分支限界法-01背包问题
回溯法和分支限界法解决0-1背包题(精)[精品文档]
0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。
由此得一个解为[1,0.2,1,1],其相应价值为22。
分支限界法结局0~1背包问题
Bound( i ) cleft = c – cw; b = cp; while( i <= n && w[i] <= cleft ){ cleft -= w[i]; b += p[i]; i++; } if( i<=n) b += p[i]/w[i] * cleft; return b; }
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结 点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为 止。
与回溯法区别
求解目标不同: 一般而言,回溯法的求解目标是找出解空间树中满 足的约束条件的所有解,而分支限界法的求解目标 则是尽快的找出满足约束条件的一个解。
搜索方法不同 回溯法使用深度优先方法搜索,而分支限界一般用宽 度优先或最佳优先方法来搜索;
按照队列先进先出(FIFO)原则选取下一个节点为扩展节点;
数据结构:队列
(2)优先队列式分支限界法
按照优先队列中规定的优先级选取优先级最高的节点成为当前 扩展节点。 数据结构:堆 最大优先队列:使用最大堆,体现最大效益优先
最小优先队列:使用最小堆,体现最小费用优先
【0-1背包问题】
物品数量n=3,重量w=(20,15,15),价值v=(40,25,25) 背包容量c=30,试装入价值和最大的物品? 解空间:{(0,0,0),(0,0,1),…,(1,1,1)}
分支限界法解决0/1背包问题
分支限界法思想概述 与回溯法区别 求解步骤 常见的两种分支限界法 0-1背包问题
分支限界法的基本思想
分支限界法基本思想
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜 索问题的解空间树。
背包问题的分支定界法
背包问题的分支定界法
背包问题的分支定界法是一种求解背包问题的有效方法。
分支定界法的基本思想是将问题分解为若干个子问题,通过逐个解决子问题来逼近原问题的解。
在背包问题中,分支定界法通过将问题分解为一系列背包问题,从最简单的情况开始逐步扩展问题的规模,从而逐步逼近最优解。
分支限界法求解:
1.初始化:首先确定问题的约束条件和目标函数,并初始化问题的解空间树。
解空间树是问题解的搜索空间,其中每个节点表示一个可能的解。
2.搜索:从根节点开始,按照广度优先或最小耗费优先的方式搜索解空间树。
在搜索过程中,每个节点代表一个子问题,通过对子问题进行求解,可以逐步逼近原问题的解。
3.剪枝:在搜索过程中,根据问题的约束条件和目标函数,对一些不可能成为最优解的节点进行剪枝,从而减少搜索空间的大小。
剪枝可以提高搜索效率,但需要注意避免剪枝过度导致最优解丢失。
4.求解:当搜索到叶子节点时,表示找到了一个可行的解。
此时需要对叶子节点进行评估,确定其是否为最优解。
如果叶子节点的价值大于当前最优解的价值,则更新最优解;否则将叶子节点加入到已访问节点集合中。
5.回溯:如果搜索到叶子节点时发现当前最优解的价值不小于已访问节点集合中的最大价值,则说明当前最优解已经是最优解或者已经超出了搜索空间的上限。
此时需要进行回溯操作,即从当前节点向上回溯到上一层节点,并继续搜索。
6.结束:当搜索到根节点时,表示已经搜索完了解空间树。
此时需要判断是否找到了最优解,如果没有找到则需要进一步调整搜索策略或调整问题的约束条件和目标函数。
背包问题(1)
背包问题报告小组成员:张灿、吴雪涛、高坤、占强、习慧平小组分工情况小组成员查找资料制作ppt 编写程序讲解ppt 制作报告张灿ⅴⅴⅴⅴⅴ吴雪涛ⅴ高坤ⅴⅴ占强ⅴ习慧平ⅴ背包问题一、背包问题的历史由来它是在1978年由Merkel和Hellman提出的。
它的主要思路是假定某人拥有大量物品,重量各不同。
此人通过秘密地选择一部分物品并将它们放到背包中来加密消息。
背包中的物品中重量是公开的,所有可能的物品也是公开的,但背包中的物品是保密的。
附加一定的限制条件,给出重量,而要列出可能的物品,在计算上是不可实现的。
背包问题是熟知的不可计算问题,背包体制以其加密,解密速度快而其人注目。
在解决大量的复杂组合优化问题时,它常常作为一个子问题出现,从实际的观点看,许多问题可以用背包问题来描述,如装箱问题,货仓装载,预算控制,存储分配,项目选择决策等,都是典型的应用例子。
随着网络技术的不断发展,背包公钥密码在电子商务中的公钥设计中也起着重要的作用。
然而当问题的规模较大时,得到最优解是极其困难的。
但是,大多数一次背包体制均被破译了,因此现在很少有人使用它。
二、背包问题的描述背包问题(Knapsack problem)是一种组合优化的NP完全问题。
问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。
问题的名称来源于如何选择最合适的物品放置于给定背包中。
相似问题经常出现在商业、组合数学,计算复杂性理论、密码学和应用数学等领域中。
也可以将背包问题描述为决定性问题,即在总重量不超过W的前提下,总价值是否能达到V?三、背包问题的定义我们有n种物品,物品j的重量为w j,价格为p j。
我们假定所有物品的重量和价格都是非负的。
背包所能承受的最大重量为W。
如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。
可以用公式表示为:maximizesubject to如果限定物品j最多只能选择b j个,则问题称为有界背包问题。
优先队列式分支限界法求解0-1背包问题
算法分析与设计实验报告第7 次实验}1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码#include <iostream>#include<time.h>#include<algorithm>#include<fstream>using namespace std;ifstream in("input.txt");ofstream out("output.txt");typedef int Typew;typedef int Typep;//物品类class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl; cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。
01背包各种算法代码实现总结(穷举,贪心,动态,递归,回溯,分支限界)
01背包各种算法代码实现总结(穷举,贪⼼,动态,递归,回溯,分⽀限界)2020-05-22所有背包问题实现的例⼦都是下⾯这张图01背包实现之——穷举法:1.我的难点:(1)在⽤穷举法实现代码的时候,我⾃⼰做的时候认为最难的就是怎么将那么多种情况表⽰出来,⼀开开始想⽤for循环进⾏多次嵌套,但是太⿇烦,⽽且还需要不断的进⾏各种标记。
我现在的⽔平实在太菜,然后就在⼀篇中看到⼀个特别巧妙的枚举算法,如下所⽰:int fun(int x[n]){int i;for(i=0;i<n;i++)if(x[i]!=1) {x[i]=1; return;}//从遇到的第⼀位开始,若是0,将其变成1,然后结束for循环,得到⼀种解法else x[i]=0;return;//从第⼀位开始,若是1,将其变成0,然后继续循环,若再循环的时候遇到0,则将其变为1,结束循环。
