实验报告 分支限界法01背包

合集下载

分支限界法的优先队列方式求解

分支限界法的优先队列方式求解
bestx:bestx[i]=1最优解中有物品i
物品 1 2 3 cp 48 30 30 cw 16 15 15 D cp/cw 3 2 2 H I
B E F
C G
J
K
L
M
N
O
分支限界法的优先队列方式求解0-1背包问题 cw=0 cp=0 up=90
1
cw=16 up=76 cp=48
0
cw=0 up=90 cp=0
A
B E F
C G
D
HIBiblioteka JKLM
N
O
分支限界法的优先队列方式求解 0-1背包问题
中国民航大学 计算机科学与技术学院 刘东楠 1505040
分支限界法的优先队列方式求解0-1背包问题
0-1背包问题:给定n种物品和一背包。物品i的重量是wi,其价值为vi,
背包的容量为c。问应如何选择装入背包中的物品,使得装入背包中的物品的 总价值最大?
解题步骤:
Step1:搜索解空间建立二叉树,从根节点A开始。 Step2:广度优先遍历二叉树,并用极大堆表示活节 点的优先级,选取扩展节点,找出可行解。 Step3:找出最优解。
在算法中,算法首先检查当前扩展 节点的左儿子的可行性。如果左儿 子节点是可行节点,则将它加入到 子集数和活节点优先队列中。当前 扩展节点的右儿子一定是可行节点, 仅当右儿子满足上界约束时才将它 加入子集数和活节点优先队列。 A
-搜索方法不同:
回溯法使用深度优先方法搜索,而分支限界一般用宽度优先或最佳优先方法来搜索。
-对扩展结点的扩展方式不同:
分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就 一次性产生其所有儿子结点。

实验报告分支限界法01背包

实验报告分支限界法01背包

实验报告分支限界法01背包实验报告:分支限界法解决01背包问题一、引言背包问题是数学和计算机科学中一个经典的问题。

背包问题通常分为01背包问题和完全背包问题两种情况。

本实验主要探讨的是分支限界法解决01背包问题,该算法常用于解决NP难问题。

分支限界法通过将问题分解为一系列子问题,并借助剪枝技术,逐步缩小问题的空间,从而找到最优解。

本实验将通过具体的案例来展示分支限界法的求解过程和原理,并对算法的时间复杂度和空间复杂度进行分析。

二、算法原理01背包问题的数学模型为:有n个物品,每个物品有一个重量wi和一个价值vi,在限定的背包容量为W的情况下,如何选择物品放入背包,使得背包中物品的总价值最大。

分支限界法的基本思想是:通过不断地分解问题为更小的子问题,并使用估算函数对子问题进行优先级排序,将优先级最高的子问题优先求解。

具体步骤如下:1.根节点:将背包容量W和物品序号0作为初始状态的根节点。

2.扩展节点:对于任意一个节点S,选择装入下一个物品或者不装入两种分支。

计算新节点的上界。

3.优先级队列:将扩展节点按照上界从大到小的顺序插入优先级队列。

4.剪枝条件:当扩展节点的上界小于当前已找到的最优解时,可以剪枝。

5.结束条件:当到叶节点或者队列为空时,结束。

若叶节点的上界高于当前最优解,更新最优解。

三、实验过程1.输入数据:给定一个物品序列,每个物品有重量和价值,以及一个背包的最大容量。

2.算法实现:根据算法原理,使用编程语言实现分支限界法的求解过程。

3.结果分析:比较算法求解得到的最优解和其他算法(如动态规划)得到的最优解之间的差异。

四、实验结果以一个具体的案例来说明分支限界法的求解过程。

假设有4个物品,其重量和价值分别为{2,3,4,5}和{3,4,5,6},背包的最大容量为8、通过分支限界法求解,得到最优解为9,对应的物品选择为{2,3,5}。

通过与动态规划算法的结果比较,可以发现分支限界法的最优解与动态规划算法得到的最优解是一致的。

分支界限方法01背包问题解题步骤

分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。

在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。

01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。

2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。

假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。

对于01背包问题,可以初始化dp数组的第一行和第一列为0。

4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。

分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。

5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。

分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。

分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。

在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。

掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。

分支界限方法在解决01背包问题的过程中,具有重要的作用。

试验4用分支限界法实现0-1背包问题

试验4用分支限界法实现0-1背包问题

0-1背包问题用分支限界法实现实验四一.实验目的 1.熟悉分支限界法的基本原理。

2.通过本次实验加深对分支限界法的理解。

二.实验内容及要求,背包容量为内容:.给定n种物品和一个背包。

物品i的重量是w,其价值为v? c。

问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大背包问题0-1要求:使用优先队列式分支限界法算法编程,求解三.程序列表#include<iostream>#include<stack>std; using namespace100#define N class HeapNode//定义HeapNode结点类{: public weightprice double upper, price, weight; //upper为结点的价值上界,是结点所对应的价值,为结点所相应的重量//]; 活节点在子集树中所处的层序号N int level, x[};i); intdouble MaxBound( Knap();double是价值上界, ch, //up int level);booldoubledoubledoublevoid AddLiveNode( up, cp, cw, cwcp是相应的价值,是该结点所相应的重量,ture or falsech是 . . . .//最大队High HeapNodestack<> High;把物品重量和价值定义为双精度浮点数]; double w[N], p[N//为当前价值,定义背包容量为c//cw double cw, cp, c; 为当前重量,cp//货物数量为 n; int main() int{endl; <<请输入背包容量:cout <<c;cin >> endl; << cout <<请输入物品的个数: n;cin >> endl; <<请按顺序分别输入物品的重量:<< couti;int (i = 1; i <= n; i++) for//cin >> w[i]; 输入物品的重量endl; <<请按顺序分别输入物品的价值: cout <<(i = 1; i <= n; i++) for//输入物品的价值>> cin p[i];;最优值为:<< cout 函数输出最大价值knap//<<<<cout Knap() endl; 调用0;return}k MaxBound(doubleint函数求最大上界//MaxBound ){cleft = c - cw; double//剩余容量价值上界//double b = cp;. . . .//以物品单位重量价值递减装填剩余容量k while (k <= n&&w[] <= cleft){]; k cleft -= w[]; k b += p[++;k}<= n) (k if装填剩余容量装满背包] / w[ b += p[kk ] * cleft; //b;return}将一个新的活结点int lev//) , , , , AddLiveNode(voiddouble up double cp double cw bool ch插入到子集数和最大堆High中{be; HeapNode; up be.upper =; cp be.price =; be.weight = cw; be.level = lev <= n) if (lev High.push(be);} 函数调用}//stack头文件的push bestx double Knap() //优先队列分支限界法,返回最大价值,返回最优解{i = 1; intcw = cp = 0;. . . .double//best为当前最优值 bestp = 0;// up = MaxBound(1);价值上界double搜索子集空间树//while (1) //非叶子结点{wt = cw + w[i];doubleif (wt <= c) //左儿子结点为可行结点{(cp + p[i]>bestp) if bestp = cp + p[i];, i + 1);true AddLiveNode(up, cp + p[i], cw + w[i],}up = MaxBound(i + 1);右子数可能含最优解if (up >= bestp) //, i + 1); AddLiveNode(up, cp, cw, false (High.empty()) if bestp;return取下一扩展结点 //HeapNode node = High.top();High.pop();cw = node.weight;cp = node.price;up = node.upper;i = node.level;}四.实验结果} . . . .. . . .。

