经典含参的线性规划问题.ppt
合集下载
4.2线性规划ppt课件
4.2线性规划ppt课件
目录
• 线性规划简介 • 线性规划的求解方法 • 线性规划的软件实现 • 线性规划案例分析 • 线性规划的优化策略
01
线性规划简介
线性规划的定义
线性规划是数学优化技术的一种 ,它通过将问题转化为线性方程 组,并寻找满足一定约束条件的 解,以实现目标函数的最优解。
线性规划问题通常由决策变量、 约束条件和目标函数三部分组成
运输问题
总结词
运输问题是在物流和供应链管理中常见的线性规划应用,旨在优化运输成本和时 间。
详细描述
运输问题通常涉及多个起点、终点和运输方式,需要考虑运输成本、时间、容量 和路线等约束条件。通过线性规划方法,可以找到最优的运输方案,使得总运输 成本最低或运输时间最短。
投资组合优化问题
总结词
投资组合优化问题是在金融领域中常见的线性规划应用,旨 在实现风险和收益之间的平衡。
对偶问题在理论研究和实际应用中都 具有重要的意义,可以用于求解一些 特殊类型的问题,如运输问题、分配 问题等。
对偶问题具有一些特殊的性质,如对 偶变量的非负性、对偶问题的最优解 与原问题的最优解之间的关系等。
初始解的确定
初始解的确定是线性规划求解过程中的 一个重要步骤,一个好的初始解可以大
大减少迭代次数,提高求解效率。
。
决策变量是问题中需要求解的未 知数,约束条件是限制决策变量 取值的条件,目标函数是要求最
大或最小的函数。
线性规划的数学模型
线性规划的数学模型通常由一 组线性不等式和等式约束以及 一个线性目标函数组成。
线性不等式和等式约束条件可 以用来表示各种资源和限制条 件。
目标函数是决策变量的线性函 数,表示要优化的目标。
目录
• 线性规划简介 • 线性规划的求解方法 • 线性规划的软件实现 • 线性规划案例分析 • 线性规划的优化策略
01
线性规划简介
线性规划的定义
线性规划是数学优化技术的一种 ,它通过将问题转化为线性方程 组,并寻找满足一定约束条件的 解,以实现目标函数的最优解。
线性规划问题通常由决策变量、 约束条件和目标函数三部分组成
运输问题
总结词
运输问题是在物流和供应链管理中常见的线性规划应用,旨在优化运输成本和时 间。
详细描述
运输问题通常涉及多个起点、终点和运输方式,需要考虑运输成本、时间、容量 和路线等约束条件。通过线性规划方法,可以找到最优的运输方案,使得总运输 成本最低或运输时间最短。
投资组合优化问题
总结词
投资组合优化问题是在金融领域中常见的线性规划应用,旨 在实现风险和收益之间的平衡。
对偶问题在理论研究和实际应用中都 具有重要的意义,可以用于求解一些 特殊类型的问题,如运输问题、分配 问题等。
对偶问题具有一些特殊的性质,如对 偶变量的非负性、对偶问题的最优解 与原问题的最优解之间的关系等。
初始解的确定
初始解的确定是线性规划求解过程中的 一个重要步骤,一个好的初始解可以大
大减少迭代次数,提高求解效率。
。
决策变量是问题中需要求解的未 知数,约束条件是限制决策变量 取值的条件,目标函数是要求最
大或最小的函数。
线性规划的数学模型
线性规划的数学模型通常由一 组线性不等式和等式约束以及 一个线性目标函数组成。
线性不等式和等式约束条件可 以用来表示各种资源和限制条 件。
目标函数是决策变量的线性函 数,表示要优化的目标。
含参数的线性规划问题
【答案】 D
线性规划
由目标函数几何意义求参数
3x y 6 0
【例3】(2009·山东)设x,y满足约束条件
x
y
2
0
,
x 0, y 0
若目标函数z=ax+by(a>0,b>0)的最大值为12,则 2 3 的最
ab
小值为( )
(A) 25 (B) 8 (C)11 (D)4
含参数的线性规划问题 专题讲座
深圳市民办学校高中数学教师 欧阳文丰制作
平面区域与目标函数
复习回顾 目标函数的几何意义
1. z ax by 直线型,z表示纵截距的b倍 2. z ax by 点到直线距离型
3. z OA OB 转化为坐标形式或投影 4. z y b 斜率型
6
3
3
线性规划
x y 2
【 练 习2】 已 知x, y满 足 不等 式 组 y x 0,
x
0
目 标 函数z ax y只 在(1,1)处 取 最小 值 ,
则 有( )
A. a 1 B.a 1 C. a 1 D. a 1
线性规划
【练习3】(2010·安徽)设x,y满足约束条件
A. 5, 10 B.5,10 C. 0,5 D. 0,10
线性规划
【 练 习4】 已 知 函 数f ( x) 1 x3 1 ax2 bx 32
在 区 间 1,3上 单 调 递 减 , 则a2 b2的 最 小 值 是__1__3____.
