七年级上册数学第二章整式全章课件
合集下载
人教版七年级数学上第二章 整式 PPT

___m__n_件___
归纳
❖ 观察以下式子: 6a2,a3,2.5x,-n,vt, 2πr 你认为它们之间有什么共同特点?
发现: 这些式子都是由数或字母的积组成的
人教版七年级数学上第二章 整式 PPT
单项式的定义
❖ 只含有数或字母 的积的式子叫做单项式
❖ 如:6a2,a3,2.5x,-n,vt, 2πr 注意: (1)单独的一个数或一个字母也是单项式
成长的足迹
下列代数式中,单项式有
( ①②③④⑥)
① x2y ⑤y
x
② 0 ③m
2
⑥ - 8 mn 7
④ 2pr
人教版七年级数学上第二章 整式 PPT
人教版七年级数学上第二章 整式 PPT
❖ 下列书写是否正确:
①1x x ②-1x
-x
③a×3 3a ④ a÷2 a 2
⑤ 1 1 xy2 4
5 xy2 4
思考
用含有字母的式子填空,看看列出的式 子有什么特点。
(1)边长为a的正方体的表面积为 ______体积为__a_3___.
a
思考
(2)半径为r的圆的周长是_2_πr__。
.r
思考
(3)铅笔的单价是x元,圆珠笔的单价 是铅笔的2.5倍,则圆珠笔的单价是_ _2.5_x元。
(4)一辆汽车的速度是v千米∕小时, 它t小时行驶的路程为_v_t 千米。
如:3,a, -3 -b
人教版七年级数学上第二章 整式 PPT
人教版七年级数学上第二章 整式 PPT
例:下列式子哪些是单项式?
x+ y 1 x
- 2 xy 3 3
p r2
7 ab 2
- 3 xyz
7b 2a
归纳
❖ 观察以下式子: 6a2,a3,2.5x,-n,vt, 2πr 你认为它们之间有什么共同特点?
发现: 这些式子都是由数或字母的积组成的
人教版七年级数学上第二章 整式 PPT
单项式的定义
❖ 只含有数或字母 的积的式子叫做单项式
❖ 如:6a2,a3,2.5x,-n,vt, 2πr 注意: (1)单独的一个数或一个字母也是单项式
成长的足迹
下列代数式中,单项式有
( ①②③④⑥)
① x2y ⑤y
x
② 0 ③m
2
⑥ - 8 mn 7
④ 2pr
人教版七年级数学上第二章 整式 PPT
人教版七年级数学上第二章 整式 PPT
❖ 下列书写是否正确:
①1x x ②-1x
-x
③a×3 3a ④ a÷2 a 2
⑤ 1 1 xy2 4
5 xy2 4
思考
用含有字母的式子填空,看看列出的式 子有什么特点。
(1)边长为a的正方体的表面积为 ______体积为__a_3___.
a
思考
(2)半径为r的圆的周长是_2_πr__。
.r
思考
(3)铅笔的单价是x元,圆珠笔的单价 是铅笔的2.5倍,则圆珠笔的单价是_ _2.5_x元。
(4)一辆汽车的速度是v千米∕小时, 它t小时行驶的路程为_v_t 千米。
如:3,a, -3 -b
人教版七年级数学上第二章 整式 PPT
人教版七年级数学上第二章 整式 PPT
例:下列式子哪些是单项式?