得到另⼀种解法。
} 虽然我现在也不知道为什么会这样,但是确实是个很好的规律,找到这个规律后,就可以很轻松的⾃⼰写出各种排列情况,以后遇到排列的问题,就⽤这个⽅法。
语⾔不好描述,上图⽚演⽰(是歪的,凑活看吧。
):(2)算法思想:x[i]的值为0/1,即选或者不选w[i]的值表⽰商品i的重量v[i]的值表⽰商品的价值所以这个算法最核⼼的公式就是tw=x[1]*w[1]+x[2]*w[2]+.......+x[n]*w[n]tv=x[1]*w[1]+x[2]*v[2]+......+x[n]*v[n]tv1:⽤于存储当前最优解limit:背包容量如果 tw<limit&&tv>tv1 则可以找到最优解2.代码实现(借鉴)#include<stdio.h>#include<iostream>using namespace std;#define n 4void possible_solution(int x[n]){int i;for(i=0;i<4;i++) //n=4,有2^4-1种解法if(x[i]!=1){x[i]=1;return; //从遇到的第⼀位开始,若是0,将其变成1,然后结束循环,得到⼀种解法}elsex[i]=0;return;//从第⼀位开始,若是1,将其变成0,然后继续循环,若再循环的时候遇到0,则将其变为1,结束循环。
分支限界法求0-1背包问题实验程序以及代码(C++)
分支限界法求0-1背包问题实验程序以及代码(C++)本程序中(规定物品数量为3,背包容量为30,输入为6个数,前3个为物品重量,后3个数为物品价值):代码:#include<iostream>#include<stack>using namespace std;#define N 100classHeapNode //定义HeapNode结点类{public:doubleupper,price,weight; //upper为结点的价值上界,price是结点所对应的价值,weight为结点所相应的重量int level,x[N]; //活节点在子集树中所处的层序号};double MaxBound(int i);double Knap();void AddLiveNode(double up,double cp,double cw,bool ch,int level);stack<HeapNode>High; //最大队Highdouble w[N],p[N]; //把物品重量和价值定义为双精度浮点数double cw,cp,c=30; //cw为当前重量,cp为当前价值,定义背包容量为30int n=3; //货物数量为3int main(){cout<<"请按顺序输入3个物品的重量:(按回车键区分每个物品的重量)"<<endl;int i;for(i=1;i<=n;i++)cin>>w[i]; //输入3个物品的重量cout<<"请按顺序输入3个物品的价值:(按回车键区分每个物品的价值)"<<endl;for(i=1;i<=n;i++)cin>>p[i]; //输入3个物品的价值cout<<"最大价值为:";cout<<Knap()<<endl; //调用knap函数输出最大价值return 0;}double MaxBound(int j) //MaxBound函数求最大上界{doubleleft=c-cw,b=cp; //剩余容量和价值上界while(j<=n&&w[j]<=left) //以物品单位重量价值递减装填剩余容量{left-=w[j];b+=p[j];j++;}if(j<=n)b+=p[j]/w[j]*left; //装填剩余容量装满背包return b;}void AddLiveNode(double up,double cp,double cw,bool ch,int lev)//将一个新的活结点插入到子集数和最大堆High中{HeapNode be;be.upper=up;be.price=cp;be.weight=cw;be.level=lev;if(lev<=n)High.push(be); //调用stack头文件的push函数}double Knap() //优先队列分支限界法,返回最大价值,bestx返回最优解{ int i=1; cw=cp=0; doublebestp=0,up=MaxBound(1); //调用MaxBound求出价值上界,best为最优值while(1) //非叶子结点{ double wt=cw+w[i];if(wt<=c) //左儿子结点为可行结点{ if(cp+p[i]>bestp) bestp=cp+p[i];AddLiveNode(up,cp+p[i],cw+w[i],true,i+1);}up=MaxBound(i+1);if(up>=bestp) //右子数可能含最优解AddLiveNode(up,cp,cw,false,i+1);if(High.empty()) return bestp;HeapNode node=High.top(); //取下一扩展结点High.pop(); cw=node.weight; cp=node.price; up=node.upper; i=node.level;}}输出结果为:。
分支限界法解决01背包问题
分⽀限界法解决01背包问题1. 问题描述设有n个物体和⼀个背包,物体i的重量为wi价值为pi ,背包的载荷为M, 若将物体i(1<= i <=n)装⼊背包,则有价值为pi . ⽬标是找到⼀个⽅案, 使得能放⼊背包的物体总价值最⾼.设N=3, W=(16,15,15), P=(45,25,25), C=30(背包容量)2. 队列式分⽀限界法可以通过画分⽀限界法状态空间树的搜索图来理解具体思想和流程每⼀层按顺序对应⼀个物品放⼊背包(1)还是不放⼊背包(0)步骤:①⽤⼀个队列存储活结点表,初始为空② A为当前扩展结点,其⼉⼦结点B和C均为可⾏结点,将其按从左到右顺序加⼊活结点队列,并舍弃A。
③按FIFO原则,下⼀扩展结点为B,其⼉⼦结点D不可⾏,舍弃;E可⾏,加⼊。
舍弃B④ C为当前扩展结点,⼉⼦结点F、G均为可⾏结点,加⼊活结点表,舍弃C⑤扩展结点E的⼉⼦结点J不可⾏⽽舍弃;K为可⾏的叶结点,是问题的⼀个可⾏解,价值为45⑥当前活结点队列的队⾸为F, ⼉⼦结点L、M为可⾏叶结点,价值为50、25⑦ G为最后⼀个扩展结点,⼉⼦结点N、O均为可⾏叶结点,其价值为25和0⑧活结点队列为空,算法结束,其最优值为50注:活结点就是不可再进⾏扩展的节点,也就是两个⼉⼦还没有全部⽣成的节点3. 优先队列式分⽀限界法3.1 以活结点价值为优先级准则步骤:①⽤⼀个极⼤堆表⽰活结点表的优先队列,其优先级定义为活结点所获得的价值。
初始为空。
②由A开始搜索解空间树,其⼉⼦结点B、C为可⾏结点,加⼊堆中,舍弃A。
③B获得价值45,C为0. B为堆中价值最⼤元素,并成为下⼀扩展结点。
④ B的⼉⼦结点D是不可⾏结点,舍弃。
E是可⾏结点,加⼊到堆中。
舍弃B。
⑤ E的价值为45,是堆中最⼤元素,为当前扩展结点。
⑥ E的⼉⼦J是不可⾏叶结点,舍弃。
K是可⾏叶结点,为问题的⼀个可⾏解价值为45。
⑦继续扩展堆中唯⼀活结点C,直⾄存储活结点的堆为空,算法结束。
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】
一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。
01背包分支限定法