分支限界法解决01背包问题

分支限界法解决01背包问题

分⽀限界法解决01背包问题1. 问题描述设有n个物体和⼀个背包,物体i的重量为wi价值为pi ,背包的载荷为M, 若将物体i(1<= i <=n)装⼊背包,则有价值为pi . ⽬标是找到⼀个⽅案, 使得能放⼊背包的物体总价值最⾼.设N=3, W=(16,15,15), P=(45,25,25), C=30(背包容量)2. 队列式分⽀限界法可以通过画分⽀限界法状态空间树的搜索图来理解具体思想和流程每⼀层按顺序对应⼀个物品放⼊背包(1)还是不放⼊背包(0)步骤:①⽤⼀个队列存储活结点表,初始为空② A为当前扩展结点,其⼉⼦结点B和C均为可⾏结点,将其按从左到右顺序加⼊活结点队列,并舍弃A。

③按FIFO原则,下⼀扩展结点为B,其⼉⼦结点D不可⾏,舍弃;E可⾏,加⼊。

舍弃B④ C为当前扩展结点,⼉⼦结点F、G均为可⾏结点,加⼊活结点表,舍弃C⑤扩展结点E的⼉⼦结点J不可⾏⽽舍弃;K为可⾏的叶结点,是问题的⼀个可⾏解,价值为45⑥当前活结点队列的队⾸为F, ⼉⼦结点L、M为可⾏叶结点,价值为50、25⑦ G为最后⼀个扩展结点,⼉⼦结点N、O均为可⾏叶结点,其价值为25和0⑧活结点队列为空,算法结束,其最优值为50注:活结点就是不可再进⾏扩展的节点,也就是两个⼉⼦还没有全部⽣成的节点3. 优先队列式分⽀限界法3.1 以活结点价值为优先级准则步骤:①⽤⼀个极⼤堆表⽰活结点表的优先队列,其优先级定义为活结点所获得的价值。

初始为空。

②由A开始搜索解空间树,其⼉⼦结点B、C为可⾏结点,加⼊堆中,舍弃A。

③B获得价值45,C为0. B为堆中价值最⼤元素,并成为下⼀扩展结点。

④ B的⼉⼦结点D是不可⾏结点,舍弃。

E是可⾏结点,加⼊到堆中。

舍弃B。

⑤ E的价值为45,是堆中最⼤元素,为当前扩展结点。

⑥ E的⼉⼦J是不可⾏叶结点,舍弃。

K是可⾏叶结点,为问题的⼀个可⾏解价值为45。

⑦继续扩展堆中唯⼀活结点C,直⾄存储活结点的堆为空,算法结束。

分支限界法之LC01背包

分支限界法之LC01背包
分支限界法之 LC01 背包 1.问题描述:已知有 N 个物品和一个可以容纳 M 重量的背包,每种物品 I 的重量为 WEIGHT, 一个只能全放入或者不放入,求解如何放入物品,可以使背包里的物品的总效益最大。
2.设计思想与分析:对物品的选取与否构成一棵解树,左子树表示不装入,右表示装入,通 过检索问题的解树得出最优解,并用结点上界杀死不符合要求的结点。
#include <iostream.h> struct good {
int weight; int benefit; int flag;//是否可以装入标记 };
int number=0;//物品数量 int upbound=0; int curp=0, curw=0;//当前效益值与重量 int maxweight=0; good *bag=NULL;
void Init_good() {
bag=new good [number];
for(int i=0; i<number; i++) { cout<<"请输入第件"<<i+1<<"物品的重量:"; cin>>bag[i].weight; cout<<"请输入第件"<<i+1<<"物品的效益:"; cin>>bag[i].benefit; bag[i].flag=0;//初始标志为不装入背包 cout<<endl; }
}
int getbound(int num, int *bound_u)//返回本结点的 c 限界和 u 限界 {
for(int w=curw, p=curp; num<number && (w+bag[num].weight)<=maxweight; num++) { w=w+bag[num].weight; p=w+bag[num].benefit; }

01背包分支限定法

01背包分支限定法

0—1背包问题一、实验目的学习掌握分支限定法思想。

二、实验内容用分支限定法求解0—1背包问题,并输出问题的最优解。

0—1背包问题描述如下:给定n种物品和一背包。

物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。

三、实验条件Jdk1.5以上四、需求分析对于给定n种物品和一背包。

在容量最大值固定的情况下,要求装入的物品价值最大化。

五、基本思想:对物品的选取与否构成一棵解树,左子树表示不装入,右表示装入,通过检索问题的解树得出最优解,并用结点上界杀死不符合要求的结点。

六、详细设计/** Bound_Branch.java** Created on 2007年6月2日, 下午6:07** To change this template, choose Tools | Template Manager* and open the template in the editor.*/package sunfa;public class Bound_Branch {static double c;static int n;static double[]w;static double[]p;static double cw;static double cp;static int []bestX;static MaxHeap heap;//上界函数bound计算节点所相应价值的上界private static double bound(int i){double cleft=c-cw;double b=cp;while(i<=n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}//装填剩余容量装满背包if(i<=n)b+=p[i]/w[i]*cleft;return b;}//addLiveNode将一个新的活节点插入到子集树和优先队列中private static void addLiveNode(double up,double pp,double ww,int lev,BBnode par,boolean ch){//将一个新的活节点插入到子集树和最大堆中BBnode b=new BBnode(par,ch);HeapNode node =new HeapNode(b,up,pp,ww,lev);heap.put(node);}private static double bbKnapsack(){// TODO 自动生成方法存根//优先队列式分支限界法,返回最大价值,bestx返回最优解//初始化BBnode enode=null;int i=1;double bestp=0;//当前最优值double up=bound(1);//当前上界while(i!=n+1){//非叶子节点//检查当前扩展节点的右儿子子节点double wt=cw+w[i];if(wt<=c){if(cp+p[i]>bestp)bestp=cp+p[i];addLiveNode(up,cp+p[i],cw+w[i],i+1,enode,true);}up=bound(i+1);if(up>=bestp)addLiveNode(up,cp,cw,i+1,enode,false);HeapNode node =(HeapNode)heap.removeMax();enode=node.liveNode;cw=node.weight;cp=node.profit;up=node.upperProfit;i=node.level;}for(int j=n;j>0;j--){bestX[j]=(enode.leftChild)?1:0;enode=enode.parent;}return cp;}public static double knapsack(double []pp,double []ww,double cc,int []xx){ //返回最大值,bestx返回最优解c=cc;n=pp.length-1;//定义以单位重量价值排序的物品数组Element[]q=new Element[n];double ws=0.0;double ps=0.0;for(int i=1;i<=n;i++){q[i-1]=new Element(i,pp[i]/ww[i]);ps+=pp[i];ws+=ww[i];}if(ws<=c){for(int i=1;i<=n;i++)xx[i]=1;return ps;}//以单位重量排序MergeSort.mergeSort(q);//初始化数据成员p=new double[n+1];w=new double[n+1];for(int i=1;i<=n;i++){p[i]=pp[q[n-i].id];w[i]=ww[q[n-i].id];}cw=0.0;cp=0.0;bestX = new int[n+1];heap = new MaxHeap(n);double maxp = bbKnapsack();for(int i=1;i<=n;i++)xx[q[n-i].id]=bestX[i];return maxp;}public static void main(String [] args){double w[]={2,2,6,5,4};double v[]={6,3,4,5,6};double c=10;int []x = new int[5];double m = knapsack(v,w,c,x);for(int i=0;i<5;i++)System.out.print(x[i]);}}//子空间中节点类型class BBnode{BBnode parent;//父节点boolean leftChild;//左儿子节点标志BBnode(BBnode par,boolean ch){parent=par;leftChild=ch;}}class HeapNode implements Comparable{BBnode liveNode; // 活节点double upperProfit; //节点的价值上界double profit; //节点所相应的价值double weight; //节点所相应的重量int level; // 活节点在子集树中所处的层次号//构造方法public HeapNode(BBnode node, double up, double pp , double ww,int lev){ liveNode = node;upperProfit = up;profit = pp;weight = ww;level = lev;}public int compareTo(Object o) {double xup = ((HeapNode)o).upperProfit;if(upperProfit < xup)return -1;if(upperProfit == xup)return 0;elsereturn 1;}}class Element implements Comparable{int id;double d;public Element(int idd,double dd){id=idd;d=dd;}public int compareTo(Object x){double xd=((Element)x).d;if(d<xd)return -1;if(d==xd)return 0;return 1;}public boolean equals(Object x){return d==((Element)x).d;}}class MaxHeap{static HeapNode [] nodes;static int nextPlace;static int maxNumber;public MaxHeap(int n){maxNumber = (int)Math.pow((double)2,(double)n);nextPlace = 1;//下一个存放位置nodes = new HeapNode[maxNumber];}public static void put(HeapNode node){nodes[nextPlace] = node;nextPlace++;heapSort(nodes);}public static HeapNode removeMax(){HeapNode tempNode = nodes[1];nextPlace--;nodes[1] = nodes[nextPlace];heapSort(nodes);return tempNode;}private static void heapAdjust(HeapNode [] nodes,int s,int m){ HeapNode rc = nodes[s];for(int j=2*s;j<=m;j*=2){if(j<m&&nodes[j].upperProfit<nodes[j+1].upperProfit)++j;if(!(rc.upperProfit<nodes[j].upperProfit))break;nodes[s] = nodes[j];s = j;}nodes[s] = rc;}private static void heapSort(HeapNode [] nodes){for(int i=(nextPlace-1)/2;i>0;--i){heapAdjust(nodes,i,nextPlace-1);}}}主程序运行结果:。

