据频率分布直方图可得除第四小组外各小组频率,再根据所有频率和为1求第4小组的频率,计算第4小组的对应的矩形的高,补全频率分布直方图;(2)计算60分及以上各小组对应频率和即得及格率,利用组中值计算平均分.【详解】解(1)由频率分布直方图可知第1、2、3、5、6小组的频率分别为:0.1、0.15、0.15、0.25、0.05,所以第4小组的频率为:10.10.150.150.250.050.3-----=. ∴在频率分布直方图中第4小组的对应的矩形的高为0.30.0310=,对应图形如图所示:(2)考试的及格率即60分及以上的频率∴及格率为0.150.30.250.050.75+++= 又由频率分布直方图有平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=.【点睛】本题考查频率分布直方图及其应用,考查基本分析求解能力,属基础题. 20. 选修4-4:坐标系与参数方程 在直角坐标系xOy中,曲线1:{cos ,sin ,Cx t y t αα== (t为参数,且t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin ,3:23cos .CCρθρθ==(Ⅰ)求2C 与3C 交点的直角坐标; (Ⅱ)若1C 与2C 相交于点A,1C与3C相交于点B,求||AB最大值.【★答案★】(Ⅰ)(0,0),(32,32);(Ⅱ)4. 【解析】(Ⅰ)曲线2C的直角坐标方程为2220x yy +-=,曲线3C的直角坐标方程为2223xy x +-=.联立{2220,22230,xyy xyx +-=+-=解得{0,0,x y ==或{32,32,x y ==所以2C与1C 交点的直角坐标为(0,0)和(32,32).(Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为.所以|||2sin 23cos |ABαα=-4|(3)|sin απ=-,当56απ=时,||AB 取得最大值,最大值为4.考点:1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值.21. 如图,四棱锥P ABCD -底面ABCD 为菱形,平面PAD ⊥平面ABCD ,5PA PD ==,6AD =,60DAB ∠=︒,E 为AB 的中点.(1)证明:AC PE ⊥;(2)二面角D PA B --的余弦值. 【★答案★】(1)见解析;(2)49191. 【解析】试题分析:(1)取AD 的中点O ,连接,,OP OE BD ,根据条件可得BD AC ⊥,AC OE ⊥,,PO AC ⊥进而AC ⊥面,POE AC PE ⊥所以;(2)先证OP OA OB 、、两两垂直,以OA OB OP 、、分别为x 轴、y 轴、z 轴建立如图所示的空间直接坐标系O xyz -,OB 为面PAD 的法向量,再求出面PAB 的法向量n ,根据cos ,OB n OB n OB n⋅=求二面角的余弦值即可.试题解析:(1)取AD 的中点O ,连接,,,OP OE BD ABCD 为菱形,BD AC ∴⊥,O E 、分别为,AD AB 的中点,//,OE BD AC OE ∴∴⊥.,PA PD O =为AD 的中点,PO AD ∴⊥,又面PAD ⊥面ABCD ,面PAD ⋂面,ABCD AD PO =∴⊥面ABCD ,,PO AC OE OP O ∴⊥⋂=,AC∴⊥面,POE AC PE∴⊥.(2)连接,OB ABCD∴为菱形,,60AD AB DAB DAB∴=∠=∴∆,为等边三角形,O为AD的中点,BO AD∴⊥,PO⊥面,,ABCD PO OA OP OA OB∴⊥∴、、两两垂直.以OA OB OP、、分别为x轴、y轴、z轴建立如图所示的空间直接坐标系O xyz-,则()()()()3,0,0,0,33,0,0,0,4,0,33,0A B P OB=为面PAD的法向量,设面PAB的法向量()()(),,,3,0,4,3,33,0n x y z AP AB==-=-,则AP nAB n⎧⋅=⎪⎨⋅=⎪⎩即3403330x zx y-+=⎧⎪⎨-+=⎪⎩,取1x=,则13334xyz⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,331,,34n⎛⎫= ⎪⎪⎝⎭,3491cos,9119331316OB nOB nOB n⋅===⋅++,结合图形可知二面角D PA B--的余弦值为49191.22. 已知抛物线C:22y px=的焦点为F,准线为l,三个点(2,22)P,(2,22)Q-,(3,25)R中恰有两个点在C上.(1)求抛物线C的标准方程;(2)过F的直线交C于A,B两点,点M为l上任意一点,证明:直线MA,MF,MB的斜率成等差数列.【★答案★】(1) 24y x = (2)见解析 【解析】【详解】(I )因为抛物线C :22y px =关于x 轴对称,所以()()()2,22,2,22,3,25P Q R -中只能是()()2,22,2,22P Q -两点在C 上,带入坐标易得2p =,所以抛物线C 的标准方程为24y x =(II )证明:抛物线的焦点F 的坐标为()1,0,准线l 的方程为1x =-. 设直线AB 的方程为1x ty =+,()()()1122,,,,1,A x y B x y M m -.由214x ty y x=+⎧⎨=⎩,可得2440y ty --=,所以12124,4y y t y y +==-, 于是()21212242x x t y y t +=++=+,()()()2121212121111x x ty ty t y y t y y =++=+++=设直线,,MA MF MB 的斜率分别为,,MA MF MB k k k , 一方面,()()()()2112121212121221111MA MB x y x y y y m x x my m y m k k x x x x +++-+---+=+=++++ ()()()()()()211212*********ty y ty y y y mt y y mty ty +++++-+-=++()()()12122121222224ty y mt y y mt y y t y y +-+-=+++ ()()224141m t m t -+==-+.另一方面,2MF m k =-. 所以2MA MB MF k k k +=,即直线,,MA MF MB 的斜率成等差数列感谢您的下载!快乐分享,知识无限!。
2020高中高二数学上学期(理)上学期数学寒假作业12 Word版含答案
2. 解析 据题意令S=1+++…+=1+1-+-+…+-=2-,令S=2-=,解得k=6,故判断框应填入k>6.