线性规划
【例5】已知函数y f ( x)在R上单调递增,函数 y f ( x 1)的图像关于点(1,0)对称,若对于任意 的x, y R,不 等 式f ( x2 6x 21) f ( y2 8 y) 0 恒 成 立 , 则 x2 y2的 取 值 范 围 是________.
线性规划
由目标函数几何意义求参数
3x y 6 0
【例3】(2009·山东)设x,y满足约束条件
x
y
2
0
,
x 0, y 0
若目标函数z=ax+by(a>0,b>0)的最大值为12,则 2 3 的最
ab
小值为( )
(A) 25 (B) 8 (C)11 (D)4
含参数的线性规划问题 专题讲座
深圳市民办学校高中数学教师 欧阳文丰制作
平面区域与目标函数
复习回顾 目标函数的几何意义
1. z ax by 直线型,z表示纵截距的b倍 2. z ax by 点到直线距离型
3. z OA OB 转化为坐标形式或投影 4. z y b 斜率型
6
3
3
线性规划
x y 2
【 练 习2】 已 知x, y满 足 不等 式 组 y x 0,
x
0
目 标 函数z ax y只 在(1,1)处 取 最小 值 ,
则 有( )
A. a 1 B.a 1 C. a 1 D. a 1
线性规划
【练习3】(2010·安徽)设x,y满足约束条件
A. 5, 10 B.5,10 C. 0,5 D. 0,10
线性规划
【 练 习4】 已 知 函 数f ( x) 1 x3 1 ax2 bx 32
在 区 间 1,3上 单 调 递 减 , 则a2 b2的 最 小 值 是__1__3____.
线性规划
【例5】已知函数y f ( x)在R上单调递增,函数 y f ( x 1)的图像关于点(1,0)对称,若对于任意 的x, y R,不 等 式f ( x2 6x 21) f ( y2 8 y) 0 恒 成 立 , 则 x2 y2的 取 值 范 围 是________.
[管理学]线性规划问题ppt课件
引言
在经济生活中,人们经常遇到这样两类实践问题: 1、资源给定,如何对给定资源予以充分地、合理地运 用,使之完成的义务尽能够地多。 2、义务给定,如何以尽能够少的资源耗费来完成给定 的义务。
可见,上述两类问题都是寻求利润最大。第一类, 是以最大收益扣除定量本钱;第二类,是以定量收益扣 除最小本钱。
地域,而往来的客户主要位于北京、上海、广州、天津、香港与西安
6大城市。由于各仓储中心地利环境、人力资源及区域性本钱的不同,
自动售货机的运送本钱或多或少会有所差别,如下表1 。当前各仓储
中心的自动售货机的库存量如下表2。各地的需求量如下表3。问:为
了可以有效降低运送本钱,应如何安排运输,才干支付最低的运费又
线性规划问题
一、线性规划问题 二、Excel 求解线性规划问题 三、实例讲解
一、线性规划问题
——线性规划是运筹学的一个重要分支,是运筹学的最根本的部分。 线性规划的运用及其广泛,从处理技术问题的最优化设计到工业、农业、 商业、交通运输业、军事和经济方案管理决策领域都可以发扬作用,它是 现代科学管理的一种重要手段。
该问题的数学模型为:
Min Z=5 X11+6 X12+10X13+3X14· · · +4X33+8 X34
X11+X12+X13+X14=60 X21+X22+X23+X24 =40
——产量约束
……
s.t. X11+X21+X31=30 ……
——销量约束
X14+X24+X34=40
Xij ≥0 (i=1,2,3;j=1,2,3,4〕
〔4〕约束:在此列出了规划求解的一切约束条件。 〔5〕最长运算时间:在此设定求解过程的时间。默许值 100〔秒〕,普通可以满足大多数小型规划求解要求。 〔6〕迭代次数:在此设定求解过程中迭代运算的次数,限 制求解过程的时间。默许值100次,根本可以满足大多数小 型规划求解要求。
简单线性规划 课件(48张)
22
由 z=x+3y,得 y=-13x+3z,平移直线 x+3y=0 可
知,当直线 y=-13x+3z经过 A 点时 z 取最大值.由
2x+y=4,
得 A(1,2),所以 zmax=1+2×3=7.
x=1,
2021/10/10
23
类型 2 求非线性目标函数的最值 x-y-2≤0,
[典例 2] 设实数 x,y 满足约束条件x+2y-4≥0, 2y-3≤0,
2021/10/10
30
[变式训练] (1)在平面直角坐标系 xOy 中,M 为不
2x-y-2≥0, 等式组x+2y-1≥0,所表示的区域上一动点,则直线
3x+y-8≤0, OM 斜率的最小值为( )
A.2 B.1 C.-13 D.-12
2021/10/10
31
2x+y-5≥0, (2)已知3x-y-5≤0,求(x+1)2+(y+1)2 的最大、
简单的线性规划
2021/10/10
1
[学习目标] 1.了解线性规划的意义,了解线性约束 条件、线性目标函数、可行解、可行域、最优解等基本概 念. 2.掌握线性规划问题的图解法,会用图解法求线性 目标函数的最大值、最小值. 3.训练数形结合、化归等 数学思想,培养和发展数学应用意识.