最新实验 4 用分支限界法实现0-1背包问题

最新实验 4 用分支限界法实现0-1背包问题

实验四用分支限界法实现0-1背包问题一.实验目的1.熟悉分支限界法的基本原理。

2.通过本次实验加深对分支限界法的理解。

二.实验内容及要求内容:.给定n种物品和一个背包。

物品i的重量是w,其价值为v,背包容量为c。

问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?要求:使用优先队列式分支限界法算法编程,求解0-1背包问题三.程序列表#include<iostream>#include<stack>using namespace std;#define N 100class HeapNode//定义HeapNode结点类{public:double upper, price, weight; //upper为结点的价值上界,price是结点所对应的价值,weight 为结点所相应的重量int level, x[N]; //活节点在子集树中所处的层序号};double MaxBound(int i);double Knap();void AddLiveNode(double up, double cp, double cw, bool ch, int level);//up是价值上界,cp是相应的价值,cw是该结点所相应的重量,ch是ture or falsestack<HeapNode> High; //最大队Highdouble w[N], p[N]; //把物品重量和价值定义为双精度浮点数double cw, cp, c; //cw为当前重量,cp为当前价值,定义背包容量为cint n; //货物数量为int main(){cout <<"请输入背包容量:"<< endl;cin >> c;cout <<"请输入物品的个数:"<< endl;cin >> n;cout <<"请按顺序分别输入物品的重量:"<< endl;int i;for (i = 1; i <= n; i++)cin >> w[i]; //输入物品的重量cout <<"请按顺序分别输入物品的价值:"<< endl;for (i = 1; i <= n; i++)cin >> p[i]; //输入物品的价值cout <<"最优值为:";cout << Knap() << endl; //调用knap函数输出最大价值return 0;}double MaxBound(int k) //MaxBound函数求最大上界{double cleft = c - cw; //剩余容量double b = cp; //价值上界while (k <= n&&w[k] <= cleft) //以物品单位重量价值递减装填剩余容量{cleft -= w[k];b += p[k];k++;}if (k <= n)b += p[k] / w[k] * cleft; //装填剩余容量装满背包return b;}void AddLiveNode(double up, double cp, double cw, bool ch, int lev) //将一个新的活结点插入到子集数和最大堆High中{HeapNode be;be.upper = up;be.price = cp;be.weight = cw;be.level = lev;if (lev <= n)High.push(be);}//调用stack头文件的push函数 }double Knap() //优先队列分支限界法,返回最大价值,bestx返回最优解{int i = 1;cw = cp = 0;double bestp = 0; //best为当前最优值double up = MaxBound(1);//价值上界//搜索子集空间树while (1) //非叶子结点{double wt = cw + w[i];if (wt <= c) //左儿子结点为可行结点{if (cp + p[i]>bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], true, i + 1);}up = MaxBound(i + 1);if (up >= bestp) //右子数可能含最优解AddLiveNode(up, cp, cw, false, i + 1);if (High.empty())return bestp;HeapNode node = High.top(); //取下一扩展结点High.pop();cw = node.weight;cp = node.price;up = node.upper;i = node.level;}}四.实验结果酒店服务员年度工作汇报20xx年是自我挑战的一年,我将努力改正过去一年工作中的不足,把新一年的工作做好,过去的一年在领导的关心和同事的热情帮助,通过自身的不懈努力,在工作上取得了一定的成果,现将工作总结如下。

分支限界法解决01背包问题

分支限界法解决01背包问题

分⽀限界法解决01背包问题 分⽀限界法和之前讲的回溯法有⼀点相似,两者都是在问题的解的空间上搜索问题的解。

但是两者还是有⼀些区别的,回溯法是求解在解的空间中的满⾜的所有解,分⽀限界法则是求解⼀个最⼤解或最⼩解。

这样,两者在解这⼀⽅⾯还是有⼀些不同的。

之前回溯法讲了N后问题,这个问题也是对于这有多个解,但是今天讲的01背包问题是只有⼀个解的。

下⾯就讲讲分⽀限界法的基本思想。

分⽀限界法常以⼴度优先或以最⼩消耗(最⼤效益)优先的⽅式搜索问题的解空间树。

问题的解空间树是表⽰问题解空间的⼀颗有序树,常见的有⼦集树和排列树。

分⽀限界法和回溯法的区别还有⼀点,它们对于当前扩展结点所采⽤的扩展⽅式也是不相同的。

分⽀限界法中,对于每⼀个活结点只有⼀次机会成为扩展结点。

活结点⼀旦成为了扩展结点,就⼀次性产⽣其所有的⼦结点,⼦结点中,不符合要求的和⾮最优解的⼦结点将会被舍弃,剩下的⼦结点将加⼊到活结点表中。

再重复上⾯的过程,直到没有活结点表中没有结点,⾄此完成解决问题的⽬的。

分⽀限界法⼤致的思想就是上⾯的叙述,现在就可以发现,对于结点的扩展将会成为分⽀限界法的主要核⼼。

所以,分⽀限界法常见的有两种扩展结点的⽅式,1.队列式(FIFO)分⽀限界法,2.优先队列式分⽀限界法。

两种⽅法的区别就是对于活结点表中的取出结点的⽅式不同,第⼀种⽅法是先进先出的⽅式,第⼆种是按优先级取出结点的⽅式。

两中⽅法的区别下⾯也会提到。

在背包问题中还会提到⼀个⼦树上界的概念,其实就是回溯法中的剪枝函数,只不过,分⽀限界法⾥的剪枝函数改进了⼀些,剪枝函数同样也是分⽀限界法⾥⽐较重要的东西。

下⾯就讲⼀讲01背包问题的实现。

01背包问题和前⾯讲的背包问题的区别不⼤,就是01背包问题的物品不可以只放⼊部分,01背包问题的物品只能放⼊和不放⼊两个选择,这也是名字中01的原因。

其他的和背包问题相差不⼤,这⾥也不再累述。

算法的主体是⽐较容易想的,⾸先,将数据进⾏处理,这也是上⾯讲到的第⼆种取结点的⽅式(优先队列式)。

分支界限法0-1背包问题(优先队列式分支限界法)