答案 B
3.解析 当a=4时,第一次P=0+40=1,Q=3,n=1,
第二次P=1+41=5,Q=7,n=2,
第三次P=5+42=21,Q=15,n=3,
此时P≤Q不成立,输出n=3,选B.
解析 要使x2-4bx+3b<0成立,只要方程x2-4bx+3b=0有两个不相等的实根,即判别式Δ=16b2-12b>0,解得b<0或b>.
8. 【解析】y=x2-x+1=(x-)2+,
∵x∈[,2],∴≤y≤2,
∴A={y|≤y≤2},
由x+m2≥1,得x≥1-m2,
∴B={x|x≥1-m2},
∵“x∈A”是“x∈B”的充分条件,∴A⊆B,
2020高中高二数学上学期(理)上学期数学寒假作业12 Word版含答案
编 辑:__________________
时 间:__________________
20xx最新高中高二数学上学期(理)上学期数学寒假作业12 Word版含答案
1.阅读如图所示的程序框图,输出的S值为( ).
A.0B.1+ C.1+D.-1
B.若函数f(x)=ln的图象关于原点对称,则a=3
C.∃x∈R,使得sin x+cos x=成立
D.已知x∈R,则“x>1”是“x>2”的充分不必要条件
5.命题“x0∈R,使得+2x0+5=0”的否定是____________________
6.已知命题p:∃a0∈R,曲线x2+=1为双曲线;命题q:x2-7x+12<0的解集是{x|3<x<4}.给出下列结论:①命题“p∧q”是真命题;②命题“p∧非q”是假命题;③命题 “非p∨q”是真命题;④命题“非p∨非q”是假命题.其中正确的是________.
2019-2020年高二上学期第三次月考 理科数学 含答案
2019-2020年高二上学期第三次月考 理科数学 含答案时间120分 满分150分;命题:高二年级数学备课组 审题:高二年级数学备课组一、选择题:(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在括号内) 1.若复数是纯虚数,则实数的值为 ( )A . 1B .2C .1或2D .-1 2.已知是不相等的正数,,,则,的关系是( )A. B. C. D.不确定 3.用反证法证明命题:“三角形的内角中至少有一个不大于”时,反设正确的是 ( )A .假设三内角都不大于B .假设三内角都大于C .假设三内角至多有一个大于D .假设三内角至多有两个大于 4. 双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m =( )A .-B .-4C .4D .5.命题:直线与圆恰有一个公共点,命题:为直角三角形的三条边,则是的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.已知点P 为抛物线y 2=4x 上一点,设P 到此抛物线的准线的距离为d 1,到直线x +2y+10=0 的距离为d 2,则d 1+d 2的最小值为 ( ) A . B . C . D . 7.点是等腰三角形所在平面外一点,ABC PA ABC PA ∆=⊥,在,平面8 中,底边BC P AB BC 到,则,56==的距离为 ( )A .B .C .D .8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是 ( ) ①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等. A .① B .①② C .③ D .①②③9.(零班同学做)设曲线在点 处的切线与轴的交点横坐标为,则20141201422014320142013log log log log x x x x +++L L 的值为 ( ) DA .B .C .D .(非零班同学做)已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为 ( )A .B .C .D .10.设双曲线的半焦距为C ,直线L 过两点,已知原点到直线L 的距离为,则双曲线的离心率为 ( ) A .2 B .2或 C . D .二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上.11.已知命题函数在上单调递增;命题不等式的解集是.若且为真命题,则实数的取值范围是______.12.设动点P 是抛物线y=2x 2+1上任意一点,定点A (0,1),点M 分所成的比为2,则点M 的轨迹方程是.13.(零班同学做)已知三次函数3221()(41)(1527)23f x x m x m m x =--+--+在上是增函数,则的取值范围为 .(非零班同学做)由数列的前四项: ,1 , ,,……归纳出通项公式a n =___ .14.一个几何体的三视图如图所示,则该几何体的表面积为______________。
最新重庆市第一中学2019-2020学年高二上学期数学(理)期中试题(有详细答案)
重庆市第一中学 2019-2020学年上学期期中试题高二数学理科第Ⅰ卷(共 60分)一、选择题:本大题共 12个小题,每小题 5分,共 60分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.直线 x 3y3 0的倾斜角为( )A .30°B .60°C .120°D .150°2.3个班分别从 5个风景区中选择一处游览,不同选法的种数是( )3 A . 5 5 B . 3C . A 3 5D .C35 3. 对任意的实数m ,直线 xmy 1与圆 x y 4 的位置关系一定是(2 2 )A . 相切B .相交且直线过圆心D . 相离C .相交且直线不过圆心 x 2 y 21的左、右焦点分别为F , F ,过左焦点 的直线交椭圆于 A B 两点,则 F ,4. 已知椭圆方程为9 41 2 1 ABF 的周长为( )2A .12B .9 C.6 D .4x 2 y 21 m 5. 若方程表示焦点在 y 轴上的双曲线,则实数 的取值范围为( )m 1 mA . mB .0 m mD .1 mC. x 2 y 2521 F , F ,点 P 在椭圆上,若 PF PF PF PF 6.设椭圆A .2 的左右焦点分别为 ,则 ()4 31 2 1 2 1 27C.9 2B .3D .21n1 nN2x7. 在 xn的二项展开式中,若只有第 4项的二项式系数最大,则 的二项展开式x中的常数项为( ) A .960B .-160C. -560D .-9608. 