2021/10/10
x-2y+5≥0, 最小值.
(1)解析:如图所示,
2021/10/10
32
2x-y-2≥0, x+2y-1≥0,所表示的 3x+y-8≤0,
平面区域为图中的阴影部分.
x+2y-1=0,
由
得 A(3,-1)
3x+y-8=0,
当 M 点与 A 重合时,OM 的斜率最小,
2021/10/10
含参的线性规划问题
线性规划
【练习3】(2010·安徽)设x,y满足约束条件
2 x y 2 0 8 x y 4 0 ,若目标函数z=abx+y(a>0,b>0)的 x 0 ,y 0
最大值为8,则a+b的最小值为_______. 4
线性规划
与函数结合
【例4】若函数 ( x ) x 2 ax 2b在区间 0,1), f ( (1,2)内各有一个零点,则2 (b 2) 2的取值 a 范围是( A. )
线性规划(二)
高三数学组
确定你的方向是正确的,下一步要做的 就是坚持……
线性规划 课时要求 1.了解二元一次不等式的几何意义,能用平 面区域表示二元次此不等式组; 2.理解目标函数的几何意义,会用图解法解 线性规划问题; 本节重点是含参问题。 3.通过图解法逐步加强作图能力,渗透数形 结合思想。
平面区域与目标函数
复习回顾
目标函数的几何意义
b 1. z ax by 直线型,z表示纵截距的 倍 2. z ax by 点到直线距离型 3. z OA OB 转化为坐标形式或投影 yb 斜率型 4. z xa 2 2 5. z x y Dx Ey F 两点间距离型 2 2 6. z x y Dx Ey F 圆型(距离平方)
线性规划
【例5】已知函数 f ( x )在R上单调递增,函数 y y f ( x 1)的图像关于点1,0)对称,若对于任意 ( 的x , y R, 不等式f ( x 2 6 x 21) f ( y 2 8 y ) 0 恒成立,则 x y 的取值范围是 ________.
线性规划
[模板]线性规划PPT课件
顶点可达到。 4.解题思路是:先找出凸集的任一顶点,计算Z值,比较
Z值最大的顶点为止。
4.无可行解(例1.15):原因是模型本身错误,约束条件之间互相
矛盾,应检查修正。
1、2情形为有最优解 3、4情形为无最优解
-
36
图解法得到的启示
1.求解线性规划问题时,解的情况有:唯一最优解、无 穷多最优解、无界解和无可行解。
2.若线性规划问题的可行域存在,则可行域是一凸集。 3.若线性规划问题的最优解存在,则最优解一定在某个
一般情况,决策变量只取正值(非负值)
x1 0, x2 0
-
6
数学模型
max S=50x1+30x2 s.t. 4x1+3x2 120
2x1+ x2 50 x1,x2 0
线性规划数学模型三要素:
决策变量、约束条件、目标函数
-
7
1-2 线性规划问题的数学模型
例1 .2 营养配餐问题
假定一个成年人每天需要从食物中
第一章 线性规划与单纯形方法
-
1
内容:
线性规划的数学模型,标准形式,基本概念及基本原理;线性规划 的图解法,单纯形法,大M法,两阶段法。
• 重点: • (1)线性规划的基本概念 • (2)单纯形法的基本原理与计算步骤 • 难点: • (1)单纯形法的基本原理与计算步骤
• 基本要求: • (1)理解线性规划的基本概念:目标函数、约束条件、可行解与可行域、基可
和约束方程的影响是独立于其他变量的,
目标函数值是每个决策变量对目标函数
贡献的总和。
-
16
•连续性假定:线性规划问题中的 决策变量应取连续值。
•确定性假定:线性规划问题中的 所有参数都是确定的参数。线性 规划问题不包含随机因素。
Z值最大的顶点为止。
4.无可行解(例1.15):原因是模型本身错误,约束条件之间互相
矛盾,应检查修正。
1、2情形为有最优解 3、4情形为无最优解
-
36
图解法得到的启示
1.求解线性规划问题时,解的情况有:唯一最优解、无 穷多最优解、无界解和无可行解。
2.若线性规划问题的可行域存在,则可行域是一凸集。 3.若线性规划问题的最优解存在,则最优解一定在某个
一般情况,决策变量只取正值(非负值)
x1 0, x2 0
-
6
数学模型
max S=50x1+30x2 s.t. 4x1+3x2 120
2x1+ x2 50 x1,x2 0
线性规划数学模型三要素:
决策变量、约束条件、目标函数
-
7
1-2 线性规划问题的数学模型
例1 .2 营养配餐问题
假定一个成年人每天需要从食物中
第一章 线性规划与单纯形方法
-
1
内容:
线性规划的数学模型,标准形式,基本概念及基本原理;线性规划 的图解法,单纯形法,大M法,两阶段法。