x+ y 1 x
- 2 xy 3 3
p r2
7 ab 2
- 3 xyz
7b 2a
人教版七年级初中数学上册第二章整式的加减-整式的加减(整式加减运算)PPT课件

b
1.5a
2b
解:小纸盒的表面积是(2ab+2bc+2ca
)c2
大纸盒的表面积是( 6ab+8bc+6ca)c2
新知探究
求 1 x 2( x 1 y 2 ) ( 3 x 1 y 2 ) 的值,其中 x 2, y 2
2
3
2
3
3
1
1 2
3
1 2
解: x 2( x y ) ( x y )
第二章 整式的加减
2.2.3 整 式 加 减 运 算
人教版七年级(初中)数学上册
授课老师:11
前 言
学习目标
1、熟练进行整式的加减运算。
2、利用去括号法则会进行整式的化简。
重点难点
重点:熟练进行整式的加减运算。
难点:利用去括号法则会进行整式的化简。
新知探究
(1)(2x-3y)+(5x+4y)
整式加减运算需注意:
A.14a+6b
B.7a+3b
C.10a+10b
D.12a+8b
提示:1.先求另一边边长。
2.长方形周长=(长+宽)*2
课堂练习
3.计算
(1) 3xy-4xy-(-2xy)
(2) (-x+2x2 +5)- (4x2 -3-6x)
课堂练习
4.填空
如果用a,b分别表示一个两位数的十位数字和个位数字,
小红买这种笔记本3本,买圆珠笔2支;
小明买这种笔记本4本,买圆珠笔3支.
问:买这些笔记本和圆珠笔,小红和小明一共花费多少钱?
分析
笔记本花费
圆珠笔花费
新人教版初中数学七年级上册第2章—2.1整式 课件

千克;
(5)一台电视机原价a元,现按原价的9折出售,
这台电视机现在的售价为
元;
(6)一个长方形的长是0.9,宽是a,这个长方形
面积是
。
单项式
例1 (1)每包书有12册,n包书有 12n 册;
(3)一个长方体的长和宽都是a,高是h,它的体积 ah ; (4)产量由m千克增长10%,就达到 1.1m 千克; (5)一台电视机原价a元,现按原价的9折出售,
2只青蛙, 张嘴 , 只眼睛, 条腿 ,扑通 声 跳下水。
n只青蛙, 张嘴 , 只眼睛, 条腿 ,扑通 声 跳下水。
案例2
1只青蛙, 1 张嘴 , 2 只眼睛, 4 条腿 ,扑通 1 声 跳下水。
2只青蛙, 2 张嘴 , 4 只眼睛, 8 条腿 ,扑通 2 声 跳下水。
n只青蛙, n 张嘴 ,2n 只眼睛,4n 条腿 ,扑通 n 声 跳下水。
•
15、最具挑战性的挑战莫过于提升自 我。。2 021年8 月下午 7时28 分21.8.7 19:28A ugust 7, 2021
•
16、业余生活要有意义,不要越轨。2 021年8 月7日 星期六7 时28分 32秒19 :28:327 August 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。下 午7时28 分32秒 下午7 时28分1 9:28:32 21.8.7
多项式
例4
如图,某长方形的四角都有一块半径相同的四分之一
圆形的草地,若圆形的半径为r米,长方形的长为a
米,宽为b米。则空地的面积为
平方米。
多项式
例4
如图,某长方形的四角都有一块半径相同的四分之一 圆形的草地,若圆形的半径为r米,长方形的长为a 米,宽为b米。则空地的面积为 (ab-πr2) 平方米。
七年级上册数学精品课件:第二章第二节 整式的加减

(2)做大纸盒比做小纸盒多用料 (6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca- 2ab-2bc-2ca =4ab+6bc+4ca(2cm )
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5
求
1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5
求
1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项
七年级上册数学第二章整式全章课件

2.1 整式 (第2课时)
课件说明
本节课学习是在学习了用字母表示数、用含有字母的式子表示实际问 题中的数量关系的基础上,进一步学习单项式、单项式的系数和次数的概 念,以及用单项式表示简单的数量关系,为后续学习多项式、整式的概念 以及整式的运算打基础.
课件说明
学习目标: (1)理解单项式、单项式的系数和次数的概念. (2)会用单项式表示简单的数量关系. (3)经历单项式概念的形成过程,从中体会抽象的
②理清语句层次明确运算顺序; ③牢记一些概念和公式.
归纳:
列式时: ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号.
例3
(1)观察下列各式:x,2x,2 3x,3 4x4,… ,
项 x2,这个多项式的次数是2.
【问题2】
(2)v 2.5 ,3x 5 y 2z,1 ab πr 2
2
的项分别是什么?次数分别是多少?
定义:单项式与多项式统称整式.