已知棱长为 1的正方体的俯视图是一个面积为 1的正方形,则该正方体的正视图的面积不可能为( )2 1 2 1 2A .1B . C.D .2 2x 2 y 21 , 的右支上一点,M N 分别是圆x y 10x 21 0 9. P 是双曲线2 2 和 9 16 x 2 y 2 10x 24 0 上的点,则 P M P N 的最大值为()A .6B .7 C. 8 D .910. (原创)4个男生 4个女生站成一排,要求相邻两人性别不同且男生甲与女生乙相邻,则这样的站法有 ()A . 576种B .504种C. 288种D .252种x y x 2 2 P x ,y 在椭圆 1 x y y 4 4 11. (原创)已知点 上运动,设d 2 2 ,则d 的最小值为4 32( )5 2 B .2 2 15 16 1D .A . C.: x 1 y 2 r l 12. (原创)已知直线l 与坐标轴不垂直且横、纵截距相等,圆C 2 2 2 ,若直线 和圆C 相切,且满足条件的直线 恰好有三条,则圆的半径 的取值集合为(l)r1, 52 2 2 5, 1, 5, 1,2, 5, A . B .C.D .2 2 2第Ⅱ卷(共 90分)二、填空题(每题 5分,满分 20分,将答案填在答题纸上) 2x 13.抛物线 y 的焦点到准线的距离为.2x 1,y 1 0, y 2 的最小值是 14.已知x ,则 x.2 2x y 2 015.(原创)将编号 1,2,3,4,5的小球放入编号 1,2,3,4,5的盒子中,每个盒子放一个小球,则至多有两个 小球的编号与盒子的编号相同的放法共有种.16. (原创)已知双曲线C 的右焦点为 F ,过 F 的直线l 与双曲线C 交于不同两点 A、BA 、B ,且 两点.间的距离恰好等于焦距,若这样的直线l 有且仅有两条,则双曲线C 的离心率的取值范围为 三、解答题 (本大题共 6小题,共 70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分 12分)ABC 中,点 AB C . 1,2 , 1,3 , 3,3(1)求 AC 边上的高所在直线的方程; (2)求 AB 边上的中线的长度.2xx 1 1 2x a a x a x a x 6 18. (本小题满分 12分)已知 2 2 8 .128(1)求a ;22a a aaa a a(2)求 a2.24681357 1,2xy 6A, B交于两点19. (本小题满分 12分)已知过点 P的直线l 和圆 2 2(1)若点 P 恰好为线段 AB 的中点,求直线l 的方程; 2 5 (2)若 AB,求直线 的方程.ly 25x上的动点,点 D 是 P 在 轴上投影, M 为线段 PD 上一20. (本小题满分 12 分)设 P 是圆 x 22 4PD 点,且 M D .5(1)当 P 在圆上运动时,求点M 的轨迹C 的方程;4F3,0 ABF,3,0 , B (2)过点 且斜率为 的直线交轨迹C 于 A两点,若点 求的面积.5p: y2px p 0l : 4x 3y 6 0 和直线l : x 221. (本小题满分 12 分)已知直线,若抛物线C 221上的点到直线l 和直线l 的距离之和的最小值为 2.12(1)求抛物线C 的方程;k x 3 (2)在抛物线C 上恒有两点关于直线 y 对称,求 的取值范围.kxy b 2 2 : 1 a b 0 F , F,动点P22. (原创)(本小题满分 10 分)已知椭圆T 的左、右焦点分别为 a 2 2 1 2 PF 在椭圆上运动, PF 的最大值为 25,且点 P 到 F 的距离的最小值为 1.121(1)求椭圆T 的方程;3 R 5 )于 点 B ,求 A B: xy R 、 (2)直线l 与椭圆T 有且仅有一个交点 A ,且l 切圆 M 两点间的距离 AB 的最大值;2(其中 2 210,1 、的动直线与椭圆T 相交于两不同点G H 时,在线段G H 上取一点 D ,满足(3)当过点CG C HD = G D CH ,求证:点 D 在定直线上.试卷答案一、选择题1-5: DBCAA二、填空题6-10: CBCDB 11、12:AD1+171,2,+13. 1 14. 5 15. 109 16.4三、解答题2112C 14C 7418. 解:(1)分析项的构成,知:a.16226a a a a a a a a a a a,(2)原式= a1238123456781a 1,令x令x令x,得=2=1a a a,a8a8,得a a a a01231231=2916,得a a a a a a a a a012345678a a a a a a a a=291512345678从而原式=2915.19. 解:(1)易知圆心为原点O,由已知O P l,所以k k 1,而k 2,解出O P l O P 1k ,由点斜式可得直线的方程为:x 2y 502l251;(2)当直线的斜率不存在时刚好满足AB,此时直线方程为xl2k x 1kx y 2k 0若直线斜率存在,设为y,整理为d22r 1由垂径定理圆心到直线的距离h22k31,解出k ,此时直线的方程为3x 4y 50所以h4k2113x 4y 50或.综上可知满足条件的直线方程为:xx2y2120. 解:(1).25164 415 : y x 3 AB 1 k x x (2)直线 AB ,弦长 , 2 5 1 2 241 12 41 5 d AB d 点 F 到 AB 的距离为 ,故 S .2 4121. 解:(1)由抛物线的定义知:距离之和的最小值为点F 到直线 的距离,故l 12p 62 p 2 y 4x .,从而抛物线的方程为 2 5 , y ,B x , y y k x 3对称,故可设直线 AB :x k y m y (2)设 A x 关于直线.代入 1122y 1y 4x 得 y 4ky 4m 0 .设 AB 的中点为 M x , y ,则 y 2k ,所以22 22 0 0 0xk y m 2k m .因为点 M x , y 在 y kx 3上,则2k k 2k 2 m 3 2 .即 00 02k 2k 33 m.又 AB 与抛物线有两个不同的交点,故 16k 16m 0 .将 m 代入上 2 k k 2k 3 k 1,0.3 0 k k 1 k k 3 0 1 k 0 式得2 ,故k 的取值范围为 k PF PF222. 解:(1)由于 PF PFa 2 ,所以 PF PF的最大值为a 2 , 1 2 2 121 2PF a25 时取等号,由已知可得 25 ,又a cc , 1 4 当 PF,即 a 1 2 x y 2 2 b a c 9 ,故椭圆的方程为 1 .所以 22 2 25 9 , y ,B x , y (2)设 A x 分别为直线 与椭圆和圆的切点,设直线 AB 的方程为l1122x y 2 21y kx m .因为 A 既在椭圆上,又在直线 AB 上,从而有25 9 ,消 y 得y kx m25k 9 x 50kmx 25 m 9 0 2 2 2 .