• 重点: • (1)线性规划的基本概念 • (2)单纯形法的基本原理与计算步骤 • 难点: • (1)单纯形法的基本原理与计算步骤
• 基本要求: • (1)理解线性规划的基本概念:目标函数、约束条件、可行解与可行域、基可
和约束方程的影响是独立于其他变量的,
目标函数值是每个决策变量对目标函数
贡献的总和。
-
16
•连续性假定:线性规划问题中的 决策变量应取连续值。
•确定性假定:线性规划问题中的 所有参数都是确定的参数。线性 规划问题不包含随机因素。
含参的线性规划问题
x 0 (3)点M(a, b)在 y 0 区域内, x+y 2 求N(a+b,a-b)所形成区域的面积
x y0 (4)不等式组 2 x y 2 y 0 x ya
表示的平面区域是一个三角形,则 取值范围是 D
4 D.0 a 1或a 3
命题点3 区域图形与面积
x+y-1 0 例3、(1)若不等式组 x-1 0 ax-y+1 0 所表示的平面区域的面积等于2,求a
1 1
D
x 0 例3(2)已知a>0,b 0,且 y 0 , x y 1 恒有ax+by 1,求点(a,b)所成区域的面积
含参数的线性规划(一)
平面区域与目标函数
复习回顾
目标函数的几何意义
直线型, z表示纵截距的 b倍 1. z ax by 2. z ax by+c 点到直线距离型 转化为坐标形式或投影 3. z OA OP yb 斜率型 4. z xa 2 2 5. z x y Dx Ey F 两点间距离型 2 2 6. z x y Dx Ey F 圆型 (距离平方 )
线性规划
由区域求参数
【 例1】 ( 2013 新 课 标 II )已 知a 0, x , y满 足 约 束 条 件 x 1 1, 则a ( ) x y 3 , 若z 2 x y的 最 小 值 为 y a ( x 3) 1 A. 4 1 B. 2 C.1 D. 2
4 A.a 3 B.0 a 件中含有参数时,注意直线是定点直线系、 • 还是平行直线系,使直线初步稳定。 • 2、目标函数中含有参数时,注意分析目标函数的 • 几何意义。 • 3、在线性规划问题可行域下的恒成立问题,一定要结合 • “可行域”将“恒成立”加以控制;或者转化为目标函 • 数的最值问题。
第3章 线性规划.ppt
max z x1 x2 则凸多边形的边AB 上的所有点都是问 题的解。因此,解 是无穷多个。
x2
400
300 A
250 B
x2 250
x1 x2 300
0
200
300
x1
2x1 x2 400 16
第3章 线性规划
3. 无最优解(目标函数值
x2
为无穷大或无穷小)。
若例3-4中式(b),(c)的约 250
成立,则称x为凸集D的极点。即在凸集上不能表 示成相异两点凸组合的点,称为极点;在线性 规划问题的凸集上称之为顶点。
20
第3章 线性规划
3. 基本解:对于有n个变量、m个约束方程的标 准线性规划问题,取其m个变量,若这些变量在 约束方程中的系数列向量线性无关,则它们组 成一组基本变量。确定了一组基本变量后,其 它n-m个变量称为非基本变量。
变量约束: xi 0, 1 i 4
6
第3章 线性规划
一、线性规划问题的标准形式(※)
1. 标准形式
目标函数: 约束条件:
n
max z cj xj j 1
n
aij xj b0i , i 1, 2,
j 1
, m, (b0i 0)
变量约束: xj 0, j 1, 2, , n
通常把上述三个式子描述的问题称为标准线
5. 基本可行解:如果基本解中的每一个变量都是非 负的,即满足变量约束 xj 0, (1 j n) 的基本解称 为基本可行解。如果在基本可行解中至少有一个基 本变量为零,则该解称为退化的基本可行解,反之, 称为非退化的基本可行解。
注:基本可行解既是基本解、又是可行解,它对应 于线性规划问题可行域的顶点。
9
第3章 线性规划
x2
400
300 A
250 B
x2 250
x1 x2 300
0
200
300
x1
2x1 x2 400 16
第3章 线性规划
3. 无最优解(目标函数值
x2
为无穷大或无穷小)。
若例3-4中式(b),(c)的约 250
成立,则称x为凸集D的极点。即在凸集上不能表 示成相异两点凸组合的点,称为极点;在线性 规划问题的凸集上称之为顶点。
20
第3章 线性规划
3. 基本解:对于有n个变量、m个约束方程的标 准线性规划问题,取其m个变量,若这些变量在 约束方程中的系数列向量线性无关,则它们组 成一组基本变量。确定了一组基本变量后,其 它n-m个变量称为非基本变量。