【问题3】
(1)你能举出一个多项式的例子,并说出
它的项和次数吗? (2)请你写出一个二次三项式,并使它的二次
项系数是-2,一次项系数是3,常数项是
按此规律,第个n 式子是 nx n ;
例3(2)测得一种树苗的高度与树苗生长的年数的
有关数据如下表(树苗原高100cm),根据表格思 考下面问题:
年数 1 2 3
高度/cm 100+5 100+10 100+15
100+5×1 100+5×2 100+5×3
4 ……
100+20 ……
课件说明
本节课学习是在学习了用字母表示数、用含有字母的式子表示实际问 题中的数量关系的基础上,进一步学习单项式、单项式的系数和次数的概 念,以及用单项式表示简单的数量关系,为后续学习多项式、整式的概念 以及整式的运算打基础.
课件说明
学习目标: (1)理解单项式、单项式的系数和次数的概念. (2)会用单项式表示简单的数量关系. (3)经历单项式概念的形成过程,从中体会抽象的
②理清语句层次明确运算顺序; ③牢记一些概念和公式.
归纳:
列式时: ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号.
例3
(1)观察下列各式:x,2x,2 3x,3 4x4,… ,
项 x2,这个多项式的次数是2.
【问题2】
(2)v 2.5 ,3x 5 y 2z,1 ab πr 2
2
的项分别是什么?次数分别是多少?
定义:单项式与多项式统称整式.
【问题3】
(1)你能举出一个多项式的例子,并说出
它的项和次数吗? (2)请你写出一个二次三项式,并使它的二次
项系数是-2,一次项系数是3,常数项是
按此规律,第个n 式子是 nx n ;
例3(2)测得一种树苗的高度与树苗生长的年数的
有关数据如下表(树苗原高100cm),根据表格思 考下面问题:
年数 1 2 3
高度/cm 100+5 100+10 100+15
100+5×1 100+5×2 100+5×3
4 ……
100+20 ……
整式ppt课件-人教版数学七年级上第二章2.1第一课时

解:它2小时行驶的路程是 100×2=200(千米) 3小时行驶的路程是 100×3=300(千米) t小时行驶的路程是 100×t=100t(千米)
注意:在含有字母的式子中若出现乘号,通常将
乘号写作“•”或省略不写。
如:100×a可以写100•a或100a。
>>问题2
• (1)苹果原价是每千克p元,按8折优惠出 售,用式子表示现价; • (2)某产品前年的产量是n件,去年的产 量是前年产量的m倍,用式子表示去年的量; • (3)一个长方体包装盒的长和宽都是a cm, 高是h cm ,用式子表示它的体积; • (4)用式子表示数n的相反数。
第二章 整式的加减
2.1整式 第一课时
用字母表示数和单项式
学习有目标
• 理解字母表示数的意义,会用含有字母的式子表示实 际问题中的数量关系。 • 经历用含有字母的式子表示实际问题的数量关系的过 程,体会从具体到抽象的认识过程,发展符号意识。 • 理解单项式、单项式的系数和次数的概念.
• 会准确迅速地确定一个单项式的系数和次数。
解:(1)现价是每千克0.8p元; (2)去年的产量是mn件;
(3)由长方形的体积=长×宽×高,得这个 长方体包装盒的体积是a·a·h cm3 ,即a2h cm3 ; (4)数n的相反数是-n。
从上面的例子可以看出,用字母表示数, 字母和数一样可以参与运算,可以用式子把数量 关系简明地表示出来.
动笔练一练
2
答:①不是,因为原代数式中出现了加法运算; ②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2; 3 ④是,它的系数是- ,次数是3。
2
巩固练习
2 选择题
①下列各式中单项式的个数是( B ) b 3 ,x+1, -2,- ,0.72xy, 3 a A.2个 B.3个 C.4个 D.5个
人教版七年级上数学教学课件第二章整式全章

n 声扑通跳下水.
注意:在含有字母的式子中若出现乘号,通常将乘 号写作“•”或省略不写.如:100×a可以写成100•a或 100a.