由于直线与椭圆相切,故,50km4 25k 9 25 m9 0 2 2 2,25k9 25k x 1 从而可得m 2 ①,且 ②.2mx y R2 2 21 x 2kmx m R 0 由 ,消 y 得 k2 2 2 2 .由于直线与椭圆相切,得 k x m y kR 2mmR1 k ③,且 x 222④. 2R 92由①③得 k 2,故 AB 2 x x2yy2225 R 22 1212 12k 25 R 225R 2 2 2R 29 225 m 2 R 225 9 R2 m 2R 2 25 R 2R 2225 34 2 R 34 30 4 2.,即 AB 2R 215 AB 的最大值为 2. 当且仅当 R (3)设G、H 、DG C时取等号,所以 , , , ,, x y ,由题设知 G C H D G D C H , , ,的坐标分别为 x y x y 1122G D D H0 且四点共线,则1,又C 、G 、D 、H均不为零,记,则 C Hx xx x 10 x y 1 2 1 2 1 1G C = C H G D D H .于是 , 且.从而 y y y y 1 1 2 1211 x x2 2 2 10x 1 2 9 25 925 x 1 22 1 y 2 1 .又G 、H 在椭圆上,则 , , , ,消去 x y x y 得 9x 25y 925 y 1 1 2 2 y 2 2 2 2 2 y 122 21 290x 25y 925 18x 5y 45 0 ,即点 在定直线 D上.。
2019-2020年高二上学期入学数学(理)试卷 含解析
2019-2020年高二上学期入学数学(理)试卷含解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.集合A={0,1,2},B={x|﹣1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}2.采用系统抽样的方法从2005个个体中抽取一个容量为50的样本,则抽样间隔和随机剔除的个体数分别为( )A.40,5B.50,5C.5,40D.5,503.在△ABC中,=,设=,=,则向量=( )A.+B.+C.﹣D.﹣+4.三个数50.6,0.65,log0.65的大小顺序是( )A.0.65<log0.65<50.6B.0.65<50.6<log0.65C.log0.65<0.65<50.6D.log0.65<50.6<0.655.已知x、y取值如表:画散点图分析可知:y与x线性相关,且求得回归方程为=x+1,则m的值(精确到0.1)为( )A.1.5B.1.6C.1.7D.1.86.程序框图如下:如果上述程序运行的结果为S=132,那么判断框中应填入( )A.k≤10B.k≥10C.k≤11D.k≥117.袋中共有6个大小质地完全相同的小球,其中有2个红球、1个白球和3个黑球,从袋中任取两球,至少有一个黑球的概率为( )A.B.C.D.8.若一个底面是正三角形的三棱柱的主视图如图所示,则其表面积为( )A.6+2B.6+C.6+4D.109.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到g (x)=sin2x的图象,则只需将f(x)的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向右平移个长度单位D.向左平移个长度单位10.已知直线x+y=2a与圆x2+y2=4交于A,B两点,O是坐标原点,向量,满足|+|=|﹣|,则实数a的值为( )A.2B.2或﹣2C.1或﹣1D.或11.定义在R上的偶函数满足f(x+2)=f(x)且f(x)在[﹣3,﹣2]上为减函数,若α,β是锐角三角形的两个内角,则( )A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)>f(sinβ)D.f(cosα)>f(cosβ)12.已知函数y=f(x)是R上的奇函数,且x>0时,f(x)=lg(x),若g(x)=sinπx,则函数y=f(x﹣2)与y=g(x)图象所有公共点的横坐标之和为( )A.10B.12C.20D.22二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数,则f(f(﹣1))的值等于__________.14.在区间(0,6)上随机取一个数x,log2x的值介于0到2之间的概率为__________.15.已知sinα=﹣cosα,则的值为__________.16.在Rt△ABC中,CA=CB=2,M,N是斜边AB上的两个动点,且MN=,则•的取值范围为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知直线l1:ax﹣y﹣2=0经过圆C:x2+y2+4x﹣12y+24=0的圆心(1)求a的值;(2)求经过圆心C且与直线l:x﹣4y+1=0平行的直线l2的方程.18.已知函数f(x)=的定义域为集合A,函数g(x)=()x,(﹣1≤x≤0)的值域为集合B.(1)求A∩B;(2)若集合C={x|a≤x≤2a﹣1},且C∩B=C,求实数a的取值范围.19.如图的多面体中,ABCD为矩形,且AD⊥平面ABE,AE=EB=BC=2,F为CE的中点,AE⊥BE.(1)求证:AE∥平面BFD;(2)求三棱锥E﹣BDC的体积.20.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高三(1)班全体女生的人数;(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100)之间的试卷中任取两份分析女学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.21.已知向量=(cosωx,1),=(2sin(ωx+),﹣1)(其中≤ω≤),函数f(x)=•,且f(x)图象的一条对称轴为x=.(1)求f(π)的值;(2)若f()=,f(﹣)=,且,求cos(α﹣β)的值.22.已知函数f(x)=2x2﹣3x+1,g(x)=ksin(x﹣),(k≠0).(1)问α取何值时,方程f(sinx)=α﹣sinx在[0,2π]上有两解;(2)若对任意的x1∈[0,3],总存在x2∈[0,3],使f(x1)=g(x2)成立,求实数k的取值范围?2015-2016学年江西省宜春中学高二(上)入学数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.集合A={0,1,2},B={x|﹣1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}考点:交集及其运算.