【小学数学】四则运算交换律、结合律、分配律及去括号汇总!
小学数学四则运算交换律、结合率、
A+(B+C)=A+B+C例子:9+(2+1)=9+2+1
A+(B-C)=A+B-C例子பைடு நூலகம்9+(2-1)=9+2-1
②只有“+”“-”算式里,括号在“-”后面,去括号后,括号里面的所有符号变相反:
A-(B-C)=A-B+C例子:9-(5-1)=9-5+1
A-(B+C)=A-B-C9-(1+8)=9-1-8
③只有“×”“÷”算式里,括号在“×”后面,去括号后,括号里面的所有符号不变:
A×(B×C)=A×B×C例子:3×(2×6)=3×2×6
A×(B÷C)=A×B÷C3×(6÷2)=3×6÷2
④只有“×”“÷”算式里,括号在“÷”后面,去括号后,括号里面的所有符号变相反:
A÷(B×C)=A÷B÷C
A÷(B÷C)=A÷B×C例子:12÷(2×6)=12÷2÷6
:(A+B)÷C=A÷C+B÷C例子:
(9+6)÷3=9÷3+6÷3A÷C+B÷C=(A+B)÷C例子:9÷3+6÷3=(9+6)÷3(A-B)÷C=A÷C-B÷C例子:
(9-6)÷3=9÷3-6÷3A÷C-B÷C=(A-B)÷C例子:9÷3-6÷3=(9-6)÷3
四、去括号
①只有“+”“-”算式里,括号在“+”后面,去括号后,括号里面所有符号不变:
①加法:
A+B+C=A+(B+C)例子:6+9+1=6+(9+1)
②减法:
A-B-C=A-(B+C)例子:15-1-4=15-(1+4)
③结合律:
A×B×C=A×(B×C)例子:9×5×2=9×(5×2)
④结合律:
A÷B÷C=A÷(B×C)例子:90÷5÷2=90÷(5×2)
三、分配律:
①乘法:
四年级计算整数四则运算教师版
整数四则运算知识点一、运算定律⑴加法交换律:a b b a+=+的等比数列求和⑵加法结合律:()()++=++a b c a b c⑶乘法交换律:a b b a⨯=⨯⑷乘法结合律:()()⨯⨯=⨯⨯a b c a b c⑸乘法分配律:()⨯+=⨯+⨯(反过来就是提取公因数)a b c a b a c⑹减法的性质:()--=-+a b c a b c⑺除法的性质:()÷⨯=÷÷a b c a b c+÷=÷+÷a b c a c b c()-÷=÷-÷()a b c a c b c上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用.二、要注意添括号或者去括号对运算符号的影响⑴在“+”号后面添括号或者去括号,括号内的“+”、“-”号都不变;⑵在“-”号后面添括号或者去括号,括号内的“+”、“-”号都改变,其中“+”号变成“-”号,“-”号变成“+”号;⑶在“⨯”号后面添括号或者去括号,括号内的“⨯”、“÷”号都不变,但此时括号内不能有加减运算,只能有乘除运算;⑷在“÷”号后面添括号或者去括号,括号内的“⨯”、“÷”号都改变,其中“⨯”号变成“÷”号,“÷”号变成“⨯”号,但此时括号内不能有加减运算,只能有乘除运算.简单分步【例 1】计算:315325335345÷+÷+÷+÷.【分析】原式313233345()=+++÷130526=÷=【例 2】 计算:⑴ 36196419⨯+⨯⑵ 361964144⨯+⨯【分析】 ⑴原式3664191900=+⨯=()⑵原式36196419125=⨯+⨯+()36641964125190088125190080009900=+⨯+⨯=+⨯⨯=+=()【例 3】 计算:234432483305+-⨯+÷=【分析】 234+432-32+66=666-32+66=634+66=700【例 4】 900000-9=________×99999。
四年级下册数学《运算律》必背知识点
四年级下册数学——《运算律》·必背知识点01.加法交换律——a+b=b+a02.加法结合律——(a+b)+c=a+(b+c)03.乘法交换律——a×b=b×a04.乘法结合律——(a×b)×c=a×(b×c)05.乘法分配律——(a+b)×c=a×c+b×c06.乘法分配律的几种题型:①顺展法:25×(40+4)=25×40+25×4②逆合法:25×40+25×4=25×(40+4)③拆数法:拆加:25×101=25×(100+1)拆减:25×99=25×(100-1)拆乘:25×16=25×(4×4)拆除:25×8=(50÷2)×8④添“1”法:45×99+45=45×(99+1)07.凑整届的两对黄金搭档:25×4=100、125×8=100008.连减、连除两兄弟:相加凑整减去和:425-67-33=425-(67+33)尾部相同换位置:425-67-25=425-25-67相乘凑整减去积:330÷5÷2=330÷(5×2)09.