分支界限法0-1背包问题(优先队列式分支限界法)

分⽀界限法0-1背包问题(优先队列式分⽀限界法)输⼊要求有多组数据。

每组数据包含2部分。

第⼀部分包含两个整数C (1 <= C <= 10000)和 n (1 <= n <= 10,分别表⽰背包的容量和物品的个数。

第⼆部分由n⾏数据,每⾏包括2个整数 wi(0< wi <= 100)和 vi(0 < vi <= 100),分别表⽰第i个物品的总量和价值输出要求对于每组输⼊数据,按出队次序输出每个结点的信息,包括所在层数,编号,背包中物品重量和价值。

每个结点的信息占⼀⾏,如果是叶⼦结点且其所代表的背包中物品价值⼤于当前最优值(初始为0),则输出当前最优值 bestv 和最优解bestx(另占⼀⾏)参见样例输出测试数据输⼊⽰例5 32 23 22 3输出⽰例1 1 0 02 2 2 23 5 2 24 10 4 5bestv=5, bestx=[ 1 0 1 ]4 11 2 23 4 5 42 3 0 0⼩贴⼠可采⽤如下的结构体存储结点:typedef struct{int no; // 结点在堆中的标号int sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // 优先值 sv/sw}Node;#include<stdio.h>#include<math.h>#include<string.h>typedef struct {int no; // 结点标号int id; // 节点idint sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // sv/sw}Node;int surplusValue(int *v,int n,int y) {int sum = 0;for(int i = y; i <= n; i++) {sum += v[i];}return sum;}void qsort(Node *que,int l,int r) {int len = r - l + 1;int flag;for(int i = 0; i < len; i ++) {flag = 0;for(int j = l; j < l + len - i; j++) {if(que[j].prior < que[j+1].prior) {Node t = que[j];que[j] = que[j+1];que[j+1] = t;flag = 1;}}//if(!flag ) return;}}void branchknap(int *w,int *v,int c,int n) {int bestv = 0;int f = 0;int r = 0;Node que[3000];memset(que,0,sizeof(que));int path[15];que[0].no = 1;que[0].id = que[0].sv = que[0].sw = que[0].prior = 0;while(f <= r) {Node node = que[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;printf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp % 2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++ ;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id + 1]) <= c && surplusValue(v,n,node.id+1) + node.sv > bestv) { r++;que[r].id = node.id + 1;que[r].no = node.no*2;int id = node.id + 1;que[r].sv = node.sv + v[id];que[r].sw = node.sw + w[id];que[r].prior = que[r].sv / (que[r].sw*1.0);}if(surplusValue(v,n,node.id+2) + node.sv > bestv) {r++;que[r].id = node.id + 1;que[r].no = node.no*2 + 1;que[r].sv = node.sv;que[r].sw = node.sw;que[r].prior = node.prior;}}f++;qsort(que,f,r);}}int main() {int c,n;int w[15],v[15];while(~scanf("%d %d",&c,&n)){for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap(w,v,c,n);}return 0;}#include<stdio.h>#include<math.h>#include<string.h>typedef int bool;#define true 1#define false 0struct Node{int no; // ?áµ?±êo?int id; //jie dian idint sw; // ±3°ü?D·µá?int sv; // ±3°ü?D·µ?µdouble prior;};struct Node queuee[2000];int w[15],v[15];int bestv = 0,c,n;int path[15]; //lu jingint surplusValue(int y) {int sum = 0;for(int i = y; i <= n; i++)sum += v[i];return sum;}void qsort(int l,int r) {// printf("------\n");int len = r - l + 1;//printf("----%d %d %d-----\n",l,r,len);bool flag;for(int i = 0; i < len ; i++) {flag = false;for(int j = l; j <l+ len -i ;j++) {if(queuee[j].prior < queuee[j+1].prior) {struct Node temp = queuee[j];queuee[j] = queuee[j+1];queuee[j+1] = temp;flag = true;}//if(!flag) return;}}// printf("---排序嘻嘻---\n");//for(int i = l; i <= r;i++ )// printf("***%d : %.2lf\n",queuee[i].no,queuee[i].prior);// printf("\n------\n");}void branchknap() {bestv = 0;int f = 0;int r = 0;queuee[0].no = 1;queuee[0].id = 0;queuee[0].sv = 0;queuee[0].sw = 0;queuee[0].prior = 0;// printf("f: %d r: %d\n",f,r);while(f <= r) {struct Node node = queuee[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;//TODOprintf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp%2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id+1]) <= c && surplusValue(node.id+1) + node.sv > bestv) { r++;//printf("%d\n",(node.sw + w[node.id+1]));queuee[r].id = node.id+1;queuee[r].no = node.no*2;int id = node.id+1;queuee[r].sv = node.sv + v[id];queuee[r].sw = node.sw + w[id];queuee[r].prior = queuee[r].sv/(queuee[r].sw*1.0);//printf("进队id: %d\n",queuee[r].no) ;//printf("%d %d %d\n",id,v[id], w[id]);}if(surplusValue(node.id+2) + node.sv > bestv) {r++;queuee[r].id = node.id+1;queuee[r].no = node.no*2 + 1;queuee[r].sv = node.sv ;queuee[r].sw = node.sw ;queuee[r].prior = node.prior;//printf("进队id: %d\n",queuee[r].no) ;}}f++;qsort(f,r);}}int main() {while(~scanf("%d %d",&c,&n)){memset(queuee,0,sizeof(queuee));for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap();}return 0;}。

分支限界策略求解01背包问题

分支限界策略求解01背包问题

分支限界策略求解0/1背包问题
1
算法思想
2
算法描述(步骤)
3
算法实现
4
程序测试
算法思想
❖ 要想找到01背包问题的最佳选择,本质上还得穷举,而采用 的分支限界就是把穷举的部分选择筛选掉。
❖ 背包对于每个物品只有两种状态,装或者不装,即1和0。我 们对每个物品选择做一个记录,则为 路径。假设目前取得 的一种路径已经带来的价值就比其他路径的可能最大值还要 高,那么自然这些其他路径就不在我们的考虑范围内了。
分支限界策略求解0/1背包问题
❖0/1背包问题
有N件物品和一个容量为V的背包。第i件物品的体积 是c[i],价值是w[i]。求解将哪些物品装入背包可使价 值总和最大。在01背包问题中,因为每种物品只有一个 ,对于每个物品只需要考虑选与不选两种情况。如果不 选择将其放入背包中,则不需要处理,如果选择将其放 入背包中,需要枚举将这个物品放入背包后可能占据背 包空间的所有情况。
❖ 而如果我们更早选到一种高价值的路径,就能筛选掉更多的 低价值路径。那么我们如何尽早取到高价值路劲呢?我们可 以给每个物品一个估计价值,性价比。
❖ 然后通过性价比计算剩余重量,我们就能估计到该路径下可 能取得的最大值,及该路径上界。同时通过 优先取性价比 较高的物品 和 优先搜索上界高的路径 就能更容易取到一 条高价值路径。最终遍历各个筛选下来的路径就能找到最优 解。
当输入数据为60组时,运行时间4秒左 右。
当输入数据为70组时,运行时间42秒 左右。
程序测试
当数据更大时,程序的效率就很慢了。
当数据为75组时,运行时间18分钟左右。
当数据为80组时,运行时间1小时左右。
因此,该程序的效率不高,但是准确性很 高,以上4组数据的测试结果和最优解是一 致的。