专题:计算题.分析:直接根据交集的定义即可求解.解答:解:∵A={0,1,2},B={x|﹣1<x<2}∴A∩B={0,1}故选C点评:本题主要考查了交集的定义,属常考题型,较易.解题的关键是透彻理解交集的定义,但此题一定要注意集合A是孤立的点集否则极易出错!2.采用系统抽样的方法从2005个个体中抽取一个容量为50的样本,则抽样间隔和随机剔除的个体数分别为( )A.40,5B.50,5C.5,40D.5,50考点:系统抽样方法.专题:概率与统计.分析:根据的整数值是系统抽样的抽样间隔,余数是应随机剔除的个体数,即可得出答案.解答:解:∵2005÷50=40余5,∴用系统抽样法从2005个个体中抽取一个容量为50的样本,抽样间隔是40,且应随机剔除的个体数为5.故选:A.点评:本题考查了系统抽样方法的应用问题,是基础题目.3.在△ABC中,=,设=,=,则向量=( )A.+B.+C.﹣D.﹣+考点:向量的线性运算性质及几何意义.专题:平面向量及应用.分析:将向量利用三角形法则用=,=表示,整理即可.解答:解:=;故选A.点评:本题考查了平面向量的三角形法则;熟练法则的运用是关键;属于基础题.4.三个数50.6,0.65,log0.65的大小顺序是( )A.0.65<log0.65<50.6B.0.65<50.6<log0.65C.log0.65<0.65<50.6D.log0.65<50.6<0.65考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数函数与对数函数的单调性即可得出.解答:解:∵50.6>1>0.65>0>log0.65,∴50.6>0.65>log0.65,故选:C.点评:本题考查了指数函数与对数函数的单调性,属于基础题.5.已知x、y取值如表:画散点图分析可知:y与x线性相关,且求得回归方程为=x+1,则m的值(精确到0.1)为( )A.1.5B.1.6C.1.7D.1.8考点:线性回归方程.专题:计算题;概率与统计.分析:将代入回归方程为可得,则4m=6.7,即可得出结论.解答:解:将代入回归方程为可得,则4m=6.7,解得m=1.675,即精确到0.1后m的值为1.7.故选:C.点评:本题考查线性回归方程,考查学生的计算能力,属于基础题.6.程序框图如下:如果上述程序运行的结果为S=132,那么判断框中应填入( )A.k≤10B.k≥10C.k≤11D.k≥11考点:循环结构.专题:规律型.分析:经过第一次循环得到的结果,判断是否是输出的结果,不是说明k的值满足判断框的条件;经过第二次循环得到的结果,是需要输出的结果,说明k的值不满足判断框中的条件.得到判断框中的条件.解答:解:当k=12,S=1,应该满足判断框的条件;经过第一次循环得到S=1×12=12,k=12﹣1=11应该满足判断框的条件;经过第二次循环得到S=12×11=132,k=11﹣1=10,应该输出S,此时应该不满足判断框的条件,即k=10不满足判断框的条件.所以判断框中的条件是k≥11故选D点评:本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,从中找到规律.7.袋中共有6个大小质地完全相同的小球,其中有2个红球、1个白球和3个黑球,从袋中任取两球,至少有一个黑球的概率为( )A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:从口袋中6个小球中随机摸出2个小球,共有10种选法,则没有黑球只有3种,根据互斥事件的概率公式计算即可解答:解:从口袋中6个小球中随机摸出2个小球,共有C62=15种选法,则没有黑球C32=3种,∴每个小球被抽到的机会均等,从袋中任取两球,至少有一个黑球的概率为1﹣=,故选:D.点评:本题考查了古典概型的概率计算公式和组合数的计算公式,属于基础题.8.若一个底面是正三角形的三棱柱的主视图如图所示,则其表面积为( )A.6+2B.6+C.6+4D.10考点:简单空间图形的三视图.专题:空间位置关系与距离.分析:根据几何体的三视图,得出该几何体的结构特征是什么,求出它的表面积即可.解答:解:根据几何体的三视图,得出该几何体是底面为边长等于2的正三角形,高为1的正三棱柱,∴它的表面积为3×2×1+2××22×=6+2.故选:A.点评:本题考查了空间几何体的三视图的应用问题,是基础题目.9.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到g (x)=sin2x的图象,则只需将f(x)的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向右平移个长度单位D.向左平移个长度单位考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再根据y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:由函数f(x)=Asin(ωx+φ)的图象可得A=1,根据==﹣,求得ω=2,再根据五点法作图可得2×+φ=π,求得φ=,∴f(x)=sin(2x+)=sin2(x+),故把f(x)的图象向右平移个长度单位,可得g(x)=sin2x的图象,故选:C.点评:本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,y=Asin(ωx+φ)的图象变换规律,属于基础题.10.已知直线x+y=2a与圆x2+y2=4交于A,B两点,O是坐标原点,向量,满足|+|=|﹣|,则实数a的值为( )A.2B.2或﹣2C.1或﹣1D.或考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据|+|=|﹣|,得即,如图所示故圆心到直线的距离d=,可求得a=±1.解答:解:∵|+|=|﹣|,两边平方,得=0,即,如图所示故圆心(0,0)到直线x﹣y﹣2a=0的距离d==,求得a=±1.故选:C.点评:本题考查了直线与圆相交的性质,熟练正确运用已知条件以及点到直线的距离是解决此问题的关键.11.定义在R上的偶函数满足f(x+2)=f(x)且f(x)在[﹣3,﹣2]上为减函数,若α,β是锐角三角形的两个内角,则( )A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)>f(sinβ)D.f(cosα)>f(cosβ)考点:奇偶性与单调性的综合;抽象函数及其应用.专题:函数的性质及应用.分析:由f(x+2)=f(x)得函数的周期为2,然后利用函数的周期和奇偶性进行判断.解答:解:由f(x+2)=f(x),所以函数的周期为2,因为f(x)在[﹣3,﹣2]上为减函数,所以f(x)在[﹣1,0]上为减函数,因为f(x)为偶函数,所以f(x)在[0,1]上为单调增函数.