涉及括号时:外加/外乘内不变,外减/外除内变号156-73+45=156-(73-45)243×100÷5=243×(100÷5)四年级下册数学——《运算律》·必背知识点01.加法交换律——a+b=b+a02.加法结合律——(a+b)+c=a+(b+c)03.乘法交换律——a×b=b×a04.乘法结合律——(a×b)×c=a×(b×c)05.乘法分配律——(a+b)×c=a×c+b×c06.乘法分配律的几种题型:①顺展法:25×(40+4)=25×40+25×4②逆合法:25×40+25×4=25×(40+4)③拆数法:拆加:25×101=25×(100+1)拆减:25×99=25×(100-1)拆乘:25×16=25×(4×4)拆除:25×8=(50÷2)×8④添“1”法:45×99+45=45×(99+1)07.凑整届的两对黄金搭档:25×4=100、125×8=100008.连减、连除两兄弟:相加凑整减去和:425-67-33=425-(67+33)尾部相同换位置:425-67-25=425-25-67相乘凑整减去积:330÷5÷2=330÷(5×2)09.涉及括号时:外加/外乘内不变,外减/外除内变号156-73+45=156-(73-45) 243×100÷5=243×(100÷5)。
四则运算规律总结及其简便运算应用举例
四则运算规律总结及其简便运算应用举例第一部分规律总结一、四则运算的运算顺序1、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
2、在没有括号的算式里,同时有加、减法和乘、除法,要先算乘除法,再算加减法。
3、算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
二、关于“0”的运算:1、“0”不能做除数;2、一个娄加上0或者减去0,最终还等于原数3、被减数等于减数,差得04、0乘任何数或0除以任何数,都得0三、运算定律与简便运算(一)加法运算定律:1、两个加数交换位置,和不变这叫做加法交换律。
字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加;和不变,这叫做加法结合律。
字母公式:(a+b)+c=a+(b+c)(二)乘法运算定律1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a x b=b x a2、先乘前两个数,或者先乘后两个数,积不变,这叫乘法结合律。
字母公式:(a x b)x c=a x(b x c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这员乘法分配律。
字母公式:(a+b) x c=a x c+b x c 或a x (b+c)=a x b+a x c拓展公式:(a-b)x c=a x c- b x c 或a x(b-c)=a x b-a x c(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a-c-b(四)除法简便运算1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b x c)2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b第二部分简便算法应用举例一、加法类型一:利用加法交换律、结合律,观察数的末位特征,将数凑成整数进行简算。
小学数学四则运算交换律、结合律、分配律及去括号汇总
学习必备欢迎下载小学数学四则运算交换律、结合律、分配律及去括号汇总一、交换律:①加法:A+B+C=A+C+B例子:9+6+1=9+1+6②减法:A-B-C=A-C-B例子:15-9-5=15-5-9③乘法:A×B×C=A×C×B例子:1×2×3=1×3×2④除法:A÷B÷C=A÷C÷B例子:6÷2÷3=6÷3÷2二、结合律:①加法:A+B+C=A+(B+C)例子:6+9+1=6+(9+1)②减法:A-B-C=A-(B+C)例子:15-1-4=15-(1+4)③结合律:A×B×C=A×(B×C)例子:9×5×2=9×(5×2)④结合律:A÷B÷C=A÷(B×C)例子:90÷5÷2=90÷(5×2)三、分配律:①乘法:A×(B+C)=A×B+A×C例子:5×(6+8)=5×6+5×8A×B+A×C=A×(B+C)5×17+5×3=5×(17+3)A×(B-C)=A×B-A×C例子:5×(8-6)=5×8-5×6A×B-A×C=