实验报告分支限界法01背包

实验报告分支限界法01背包

实验报告分支限界法01背包实验报告:分支限界法01背包问题一、引言01背包问题是计算机科学中经典的问题之一,也是分枝限界法(Branch and Bound)的重要应用之一、本实验旨在通过使用分支限界法求解01背包问题,加深对该算法的理解,并验证其在计算机科学中的实际应用价值。

二、算法原理01背包问题是指在给定容量的背包和一组物品中,求解如何选择物品,使得在背包容量限制下,装入背包的物品总价值最大。

该问题可以使用动态规划方法求解,但这里我们采用分支限界法进行求解。

分支限界法首先将问题划分为多个较小的子问题,然后通过选择最有希望的子问题进行探索,并进行剪枝操作,以避免无效的,最后得到问题的最优解。

在01背包问题中,每个物品可以选择装入背包或不装入背包,因此可以通过对每个物品的选择进行枚举,并使用上界函数(bound function)对每个子问题的解进行估计,去掉必然不是最优解的子问题,从而减少空间。

具体实现中,可以使用一个优先队列(Priority Queue)来存储这些子问题,按照优先级从高到低的顺序进行扩展探索,直到找到最优解或队列为空时停止。

三、实验过程1.根据给定的背包容量和物品价值、重量数组,创建一个优先队列并初始化其第一个子问题。

2.使用循环进行优先队列的遍历,直到队列为空。

3.取出队列中优先级最高的子问题进行扩展探索。

4.对该子问题进行剪枝操作:若当前子问题的上界函数值小于当前最优解,则该子问题无需继续扩展。

5.对没有剪枝的子问题进行扩展操作:分为两种情况,一种是将当前物品放入背包,一种是不放入背包。

6.若扩展的子问题是可行解,则更新当前最优解。

7.将扩展的子问题加入优先队列。

8.重复步骤3-7,直到找到最优解或队列为空。

四、实验结果本次实验使用分支限界法求解了一个01背包问题。

背包的最大容量为W=10,共有5个物品,其重量分别为w={2,3,4,5,9},价值分别为v={3,4,5,8,10}。

01背包问题

01背包问题

实验名称分支限界法成绩实验实现0/1背包问题的LC分枝—限界算法,要求使用大小固定的元组表示动态状态空间树,与0/1背内包问题回溯算法做复杂性比较。

容1.分支限界法类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。

分支限界法的求解目标是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解,以广度优先或以最小耗费优先的方式搜索解空间树T。

2.分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展对点。

为了有效地选择下一扩展结点,以加速搜索的进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。

1.2.3.4.分析问题,写出问题的解空间、解空间结构以及限界函数。

写出相应的分支限界算法。

选择自己熟悉的编程环境和编程语言实现相应的算法。

通过实验加深对分支限界法的解题思路,并将其应用于实际问题,同时进一步提高算法设计和程序编写能力。

Pc机,windows操作系统,win-tc,vc++6.0或Java2作为编程环境。

验原理实验要求实验环境1.分析问题函数MaxKnapsack实施对子集树的优先队列式分支限界搜索。

其中假定各物品依其单位价值从大到小排好序。

算法中E是当前扩展结点,cw是该结点所相应的重量,cp是相应的价值,up是价值上界,算法中的while循环不断扩展结点,直到子集树的一个叶结点成为扩展结点为止。

此时优先队列中所有活结点的价值上界均不超过该叶结点的价值。

因此该叶结点相应的解为问题的最优解。

在while循环内部,算法首先检查当前扩展结点的左儿子结点是否可行。

如果可行,则将它加入子集树和活结点优先队列中。

当前扩展结点的右儿子一定是可行的,公当右儿子结点满足上约束时才将它加入子集树和活结点优先队列。

分支限界法 01背包问题c语言

分支限界法 01背包问题c语言

分支限界法 01背包问题c语言分支限界法是一种解决组合优化问题的算法。

其中,01背包问题是一种经典的背包问题,它要求在给定的容量下,选择商品的组合,使得组合的总价值达到最大化,但组合中每种商品只能选择一次。

C语言是一种广泛使用的编程语言,适用于实现各种算法和数据结构。

下面我将用C语言实现分支限界法来解决01背包问题。

首先,我们定义一个结构体用来表示商品的信息,包括商品的重量和价值:```typedef struct {int weight;int value;} Item;```接下来,我们定义一个递归函数来实现分支限界法。