因为在锐角三角形中,π﹣α﹣β<,所以,所以>0,所以,因为f(x)在[0,1]上为单调增函数.所以f(sinα)>f(cosβ),故选A.点评:本题主要考查了函数的奇偶性和周期性的应用,以及三角函数的图象和性质,综合性较强,涉及的知识点较多.12.已知函数y=f(x)是R上的奇函数,且x>0时,f(x)=lg(x),若g(x)=sinπx,则函数y=f(x﹣2)与y=g(x)图象所有公共点的横坐标之和为( )A.10B.12C.20D.22考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由已知中函数y=f(x)是R上的奇函数,且x>0时,f(x)=lg(x),在同一坐标系中画出函数y=f(x﹣2)与y=g(x)图象,结合函数图象的对称性,可得答案.解答:解:由已知中函数y=f(x)是R上的奇函数,且x>0时,f(x)=lg(x),故函数y=f(x)的图象如下图所示:在同一坐标系中画出函数y=f(x﹣2)与y=g(x)图象,如下图所示:结合函数图象可得:函数y=f(x﹣2)与y=g(x)图象共有十一个交点,且这些交点有十组两两关于(2,0)点对称,另外一个就是(2,0)点,故函数y=f(x﹣2)与y=g(x)图象所有公共点的横坐标之和为22,故选:D点评:发现两个图象公共的对称中心是解决本题的入口,画出函数y=f(x﹣2)的图象是本题的难点所在.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数,则f(f(﹣1))的值等于﹣1.考点:函数的值.专题:函数的性质及应用.分析:首先求出f(﹣1),对其函数值当作自变量,再求函数值.解答:解:由已知f(﹣1)=,f()==﹣1;故f(f(﹣1))=﹣1;故答案为:﹣1.点评:本题考查了分段函数的函数值求法;关键是明确自变量所属的范围,代入对应的解析式求值.14.在区间(0,6)上随机取一个数x,log2x的值介于0到2之间的概率为.考点:几何概型.专题:计算题;概率与统计.分析:本题利用几何概型求概率.先解对数不等式0≤log2x≤2,再利用解得的区间长度与区间(0,6)的长度求比值即得.解答:解:利用几何概型,其测度为线段的长度.∵0≤log2x≤2得1≤x≤4,∴log2x的值介于0到2之间的概率为:P(log2x的值介于0到2之间)==.故答案为:.点评:本题主要考查了与长度有关的几何概型的求解,属于基础试题.15.已知sinα=﹣cosα,则的值为﹣.考点:三角函数的化简求值.专题:三角函数的求值.分析:已知可化为sinα+cosα=,由三角函数公式可得=﹣(sinα+cosα),代值计算可得.解答:解:===﹣(sinα+cosα),∵sinα=﹣cosα,∴sinα+cosα=,∴原式=﹣(sinα+cosα)=﹣,故答案为:﹣.点评:本题考查三角函数化简求值,涉及二倍角公式和和差角的三角函数,属基础题.16.在Rt△ABC中,CA=CB=2,M,N是斜边AB上的两个动点,且MN=,则•的取值范围为[,2].考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将•=2(b ﹣1)2,0≤b≤1,求出范围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(2,0),B(0,2),∴AB所在直线的方程为:,则y=2﹣x,设M(a,2﹣a),N(b,2﹣b),且0≤a≤2,0≤b≤2不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤1∴•=(a,2﹣a)•(b,2﹣b)=2ab﹣2(a+b)+4=2(b2﹣b+1),0≤b≤1∴当b=0或b=1时有最大值2;当b=时有最小值∴•的取值范围为[,2]故答案为[,2]点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知直线l1:ax﹣y﹣2=0经过圆C:x2+y2+4x﹣12y+24=0的圆心(1)求a的值;(2)求经过圆心C且与直线l:x﹣4y+1=0平行的直线l2的方程.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:(1)将圆心(﹣2,6)代入得直线l1,得a的值;(2)设所求直线方程x﹣4y+n=0C(﹣2,6)点在直线x﹣4y+n=0上,得n,即可得出结论.解答:解:(1)将圆心(﹣2,6)代入得直线l1,得a=﹣4;(2)设所求直线方程x﹣4y+n=0,C(﹣2,6)点在直线x﹣4y+n=0上,得n=26,故所求直线l2方程为:x﹣4y+26=0.点评:本题考查直线与圆的位置关系,考查学生的计算能力,属于中档题.18.已知函数f(x)=的定义域为集合A,函数g(x)=()x,(﹣1≤x≤0)的值域为集合B.(1)求A∩B;(2)若集合C={x|a≤x≤2a﹣1},且C∩B=C,求实数a的取值范围.考点:集合的包含关系判断及应用;交集及其运算.专题:集合.分析:(1)要使函数f(x)=有意义,则log 2(x﹣1)≥0,利用对数的单调性可得x的范围,即可得到其定义域为集合A;对于函数g(x)=()x,由于﹣1≤x≤0,利用指数函数的单调性可得≤,即可得出其值域为集合B.利用交集运算性质可得A∩B.(2)由于C∩B=C,可得C⊆B.分类讨论:对C=∅与C≠∅,利用集合之间的关系即可得出.解答:解:(1)要使函数f(x)=有意义,则log 2(x﹣1)≥0,解得x≥2,∴其定义域为集合A=[2,+∞);对于函数g(x)=()x,∵﹣1≤x≤0,∴≤,化为1≤g(x)≤2,其值域为集合B=[1,2].∴A∩B={2}.(2)∵C∩B=C,∴C⊆B.当2a﹣1<a时,即a<1时,C=∅,满足条件;当2a﹣1≥a时,即a≥1时,要使C⊆B,则,解得.综上可得:a∈.点评:本题考查了函数的单调性、集合的运算性质,考查了推理能力与计算能力,属于中档题.19.如图的多面体中,ABCD为矩形,且AD⊥平面ABE,AE=EB=BC=2,F为CE的中点,AE⊥BE.(1)求证:AE∥平面BFD;(2)求三棱锥E﹣BDC的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(1)根据线面平行的判定定理即可证明AE∥平面BDF;(2)取AB的中点O,连接EO,则EO⊥平面ABCD,EO=,即可求三棱锥E﹣BDC的体积.解答:(1)证明:设AC∩BD=G,连接FG,易知G是AC的中点,∵F是EC中点.∴在△ACE中,FG∥AE,∵AE⊄平面BFD,FG⊂平面BFD,∴AE∥平面BFD.