用含有字母的式子填空: 1.边长为a的正方体的表面积为__6_a_2,体积为__a_3__. 2.铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍, 圆珠笔的单价是_2__.5_x__元. 3.全校学生总数是m,其中女生占总数的48%,则男生人 数是 _5_2_%__m____. 4. 一辆汽车的速度是v千米/时,它t小时行驶的 路程为____v_t_____千米. 5.数n的相反数是 __-_n___.
像3ab2与-4ab2 这样,所含字母相同,并且相同字母的指 数也相同的项叫做同类项.几个常数项也是同类项.
1.判断下列各组中的两项是否是同类项: (1) -5ab3与3a3b ( 否 ) (2)3xy与3x( 否 ) (3) -5m2n3与2n3m2( 是 ) (4)53与35 ( 是 ) (5) x3与53 ( 否 )
5 (3) 4a2 3b2 2ab 4a2 4b2.
解:1 xy2 1 xy2
5
(1 1)xy2 5
4 xy2. 5
请你自己做做第(2)、(3)小 题
(1) 运用有理数的运算律计算: 100×2+252×2=____7_0_4___, 100×(-2)+252×(-2)=___-_7_0_4___;
(2) 根据(1)中的方法完成下面的运算, 100t+252t=___3_5__2_t__.
填空: (1) 100t-252t=( -152 )t; (2) 3x2+2x2=( 5 )x2; (3) 3ab2-4ab2=( -1 )ab2. 上述运算有什么共同特点,你能从中得出什么规律? 100t和-252t 都含有相同的字母 t,并且t 的指数都是 1,我们就把100t与-252t 叫做同类项.
注意:在含有字母的式子中若出现乘号,通常将乘 号写作“•”或省略不写.如:100×a可以写成100•a或 100a.
用含有字母的式子填空: 1.边长为a的正方体的表面积为__6_a_2,体积为__a_3__. 2.铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍, 圆珠笔的单价是_2__.5_x__元. 3.全校学生总数是m,其中女生占总数的48%,则男生人 数是 _5_2_%__m____. 4. 一辆汽车的速度是v千米/时,它t小时行驶的 路程为____v_t_____千米. 5.数n的相反数是 __-_n___.
像3ab2与-4ab2 这样,所含字母相同,并且相同字母的指 数也相同的项叫做同类项.几个常数项也是同类项.
1.判断下列各组中的两项是否是同类项: (1) -5ab3与3a3b ( 否 ) (2)3xy与3x( 否 ) (3) -5m2n3与2n3m2( 是 ) (4)53与35 ( 是 ) (5) x3与53 ( 否 )
5 (3) 4a2 3b2 2ab 4a2 4b2.
解:1 xy2 1 xy2
5
(1 1)xy2 5
4 xy2. 5
请你自己做做第(2)、(3)小 题
(1) 运用有理数的运算律计算: 100×2+252×2=____7_0_4___, 100×(-2)+252×(-2)=___-_7_0_4___;
(2) 根据(1)中的方法完成下面的运算, 100t+252t=___3_5__2_t__.
填空: (1) 100t-252t=( -152 )t; (2) 3x2+2x2=( 5 )x2; (3) 3ab2-4ab2=( -1 )ab2. 上述运算有什么共同特点,你能从中得出什么规律? 100t和-252t 都含有相同的字母 t,并且t 的指数都是 1,我们就把100t与-252t 叫做同类项.
2.4 整式的加减 课件(共57张PPT)华东师大版(2024)数学七年级上册

2.4 整式的加减
第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②理清语句层次明确运算顺序; ③牢记一些概念和公式.
归纳:
列式时: ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号.
例3
(1)观察下列各式:x,2x,2 3x,3 4x4,… ,
形的边长是a mm,小正方形的边长是b mm,用式子表示剩余部
分的面积.
a2-b2 (mm2 )
练习2 用式子表示:
m
(1)5箱苹果重m kg,每箱重 5 kg ;
(2)一个数比a的2倍小5,则这个数为 2a 5 ;
(3)全校学生总数是x,其中女生占总数52%,则女生
人数是 0.52x ,男生人数是 0.48x ;
(4)用式子表示数n的相反数.