该函数通过深度优先搜索的方式,尝试不同的选择,并计算当前组合的总价值。

如果当前组合的总价值已经超过了已知的最优解,则剪枝,不再继续搜索。

```void branchAndBound(int index, int capacity, int currentWeight, int currentValue, int n, Item items[], int bestValue, int choice[]) {if (index >= n || currentWeight >= capacity) {if (currentValue > bestValue) {bestValue = currentValue;// 更新最优解for (int i = 0; i < n; i++) {choice[i] = tempChoice[i];}}return;}// 选择当前商品if (currentWeight + items[index].weight <= capacity) {currentWeight += items[index].weight;currentValue += items[index].value;tempChoice[index] = 1;branchAndBound(index + 1, capacity, currentWeight, currentValue, n, items, bestValue, choice);currentWeight -= items[index].weight;currentValue -= items[index].value;tempChoice[index] = 0;}// 不选择当前商品branchAndBound(index + 1, capacity, currentWeight, currentValue, n, items, bestValue, choice);}最后,我们可以在主函数中调用分支限界法来解决01背包问题。

0-1背包问题

0-1背包问题
{
private:
struct node *front, //队列队首
*bestp,*first; //解结点、根结点
int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系
long lbestp;//背包容量最优解
public:
void Sort();
Knap(int *pp,int *ww,int cc,int nn);
lbestp=0;
bestp=new node[1];
bestp=NULL;
Sort();
}
Knap::~Knap()
{
delete []first;
delete []front;
delete []bestp;
delete []p;
delete []w;
}
//取上限最大结点
node *Knap::nextnode()
float b=(float)cp; //价值上界
//以物品单位重量价值减序装填剩余容量
while (i<n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//装填剩余容量装满背包
if (i<n) b+=1.0*p[i]/w[i]*cleft;
return b;
}
//计算最优值和变量值
i=aa->level;
//当叶子节点处的解>最优解时,更新最优解
first->level=0; //用level记录结点的层
first->cw=0;
first->cp=0;

01背包分支.

01背包分支.

背包问题:给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi ∈{0,1}, ∋∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

算法设计首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。

在优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。

算法首先检查当前扩展结点的左儿子结点的可行性。

如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。

当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。

当扩展到叶节点时为问题的最优值。

例如:0-1背包问题,当n=3时,w={16,15,15}, p={45,25,25}, c=30。

优先队列式分支限界法:处理法则:价值大者优先。

{}—>{A}—>{B,C}—>{C,D,E}—>{C,E}—>{C,J,K}—>{C}—>{F,G}—>{G,L,M}—>{G,M}—>{G}—>{N,O}—>{O}—>{}//0-1背包问题分支限界法求解#include "stdafx.h"#include "MaxHeap.h"#include <iostream>using namespace std;class Object{template<class Typew,class Typep>friend Typep Knapsack(Typep p[],Typew w[],Typew c,int n, int bestx[]); public:int operator <= (Object a) const{return d>=a.d;}private:int ID;float d;//单位重量价值};template<class Typew,class Typep> class Knap;class bbnode{friend Knap<int,int>;template<class Typew,class Typep>friend Typep Knapsack(Typep p[],Typew w[],Typew c,int n, int bestx[]); private:bbnode * parent; //指向父节点的指针bool LChild; //左儿子节点标识};template<class Typew,class Typep>class HeapNode{friend Knap<Typew,Typep>;public:operator Typep() const{return uprofit;}private:Typep uprofit, //节点的价值上界profit; //节点所相应的价值Typew weight; //节点所相应的重量int level; //活节点在子集树中所处的层序号bbnode *ptr; //指向活节点在子集中相应节点的指针};template<class Typew,class Typep>class Knap{template<class Typew,class Typep>friend Typep Knapsack(Typep p[],Typew w[],Typew c,int n, int bestx[]); public:Typep MaxKnapsack();private:MaxHeap<HeapNode<Typep,Typew>> *H;Typep Bound(int i);void AddLiveNode(Typep up,Typep cp,Typew cw,bool ch,int lev);bbnode *E; //指向扩展节点的指针Typew c; //背包容量int n; //物品数Typew *w; //物品重量数组Typep *p; //物品价值数组Typew cw; //当前重量Typep cp; //当前价值int *bestx; //最优解};template <class Type>inline void Swap(Type &a,Type &b);template<class Type>void BubbleSort(Type a[],int n);int main(){int n = 3;//物品数int c = 30;//背包容量int p[] = {0,45,25,25};//物品价值下标从1开始int w[] = {0,16,15,15};//物品重量下标从1开始int bestx[4];//最优解cout<<"背包容量为:"<<c<<endl;cout<<"物品重量和价值分别为:"<<endl;for(int i=1; i<=n; i++){cout<<"("<<w[i]<<","<<p[i]<<") ";}cout<<endl;cout<<"背包能装下的最大价值为:"<<Knapsack(p,w,c,n,bestx)<<endl; cout<<"此背包问题最优解为:"<<endl;for(int i=1; i<=n; i++){cout<<bestx[i]<<" ";}cout<<endl;return 0;}template<class Typew,class Typep>Typep Knap<Typew,Typep>::Bound(int i)//计算节点所相应价值的上界{Typew cleft = c-cw; //剩余容量高Typep b = cp; //价值上界//以物品单位重量价值递减序装填剩余容量while(i<=n && w[i]<=cleft){cleft -= w[i];b += p[i];i++;}//装填剩余容量装满背包if(i<=n){b += p[i]/w[i]*cleft;}return b;}//将一个活节点插入到子集树和优先队列中template<class Typew,class Typep>void Knap<Typew,Typep>::AddLiveNode(Typep up,Typep cp,Typew cw,bool ch,int lev){bbnode *b = new bbnode;b->parent = E;b->LChild = ch;HeapNode<Typep,Typew> N;N.uprofit = up;N.profit = cp;N.weight = cw;N.level = lev;N.ptr = b;H->Insert(N);}//优先队列式分支限界法,返回最大价值,bestx返回最优解template<class Typew,class Typep>Typep Knap<Typew,Typep>::MaxKnapsack(){H = new MaxHeap<HeapNode<Typep,Typew>>(1000);//为bestx分配存储空间bestx = new int[n+1];//初始化int i = 1;E = 0;cw = cp = 0;Typep bestp = 0;//当前最优值Typep up = Bound(1); //价值上界//搜索子集空间树while(i!=n+1){//检查当前扩展节点的左儿子节点Typew wt = cw + w[i];if(wt <= c)//左儿子节点为可行节点{if(cp+p[i]>bestp){bestp = cp + p[i];}AddLiveNode(up,cp+p[i],cw+w[i],true,i+1); }up = Bound(i+1);//检查当前扩展节点的右儿子节点if(up>=bestp)//右子树可能含有最优解{AddLiveNode(up,cp,cw,false,i+1);}//取下一扩展节点HeapNode<Typep,Typew> N;H->DeleteMax(N);E = N.ptr;cw = N.weight;cp = N.profit;up = N.uprofit;i = N.level;}//构造当前最优解for(int j=n; j>0; j--){bestx[j] = E->LChild;E = E->parent;}return cp;}//返回最大价值,bestx返回最优解template<class Typew,class Typep>Typep Knapsack(Typep p[],Typew w[],Typew c,int n, int bestx[]) {//初始化Typew W = 0; //装包物品重量Typep P = 0; //装包物品价值//定义依单位重量价值排序的物品数组Object *Q = new Object[n];for(int i=1; i<=n; i++){//单位重量价值数组Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if(W<=c){return P;//所有物品装包}//依单位价值重量排序BubbleSort(Q,n);//创建类Knap的数据成员Knap<Typew,Typep> K;K.p = new Typep[n+1];K.w = new Typew[n+1];for(int i=1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;//调用MaxKnapsack求问题的最优解 Typep bestp = K.MaxKnapsack(); for(int j=1; j<=n; j++){bestx[Q[j-1].ID] = K.bestx[j]; }delete Q;delete []K.w;delete []K.p;delete []K.bestx;return bestp;}template<class Type>void BubbleSort(Type a[],int n){//记录一次遍历中是否有元素的交换bool exchange;for(int i=0; i<n-1;i++){exchange = false ;for(int j=i+1; j<=n-1; j++){if(a[j]<=a[j-1]){Swap(a[j],a[j-1]);exchange = true;}}//如果这次遍历没有元素的交换,那么排序结束 if(false == exchange){break ;}}}template <class Type>inline void Swap(Type &a,Type &b) {Type temp = a;a = b;b = temp;}。