(2)解:取AB的中点O,连接EO,则EO⊥平面ABCD,EO=,∴三棱锥E﹣BDC的体积==.点评:本题主要考查空间平行的位置关系的判断,考查三棱锥的体积,正确运用线面平行的判定定理是关键.20.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高三(1)班全体女生的人数;(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100)之间的试卷中任取两份分析女学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(1)根据条件所给的茎叶图看出分数在[50,60)之间的频数,由频率分布直方图看出分数在[50,60)之间的频率,根据频率、频数和样本容量之间的关系解出样本容量.(2)算出分数在[80,90)之间的人数,算出分数在[80,90)之间的频率,根据小矩形的面积是这一段数据的频率,做出矩形的高.(3)由题意知本题是一个古典概型,试验包含的所有事件可以通过列举得到结果数,看出满足条件的事件数,根据古典概型公式得到结果.解答:解:(1)由茎叶图知:分数在[50,60)之间的频数为2.由频率分布直方图知:分数在[50,60)之间的频率为0.008×10=0.08.∴全班人数为=25人.(2)∵分数在[80,90)之间的人数为25﹣2﹣7﹣10﹣2=4人∴分数在[80,90)之间的频率为=0.16,∴频率分布直方图中[80,90)间的矩形的高为=0.016.(3)将[80,90)之间的4个分数编号为1,2,3,4;[90,100]之间的2个分数编号为5,6.则在[80,100]之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.至少有一个在[90,100]之间的基本事件有(1,5)(1,6)(2,5)(2,6)(3,5)(3,6)(4,5)(4,6)(5,6)共9个,∴至少有一份分数在[90,100]之间的概率是.点评:这是一个统计综合题,频数、频率和样本容量三者之间的关系是知二求一,这种问题会出现在选择和填空中,有的省份也会以大题的形式出现,把它融于统计问题中.21.已知向量=(cosωx,1),=(2sin(ωx+),﹣1)(其中≤ω≤),函数f(x)=•,且f(x)图象的一条对称轴为x=.(1)求f(π)的值;(2)若f()=,f(﹣)=,且,求cos(α﹣β)的值.考点:三角函数中的恒等变换应用;平面向量数量积的运算.专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(1)根据向量的数量积公式,倍角公式,辅助角公式,化简函数的解析式,结合f(x)图象的一条对称轴为x=,求出ω=1,代入可得f(π)的值;(2)若f()=,f(﹣)=,且,可得α,β的余弦值,代入差角的余弦公式,可得答案.解答:解:(1)∵向量=(cosωx,1),=(2sin(ωx+),﹣1)=((sinωx+cosωx),﹣1)∴函数f(x)=•=2cosωx(sinωx+cosωx)﹣1=2sinωxcosωx+2cos2ωx﹣1=sin2ωx+cos2ωx=sin(2ωx+),∵f(x)图象的一条对称轴为x=.∴2ω×+=+kπ,(k∈Z).又由≤ω≤,∴ω=1,∴f(x)=sin(2x+),∴f(π)=sin(2×π+)=﹣cos=﹣1,(2)∵f()=,f(﹣)=,∴sinα=,sinβ=,∵,∴cosα=,cosβ=,∴cos(α﹣β)=cosαcosβ+sinαsinβ=.点评:本题考查的知识点是三角函数中的恒等变换应用,正弦函数的图象和性质,数量积公式,倍角公式,辅助角公式,两角差的余弦公式,难度中档.22.已知函数f(x)=2x2﹣3x+1,g(x)=ksin(x﹣),(k≠0).(1)问α取何值时,方程f(sinx)=α﹣sinx在[0,2π]上有两解;(2)若对任意的x1∈[0,3],总存在x2∈[0,3],使f(x1)=g(x2)成立,求实数k的取值范围?考点:复合三角函数的单调性;函数最值的应用.专题:函数的性质及应用.分析:(1)2sin2x﹣3sinx+1=a﹣sinx化为2sin2x﹣2sinx+1=a在[0,2π]上有两解令t=sinx则2t2﹣2t+1=a在[﹣1,1]上解的情况可结合两函数图象的交点情况讨论;(2)据题意有f(x1)的值域是g(x2)值域的子集,先求f(x1)值域,然后分类讨论,求出g(x2)值域,建立关于k的不等式,可求k的范围.解答:解:(1)2sin2x﹣3sinx+1=a﹣sinx化为2sin2x﹣2sinx+1﹣a=0在[0,2π]上有两解,令sinx=t,h(t)=2t2﹣2t+1﹣a,则方程f(sinx)=α﹣sinx在[0,2π]上有两解相当于:h(t)=2t2﹣2t+1﹣α在[﹣1,1]上有两解或一解,两解的情况是:h(﹣1)=h(1)=0;当t∈(﹣1,1)时,h(t)=0有一个解;则有:,解得:<α≤1,故α的取值范围为(,1].(2)当x1∈[0,3]时,f(x1)值域为[],当x2∈[0,3]时,x2﹣∈[﹣,3﹣],有sin(x2﹣)∈[﹣,1]①当k>0时,g(x2)值域为[﹣,k]②当k<0时,g(x2)值域为[k,﹣]而依据题意有f(x1)的值域是g(x2)值域的子集∴或∴k≥10或k≤﹣20.点评:本题考查复合函数的单调性,考查学生分析解决问题的能力,体现了化归与转化思想的应用,方程与函数的思想的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.-2 或 12
B.2 或-12
C.-2 或-12
D.2 或 12
9.已知双曲线
x2 4
ቤተ መጻሕፍቲ ባይዱ
y2 b2
=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲
线的两条渐近线相交于 A,B,C,D 四点,四边形 ABCD 的面积为 2b,则双曲线的方程为
A. x2 3y2 =1 44
B. x2 4 y2 =1 43
2 2
y2 b2
1(a
b
0) 的焦距为 2
3 ,椭圆 C 与圆 (x
3)2 y2 16 交
于 M,N 两点,且 MN 4 ,则椭圆 C 的方程为( )
A. x2 y2 1 15 12
B. x2 y2 1 12 9
C. x2 y2 1 63
D. x2 y2 1 96
12.已知直线 y k x 2k 0 与抛物线 C : y2 8x 相交于 A , B 两点, F 为 C 的焦
22.已知椭圆
的长轴长为 4,焦距为
(Ⅰ)求椭圆 的方程;
(Ⅱ)过动点
的直线交 轴与点 ,交 于点 ( 在第一象限),且 是线段
的中点.过点 作 轴的垂线交 于另一点 ,延长 交 于点 .