0—1背包问题一、实验目的学习掌握分支限定法思想。
二、实验内容用分支限定法求解0—1背包问题,并输出问题的最优解。
0—1背包问题描述如下:给定n种物品和一背包。
物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
三、实验条件Jdk1.5以上四、需求分析对于给定n种物品和一背包。
在容量最大值固定的情况下,要求装入的物品价值最大化。
五、基本思想:对物品的选取与否构成一棵解树,左子树表示不装入,右表示装入,通过检索问题的解树得出最优解,并用结点上界杀死不符合要求的结点。
六、详细设计/** Bound_Branch.java** Created on 2007年6月2日, 下午6:07** To change this template, choose Tools | Template Manager* and open the template in the editor.*/package sunfa;public class Bound_Branch {static double c;static int n;static double[]w;static double[]p;static double cw;static double cp;static int []bestX;static MaxHeap heap;//上界函数bound计算节点所相应价值的上界private static double bound(int i){double cleft=c-cw;double b=cp;while(i<=n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}//装填剩余容量装满背包if(i<=n)b+=p[i]/w[i]*cleft;return b;}//addLiveNode将一个新的活节点插入到子集树和优先队列中private static void addLiveNode(double up,double pp,double ww,int lev,BBnode par,boolean ch){//将一个新的活节点插入到子集树和最大堆中BBnode b=new BBnode(par,ch);HeapNode node =new HeapNode(b,up,pp,ww,lev);heap.put(node);}private static double bbKnapsack(){// TODO 自动生成方法存根//优先队列式分支限界法,返回最大价值,bestx返回最优解//初始化BBnode enode=null;int i=1;double bestp=0;//当前最优值double up=bound(1);//当前上界while(i!=n+1){//非叶子节点//检查当前扩展节点的右儿子子节点double wt=cw+w[i];if(wt<=c){if(cp+p[i]>bestp)bestp=cp+p[i];addLiveNode(up,cp+p[i],cw+w[i],i+1,enode,true);}up=bound(i+1);if(up>=bestp)addLiveNode(up,cp,cw,i+1,enode,false);HeapNode node =(HeapNode)heap.removeMax();enode=node.liveNode;cw=node.weight;cp=node.profit;up=node.upperProfit;i=node.level;}for(int j=n;j>0;j--){bestX[j]=(enode.leftChild)?1:0;enode=enode.parent;}return cp;}public static double knapsack(double []pp,double []ww,double cc,int []xx){ //返回最大值,bestx返回最优解c=cc;n=pp.length-1;//定义以单位重量价值排序的物品数组Element[]q=new Element[n];double ws=0.0;double ps=0.0;for(int i=1;i<=n;i++){q[i-1]=new Element(i,pp[i]/ww[i]);ps+=pp[i];ws+=ww[i];}if(ws<=c){for(int i=1;i<=n;i++)xx[i]=1;return ps;}//以单位重量排序MergeSort.mergeSort(q);//初始化数据成员p=new double[n+1];w=new double[n+1];for(int i=1;i<=n;i++){p[i]=pp[q[n-i].id];w[i]=ww[q[n-i].id];}cw=0.0;cp=0.0;bestX = new int[n+1];heap = new MaxHeap(n);double maxp = bbKnapsack();for(int i=1;i<=n;i++)xx[q[n-i].id]=bestX[i];return maxp;}public static void main(String [] args){double w[]={2,2,6,5,4};double v[]={6,3,4,5,6};double c=10;int []x = new int[5];double m = knapsack(v,w,c,x);for(int i=0;i<5;i++)System.out.print(x[i]);}}//子空间中节点类型class BBnode{BBnode parent;//父节点boolean leftChild;//左儿子节点标志BBnode(BBnode par,boolean ch){parent=par;leftChild=ch;}}class HeapNode implements Comparable{BBnode liveNode; // 活节点double upperProfit; //节点的价值上界double profit; //节点所相应的价值double weight; //节点所相应的重量int level; // 活节点在子集树中所处的层次号//构造方法public HeapNode(BBnode node, double up, double pp , double ww,int lev){ liveNode = node;upperProfit = up;profit = pp;weight = ww;level = lev;}public int compareTo(Object o) {double xup = ((HeapNode)o).upperProfit;if(upperProfit < xup)return -1;if(upperProfit == xup)return 0;elsereturn 1;}}class Element implements Comparable{int id;double d;public Element(int idd,double dd){id=idd;d=dd;}public int compareTo(Object x){double xd=((Element)x).d;if(d<xd)return -1;if(d==xd)return 0;return 1;}public boolean equals(Object x){return d==((Element)x).d;}}class