A×(B-C)5×24-5×4=5×(24-4)②除法::(A+B)÷C=A÷C+B÷C例子:(9+6)÷3=9÷3+6÷3A÷C+B÷C=(A+B)÷C例子:9÷3+6÷3=(9+6)÷3(A-B)÷C=A÷C-B÷C例子:(9-6)÷3=9÷3-6÷3A÷C-B÷C=(A-B)÷C例子:9÷3-6÷3=(9-6)÷3四、去括号①只有“+”“-”算式里,括号在“+”后面,去括号后,括号里面所有符号不变:A+(B+C)=A+B+C例子:9+(2+1)=9+2+1A+(B-C)=A+B-C例子:9+(2-1)=9+2-1②只有“+”“-”算式里,括号在“-”后面,去括号后,括号里面的所有符号变相反:A-(B-C)=A-B+C例子:9-(5-1)=9-5+1A-(B+C)=A-B-C9-(1+8)=9-1-8③只有“×”“÷”算式里,括号在“×”后面,去括号后,括号里面的所有符号不变:A×(B×C)=A×B×C例子:3×(2×6)=3×2×6A×(B÷C)=A×B÷C3×(6÷2)=3×6÷2④只有“×”“÷”算式里,括号在“÷”后面,去括号后,括号里面的所有符号变相反:A÷(B×C)=A÷B÷C例子:12÷(2×6)=12÷2÷6A÷(B÷C)=A÷B×C12÷(6÷2)=12÷6×2。
结合律,分配律,交换律
结合律,分配律,交换律
结合律、分配律和交换律是数学中基本的运算定律,它们在各种数学运算中都起着重要的作用。
1.交换律:交换律是指在数学运算中,交换两个数的位置,结果不变。
这个定律适用于加法和乘法,
即a+b=b+a和a×b=b×a。
交换律是数学中最基本的定律之一,它使得我们在进行加法和乘法运算时可以更加灵活地处理数的顺序。
2.结合律:结合律是指在数学运算中,改变运算顺序但保持数的组合方式不变,结果仍然相同。
这
个定律也适用于加法和乘法,即(a+b)+c=a+(b+c)和(a×b)×c=a×(b×c)。
结合律使得我们可以在进行多个数的加法和乘法运算时,按照不同的组合方式进行计算,从而得到相同的结果。
3.分配律:分配律是指在数学运算中,一个数与一个数的和相乘,等于把这个数分别与和中的每一
个数相乘,再把所得的积相加。
这个定律适用于乘法和加法,即a×(b+c)=a×b+a×c。
分配律是数学中非常重要的定律之一,它使得我们可以在进行乘法和加法混合运算时,更加灵活地处理数的组合和运算顺序。
这些运算定律在数学中有广泛的应用,它们不仅简化了计算过程,还使得数学运算更加具有逻辑性和系统性。
在进行数学运算时,我们可以根据这些定律来选择合适的运算顺序和组合方式,从而更加高效地得到正确的结果。
【强烈推荐】四则运算交换律、结合律、分配律及去括号汇总!
例题:3X8÷2=3×(8÷2)✔8÷2×3=8÷(2×3)✘一、交换律①加法:A+B+C=A+C+B例子:9+6+1=9+1+6②减法:A-B-C=A-C-B例子:15-9-5=15-5-9③乘法:A×B×C=A×C×B例子:1×2×3=1×3×2④除法:A÷B÷C=A÷C÷B例子:6÷2÷3=6÷3÷2二、结合律①加法:A+B+C=A+(B+C)例子:6+9+1=6+(9+1)②减法:A-B-C=A-(B+C)例子:15-1-4=15-(1+4)③结合律:A×B×C=A×(B×C) 例子:9×5×2=9×(5×2)④结合律:A÷B÷C=A÷(B×C)例子:90÷5÷2=90÷(5×2)三、分配率①乘法:A×(B+C)=A×B+A×C例子:5×(6+8)=5×6+5×8A×B+A×C=A×(B+C)例子:5×17+5×3=5×(17+3)A×(B-C)=A×B-A×C例子:5×(8-6)=5×8-5×6A×B-A×C=A×(B-C)例子:5×24-5×4=5×(24-4) ②除法:(A+B)÷C=A÷C+B÷C例子:(9+6)÷3=9÷3+6÷3A÷C+B÷C=(A+B)÷C例子:9÷3+6÷3=(9+6)÷3(A-B)÷C=A÷C-B÷C例子:(9-6)÷3=9÷3-6÷3A÷C-B÷C=(A-B)÷C例子:9÷3-6÷3=(9-6)÷3四、去括号①只有“+” “-”算式里, 括号在“+”后面, 去括号后,括号里面所有符号不变:A+(B+C)=A+B+C例子:9+(2+1)=9+2+1A+(B-C)=A+B-C例子:9+(2-1)=9+2-1②只有“+” “-”算式里, 括号在“-”后面, 去括号后,括号里面的所有符号变相反:A-(B-C)=A-B+C例子:9-(5-1)=9-5+1A-(B+C)=A-B-C例子:9-(1+8)=9-1-8③只有“×” “÷”算式里, 括号在“×”后面, 去括号后,括号里面的所有符号不变:A×(B×C)=A×B×C例子:3×(2×6)=3×2×6A×(B÷C)=A×B÷C例子:3×(6÷2)=3×6÷2④只有“×” “÷”算式里, 括号在“÷”后面, 去括号后,括号里面的所有符号变相反:A÷(B×C)=A÷B÷C例子:12÷(2×6)=12÷2÷6A÷(B÷C)=A÷B×C例子:12÷(6÷2)=12÷6×2。