(ⅰ)设直线
的斜率分别为 ,证明 为定值;
(ⅱ)求直线 的斜率的最小值.
试卷第 4页,总 4页
一、单选题
高二年级数学假期作业(3)
一、单选题
高二年级数学假期作业(3)
命题:
审题:
1.若双曲线
的左、右焦点分别为 ,点 在双曲线 上,且
,则
等于( )
A.11
B.9
C.5
2.点 A3, 2,1 关于 xOy 平面的对称点为( )
D.3
A. 3, 2, 1 B. 3, 2,1
C. 3, 2,1
D. 3, 2, 1
3.已知直线 l 经过点 P(2, 5) ,且斜率为 3 ,则直线 l 的方程为 4
(1)求过 M 点的圆的切线方程; (2)若过 M 点的直线与圆相交,截得的弦长为 2 3 ,求直线的方程.
21.设抛物线 C : y2 4x 的焦点为 F ,过 F 且斜率为 k k 0 的直线 l 与 C 交于 A ,B 两
点, AB 8 . (1)求 l 的方程; (2)求过点 A 、 B 且与 C 的准线相切的圆的方程.
A. 3x 4 y 14 0
B. 3x 4 y 14 0
C. 4x 3y 14 0
D. 4x 3y 14 0
4.已知椭圆
x2 25
y2 m2
1(m
0 )的左焦点为 F1 4, 0 ,则 m
(
)
A. 9
B. 4
C. 3
D. 2
5.若 tan 1 ,则 cos 2
3
A. 4 5
B. 1 5
1
C.
5
4
D.
5
6.已知抛物线y2 = 2px(p > 0)的准线经过点( − 1,1),则抛物线焦点坐标为( )
A.( − 1,0) B.(1,0) C.(0, − 1) D.(0,1)
于.
15.过点 M (1,1) 作斜率为 1 2
的直线与椭圆
C
:x a
2 2
y2 b2
1(a
b
0) 相交于
A, B ,若 M
是线段 AB 的中点,则椭圆 C 的离心率为
.
16.如图,已知双曲线
x2 a2
y2 b2
1a 0, b 0 的左右焦点分别为 F1, F2 , F1F2
4,P
是双曲线右支上一点,直线 PF2 交 y 轴于点 A , △APF1 的内切圆切边 PF1 与点 Q ,若
C. 3 1
C.
5
D. 2 4
D.
5
6.已知抛物线
的准线经过点
,则抛物线焦点坐标为( )
A.
B.
C.
D.
7.正三棱柱 ABC A1B1C1 的底面边长为 2 ,侧棱长为 3 , D 为 BC 中点,则三棱锥
A B1DC1 的体积为
A. 3
3
B.
2
试卷第 1页,总 4页
B.C.1
D. 3 2
8.直线 3x 4 y b 与圆 x2 y2 2x 2y 1 0 相切,则 b ( )
PQ 1,则双曲线的离心率为__________.
三、解答题 17.记 Sn 为等差数列{an}的前 n 项和,已知 a1=-7,S3=-15. (1)求{an}的通项公式; (2)求 Sn,并求 Sn 的最小值.
18.在
ABC
中,
A
60
,
c
3 7
a.
1 求 sinC 的值;
2 若 a 7 ,求 ABC 的面积.
试卷第 3页,总 4页
19.在平面直角坐标系 xOy 中,双曲线 :
经过点 ,其中一条
近线的方程为
,椭圆 :
与双曲线 有相同的焦点 椭圆 的左
焦点,左顶点和上顶点分别为 F,A,B,且点 F 到直线 AB 的距离为 .
求双曲线 的方程;
求椭圆 的方程.
20.已知点 M 3,1 ,及圆 x 12 y 22 4 .
点,若 FA 2 FB ,则点 B 到抛物线的准线的距离为(
A. 6
B. 5
C. 4
)
D. 3
二、填空题
试卷第 2页,总 4页
13.在正方体 ABCD A1B1C1D1 中, E 为棱 CC1 的中点,则异面直线 AE 与 CD 所成角的
正切值为______
14.已知数列an 是递增的等比数列, a1 a4 9, a2a3 8 ,则数列an 的前 n 项和等
C. x2 y2 =1 44
D. x2 y2 =1 4 12
10.曲线 y = 1+ 4 - x2 与直线 y k x 2 4 有两个不同交点,实数 k 的取值范围是
()
A. k 3 4
B. 3 k 5 C. k 5
4
12
12
D. 5 k 3
12
4
11.已知椭圆
C
:
x a
命题:
审题:
1.若双曲线 则|PF2|等于( ) A.11
的左、右焦点分别为F1,F2,点 P 在双曲线 E 上,且|PF1| = 3,
B.9
C.5
D.3
2.点 A3, 2,1 关于 xOy 平面的对称点为( )
A. 3, 2, 1 B. 3, 2,1
C. 3, 2,1
D. 3, 2, 1
3.已知直线 l 经过点 P(2, 5) ,且斜率为 3 ,则直线 l 的方程为 4
A. 3x 4 y 14 0
B. 3x 4 y 14 0
C. 4x 3y 14 0
D. 4x 3y 14 0
4.已知椭圆
x2 25
y2 m2
1( m
0 )的左焦点为 F1 4, 0 ,则 m
(
)
A. 9
B. 4
5.若 tan 1 ,则 cos 2
3
A. 4 5
B. 1 5