答案:(1)0.8 p;(2)mn ;(3)a 2 h ;(4) n .
例2
(1)一条河的水流速度是2.5 km/h,船在静水中 的速度是 v km/h,用式子表示船在这条河中顺水行 驶和逆水行驶时的速度;
(2)买一个篮球需要x元,买一个排球需要y元, 买一个足球需要 z 元,用式子表示买 3个篮球、5个 排球、2个足球共需要的钱数;
ห้องสมุดไป่ตู้
(4)某校前年购买计算机 x 台,去年购买数量是前年的 2倍,今年购买数量又是去年的2倍,则学校三年共购买计算
机 ( x 2x 4x) 台;
(5)某班有a名学生,现把一批图书分给全班学生阅读,
如果每人分4本,还缺25本,则这批图书共 (4a 本2;5)
(6)一个两位数,十位上的数字为a,个位上的数字为b,
义务教育教科书 数学 七年级 上册
2.1 整式 (第1课时)
课件说明
本节课学习是在学习了用字母表示数、简单的列 式表示实际问题中的数量关系和简易方程的基础上, 进一步研究用含有字母的式子(整式)表示实际问题中 的数量关系.理解字母表示数的意义,正确分析实际 问题中的数量关系,并用整式表示出来,是后续学习 一元一次方程的直接基础.
【问题3】上面的问题中,既有已知数,又有
用字母表示的未知数,字母表示数有什么意义? 用含有字母的式子表示数量关系有什么意义?
用字母表示数,字母和数一样可以 参与运算,可以用式子把数量关系简明 地表示出来.
练习1(教科书第56页练习)
(1)某种商品每袋4.8元,在一个月内的销售量是m 袋,用
式子表示在这个月内销售这种商品的收入. 4.8m元
按此规律,第个n 式子是 nx n ;
例3(2)测得一种树苗的高度与树苗生长的年数的
有关数据如下表(树苗原高100cm),根据表格思 考下面问题:
年数 1 2 3
高度/cm 100+5 100+10 100+15
100+5×1 100+5×2 100+5×3
4 ……
100+20 ……
100+5×4 10…0+…5×n
(3)回顾以前所学的知识,你还能举出用字母表示 数或数量关系的例子吗?
【问题2】
怎样分析数量关系并用含有字母的式子表示数 量关系呢?
例1 (1)苹果原价是每千克p元,按8折优惠出售,用
式子表示现价;
(2)某产品前年的产量是n件,去年的产量是前 年产量的m倍,用式子表示去年的产量;
(3)一个长方体包装盒的长和宽都是a cm,高是 h cm,用式子表示它的体积;
(3x 5y 2z) 元.
(3)三角尺的面积(单位:cm2 )是
1 ab πr 2 2
.
(4)这所住宅的建筑面积(单位:m2)是
x2 2x 18.
归纳:
列式就是把实际问题中与数量有关的语句, 用含有数、字母和运算符号的式子表示出来,也 就是把文字语言转化为符号语言.
①要抓住关键词语,明确它们的意义以及它们 之间的关系,如和、差、积、商及大、小、 多、少、倍、分、倒数、相反数等;
前四年树苗高度的变化与年数有什么关系?
假设以后各年树苗高度的变化与年数保持上述关 系,用式子表示生长了n年的树苗的高度.
例3
(3)礼堂第1排有20个座位,后面每排
都比前一排多一个座位.用式子表示第 n
排的座位数. 20 (n 1)
用整式表示实际问题中的数量关系和 变化规律,可以从特殊值入手,借助表格 等分析,由特殊到一般,由个体到整体地 观察、分析问题,发现规律,并用含有字 母的式子表示一般的结论,这体现了抽象 的数学思想.
则这个两位数为 10a .b
【课堂小结】 (1)本节课学了哪些主要内容? (2)用字母表示数有什么意义?用含有字母 的式子表示数量关系有什么意义? (3)用含有字母的式子表示数量关系时要注 意什么?