MaxHeap{static HeapNode [] nodes;static int nextPlace;static int maxNumber;public MaxHeap(int n){maxNumber = (int)Math.pow((double)2,(double)n);nextPlace = 1;//下一个存放位置nodes = new HeapNode[maxNumber];}public static void put(HeapNode node){nodes[nextPlace] = node;nextPlace++;heapSort(nodes);}public static HeapNode removeMax(){HeapNode tempNode = nodes[1];nextPlace--;nodes[1] = nodes[nextPlace];heapSort(nodes);return tempNode;}private static void heapAdjust(HeapNode [] nodes,int s,int m){ HeapNode rc = nodes[s];for(int j=2*s;j<=m;j*=2){if(j<m&&nodes[j].upperProfit<nodes[j+1].upperProfit)++j;if(!(rc.upperProfit<nodes[j].upperProfit))break;nodes[s] = nodes[j];s = j;}nodes[s] = rc;}private static void heapSort(HeapNode [] nodes){for(int i=(nextPlace-1)/2;i>0;--i){heapAdjust(nodes,i,nextPlace-1);}}}主程序运行结果:。
分支限界法解决01背包问题
分⽀限界法解决01背包问题 分⽀限界法和之前讲的回溯法有⼀点相似,两者都是在问题的解的空间上搜索问题的解。
但是两者还是有⼀些区别的,回溯法是求解在解的空间中的满⾜的所有解,分⽀限界法则是求解⼀个最⼤解或最⼩解。
这样,两者在解这⼀⽅⾯还是有⼀些不同的。
之前回溯法讲了N后问题,这个问题也是对于这有多个解,但是今天讲的01背包问题是只有⼀个解的。
下⾯就讲讲分⽀限界法的基本思想。
分⽀限界法常以⼴度优先或以最⼩消耗(最⼤效益)优先的⽅式搜索问题的解空间树。
问题的解空间树是表⽰问题解空间的⼀颗有序树,常见的有⼦集树和排列树。
分⽀限界法和回溯法的区别还有⼀点,它们对于当前扩展结点所采⽤的扩展⽅式也是不相同的。
分⽀限界法中,对于每⼀个活结点只有⼀次机会成为扩展结点。
活结点⼀旦成为了扩展结点,就⼀次性产⽣其所有的⼦结点,⼦结点中,不符合要求的和⾮最优解的⼦结点将会被舍弃,剩下的⼦结点将加⼊到活结点表中。
再重复上⾯的过程,直到没有活结点表中没有结点,⾄此完成解决问题的⽬的。
分⽀限界法⼤致的思想就是上⾯的叙述,现在就可以发现,对于结点的扩展将会成为分⽀限界法的主要核⼼。
所以,分⽀限界法常见的有两种扩展结点的⽅式,1.队列式(FIFO)分⽀限界法,2.优先队列式分⽀限界法。
两种⽅法的区别就是对于活结点表中的取出结点的⽅式不同,第⼀种⽅法是先进先出的⽅式,第⼆种是按优先级取出结点的⽅式。
两中⽅法的区别下⾯也会提到。
在背包问题中还会提到⼀个⼦树上界的概念,其实就是回溯法中的剪枝函数,只不过,分⽀限界法⾥的剪枝函数改进了⼀些,剪枝函数同样也是分⽀限界法⾥⽐较重要的东西。
下⾯就讲⼀讲01背包问题的实现。
01背包问题和前⾯讲的背包问题的区别不⼤,就是01背包问题的物品不可以只放⼊部分,01背包问题的物品只能放⼊和不放⼊两个选择,这也是名字中01的原因。
其他的和背包问题相差不⼤,这⾥也不再累述。
算法的主体是⽐较容易想的,⾸先,将数据进⾏处理,这也是上⾯讲到的第⼆种取结点的⽅式(优先队列式)。
分支界限法0-1背包问题(优先队列式分支限界法)
分⽀界限法0-1背包问题(优先队列式分⽀限界法)输⼊要求有多组数据。
每组数据包含2部分。
第⼀部分包含两个整数C (1 <= C <= 10000)和 n (1 <= n <= 10,分别表⽰背包的容量和物品的个数。
第⼆部分由n⾏数据,每⾏包括2个整数 wi(0< wi <= 100)和 vi(0 < vi <= 100),分别表⽰第i个物品的总量和价值输出要求对于每组输⼊数据,按出队次序输出每个结点的信息,包括所在层数,编号,背包中物品重量和价值。
每个结点的信息占⼀⾏,如果是叶⼦结点且其所代表的背包中物品价值⼤于当前最优值(初始为0),则输出当前最优值 bestv 和最优解bestx(另占⼀⾏)参见样例输出测试数据输⼊⽰例5 32 23 22 3输出⽰例1 1 0 02 2 2 23 5 2 24 10 4 5bestv=5, bestx=[ 1 0 1 ]4 11 2 23 4 5 42 3 0 0⼩贴⼠可采⽤如下的结构体存储结点:typedef struct{int no; // 结点在堆中的标号int sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // 优先值 sv/sw}Node;#include<stdio.h>#include<math.h>#include<string.h>typedef struct {int no; // 结点标号int id; // 节点idint sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // sv/sw}Node;int surplusValue(int *v,int n,int y) {int sum = 0;for(int i = y; i <= n; i++) {sum += v[i];}return sum;}void qsort(Node *que,int l,int r) {int len = r - l + 1;int flag;for(int i = 0; i < len; i ++) {flag = 0;for(int j = l; j < l + len - i; j++) {if(que[j].prior < que[j+1].prior) {Node t = que[j];que[j] = que[j+1];que[j+1] = t;flag = 1;}}//if(!flag ) return;}}void branchknap(int *w,int *v,int c,int n) {int bestv = 0;int f = 0;int r = 0;Node que[3000];memset(que,0,sizeof(que));int path[15];que[0].no = 1;que[0].id = que[0].sv = que[0].sw = que[0].prior = 0;while(f <= r) {Node node = que[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;printf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp % 2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++ ;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id + 1]) <= c && surplusValue(v,n,node.id+1) + node.sv > bestv) { r++;que[r].id = node.id + 1;que[r].no = node.no*2;int id = node.id + 1;que[r].sv = node.sv + v[id];que[r].sw = node.sw + w[id];que[r].prior = que[r].sv / (que[r].sw*1.0);}if(surplusValue(v,n,node.id+2) + node.sv > bestv) {r++;que[r].id = node.id + 1;que[r].no = node.no*2 + 1;que[r].sv = node.sv;que[r].sw = node.sw;que[r].prior = node.prior;}}f++;qsort(que,f,r);}}int main() {int c,n;int w[15],v[15];while(~scanf("%d %d",&c,&n)){for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap(w,v,c,n);}return 0;}#include<stdio.h>#include<math.h>#include<string.h>typedef int bool;#define true 1#define false 0struct Node{int no; // ?áµ?±êo?int id; //jie dian idint sw; // ±3°ü?D·µá?int sv; // ±3°ü?D·µ?µdouble prior;};struct Node queuee[2000];int w[15],v[15];int bestv = 0,c,n;int path[15]; //lu jingint surplusValue(int y) {int sum = 0;for(int i = y; i <= n; i++)sum += v[i];return sum;}void qsort(int l,int r) {// printf("------\n");int len = r - l + 1;//printf("----%d %d %d-----\n",l,r,len);bool flag;for(int i = 0; i < len ; i++) {flag = false;for(int j = l; j <l+ len -i ;j++) {if(queuee[j].prior < queuee[j+1].prior) {struct Node temp = queuee[j];queuee[j] = queuee[j+1];queuee[j+1] = temp;flag = true;}//if(!flag) return;}}// printf("---排序嘻嘻---\n");//for(int i = l; i <= r;i++ )// printf("***%d : %.2lf\n",queuee[i].no,queuee[i].prior);// printf("\n------\n");}void branchknap() {bestv = 0;int f = 0;int r = 0;queuee[0].no = 1;queuee[0].id = 0;queuee[0].sv = 0;queuee[0].sw = 0;queuee[0].prior = 0;// printf("f: %d r: %d\n",f,r);while(f <= r) {struct Node node = queuee[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;//TODOprintf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp%2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id+1]) <= c && surplusValue(node.id+1) + node.sv > bestv) { r++;//printf("%d\n",(node.sw + w[node.id+1]));queuee[r].id = node.id+1;queuee[r].no = node.no*2;int id = node.id+1;queuee[r].sv = node.sv + v[id];queuee[r].sw = node.sw + w[id];queuee[r].prior = queuee[r].sv/(queuee[r].sw*1.0);//printf("进队id: %d\n",queuee[r].no) ;//printf("%d %d %d\n",id,v[id], w[id]);}if(surplusValue(node.id+2) + node.sv > bestv) {r++;queuee[r].id = node.id+1;queuee[r].no = node.no*2 + 1;queuee[r].sv = node.sv ;queuee[r].sw = node.sw ;queuee[r].prior = node.prior;//printf("进队id: %d\n",queuee[r].no) ;}}f++;qsort(f,r);}}int main() {while(~scanf("%d %d",&c,&n)){memset(queuee,0,sizeof(queuee));for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap();}return 0;}。
01背包问题多种解法
一、问题描绘0/1 背包问题 :现有 n 种物件,对1<=i<=n,已知第i 种物件的重量为正整数W i,价值为正整数V i,背包能蒙受的最大载重量为正整数W ,现要求找出这n 种物件的一个子集,使得子集中物品的总重量不超出W 且总价值尽量大。
(注意:这里对每种物件或许全取或许一点都不取,不一样意只取一部分)二、算法剖析依据问题描绘,能够将其转变为以下的拘束条件和目标函数:nw i x i W(1)i1x i{ 0,1}( 1i n)nmax v i x i (2)i1于是,问题就归纳为找寻一个知足拘束条件( 1 ),并使目标函数式( 2 )达到最大的解向量 X(x1, x2 , x3 ,......, x n ) 。
第一说明一下0-1 背包问题拥有最优解。
假定 (x1, x2 , x3 ,......, x n ) 是所给的问题的一个最优解,则 (x2 , x3,......, x n ) 是下边问题的nw i x i W w1x1 maxn一个最优解:i 2v i x i。
假如不是的话,设( y2, y3 ,......, y n ) 是这x i{ 0,1}( 2i n)i 2n n n个问题的一个最优解,则v i y i v i x i,且 w1x1w i y i W 。
因此,i 2i 2i 2n n nv1x1v i y i v1 x1v i x i v i x i,这说明 (x1, y2 , y3 ,........, y n ) 是所给的0-1 背包问i 2i 2i 1题比 ( x1 , x2 , x3 ,........, x n ) 更优的解,进而与假定矛盾。
穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物件会合的所有子集,找出所有可能的子集(总重量不超出背包重量的子集),计算每个子集的总重量,而后在他们中找到价值最大的子集。
因为程序过于简单,在这里就不再给出,用实例说明求解过程。
分支限界法典型例题
分支限界法典型例题分支限界法(Branch and Bound)是一种常见的算法分析技术,用于解决搜索问题和动态规划问题。
以下是一些分支限界法的典型例题:1. 最长公共子序列(LCS):求给定两个字符串的最长公共子序列。
可以使用分支限界法,首先找出两个字符串中的不同字符出现的次数,然后用哈希表存储这些计数器。
最后,遍历哈希表中的每个计数器,找到最大的计数器的值,即为最长公共子序列的长度。
2. 背包问题(Knapsack problem):给定一个背包,容量为64,有多个选项,每个选项的重量和容量不限。
求给定背包中可以放入的最大重量的背包物品。
可以使用分支限界法,首先列出所有可能背包容量的组合,然后用枚举法找出每个背包容量下可以放入的最大重量的物品,最后计算出可以放入的最大重量的物品数量。
3. 最短路径问题(Shortest Path problem):给定一个二维图,目标为找到从源点出发,到达所有目标点的路径。
可以使用分支限界法,首先找出图中的所有节点和它们之间的联系,然后用递归算法计算每个节点到源点的路径。
最后,通过剪枝,可以找到最短路径。
4. 最大子数组和问题(Maximum Subarray and Problem):给定一个数组,求出其中任意一个元素的最大值。
可以使用分支限界法,首先找出数组中的最小值和最大值,然后用递归算法计算每个元素的最大值。
最后,通过剪枝,可以找到最大子数组和问题。
5. 模拟退火问题(Simulated Annealing Problem):给定一个概率分布,求出在一定条件下,随机变量的取值分布。
可以使用分支限界法,首先找出概率分布中所有可能的取值,然后用模拟退火算法计算在这些取值中随机变量的取值分布。
最后,通过剪枝,可以找到最优解。
背包问题
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
实验报告-分支限界法01背包
《算法设计与分析》实验报告六学号: 1004091130 姓名:金玉琦日期: 2011-11-17 得分:一、实验内容:运用分支限界法解决0-1背包问题。
二、所用算法的基本思想及复杂度分析:分支限界法分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。
因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。
0-1背包问题1)基本思想给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。
对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数:u b = v + ( W - w) × ( vi + 1/ wi + 1 )根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。
2)复杂度分析时间复杂度是O(2n);三、源程序及注释:#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;int *x;struct node{//结点表结点数据结构node *parent,//父结点指针*next; //后继结点指针int level,//结点的层bag,//节点的解cw,//当前背包装载量cp;//当前背包价值float ub; //结点的上界值};class Knap{private:struct node *front, //队列队首*bestp,*first; //解结点、根结点int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解public:void Sort();Knap(int *pp,int *ww,int cc,int nn);~Knap();float Bound(int i,int cw,int cp);//计算上界限node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点void addnode(node *nod);//将结点添加到队列中void deletenode(node *nod);//将结点队列中删除struct node *nextnode(); //取下一个void display(); //输出结果void solvebag(); //背包问题求解};Knap::Knap(int *pp,int *ww,int cc,int nn){int i;n=nn;c=cc;p=new int[n];w=new int[n];M=new int[n];for(i=0;i<n;i++){p[i]=pp[i];w[i]=ww[i];M[i]=i;}front=new node[1];front->next=NULL;lbestp=0;bestp=new node[1];bestp=NULL;Sort();}Knap::~Knap(){delete []first;delete []front;delete []bestp;delete []p;delete []w;}float Knap::Bound(int i,int cw,int cp){// 计算上界int cleft=c-cw;float b=(float)cp;while (i<n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}if (i<n) b+=1.0*p[i]/w[i]*cleft;return b;}node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点node * nodell=new(node);nodell->parent=pa;nodell->next=NULL;nodell->level=(pa->level)+1;nodell->bag=ba;nodell->ub=uub;if(ba==1){nodell->cw=pa->cw+w[pa->level];nodell->cp=pa->cp+p[pa->level] ;}else{nodell->cw=pa->cw;nodell->cp=pa->cp;}return(nodell);}void Knap::addnode(node *no){//将结点加入优先队列node *p=front->next,*next1=front;float ub=no->ub;while(p!