小学数学四则运算常用公式
小学数学四则运算常用公式
小学数学四则运算的常用公式包括加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律等。
这些公式可以帮助学生更好地进行四则运算,提高计算速度和准确性。
1.加法交换律:a + b = b + a。
这个公式表示加法的交换
性,即加数的顺序不影响和的结果。
2.加法结合律:(a + b) + c = a + (b + c)。
这个公式表示加
法的结合性,即加数的分组方式不影响和的结果。
3.乘法交换律:a × b = b × a。
这个公式表示乘法的交换
性,即因数的顺序不影响积的结果。
4.乘法结合律:(a × b) × c = a × (b × c)。
这个公式表示乘
法的结合性,即因数的分组方式不影响积的结果。
5.乘法分配律:(a + b) × c = a × c + b × c 或a × (b + c) =
a ×
b + a × c。
这个公式表示乘法对加法的分配性,即一
个数与一个加数的和相乘,等于这个数分别与每个加数相乘后再求和。
除了以上公式外,小学数学四则运算还有一些其他的公式和规则,例如减法的性质、除法的性质、括号的使用等。
学生需要熟练掌握这些公式和规则,以便更好地进行四则运算。
同时,也需要注意运算顺序和细节问题,避免出现错误。
第四单元《运算律》知识点总结
(一)四则混合运算1.在一个算式里,如果只含有同一级运算,要从左往右依次计算。
2.在一个算式里,如果既有加、减运算,又有乘、除运算,要先算乘、除,再算加、减;如果有括号,要先算小括号里面的,要先算中括号里面的。
(二)加法交换律和乘法交换律1.加法交换律:两个数相加,交换两个加数的位置,和不变。
用字母表示:a+b=b+a。
2.乘法交换律:两个数相乘,交换两个乘数的位置,积不变。
用字母表示:a×b=b×a。
提醒:加法交换律或乘法交换律,结果相同,两个加数或乘数不变,只是交换了位置。
3.加法结合律:三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
用字母表示:(a+b)+c=a+(b+c)。
①使用时机:当几个数相加时,如果其中的两个数相加能得到一个整十、整百或整千数就可以应用加法交换律和加法结合律进行简算。
加法结合律可以改变加法运算顺序。
连减运算:a-b -c=a-(b+c)。
注意:加减同级运算,为了改变运算顺序而加括号或去括号时:“+”在前,不变号;“-”在前,必变号。
4.乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。
用字母表示:(a×b)×c=a×(b×c)。
①使用时机:当几个数相乘时,如果其中的两个数相乘能得到一个整十、整百或整千数就可以应用乘法交换律和乘法结合律进行简算。
乘法结合律可以改变乘法运算顺序。
数字如:25和4、75和4、125和8等。
连除运算:a÷b ÷c=a÷(b×c)。
注意:乘除同级运算,为了改变运算顺序而加括号或去括号时:“×”在前,不变号;“÷”在前,必变号。
5.乘法分配律:两个数的和与一个数相乘,可以把这两个加数分别与这个数相乘,再把两个积相加,结果不变。
四则运算运算定律
103×12
125473-(173-38) 25×(40×4)
=473-173+38
=25×40×4 =1000×4
=300+38
=4000
=338
减号去括号, 要变号。
乘法结合律
25×(40+4) =25×40+25×4 =1000+100 =1100
a-b-c=a-(b+c) a-b-c=a-c-b
a×b=b×a
(a×b)×c=a×(b×c) (a+b)×c=a×c+b×c
a÷b÷c=a÷(b×c)
分类
a÷b÷c=a÷c÷b
第一关:我会填。 看数字
在 里填上合适的数,并说一说分别应用了哪些 运算定律。
3.6+8.59+6.4=3.6+ 6.4 +8.59 加法交换律 (25.8+7.5)+2.5=25.8 +( 7.5 + 2.5 ) 加法结合律
125×88 =125×(8+80) =125×8+125×80 =1000+10000 =11000
假如:125×888,125×8888 ......