19
【布置作业】 教科书习题2.1的第1题,第2题,第7题.
课件说明
学习目标: (1)理解字母表示数的意义,会用含有字母的式子
表示实际问题中的数量关系. (2)经历用含有字母的式子表示实际问题的数量关
系的过程,体会从具体到抽象的认识过程,发展符号 意识.
学习重点: 理解字母表示数的意义,正确分析实际问题中的
数量关系并用含有字母的式子表示数量关系,感受其 中“抽象”的数学思想.
展示图片
【问题1】
青藏铁路线上,在格尔木到拉萨之间有一段 很长的冻土地段.列车在冻土地段的行驶速度是 100 km/h.列车在冻土地段行驶时,根据已知数 据求出列车行驶的路程. (1)2 h行驶多少千米?3 h呢?8 h呢?t h呢? (2)字母t表示时间有什么意义?
如果用v表示速度,列车行驶的路程是多少?
(2)圆柱体的底面半径、高分别是 r,h,用式子表示圆柱
体的体积.
πr 2h
(3)有两片棉田,一片有m hm2 (公顷,1 hm2 =104 m2 ),平 均每公顷产棉花a kg;另一片有n hm2 ,平均每公顷产棉花b kg,
用式子表示两片棉田上棉花的总产量. am bn (kg)
(4)在一个大正方形铁片中挖去一个小正方形铁片,大正方
例2.
(3)如左下图(图中长度单位:cm),用式子 表示三角尺的面积;
(4)右 下图是一所住宅的建筑平面图(图中长 度单位:m),用式子表示这所住宅的建筑面积.
解:
(1)船在这条河中顺水行驶的速度是 (v 2.5)
km/h,逆水行驶的速度是 (v 2.5) km/h.
(2)买3个篮球、5个排球、2个足球共需要
归纳:
列式时: ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号.
例3
(1)观察下列各式:x,2x,2 3x,3 4x4,… ,
形的边长是a mm,小正方形的边长是b mm,用式子表示剩余部
分的面积.
a2-b2 (mm2 )
练习2 用式子表示:
m
(1)5箱苹果重m kg,每箱重 5 kg ;
(2)一个数比a的2倍小5,则这个数为 2a 5 ;
(3)全校学生总数是x,其中女生占总数52%,则女生
人数是 0.52x ,男生人数是 0.48x ;
(4)用式子表示数n的相反数.
答案:(1)0.8 p;(2)mn ;(3)a 2 h ;(4) n .
例2
(1)一条河的水流速度是2.5 km/h,船在静水中 的速度是 v km/h,用式子表示船在这条河中顺水行 驶和逆水行驶时的速度;
(2)买一个篮球需要x元,买一个排球需要y元, 买一个足球需要 z 元,用式子表示买 3个篮球、5个 排球、2个足球共需要的钱数;
ห้องสมุดไป่ตู้
(4)某校前年购买计算机 x 台,去年购买数量是前年的 2倍,今年购买数量又是去年的2倍,则学校三年共购买计算
机 ( x 2x 4x) 台;
(5)某班有a名学生,现把一批图书分给全班学生阅读,
如果每人分4本,还缺25本,则这批图书共 (4a 本2;5)
(6)一个两位数,十位上的数字为a,个位上的数字为b,
义务教育教科书 数学 七年级 上册
2.1 整式 (第1课时)
课件说明
本节课学习是在学习了用字母表示数、简单的列 式表示实际问题中的数量关系和简易方程的基础上, 进一步研究用含有字母的式子(整式)表示实际问题中 的数量关系.理解字母表示数的意义,正确分析实际 问题中的数量关系,并用整式表示出来,是后续学习 一元一次方程的直接基础.
【问题3】上面的问题中,既有已知数,又有
用字母表示的未知数,字母表示数有什么意义? 用含有字母的式子表示数量关系有什么意义?
用字母表示数,字母和数一样可以 参与运算,可以用式子把数量关系简明 地表示出来.