=NULL){if(p->ub<ub){no->next=p;next1->next=no;break;}next1=p;p=p->next;}if(p==NULL){next1->next=no;}}node *Knap::nextnode(){//取上限最大结点node *p=front->next;front->next=p->next;return(p);}void Knap::Sort(){int i,j,k,kkl;float minl;for(i=1;i<n;i++){minl=1.0*p[i]/w[i];k=0;for(j=1;j<=n-i;j++){if(minl<1.0*p[j]/w[j]){minl=1.0*p[j]/w[j];swap(p[k],p[j]);swap(w[k],w[j]);swap(M[k],M[j]);k=j;}}}}void Knap::display(){int i;cout<<"最大价值是:"<<lbestp<<endl;for(i=n;i>=1;i--){x[M[i-1]]=bestp->bag;bestp=bestp->parent;}cout<<"变量值为:"<<endl;for(i=1;i<=n;i++)cout<<"x("<<setw(2)<<i<<")="<<x[i-1]<<endl;}void Knap::solvebag(){//背包问题求解int i;float ubb;node *aa;first=new node[1]; //根结点first->parent=NULL;first->next=NULL;first->level=0;first->cw=0;first->cp=0;first->bag=0;ubb=Bound(0,0,0);first->ub=ubb;front->next=first;while(front->next!=NULL){aa=nextnode();i=aa->level;if(i==n-1){if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp){lbestp=aa->cp+p[i];bestp=nnoder(aa,1,(float)lbestp);}if((long)(aa->cp)>lbestp){lbestp=aa->cp;bestp=nnoder(aa,0,(float)lbestp);}}if(i<n-1){if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp){ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);addnode(nnoder(aa,1,ubb));}ubb=ubb=Bound(i,aa->cw,aa->cp);if(ubb>lbestp)addnode(nnoder(aa,0,ubb));}}display();}void main(){int c,n;int i=0;int *p;int *w;cout<<"请输入背包容量:"<<endl;cin>>c;cout<<"请输入物品数:"<<endl;cin>>n;x=new int[n];p=new int[n];w=new int[n];cout<<"请输入"<<n<<"个物品的重量:"<<endl;for(i=0;i<n;i++)cin>>w[i];cout<<"请输入"<<n<<"个物品价值:"<<endl;for(i=0;i<n;i++)cin>>p[i];x=new int[n];Knap knbag(p,w,c,n);knbag.solvebag();getch();return;}四、运行输出结果:五、调试和运行程序过程中产生的问题、采取的措施及获得的相关经验教训:解决该问题首先要确定一个合适的限界函数数, 并根据限界函数确定目标函数的界[down,up],然后按照广度优先策略遍历问题的解空间树,在分支结点上,依次搜索该结点的所有孩子结点,分别估算这些孩子结点的目标函数的可能取值,如果某孩子结点的目标函数可能取得的值超出目标函数的界, 则将其丢弃, 因为从这个结点生成的解不会比目前已经得到的解更好; 否则, 将其加入待处理结点表中。
实验报告分支限界法01背包
实验报告分支限界法01背包实验报告:分支限界法01背包问题一、引言01背包问题是计算机科学中经典的问题之一,也是分枝限界法(Branch and Bound)的重要应用之一、本实验旨在通过使用分支限界法求解01背包问题,加深对该算法的理解,并验证其在计算机科学中的实际应用价值。
二、算法原理01背包问题是指在给定容量的背包和一组物品中,求解如何选择物品,使得在背包容量限制下,装入背包的物品总价值最大。
该问题可以使用动态规划方法求解,但这里我们采用分支限界法进行求解。
分支限界法首先将问题划分为多个较小的子问题,然后通过选择最有希望的子问题进行探索,并进行剪枝操作,以避免无效的,最后得到问题的最优解。
在01背包问题中,每个物品可以选择装入背包或不装入背包,因此可以通过对每个物品的选择进行枚举,并使用上界函数(bound function)对每个子问题的解进行估计,去掉必然不是最优解的子问题,从而减少空间。
具体实现中,可以使用一个优先队列(Priority Queue)来存储这些子问题,按照优先级从高到低的顺序进行扩展探索,直到找到最优解或队列为空时停止。
三、实验过程1.根据给定的背包容量和物品价值、重量数组,创建一个优先队列并初始化其第一个子问题。
2.使用循环进行优先队列的遍历,直到队列为空。
3.取出队列中优先级最高的子问题进行扩展探索。
4.对该子问题进行剪枝操作:若当前子问题的上界函数值小于当前最优解,则该子问题无需继续扩展。
5.对没有剪枝的子问题进行扩展操作:分为两种情况,一种是将当前物品放入背包,一种是不放入背包。
6.若扩展的子问题是可行解,则更新当前最优解。
7.将扩展的子问题加入优先队列。
8.重复步骤3-7,直到找到最优解或队列为空。
四、实验结果本次实验使用分支限界法求解了一个01背包问题。
背包的最大容量为W=10,共有5个物品,其重量分别为w={2,3,4,5,9},价值分别为v={3,4,5,8,10}。
旅行售货员问题(分支限界法)
旅⾏售货员问题(分⽀限界法)⼀、实验内容运⽤分⽀限界法解决0-1背包问题(或者旅⾏售货员问题、或者装载问题、或者批处理作业调度)使⽤优先队列式分⽀限界法来求解旅⾏售货员问题⼆、所⽤算法基本思想及复杂度分析1.算法基本思想分⽀限界法常以⼴度优先或以最⼩耗费有限的⽅式搜索问题的解空间树。
问题的解空间树是表⽰问题解空间的⼀棵有序树,常见的有⼦集树和排列树。
在搜索问题的解空间树时,分⽀限界法和回溯法的主要区别在于它们对当前扩展节点所采⽤的扩展⽅式不同。
在分⽀限界法中,每⼀个活结点只有⼀次机会成为扩展节点。
活结点⼀旦成为扩展节点,就⼀次性产⽣其所有⼉⼦节点。
在这些⼉⼦节点中,导致不可⾏解或导致⾮最优解的⼉⼦节点被舍弃,其余⼉⼦节点被加⼊活结点表中。
此后,从活结点表中取下⼀节点为当前扩展节点。
并重复上述节点扩展过程。
这个过程移⾄持续到找到所需的解或活结点表为空为⽌。
从活结点表中选择下⼀扩展节点的不同⽅式导致不同的分⽀限界法。
最常见的有以下两种⽅式:(1)队列式分⽀限界法队列式分⽀限界法将活结点表组织成⼀个队列,并按队列的先进先出原则选取下⼀个节点为当前扩展节点。
(2)优先队列式分⽀限界法优先队列式的分⽀限界法将活结点表组织成⼀个优先队列,并按优先队列中规定的节点优先级选取优先级最⾼的下⼀个节点成为当前扩展节点。
2.问题分析及算法设计问题分析:(1)解旅⾏售货员问题的优先队列式分⽀限界法⽤优先队列存储活结点表。
(2)活结点m在优先队列中的优先级定义为:活结点m对应的⼦树费⽤下界lcost。
(3)lcost=cc+rcost,其中,cc为当前结点费⽤,rcost为当前顶点最⼩出边费⽤加上剩余所有顶点的最⼩出边费⽤和。
(4)优先队列中优先级最⼤的活结点成为下⼀个扩展结点。