第四关:我会出题。
876-52-( ) 添上一个数,使这道题目能进行简便计 算。
第五关:我会解决问题。
李叔叔和王叔叔一起加工一批零件,李叔叔 每小时加工49个,王叔叔每小时加工51个,两人 一起工作了6小时才完成任务。这批零件一共有 多少个?
运算定律和简便计算
闲林小学 吴小超
236 4 79 736 21 25
736-236=500 4×25=100 79+21=100
凑整
简便
运算定律和性质?
• 加法交换律 • 加法结合律 • 连减性质 • 乘法交换律 • 乘法结合律 • 乘法分配律 • 连除性质
四则运算交换律、结合律、分配律及去括号汇总!
例题:3X8÷2=3×(8÷2)✔8÷2×3=8÷(2×3)✘一、交换律①加法:A+B+C=A+C+B 例子:9+6+1=9+1+6②减法:A-B-C=A-C-B例子:15-9-5=15-5-9③乘法:A×B×C=A×C×B例子:1×2×3=1×3×2④除法:A÷B÷C=A÷C÷B 例子:6÷2÷3=6÷3÷2二、结合律①加法:A+B+C=A+(B+C) 例子:6+9+1=6+(9+1)②减法:A-B-C=A-(B+C)例子:15-1-4=15-(1+4)③结合律:A×B×C=A×(B×C) 例子:9×5×2=9×(5×2)④结合律:A÷B÷C=A÷(B×C)例子:90÷5÷2=90÷(5×2)三、分配率①乘法:A×(B+C)=A×B+A×C例子:5×(6+8)=5×6+5×8A×B+A×C=A×(B+C)例子:5×17+5×3=5×(17+3)A×(B-C)=A×B-A×C例子:5×(8-6)=5×8-5×6A×B-A×C=A×(B-C)例子:5×24-5×4=5×(24-4) ②除法:(A+B)÷C=A÷C+B÷C例子:(9+6)÷3=9÷3+6÷3A÷C+B÷C=(A+B)÷C例子:9÷3+6÷3=(9+6)÷3(A-B)÷C=A÷C-B÷C例子:(9-6)÷3=9÷3-6÷3A÷C-B÷C=(A-B)÷C例子:9÷3-6÷3=(9-6)÷3四、去括号①只有“+” “-”算式里, 括号在“+”后面, 去括号后,括号里面所有符号不变:A+(B+C)=A+B+C例子:9+(2+1)=9+2+1A+(B-C)=A+B-C例子:9+(2-1)=9+2-1②只有“+” “-”算式里, 括号在“-”后面, 去括号后,括号里面的所有符号变相反:A-(B-C)=A-B+C例子:9-(5-1)=9-5+1A-(B+C)=A-B-C;例子:9-(1+8)=9-1-8③只有“×” “÷”算式里, 括号在“×”后面, 去括号后,括号里面的所有符号不变:A×(B×C)=A×B×C例子:3×(2×6)=3×2×6A×(B÷C)=A×B÷C例子:3×(6÷2)=3×6÷2④只有“×” “÷”算式里, 括号在“÷”后面, 去括号后,括号里面的所有符号变相反:A÷(B×C)=A÷B÷C例子:12÷(2×6)=12÷2÷6A÷(B÷C)=A÷B×C例子:12÷(6÷2)=12÷6×2。
(完整版)四则运算规律及其简便运算
四则运算规律及其简便运算一、四则运算的运算顺序1、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
2、在没有括号的算式里,同时有加、减法和乘、除法,要先算乘除法,再算加减法。
3、算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
二、关于“0”的运算:1、“0”不能做除数;2、一个娄加上0或者减去0,最终还等于原数3、被减数等于减数,差得04、0乘任何数或0除以任何数,都得0三、运算定律与简便运算(一)加法运算定律:1、两个加数交换位置,和不变这叫做加法交换律。
字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加;和不变,这叫做加法结合律。
字母公式:(a+b)+c=a+(b+c)(二)乘法运算定律1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a × b=b × a2、先乘前两个数,或者先乘后两个数,积不变,这叫乘法结合律。
字母公式:(a ×b)× c=a ×(b ×c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这员乘法分配律。