练习1(教科书第56页练习)
(1)某种商品每袋4.8元,在一个月内的销售量是m 袋,用
式子表示在这个月内销售这种商品的收入. 4.8m元
按此规律,第个n 式子是 nx n ;
例3(2)测得一种树苗的高度与树苗生长的年数的
有关数据如下表(树苗原高100cm),根据表格思 考下面问题:
年数 1 2 3
高度/cm 100+5 100+10 100+15
100+5×1 100+5×2 100+5×3
4 ……
100+20 ……
100+5×4 10…0+…5×n
(3)回顾以前所学的知识,你还能举出用字母表示 数或数量关系的例子吗?
【问题2】
怎样分析数量关系并用含有字母的式子表示数 量关系呢?
例1 (1)苹果原价是每千克p元,按8折优惠出售,用
式子表示现价;
(2)某产品前年的产量是n件,去年的产量是前 年产量的m倍,用式子表示去年的产量;
(3)一个长方体包装盒的长和宽都是a cm,高是 h cm,用式子表示它的体积;
(3x 5y 2z) 元.
(3)三角尺的面积(单位:cm2 )是
1 ab πr 2 2
.
(4)这所住宅的建筑面积(单位:m2)是
x2 2x 18.
归纳:
列式就是把实际问题中与数量有关的语句, 用含有数、字母和运算符号的式子表示出来,也 就是把文字语言转化为符号语言.
①要抓住关键词语,明确它们的意义以及它们 之间的关系,如和、差、积、商及大、小、 多、少、倍、分、倒数、相反数等;
前四年树苗高度的变化与年数有什么关系?
假设以后各年树苗高度的变化与年数保持上述关 系,用式子表示生长了n年的树苗的高度.
例3
(3)礼堂第1排有20个座位,后面每排
都比前一排多一个座位.用式子表示第 n
排的座位数. 20 (n 1)
用整式表示实际问题中的数量关系和 变化规律,可以从特殊值入手,借助表格 等分析,由特殊到一般,由个体到整体地 观察、分析问题,发现规律,并用含有字 母的式子表示一般的结论,这体现了抽象 的数学思想.
则这个两位数为 10a .b
【课堂小结】 (1)本节课学了哪些主要内容? (2)用字母表示数有什么意义?用含有字母 的式子表示数量关系有什么意义? (3)用含有字母的式子表示数量关系时要注 意什么?
19
【布置作业】 教科书习题2.1的第1题,第2题,第7题.
课件说明
学习目标: (1)理解字母表示数的意义,会用含有字母的式子
表示实际问题中的数量关系. (2)经历用含有字母的式子表示实际问题的数量关
系的过程,体会从具体到抽象的认识过程,发展符号 意识.
学习重点: 理解字母表示数的意义,正确分析实际问题中的
数量关系并用含有字母的式子表示数量关系,感受其 中“抽象”的数学思想.
展示图片
【问题1】
青藏铁路线上,在格尔木到拉萨之间有一段 很长的冻土地段.列车在冻土地段的行驶速度是 100 km/h.列车在冻土地段行驶时,根据已知数 据求出列车行驶的路程. (1)2 h行驶多少千米?3 h呢?8 h呢?t h呢? (2)字母t表示时间有什么意义?
如果用v表示速度,列车行驶的路程是多少?
(2)圆柱体的底面半径、高分别是 r,h,用式子表示圆柱
体的体积.
πr 2h
(3)有两片棉田,一片有m hm2 (公顷,1 hm2 =104 m2 ),平 均每公顷产棉花a kg;另一片有n hm2 ,平均每公顷产棉花b kg,
用式子表示两片棉田上棉花的总产量. am bn (kg)
(4)在一个大正方形铁片中挖去一个小正方形铁片,大正方
例2.
(3)如左下图(图中长度单位:cm),用式子 表示三角尺的面积;
(4)右 下图是一所住宅的建筑平面图(图中长 度单位:m),用式子表示这所住宅的建筑面积.
解:
(1)船在这条河中顺水行驶的速度是 (v 2.5)
km/h,逆水行驶的速度是 (v 2.5) km/h.
(2)买3个篮球、5个排球、2个足球共需要