(5)排列树中叶结点所相应的载重量与其优先级(下界值)相同,即:叶结点所相应的回路的费⽤(bestc)等于⼦树费⽤下界lcost的值。
算法设计:(1)要找最⼩费⽤旅⾏售货员回路,选⽤最⼩堆表⽰活结点优先队列。
01背包问题
01背包问题一、问题描述一个正在抢劫商店的小偷发现了n个商品,第i个商品价值V i美元,重Wi磅,V i和Wi都是整数;这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳W磅的商品,W是一个整数。
我们称这个问题是01背包问题,因为对每个商品,小偷要么把它完整拿走,要么把它留下;他不能只拿走一个商品的一部分,或者把一个商品拿走多次。
二、解决方案背包问题作为NP完全问题,暂时不存在多项式时间算法1.动态规划2.回溯法3.分支界限法三、方案详解3.1动态规划动态规划(Dynamic programming,DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划常常适用于有重叠子问题和最优子结构性质的问题。
概述:动态规划在查找有很多重叠子问题的情况的最优解时有效。
它将问题重新组合成子问题。
为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。
因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间。
动态规划只能应用于有最优子结构的问题。
最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。
简单地说,问题能够分解成子问题来解决。
特征:1、问题存在最优子结构2、问题的最优解需要在子问题中作出选择3、通过查表解决重叠子问题,避免重复计算动态规划的设计:1.刻画一个最优解的结构特征;2.递归地定义最优解的值;3.计算最优解的值,通常采用自底向上的方法;4.利用计算的信息构造一个最优解。
问题分析最优子结构:(1)问题分析:令f(i,j)表示在前i(0≤i<n)个物品中能够装入容量为j(0≤j≤W)的背包中的物品的最大价值,则可以得到如下的动态规划函数:(2)f[i,j]=0(i=0 OR j=0)f[i,j]=f[i-1,j] j<w i ①f[i,j]=max{f[i-1,j] ,f[i-1,j-wi] +vi } j>wi ②①式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;②式表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-wi的背包中的价值加上第i个物品的价值vi;(b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。
分支限界法-01背包问题
分⽀限界法-01背包问题1、分⽀限界法介绍分⽀限界法类似于,也是在问题的解空间上搜索问题解的算法。
⼀般情况下,分⽀限界法与回溯法的求解⽬标不同。
回溯法的求解⽬标是找出解空间中满⾜约束条件的所有解;⽽分⽀限界法的求解⽬标则是找出满⾜约束条件的⼀个解,或是在满⾜约束条件的解中找出使某⼀⽬标函数值达到极⼤或极⼩的解,即在某种意义下的最优解。
由于求解⽬标不同,导致分⽀限界法与回溯法对解空间的搜索⽅式也不相同。
回溯法以深度优先的⽅式搜索解空间,⽽分⽀限界法则以⼴度优先或以最⼩耗费优先的⽅式搜索解空间。
分⽀限界法的搜索策略是,在扩展结点处,先⽣成其所有的⼉⼦结点(分⽀),然后再从当前的活结点表中选择下⼀扩展结点。
为了有效地选择下⼀扩展结点,加速搜索的进程,在每⼀个活结点处,计算⼀个函数值(限界),并根据函数值,从当前活结点表中选择⼀个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分⽀推进,以便尽快地找出⼀个最优解。
这种⽅式称为分⽀限界法。
⼈们已经⽤分⽀限界法解决了⼤量离散最优化的问题。
2、常见的两种分⽀限界法1. 队列式(FIFO)分⽀限界法:按照先进先出原则选取下⼀个节点为扩展节点。
活结点表是先进先出队列。
LIFO分⽀限界法:活结点表是堆栈。
2. LC(least cost)分⽀限界法(优先队列式分⽀限界法):按照优先队列中规定的优先级选取优先级最⾼的节点成为当前扩展节点。
活结点表是优先权队列,LC分⽀限界法将选取具有最⾼优先级的活结点出队列,成为新的E-结点。
FIFO分⽀限界法搜索策略:§⼀开始,根结点是唯⼀的活结点,根结点⼊队。
§从活结点队中取出根结点后,作为当前扩展结点。
§对当前扩展结点,先从左到右地产⽣它的所有⼉⼦,⽤约束条件检查,把所有满⾜约束函数的⼉⼦加⼊活结点队列中。
§再从活结点表中取出队⾸结点(队中最先进来的结点)为当前扩展结点,……,直到找到⼀个解或活结点队列为空为⽌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
double bestp=0,up=Bound(1);
while(1)
{cout<<"down: "<<bestp<<endl<<"up: "<<up<<endl;
double wt=cw+w[i];
if(wt<=c)
};
stack<HeapNode> H;
double w[N],p[N];
double cw,cp,c;
int n;
double Bound(int i)
{
double cleft=c-cw,b=cp;
while(i<=n&&w[i]<=cleft)
{
{
if(cp+p[i]>bestp) bestp=cp+p[i];
AddLiveNode(up,cp+p[i],cw+w[i],true,i+1);
}
up=Bound(i+1);
if(up>=bestp)//符合下界限制的点
#include<iostream>
#include<stack>
#define N 200
using namespace std;
class HeapNode
{
public:
double uprofit,profit,weight;
int level,x[N];
}
cleft-=w[i];
b+=p[i]; i++; }
if(i<=n) b+=p[i]/w[i]*cleft;
return b;
}
void AddLiveNode(double up,double cp,double cw,bool ch,int level)
AddLiveNode(up,cp,cw,false,i+1);
if(H.empty()) return bestp;
HeapNode node=H.top();
H.pop();
cw=node.weight;
for(int i=1;i<=n;i++) cin>>w[i];
cout<<"请输入p[i]"<<endl;
for(int i=1;i<=n;i++) cin>>p[i];
cout<<"最优值是:"<<Knap()<<endl;
return 0;
{
HeapNode nod;
nod.uprofit=up;
nod.profit=cp;
nod.weight=cw;
nod.level=level;
if(level<=n) H.push(nod);
}
double Knap()
{
int i=1;
cp=node.profit;
up=node.uprofit;
i=node.level;
}
}
int main()
{
cout<<"请输入n和c:"; cin>>n>>c;
cout<<"请输入w[i]"<<endl;