字母公式:(a+b)⨯c=a⨯c+b⨯c 或a⨯(b+c)=a⨯b+a⨯c(加号也可以换成减号)(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a-c-b (四)除法简便运算1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b x c)2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b能简便运算的要简算,不能简算的按四则运算来计算。
小数四则混合运算知识点及例题
小数四则运算综合知识点及例题一、运算定律 ⑴加法交换律:a b b a +=+的等比数列求和⑵加法结合律:()()a b c a b c ++=++⑶乘法交换律:a b b a ⨯=⨯⑷乘法结合律:()()a b c a b c ⨯⨯=⨯⨯⑸乘法分配律:()a b c a b a c ⨯+=⨯+⨯(反过来就是提取公因数) ⑹减法的性质:()a b c a b c --=-+⑺除法的性质:()a b c a b c ÷⨯=÷÷()a b c a c b c +÷=÷+÷()a b c a c b c -÷=÷-÷上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用.二、要注意添括号或者去括号对运算符号的影响⑴在“+”号后面添括号或者去括号,括号内的“+”、“-”号 都不变;⑵在“-”号后面添括号或者去括号,括号内的“+”、“-”号都 改变,其中“+”号变成“-”号,“-”号变成“+”号;⑶在“⨯”号后面添括号或者去括号,括号内的“⨯”、“÷”号都 不变,但此时括号内不能有加减运算,只能有乘除运算;⑷在“÷”号后面添括号或者去括号,括号内的“⨯”、“÷”号 都改变,其中“⨯”号变成“÷”号,“÷”号变成“⨯”号, 但此时括号内不能有加减运算,只能有乘除运算.例一计算:1999 3.14199.931.419.99314⨯+⨯+⨯.解析:使用四则混合运算之提取公因数原式1999 3.143=⨯⨯200019.4218830.58=-⨯=() 答案:18830.58例二计算:....⨯+⨯=103734171926 .解析:使用四则混合运算之提取公因数10.37 3.4 1.719.26⨯+⨯()10.37 3.4 3.49.6310.379.63 3.420 3.468=⨯+⨯=+⨯=⨯=答案:68例三计算:2.009×43+20.09×2.9+200.9×0.28= .原式20.09 4.320.09 2.920.09 2.8=⨯+⨯+⨯20.09(4.3 2.9 2.8)200.9=⨯++= 答案:200.9例四计算:200.920.08200.820.07⨯-⨯解析:使用四则混合运算之提取公因数原式200.920.0820.08200.7=⨯-⨯20.08(200.9200.7)=⨯-20.080.2=⨯4.016=答案:4.016例五计算:199.919.98199.819.97⨯-⨯解析1:使用原式199.919.9819.98199.7=⨯-⨯19.98(199.9199.7)=⨯-19.980.2=⨯3.996=解析2:使用凑整法来解决.原式(2000.1)19.98(2000.2)19.97=-⨯--⨯20019.980.119.9820019.970.219.97=⨯-⨯-⨯+⨯2 1.996=+3.996=答案:3.996例七计算:20.0931.5 2.009317200.9 3.68⨯+⨯+⨯= .解析:使用四则混合运算之提取公因数原式 2.009315 2.009317 2.009368=⨯+⨯+⨯()2.009315317368=⨯++2.00910002009=⨯=答案:2009例七计算:6.258.2716 3.750.8278⨯⨯+⨯⨯解析:使用四则混合运算之提取公因数原式 6.25168.27 3.750.88.27=⨯⨯+⨯⨯8.27(6.2516 3.750.8)=⨯⨯+⨯8.27(1003)=⨯+8.271008.273=⨯+⨯851.81=答案:851.81例八计算:20.0962200.9 3.97 2.87⨯+⨯-⨯= .原式20.096220.093920.09=⨯+⨯-()20.0962391=⨯+-20.091002009=⨯=答案:2009例九计算:2.8947 1.53 1.4 1.1240.112880.530.1=⨯+-⨯+⨯+⨯- .解析:使用四则混合运算之提取公因数原式=2.88×(0.47+0.53)+0.47+1.53+(24-14)×0.11-0.1=288+2+1=291答案:291例十计算:2237.522.312.523040.7 2.51⨯+⨯+÷-⨯+= .