优先队列式分支限界法求解0-1背包问题

优先队列式分支限界法求解0-1背包问题

算法分析与设计实验报告第7 次实验bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}测试结果1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码 #include <iostream> #include<time.h> #include<algorithm> #include<fstream>using namespace std; ifstream in("input.txt"); ofstream out("output.txt"); typedef int Typew; typedef int Typep; //物品类 class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{ return (d >= a.d); } private:实验心得在做本次实验之前,我对分支限界法的原理并不是很理解,经过查看课件及网上查找资料,同时结合自己对回溯法等的理解,我对分支限界法有了一个较好的理解,知道了两种主要的分支限界法及分支限界法如何应用于解01背包问题。

在查找资料的过程中,我查看了许多网上的别人的代码实现,结合课本上的代码完成了该实验。

通过本次试验,我基本上掌握了优先队列分支限界法解0-1背包问题的原理,同时锻炼了自己动手编写及调试代码的能力,收获良多。

实验得分助教签名int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *);public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl;cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。

01背包问题 分支界限法

01背包问题 分支界限法

实验五 01背包问题一、实验内容:运用分支限界法解决0-1背包问题。

二、算法分析分支限界法分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。

因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。

0-1背包问题1)基本思想给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。

对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数:u b = v + ( W - w) × ( vi + 1/ wi + 1 )根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。

2)复杂度分析时间复杂度是O(2n);三、实验结果:四、源程序及注释:#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>#include<stdlib.h>using namespace std;int *x;struct node{//结点表结点数据结构node *parent,//父结点指针*next; //后继结点指针int level,//结点的层bag,//节点的解cw,//当前背包装载量cp;//当前背包价值float ub; //结点的上界值};class Knap{private:struct node *front, //队列队首*bestp,*first; //解结点、根结点int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解public:void Sort();Knap(int *pp,int *ww,int cc,int nn);~Knap();float Bound(int i,int cw,int cp);//计算上界限node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点ba=0生成右节点void addnode(node *nod);//将结点添加到队列中void deletenode(node *nod);//将结点队列中删除struct node *nextnode(); //取下一个void display(); //输出结果void solvebag(); //背包问题求解};Knap::Knap(int *pp,int *ww,int cc,int nn){int i;n=nn;c=cc;p=new int[n];w=new int[n];M=new int[n];for(i=0;i<n;i++){p[i]=pp[i];w[i]=ww[i];M[i]=i;}front=new node[1];front->next=NULL;lbestp=0;bestp=new node[1];bestp=NULL;Sort();}Knap::~Knap(){delete []first;delete []front;delete []bestp;delete []p;delete []w;}float Knap::Bound(int i,int cw,int cp){// 计算上界int cleft=c-cw;float b=(float)cp;while (i<n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}if (i<n) b+=1.0*p[i]/w[i]*cleft;return b;}node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点node * nodell=new(node);nodell->parent=pa;nodell->next=NULL;nodell->level=(pa->level)+1;nodell->bag=ba;nodell->ub=uub;if(ba==1){nodell->cw=pa->cw+w[pa->level];nodell->cp=pa->cp+p[pa->level] ;}else{nodell->cw=pa->cw;nodell->cp=pa->cp;}return(nodell);}void Knap::addnode(node *no){//将结点加入优先队列node *p=front->next,*next1=front;float ub=no->ub;while(p!=NULL){if(p->ub<ub){no->next=p;next1->next=no;break;} next1=p;p=p->next;}if(p==NULL){next1->next=no;}}node *Knap::nextnode(){//取上限最大结点node *p=front->next;front->next=p->next;return(p);}void Knap::Sort(){int i,j,k,kkl;float minl;for(i=1;i<n;i++){minl=1.0*p[i]/w[i];k=0;for(j=1;j<=n-i;j++){if(minl<1.0*p[j]/w[j]){minl=1.0*p[j]/w[j];swap(p[k],p[j]);swap(w[k],w[j]);swap(M[k],M[j]);k=j;}}}}void Knap::display(){int i;cout<<"最大价值是:"<<lbestp<<endl;for(i=n;i>=1;i--){x[M[i-1]]=bestp->bag;bestp=bestp->parent;}cout<<"变量值为:"<<endl;for(i=1;i<=n;i++)cout<<"x("<<setw(2)<<i<<")="<<x[i-1]<<endl;}void Knap::solvebag(){//背包问题求解int i;float ubb;node *aa;first=new node[1]; //根结点first->parent=NULL;first->next=NULL;first->level=0;first->cw=0;first->cp=0;first->bag=0;ubb=Bound(0,0,0);first->ub=ubb;front->next=first;while(front->next!=NULL){aa=nextnode();i=aa->level;if(i==n-1){if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp){lbestp=aa->cp+p[i];bestp=nnoder(aa,1,(float)lbestp);}if((long)(aa->cp)>lbestp){lbestp=aa->cp;bestp=nnoder(aa,0,(float)lbestp);}}if(i<n-1){if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp){ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);addnode(nnoder(aa,1,ubb));}ubb=ubb=Bound(i,aa->cw,aa->cp);if(ubb>lbestp)addnode(nnoder(aa,0,ubb));}}display();}void main(){int c,n;int i=0;int *p;int *w;cout<<"请输入背包容量:"<<endl;cin>>c;cout<<"请输入物品数:"<<endl;cin>>n;x=new int[n];p=new int[n];w=new int[n];cout<<"请输入"<<n<<"个物品的重量:"<<endl;for(i=0;i<n;i++)cin>>w[i];cout<<"请输入"<<n<<"个物品价值:"<<endl;for(i=0;i<n;i++)cin>>p[i];x=new int[n];Knap knbag(p,w,c,n);knbag.solvebag();getch();system("pause");return;}。

分支界线法01背包问题c语言

分支界线法01背包问题c语言

分支界线法01背包问题c语言一、问题描述01背包问题是常见的动态规划问题,其描述如下:有一个背包,最多能承载重量为W的物品。

现在有n个物品,其重量分别为w1, w2, ..., wn,价值分别为v1, v2, ..., vn。

要求选取若干物品放入背包,使得放入背包的物品总价值最大,且总重量不超过W。

二、分支界线法思想分支界线法是一种求解组合优化问题的常用方法。

在01背包问题中,分支界线法的思想是通过一个优先级队列,不断生成和扩展状态空间树,记录每个节点的上界评价函数值,并根据上界值进行搜索剪枝,直至获得最优解。

三、算法步骤1. 定义物品结构体```ctypedef struct {double value; // 物品价值double weight; // 物品重量double unitValue; // 物品单位价值} Item;```2. 比较函数定义(用于优先级队列)```cintpare(const void* a, const void* b) {Item* itemA = (Item*)a;Item* itemB = (Item*)b;double diff = itemB->unitValue - itemA->unitValue; return diff < 0 ? -1 : diff > 0 ? 1 : 0;}```3. 分支界线法求解01背包问题```cdouble knapsack(int n, double W, Item* items) {qsort(items, n, sizeof(Item),pare);double maxValue = 0;double currentWeight = 0;for (int i = 0; i < n; i++) {if (currentWeight + items[i].weight <= W) {currentWeight += items[i].weight;maxValue += items[i].value;} else {double rem本人nWeight = W - currentWeight;maxValue += items[i].unitValue * rem本人nWeight;break;}}return maxValue;}```四、代码实现解释1. 首先根据物品单位价值对物品进行排序,通过单位价值可以快速确定选择哪个物品放入背包;2. 依次选择单位价值最高的物品放入背包,若背包容量不足则按部分放入;3. 根据剩余容量,估算能够放入的最大价值。

用分支限界求解01背包问题

用分支限界求解01背包问题

实验题目:用分支限界求解0-1 背包问题物件个数 n=4,背包含量 c=7,价值向量 p={9,10,7,4},重量向量w={3,5,2,1}恳求出最优的解及其目标函数值。