变量约束: xi 0, 1 i 4
6
第3章 线性规划
一、线性规划问题的标准形式(※)
1. 标准形式
目标函数: 约束条件:
n
max z cj xj j 1
n
aij xj b0i , i 1, 2,
j 1
, m, (b0i 0)
变量约束: xj 0, j 1, 2, , n
通常把上述三个式子描述的问题称为标准线
5. 基本可行解:如果基本解中的每一个变量都是非 负的,即满足变量约束 xj 0, (1 j n) 的基本解称 为基本可行解。如果在基本可行解中至少有一个基 本变量为零,则该解称为退化的基本可行解,反之, 称为非退化的基本可行解。
注:基本可行解既是基本解、又是可行解,它对应 于线性规划问题可行域的顶点。
9
第3章 线性规划
线性规划PPT优秀课件
y
1
x+y-1>0
1
O
x+y-1<0 x+y-1=0
x
复习二元一次不等式表示平面区域的范例 例1 画出不等式2x+y-6<0表示的平面区域。 y
6
注意:把直
线画成虚线以 表示区域不包 括边界
O
2x+y-6=0
3
x
复习二元一次不等式表示平面区域的范例 y
5Hale Waihona Puke 例2 画出不等式组 x+y=0
x y 5 0 x y 0 x 3
探索结论
复习判断二元一次不等式表示哪一 侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
可行域
(5,2)
(1,1)
线性规划
例1 解下列线性规划问题: 求z=2x+y的最大值和最小值,使式中x、y满足下 列条件: 2x+y=0 y
解线性规划问题的一般步骤:
2x+y=-3 y x 1 1 第一步:在平面直角坐标系中作出可行域; C( , ) 2 2 第二步:在可行域内找到最优解所对应的点; x y 1 O y 1 第三步:解方程的最优解,从而求出目标函数 B(2,-1) 2x+y=3
x-y=7 C(3,6) y=6
线性规划问题 含参数问题
1.二元一次不等式(组)表示的平面区域
(1)一般地,二元一次不等式 Ax+By+C>0 在平面直角坐标 系中表示直线 Ax+By+C=0 某一侧的所有点组成的平面区域 (半平面)不含边界直线.不等式 Ax+By+C≥0 所表示的平面区 域(半平面)包括边界直线.
(2)对于直线 Ax+By+C=0 同一侧的所有点(x,y),使得 Ax+By+C 的值符号相同,也就是位于同一半平面内的点,其 坐标适合同一个不等式 Ax+By+C>0;而位于另一个半平面内 的点,其坐标适合另一个不等式 Ax+By+C<0.
解:(1)不等式 x-y+5≥0 表示直线 x-y+5=0 上及右下方的点的集 合.x+y≥0 表示直线 x+y=0 上及右上方的点的集合,x≤3 表示直线 x=3 上
及左方的点的集合.
������-������ + 5 ≥ 0, 所以,不等式组 ������ + ������ ≥ 0, 表示的平面区域如图阴影部分所示.
D.(0,1]∪43,+∞
(1)解 x-y≥0, 不等式组2x+y≤2, 表示的平面区域 x+y=a.
y≥0
如 求图A,(阴B影两部点分的),坐标分别为23,23和(1,0), 若原不等式组表示的平面区域是一个三角形,
则直线 x+y=a 的 a 的取值范围
是
0<a≤1
(3)由几个不等式组成的不等式组所表示的平面区域,是各 个不等式所表示的平面区域的公共部分.
x-y+5≥0
画出
x+y≥0 表示的平面区域
判定方法2:当A>0时
Y
x+y=0
Ax+By+C>0表示直线右方区域;
(1)一般地,二元一次不等式 Ax+By+C>0 在平面直角坐标 系中表示直线 Ax+By+C=0 某一侧的所有点组成的平面区域 (半平面)不含边界直线.不等式 Ax+By+C≥0 所表示的平面区 域(半平面)包括边界直线.
(2)对于直线 Ax+By+C=0 同一侧的所有点(x,y),使得 Ax+By+C 的值符号相同,也就是位于同一半平面内的点,其 坐标适合同一个不等式 Ax+By+C>0;而位于另一个半平面内 的点,其坐标适合另一个不等式 Ax+By+C<0.
解:(1)不等式 x-y+5≥0 表示直线 x-y+5=0 上及右下方的点的集 合.x+y≥0 表示直线 x+y=0 上及右上方的点的集合,x≤3 表示直线 x=3 上
及左方的点的集合.
������-������ + 5 ≥ 0, 所以,不等式组 ������ + ������ ≥ 0, 表示的平面区域如图阴影部分所示.