解析:使用四则混合运算之提取公因数原式2237.5223 1.252300.2570.251=⨯+⨯+⨯-⨯+2238.752230.251223912008=⨯+⨯+=⨯+= 答案:2008例十一计算:19.9837199.8 2.39.9980⨯+⨯+⨯解析:使用四则混合运算之提取公因数原式19.983719.982319.9840=⨯+⨯+⨯19.983723401998=⨯++=() 答案:1998例十二计算:3790.000381590.00621 3.790.121⨯+⨯+⨯解析:使用四则混合运算之提取公因数原式 3.790.0381590.00621 3.790.121=⨯+⨯+⨯3.790.0380.1210.159 6.21=⨯++⨯()3.790.1590.159 6.210.159 3.79 6.210.15910 1.59=⨯+⨯=⨯+=⨯=()答案:1.59例十三计算78.16 1.45 3.1421.841690.7816⨯+⨯+⨯解析:使用四则混合运算之提取公因数,不难看出式子中7816出现过两次:78.16和0.7816,由此可以联想到提取公因数原式78.16 1.45 3.1421.84 1.6978.16=⨯+⨯+⨯78.16=⨯(1.45 1.69+) 3.1421.84+⨯78.16 3.14 3.1421.84 3.14100314=⨯+⨯=⨯=答案:314例十四计算:7.816×1.45+3.14×2.184+1.69×7.816=_____。
小学语文四则运算交换律结合律分配律及去标点汇总
小学语文四则运算交换律结合律分配律及去标点汇总小学语文四则运算交换律、结合律、分配律及去标点汇总本文将介绍小学语文中的四则运算的交换律、结合律、分配律以及去标点的相关内容。
四则运算的交换律四则运算中的交换律是指在加法和乘法中,数的位置交换不改变运算结果。
例如:- 加法交换律:a + b = b + a- 乘法交换律:a × b = b × a例如,2 + 3 = 3 + 2,4 × 5 = 5 × 4。
四则运算的结合律四则运算中的结合律是指数的位置不同,但运算的结果不变。
具体如下:- 加法结合律:(a + b) + c = a + (b + c)- 乘法结合律:(a × b) × c = a × (b × c)例如,(2 + 3) + 4 = 2 + (3 + 4),(4 × 5) × 6 = 4 × (5 × 6)。
四则运算的分配律四则运算中的分配律是指运算符两边的数相乘或相加后再进行运算。
具体如下:- 乘法对加法的分配律:a × (b + c) = a × b + a × c- 乘法对减法的分配律:a × (b - c) = a × b - a × c例如,2 × (3 + 4) = 2 × 3 + 2 × 4,5 × (6 - 3) = 5 × 6 - 5 × 3。
去标点在语文中,常常需要进行标点符号的处理。
去标点是指将文本中的标点符号去除,以便更好地理解和阅读文本。
例如,将句子:"在你的左边,有一条河,河水清澈见底。
" 去标点后为:"在你的左边有一条河河水清澈见底"以上是小学语文四则运算的交换律、结合律、分配律以及去标点的汇总。
四则运算及运算律详解
(1)运算公式:加数+加数=和和-一个加数=另一个加数(2)加法交换律:两个数相加,交换加数的位置,它们的和不变。
a +b =b +a(3)加法结合律:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,和不变。
a +b +c =a +(b +c)=(a +b )+c(1)运算公式:被减数-减数=差被减数-差=减数 减数+差=被减数(2)减法的运算性质:一个数连续减去几个数,可以从这个数里减去这几个数的和,差不变。
a -b -c =a -(b +c)a -(b -c )=a -b +c(1)运算公式:因数(被乘数)×因数(乘数)=积积÷一个因素=另一个因素(2)乘法交换律:两个数相乘,因数交换位置,积不变。
a ×b =b ×a(3)乘法结合律:三个数相乘,先乘前两个数,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,积不变。
a ×b ×c =a ×(b ×c) (4)乘法分配律:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