#include <stdio.h>#include<malloc.h>#defineMaxSize 100//最多结点数typedefstructQNode{floatweight;floatvalue;intceng;structQNode *parent;bool leftChild;}QNode,*qnode;// 寄存每个结点typedef struct{qnodeQ[MaxSize];int front,rear;}SqQueue;//寄存结点的行列SqQueuesq;float bestv=0; // 最优解int n=0;// 实质物件数float w[MaxSize];// 物件的重量float v[MaxSize];// 物件的价值int bestx[MaxSize];// 寄存最优解qnode bestE;void InitQueue(SqQueue &sq ) //行列初始化{}sq.front=1;sq.rear=1;bool QueueEmpty(SqQueue sq) //行列能否为空{}void EnQueue(SqQueue &sq,qnode b)//入队{}qnode DeQueue(SqQueue &sq)//出队{qnode e;if(sq.front==sq.rear){}e=sq.Q[sq.front];printf(" 行列已空 !");return 0;if(sq.front==(sq.rear+1)%MaxSize){}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;printf("行列已满 !");return ;if(sq.front==sq.rear)return true;elsereturn false;}sq.front=(sq.front+1)%MaxSize;return e;voidEnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild) {}voidmaxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1;// 目前的扩展结点所在的层qnode b;if (i==n)// 可行叶子结点{}b=(qnode)malloc(sizeof(QNode));//非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);if (vt==bestv){}return;bestE=parent;bestx[n]=(leftchild)?1:0;float ew=0;// 扩展节点所相应的目前载重量float ev=0;// 扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t);//空标记进行列while (!QueueEmpty(sq)){}printf(" 最优取法为: \n");wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true);// 左儿子结点进行列}EnQueue1(ew,ev,i,e,false);//右儿子老是可行;e=DeQueue(sq);//取下一扩展结点if (e == NULL){}ew=e->weight;// 更新目前扩展结点的值ev=e->value;if (QueueEmpty(sq))break; EnQueue(sq,NULL);//同层结点尾部标记e=DeQueue(sq);//取下一扩展结点i++;for( int j=n-1;j>0;j--)// 结构最优解{}for(int k=1;k<=n;k++){}printf("\n");printf(" 最优价值为: %.1f\n\n",bestv);if(bestx[k]==1)printf("\n 物件 %d:重量: %.1f,价值: %.1f\n",k,w[k],v[k]);bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}void main(){int c;float ewv[MaxSize];printf("510 专区 \n");printf(" 请输入物件的数目: \n");scanf("%d",&n);printf(" 请输入背包含量: \n");scanf("%d",&c);printf("\n 请输入物件价值和重量:\n\n"); for(int i=1;i<=n;i++){printf(" 物件 %d:",i);scanf("%f%f",&ewv[i],&w[i]);v[i]=w[i]*ewv[i];printf("\n");}}实验结果:maxLoading(w, v, c);。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《算法设计与分析》实验报告六学号:1004091130 姓名:金玉琦日期:2011-11-17得分:一、实验内容:运用分支限界法解决0-1背包问题。

二、所用算法的基本思想及复杂度分析:分支限界法分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。

因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。

0-1背包问题1)基本思想给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。

对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数:u b = v + ( W - w) × ( vi + 1/ wi + 1 )根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。

2)复杂度分析时间复杂度是O(2n);三、源程序及注释:#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;int *x;struct node{//结点表结点数据结构node *parent,//父结点指针*next; //后继结点指针int level,//结点的层bag,//节点的解cw,//当前背包装载量cp;//当前背包价值float ub; //结点的上界值};class Knap{private:struct node *front, //队列队首*bestp,*first; //解结点、根结点int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解public:void Sort();Knap(int *pp,int *ww,int cc,int nn);~Knap();float Bound(int i,int cw,int cp);//计算上界限node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点void addnode(node *nod);//将结点添加到队列中void deletenode(node *nod);//将结点队列中删除struct node *nextnode(); //取下一个void display(); //输出结果void solvebag(); //背包问题求解};Knap::Knap(int *pp,int *ww,int cc,int nn){int i;n=nn;c=cc;p=new int[n];w=new int[n];M=new int[n];for(i=0;i<n;i++){p[i]=pp[i];w[i]=ww[i];M[i]=i;}front=new node[1];front->next=NULL;lbestp=0;bestp=new node[1];bestp=NULL;Sort();}Knap::~Knap(){delete []first;delete []front;delete []bestp;delete []p;delete []w;}float Knap::Bound(int i,int cw,int cp){// 计算上界int cleft=c-cw;float b=(float)cp;while (i<n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}if (i<n) b+=1.0*p[i]/w[i]*cleft;return b;}node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点node * nodell=new(node);nodell->parent=pa;nodell->next=NULL;nodell->level=(pa->level)+1;nodell->bag=ba;nodell->ub=uub;if(ba==1){nodell->cw=pa->cw+w[pa->level];nodell->cp=pa->cp+p[pa->level] ;}else{nodell->cw=pa->cw;nodell->cp=pa->cp;}return(nodell);}void Knap::addnode(node *no){//将结点加入优先队列node *p=front->next,*next1=front;float ub=no->ub;while(p!=NULL){if(p->ub<ub){no->next=p;next1->next=no;break;}next1=p;p=p->next;}if(p==NULL){next1->next=no;}}node *Knap::nextnode(){//取上限最大结点node *p=front->next;front->next=p->next;return(p);}void Knap::Sort(){int i,j,k,kkl;float minl;for(i=1;i<n;i++){minl=1.0*p[i]/w[i];k=0;for(j=1;j<=n-i;j++){if(minl<1.0*p[j]/w[j]){minl=1.0*p[j]/w[j];swap(p[k],p[j]);swap(w[k],w[j]);swap(M[k],M[j]);k=j;}}}}void Knap::display(){int i;cout<<"最大价值是:"<<lbestp<<endl;for(i=n;i>=1;i--){x[M[i-1]]=bestp->bag;bestp=bestp->parent;}cout<<"变量值为:"<<endl;for(i=1;i<=n;i++)cout<<"x("<<setw(2)<<i<<")="<<x[i-1]<<endl;}void Knap::solvebag(){//背包问题求解int i;float ubb;node *aa;first=new node[1]; //根结点first->parent=NULL;first->next=NULL;first->level=0;first->cw=0;first->cp=0;first->bag=0;ubb=Bound(0,0,0);first->ub=ubb;front->next=first;while(front->next!=NULL){aa=nextnode();i=aa->level;if(i==n-1){if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp){lbestp=aa->cp+p[i];bestp=nnoder(aa,1,(float)lbestp);}if((long)(aa->cp)>lbestp){lbestp=aa->cp;bestp=nnoder(aa,0,(float)lbestp);}}if(i<n-1){if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp){ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);addnode(nnoder(aa,1,ubb));}ubb=ubb=Bound(i,aa->cw,aa->cp);if(ubb>lbestp)addnode(nnoder(aa,0,ubb));}}display();}void main(){int c,n;int i=0;int *p;int *w;cout<<"请输入背包容量:"<<endl;cin>>c;cout<<"请输入物品数:"<<endl;cin>>n;x=new int[n];p=new int[n];w=new int[n];cout<<"请输入"<<n<<"个物品的重量:"<<endl;for(i=0;i<n;i++)cin>>w[i];cout<<"请输入"<<n<<"个物品价值:"<<endl;for(i=0;i<n;i++)cin>>p[i];x=new int[n];Knap knbag(p,w,c,n);knbag.solvebag();getch();return;}四、运行输出结果:五、调试和运行程序过程中产生的问题、采取的措施及获得的相关经验教训:解决该问题首先要确定一个合适的限界函数数, 并根据限界函数确定目标函数的界[down,up],然后按照广度优先策略遍历问题的解空间树,在分支结点上,依次搜索该结点的所有孩子结点,分别估算这些孩子结点的目标函数的可能取值,如果某孩子结点的目标函数可能取得的值超出目标函数的界, 则将其丢弃, 因为从这个结点生成的解不会比目前已经得到的解更好; 否则, 将其加入待处理结点表中。

相关文档
最新文档