D.(0,1]∪43,+∞
(1)解 x-y≥0, 不等式组2x+y≤2, 表示的平面区域 x+y=a.
y≥0
如 求图A,(阴B影两部点分的),坐标分别为23,23和(1,0), 若原不等式组表示的平面区域是一个三角形,
则直线 x+y=a 的 a 的取值范围
是
0<a≤1
(3)由几个不等式组成的不等式组所表示的平面区域,是各 个不等式所表示的平面区域的公共部分.
x-y+5≥0
画出
x+y≥0 表示的平面区域
判定方法2:当A>0时
Y
x+y=0
Ax+By+C>0表示直线右方区域;
《线性规划问题》课件
基本假设
线性规划问题的基本假设包括有界性、非空性和可行性。
变量的类型
线性规划问题中的变量可以是非负实数、非负整数或二进制数。
线性规划问题的求解方法
1
图形解法
通过绘制目标函数和约束条件的图形来找到最优解。
2
单纯形法
单纯形法是一种迭代的算法,通过改变顶点来逐步优化线性规划问题。
3
对偶问题及其求解
对偶问题是原问题的镜像,通过求解对偶问题可以得到原问题的最优解。
线性规划在实际问题中的应用
生产计划问题
线性规划可以帮助制定最优化的生产计划,提 高生产效率。
运输问题ቤተ መጻሕፍቲ ባይዱ
线性规划可以解决运输中的最优路径和资源分 配问题。
资源分配问题
线性规划可以帮助合理分配资源,达到最佳利 用效果。
投资决策问题
线性规划可以辅助投资者做出最优化的投资决 策,降低风险。
线性规划问题的扩展
《线性规划问题》PPT课 件
欢迎来到《线性规划问题》PPT课件,今天我们将一起探讨什么是线性规划 问题以及其在实际应用中的重要性。
什么是线性规划问题
线性规划是一种优化问题,其中目标函数和约束条件均为线性函数。它通常 被用于解决最优化问题。
线性规划的基本概念
标准形式
线性规划问题的标准形式指的是目标函数和约束条件都为线性函数的问题。
线性规划问题在实际中具有广泛应用,如生产计划、运输问题、资源分配和投资决策等。它可以帮助优 化资源利用和决策效果。
1 整数线性规划问题
在整数线性规划问题中,变量被限制为整数值,更加符合实际情况。
2 非线性规划问题
非线性规划问题中的目标函数和约束条件可以是非线性函数,具有更大的灵活性。
线性规划问题的基本假设包括有界性、非空性和可行性。
变量的类型
线性规划问题中的变量可以是非负实数、非负整数或二进制数。
线性规划问题的求解方法
1
图形解法
通过绘制目标函数和约束条件的图形来找到最优解。
2
单纯形法
单纯形法是一种迭代的算法,通过改变顶点来逐步优化线性规划问题。
3
对偶问题及其求解
对偶问题是原问题的镜像,通过求解对偶问题可以得到原问题的最优解。
线性规划在实际问题中的应用
生产计划问题
线性规划可以帮助制定最优化的生产计划,提 高生产效率。
运输问题ቤተ መጻሕፍቲ ባይዱ
线性规划可以解决运输中的最优路径和资源分 配问题。
资源分配问题
线性规划可以帮助合理分配资源,达到最佳利 用效果。
投资决策问题
线性规划可以辅助投资者做出最优化的投资决 策,降低风险。
线性规划问题的扩展
《线性规划问题》PPT课 件
欢迎来到《线性规划问题》PPT课件,今天我们将一起探讨什么是线性规划 问题以及其在实际应用中的重要性。
什么是线性规划问题
线性规划是一种优化问题,其中目标函数和约束条件均为线性函数。它通常 被用于解决最优化问题。
线性规划的基本概念
标准形式
线性规划问题的标准形式指的是目标函数和约束条件都为线性函数的问题。
线性规划问题在实际中具有广泛应用,如生产计划、运输问题、资源分配和投资决策等。它可以帮助优 化资源利用和决策效果。
1 整数线性规划问题
在整数线性规划问题中,变量被限制为整数值,更加符合实际情况。
2 非线性规划问题
非线性规划问题中的目标函数和约束条件可以是非线性函数,具有更大的灵活性。
2含参的线性规划问题Microsoft PowerPoint 幻灯片
课题导入
前面我们学习了基本的线性规划问题, 知道如何利用线性目标区域求目标函数 的最值问题,那么如果不等式组或者目 标函数含参数,又该如何求解呢?本节课 我们就来学习含参线性规划问题!
含参的线性规划问题
目标引领
会求含参线性规划问题
(目标函数中含参)
独立自学
x y 5 0, 问题:已知 x、y满足: x 3, 求z=2x+4y的最小值 x y 0,
目标升华
1.画图对解决线性规划问题至关重要,关键步骤基本 上是在图上完成的,所以作图应尽可能准确,图上操 作尽可能规范. 2.解答线性规划的实际应用问题时应注意 (1)在线性规划问题的应用中,常常是题中的条件较多, 因此认真审题非常重要; (2)线性约束条件中有无等号要依据条件加以判断; (3)结合实际问题,未知数x、y等是否有限制 ,如x、y为 正整数、非负数等; (4)图对解决线性规划问题至关重要,关键步骤基本上是 在图上完成的,所以作图应尽可能准确,图上操作尽可 能规范.