(a +b)×c =a×c +b ×c(1)运算公式:①没有余数的除法:被除数÷除数=商被除数÷商=除数商×除数=被除数②有余数的除法:被除数÷除数=商……余数除数=(被除数-余数)÷商商=(被除数-余数)÷除数余数=被除数-除数×商(2)0不能作除数,0除以任何不是0的数都得0。
(3)除法的验算(没有余数):计算法则:(1)用除法验算,即交换除法和商的位置(2)用乘法验算(逆运算)(4)除法的性质(没有余数):一个数连续除以几个数,可以除以后几个数的积,也可以先除以第二个数,再除以第一个数。
a÷b÷c=a÷(b×c)(b,c ≠0)(a+b)÷c=a÷c+b÷c (b,c ≠0)(a-b)÷c=a÷c-b÷c (b,c ≠0)(5)商不变性质:①没有余数的除法:被除数和除数都乘(或除以)一个非0的数,商不变。
三年级:加法交换律、乘法结合律、减法分配律及去方括号汇总
三年级:加法交换律、乘法结合律、减法
分配律及去方括号汇总
介绍:
本文档将重点介绍三年级数学中的三个重要法则:加法交换律、乘法结合律和减法分配律。
此外,还将探讨如何去除方括号。
加法交换律:
加法交换律是指两个数相加,调换加数的顺序不会改变所得到
的结果。
例如:
2 +
3 = 3 + 2
乘法结合律:
乘法结合律是指两个数相乘,无论数的顺序如何,所得到的结
果始终相同。
例如:
2 × (
3 × 4) = (2 × 3) × 4
减法分配律:
减法分配律是指一个数减去两个数的和,等于这个数减去第一
个数再减去第二个数。
例如:
8 - (5 + 2) = (8 - 5) - 2
去方括号:
去方括号是指用分配律去掉方括号。
例如:
3 × (
4 + 2) = 3 × 4 + 3 × 2
总结:
在进行三年级数学运算时,我们需要遵守这些法则。
加法交换律、乘法结合律和减法分配律是解决数学题的重要工具,而去方括号则是运用分配律的一种方式。
通过掌握和运用这些法则,我们可以更轻松地进行数学运算,并获得正确的结果。
以上是关于三年级数学中的加法交换律、乘法结合律、减法分配律及去方括号的汇总。
如有疑问,请随时向老师或家长咨询。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题:
3X8÷2=3×(8÷2)✔8÷2×3=8÷(2×3)✘
一、交换律
①加法:A+B+C=A+C+B 例子:9+6+1=9+1+6
②减法:A-B-C=A-C-B
例子:15-9-5=15-5-9
③乘法:A×B×C=A×C×B
例子:1×2×3=1×3×2
④除法:A÷B÷C=A÷C÷B 例子:6÷2÷3=6÷3÷2
二、结合律
①加法:A+B+C=A+(B+C) 例子:6+9+1=6+(9+1)
②减法:A-B-C=A-(B+C)
例子:15-1-4=15-(1+4)
③结合律:A×B×C=A×(B×C) 例子:9×5×2=9×(5×2)
④结合律:A÷B÷C=A÷(B×C)例子:90÷5÷2=90÷(5×2)
三、分配率
①乘法:
A×(B+C)=A×B+A×C
例子:5×(6+8)=5×6+5×8
A×B+A×C=A×(B+C)
例子:5×17+5×3=5×(17+3)
A×(B-C)=A×B-A×C
例子:5×(8-6)=5×8-5×6
A×B-A×C=A×(B-C)
例子:5×24-5×4=5×(24-4) ②除法:
(A+B)÷C=A÷C+B÷C
例子:(9+6)÷3=9÷3+6÷3
A÷C+B÷C=(A+B)÷C
例子:9÷3+6÷3=(9+6)÷3
(A-B)÷C=A÷C-B÷C
例子:(9-6)÷3=9÷3-6÷3
A÷C-B÷C=(A-B)÷C
例子:9÷3-6÷3=(9-6)÷3
四、去括号
①只有“+” “-”算式里, 括号在“+”后面, 去括号后,括号里面所有符号不变:
A+(B+C)=A+B+C
例子:9+(2+1)=9+2+1
A+(B-C)=A+B-C
例子:9+(2-1)=9+2-1
②只有“+” “-”算式里, 括号在“-”后面, 去括号后,括号里面的所有符号变相反:
A-(B-C)=A-B+C
例子:9-(5-1)=9-5+1
A-(B+C)=A-B-C
例子:9-(1+8)=9-1-8
③只有“×” “÷”算式里, 括号在“×”后面, 去括号后,括号里面的所有符号不变:
A×(B×C)=A×B×C
例子:3×(2×6)=3×2×6
A×(B÷C)=A×B÷C
例子:3×(6÷2)=3×6÷2
④只有“×” “÷”算式里, 括号在“÷”后面, 去括号后,括号里面的所有符号变相反:
A÷(B×C)=A÷B÷C
例子:12÷(2×6)=12÷2÷6
A÷(B÷C)=A÷B×C
例子:12÷(6÷2)=12÷6×2。