当堂诊学
D
如图,目标函数 u ax y的可行域为四边形 OACB(含边界). 2 4 若点C( , )是该目标函数的最优解 , 则a的取值范围是( ) 3 5 10 5 12 3 A.- , B. , 3 12 5 10 3 1 12 3 C. , D. , 10 5 5 10
引导探究
x +2y-3≤0 变式: 本例中, 若将约束条件变为 x +3y-3≥0, y -1 ≤0 的取值范围是什么? 目 标函数仅在点 (3,0)处取得最大值,其他条件不变,则 a
探究:由约束条件画出可行域如 图 所示 , 要使 目 标函 数仅 在 点 1 (3,0)处取得最大值, 则-a<- , 2 1 所以 a> . 2
前面我们学习了基本的线性规划问题, 知道如何利用线性目标区域求目标函数 的最值问题,那么如果不等式组或者目 标函数含参数,又该如何求解呢?本节课 我们就来学习含参线性规划问题!
含参的线性规划问题
目标引领
会求含参线性规划问题
(目标函数中含参)
独立自学
x y 5 0, 问题:已知 x、y满足: x 3, 求z=2x+4y的最小值 x y 0,
目标升华
1.画图对解决线性规划问题至关重要,关键步骤基本 上是在图上完成的,所以作图应尽可能准确,图上操 作尽可能规范. 2.解答线性规划的实际应用问题时应注意 (1)在线性规划问题的应用中,常常是题中的条件较多, 因此认真审题非常重要; (2)线性约束条件中有无等号要依据条件加以判断; (3)结合实际问题,未知数x、y等是否有限制 ,如x、y为 正整数、非负数等; (4)图对解决线性规划问题至关重要,关键步骤基本上是 在图上完成的,所以作图应尽可能准确,图上操作尽可 能规范.
当堂诊学
D
如图,目标函数 u ax y的可行域为四边形 OACB(含边界). 2 4 若点C( , )是该目标函数的最优解 , 则a的取值范围是( ) 3 5 10 5 12 3 A.- , B. , 3 12 5 10 3 1 12 3 C. , D. , 10 5 5 10
引导探究
x +2y-3≤0 变式: 本例中, 若将约束条件变为 x +3y-3≥0, y -1 ≤0 的取值范围是什么? 目 标函数仅在点 (3,0)处取得最大值,其他条件不变,则 a
探究:由约束条件画出可行域如 图 所示 , 要使 目 标函 数仅 在 点 1 (3,0)处取得最大值, 则-a<- , 2 1 所以 a> . 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3,7)
最新
13
线性规划
【练习5】定义在R上的函数f ( x)满足对任意不等的
实 数x1, x2 ,都 有 f ( x1 ) f ( x2 )( x1 x2 ) 0成 立, 且
函数f ( x 1)的图像关于点(1,0)对称,若对于任意
的x, y R,不 等式f ( x2 2x) f (2 y y2 ) 0成 立,
3
平面区域与目标函数
复习回顾 目标函数的几何意义
1. z ax by 直线型,z表示纵截距的b倍 2. z ax by 点到直线距离型
3. z OA OB 转化为坐标形式或投影
4. z y b 斜率型 xa
5. z x2 y2 Dx Ey F 两点间距离型
6. z x2 y2 Dx Ey F 圆型(距离平方)
2x y 3 0 ,且x+y的最大值为9,则实数m=( )
x m y 1 0
(A)-2
(B)-1
(C)1
(D)2
最新
6
线性规划
由目标函数几何意义求参数
【例2】(2013 浙江)设z kx y,其中实数x, y满足
x 2
x
2y
4
0, 若z的 最 大 值 为12, 则 实 数k
____
2x y 2 0 8x y 4 0 ,若目标函数z=abx+y(a>0,b>0)的 x 0,y 0
4 最大值为8,则a+b的最小值为_______.
最新Biblioteka 10线性规划与函数结合
【 例4】 若 函 数f ( x) x2 ax 2b在 区 间(0,1), (1,2)内 各 有一 个 零 点 , 则a2 (b 2)2的 取 值 范围是( )
最新
4
线性规划
由区域求参数
【例1】(2013 新课标II )已知a 0, x, y满足约束条件
x 1
x
y
3
,若z 2x y的最小值为1,则a ( )
y a( x 3)
A. 1
B. 1 C.1 D. 2
4
2
最新
5
线性规划
【练习1】(2010·浙江)若实数x,y满足不等式组
x 3y3 0
6
3
3
最新
8
线性规划
x y 2 【 练 习2】 已 知x, y满 足 不等 式 组 y x 0,
x 0 目 标 函数z ax y只 在(1,1)处 取 最小 值 , 则 有( ) A. a 1 B.a 1 C. a 1 D. a 1
最新
9
线性规划
【练习3】(2010·安徽)设x,y满足约束条件
线性规划(二)
高三数学组
确定你的方向是正确的,下一步要做的 就是坚持……
最新
2
线性规划
课时要求
1.了解二元一次不等式的几何意义,能用平 面区域表示二元次此不等式组;
2.理解目标函数的几何意义,会用图解法解 线性规划问题;本节重点是含参问题。
3.通过图解法逐步加强作图能力,渗透数形 结合思想。
最新
A. 5, 10 B.5,10 C. 0,5 D. 0,10
最新
11
线性规划
【 练 习4】 已 知 函 数f ( x) 1 x3 1 ax2 bx 32
在 区 间 1,3上 单 调 递 减 , 则a2 b2的 最 小
值
是
13
________.
最新
12
线性规划
【例5】已知函数y f ( x)在R上单调递增,函数 y f ( x 1)的图像关于点(1,0)对称,若对于任意 的x, y R,不 等 式f ( x2 6x 21) f ( y2 8 y) 0 恒 成 立 , 则 x2 y2的 取 值 范 围 是________.
2x y 4 0
2
最新
7
线性规划
由目标函数几何意义求参数
3x y 6 0
【例3】(2009·山东)设x,y满足约束条件
x
y
2
0
,
x 0, y 0
若目标函数z=ax+by(a>0,b>0)的最大值为12,则 2 3 的最
ab
小值为( )
(A) 25 (B) 8 (C)11 (D)4
则当1 x 4时,y 的取值范围是________.
x
[ 1 ,1]
2
最新
14
最新
13
线性规划
【练习5】定义在R上的函数f ( x)满足对任意不等的
实 数x1, x2 ,都 有 f ( x1 ) f ( x2 )( x1 x2 ) 0成 立, 且
函数f ( x 1)的图像关于点(1,0)对称,若对于任意
的x, y R,不 等式f ( x2 2x) f (2 y y2 ) 0成 立,
3
平面区域与目标函数
复习回顾 目标函数的几何意义
1. z ax by 直线型,z表示纵截距的b倍 2. z ax by 点到直线距离型
3. z OA OB 转化为坐标形式或投影
4. z y b 斜率型 xa
5. z x2 y2 Dx Ey F 两点间距离型
6. z x2 y2 Dx Ey F 圆型(距离平方)
2x y 3 0 ,且x+y的最大值为9,则实数m=( )
x m y 1 0
(A)-2
(B)-1
(C)1
(D)2
最新
6
线性规划
由目标函数几何意义求参数
【例2】(2013 浙江)设z kx y,其中实数x, y满足
x 2
x
2y
4
0, 若z的 最 大 值 为12, 则 实 数k
____
2x y 2 0 8x y 4 0 ,若目标函数z=abx+y(a>0,b>0)的 x 0,y 0
4 最大值为8,则a+b的最小值为_______.
最新Biblioteka 10线性规划与函数结合
【 例4】 若 函 数f ( x) x2 ax 2b在 区 间(0,1), (1,2)内 各 有一 个 零 点 , 则a2 (b 2)2的 取 值 范围是( )
最新
4
线性规划
由区域求参数
【例1】(2013 新课标II )已知a 0, x, y满足约束条件
x 1
x
y
3
,若z 2x y的最小值为1,则a ( )
y a( x 3)
A. 1
B. 1 C.1 D. 2
4
2
最新
5
线性规划
【练习1】(2010·浙江)若实数x,y满足不等式组
x 3y3 0
6
3
3
最新
8
线性规划
x y 2 【 练 习2】 已 知x, y满 足 不等 式 组 y x 0,
x 0 目 标 函数z ax y只 在(1,1)处 取 最小 值 , 则 有( ) A. a 1 B.a 1 C. a 1 D. a 1
最新
9
线性规划
【练习3】(2010·安徽)设x,y满足约束条件
线性规划(二)
高三数学组
确定你的方向是正确的,下一步要做的 就是坚持……
最新
2
线性规划
课时要求
1.了解二元一次不等式的几何意义,能用平 面区域表示二元次此不等式组;
2.理解目标函数的几何意义,会用图解法解 线性规划问题;本节重点是含参问题。
3.通过图解法逐步加强作图能力,渗透数形 结合思想。
最新
A. 5, 10 B.5,10 C. 0,5 D. 0,10
最新
11
线性规划
【 练 习4】 已 知 函 数f ( x) 1 x3 1 ax2 bx 32
在 区 间 1,3上 单 调 递 减 , 则a2 b2的 最 小
值
是
13
________.
最新
12
线性规划
【例5】已知函数y f ( x)在R上单调递增,函数 y f ( x 1)的图像关于点(1,0)对称,若对于任意 的x, y R,不 等 式f ( x2 6x 21) f ( y2 8 y) 0 恒 成 立 , 则 x2 y2的 取 值 范 围 是________.
2x y 4 0
2
最新
7
线性规划
由目标函数几何意义求参数
3x y 6 0
【例3】(2009·山东)设x,y满足约束条件
x
y
2
0
,
x 0, y 0
若目标函数z=ax+by(a>0,b>0)的最大值为12,则 2 3 的最
ab
小值为( )
(A) 25 (B) 8 (C)11 (D)4
则当1 x 4时,y 的取值范围是________.
x
[ 1 ,1]
2
最新
14