七年级上册数学第二章整式全章课件
合集下载
人教版七年级数学上第二章 整式 PPT
___m__n_件___
归纳
❖ 观察以下式子: 6a2,a3,2.5x,-n,vt, 2πr 你认为它们之间有什么共同特点?
发现: 这些式子都是由数或字母的积组成的
人教版七年级数学上第二章 整式 PPT
单项式的定义
❖ 只含有数或字母 的积的式子叫做单项式
❖ 如:6a2,a3,2.5x,-n,vt, 2πr 注意: (1)单独的一个数或一个字母也是单项式
成长的足迹
下列代数式中,单项式有
( ①②③④⑥)
① x2y ⑤y
x
② 0 ③m
2
⑥ - 8 mn 7
④ 2pr
人教版七年级数学上第二章 整式 PPT
人教版七年级数学上第二章 整式 PPT
❖ 下列书写是否正确:
①1x x ②-1x
-x
③a×3 3a ④ a÷2 a 2
⑤ 1 1 xy2 4
5 xy2 4
思考
用含有字母的式子填空,看看列出的式 子有什么特点。
(1)边长为a的正方体的表面积为 ______体积为__a_3___.
a
思考
(2)半径为r的圆的周长是_2_πr__。
.r
思考
(3)铅笔的单价是x元,圆珠笔的单价 是铅笔的2.5倍,则圆珠笔的单价是_ _2.5_x元。
(4)一辆汽车的速度是v千米∕小时, 它t小时行驶的路程为_v_t 千米。
如:3,a, -3 -b
人教版七年级数学上第二章 整式 PPT
人教版七年级数学上第二章 整式 PPT
例:下列式子哪些是单项式?
x+ y 1 x
- 2 xy 3 3
p r2
7 ab 2
- 3 xyz
7b 2a
归纳
❖ 观察以下式子: 6a2,a3,2.5x,-n,vt, 2πr 你认为它们之间有什么共同特点?
发现: 这些式子都是由数或字母的积组成的
人教版七年级数学上第二章 整式 PPT
单项式的定义
❖ 只含有数或字母 的积的式子叫做单项式
❖ 如:6a2,a3,2.5x,-n,vt, 2πr 注意: (1)单独的一个数或一个字母也是单项式
成长的足迹
下列代数式中,单项式有
( ①②③④⑥)
① x2y ⑤y
x
② 0 ③m
2
⑥ - 8 mn 7
④ 2pr
人教版七年级数学上第二章 整式 PPT
人教版七年级数学上第二章 整式 PPT
❖ 下列书写是否正确:
①1x x ②-1x
-x
③a×3 3a ④ a÷2 a 2
⑤ 1 1 xy2 4
5 xy2 4
思考
用含有字母的式子填空,看看列出的式 子有什么特点。
(1)边长为a的正方体的表面积为 ______体积为__a_3___.
a
思考
(2)半径为r的圆的周长是_2_πr__。
.r
思考
(3)铅笔的单价是x元,圆珠笔的单价 是铅笔的2.5倍,则圆珠笔的单价是_ _2.5_x元。
(4)一辆汽车的速度是v千米∕小时, 它t小时行驶的路程为_v_t 千米。
如:3,a, -3 -b
人教版七年级数学上第二章 整式 PPT
人教版七年级数学上第二章 整式 PPT
例:下列式子哪些是单项式?
x+ y 1 x
- 2 xy 3 3
p r2
7 ab 2
- 3 xyz
7b 2a
人教版七年级初中数学上册第二章整式的加减-整式的加减(整式加减运算)PPT课件
b
1.5a
2b
解:小纸盒的表面积是(2ab+2bc+2ca
)c2
大纸盒的表面积是( 6ab+8bc+6ca)c2
新知探究
求 1 x 2( x 1 y 2 ) ( 3 x 1 y 2 ) 的值,其中 x 2, y 2
2
3
2
3
3
1
1 2
3
1 2
解: x 2( x y ) ( x y )
第二章 整式的加减
2.2.3 整 式 加 减 运 算
人教版七年级(初中)数学上册
授课老师:11
前 言
学习目标
1、熟练进行整式的加减运算。
2、利用去括号法则会进行整式的化简。
重点难点
重点:熟练进行整式的加减运算。
难点:利用去括号法则会进行整式的化简。
新知探究
(1)(2x-3y)+(5x+4y)
整式加减运算需注意:
A.14a+6b
B.7a+3b
C.10a+10b
D.12a+8b
提示:1.先求另一边边长。
2.长方形周长=(长+宽)*2
课堂练习
3.计算
(1) 3xy-4xy-(-2xy)
(2) (-x+2x2 +5)- (4x2 -3-6x)
课堂练习
4.填空
如果用a,b分别表示一个两位数的十位数字和个位数字,
小红买这种笔记本3本,买圆珠笔2支;
小明买这种笔记本4本,买圆珠笔3支.
问:买这些笔记本和圆珠笔,小红和小明一共花费多少钱?
分析
笔记本花费
圆珠笔花费
新人教版初中数学七年级上册第2章—2.1整式 课件
千克;
(5)一台电视机原价a元,现按原价的9折出售,
这台电视机现在的售价为
元;
(6)一个长方形的长是0.9,宽是a,这个长方形
面积是
。
单项式
例1 (1)每包书有12册,n包书有 12n 册;
(3)一个长方体的长和宽都是a,高是h,它的体积 ah ; (4)产量由m千克增长10%,就达到 1.1m 千克; (5)一台电视机原价a元,现按原价的9折出售,
2只青蛙, 张嘴 , 只眼睛, 条腿 ,扑通 声 跳下水。
n只青蛙, 张嘴 , 只眼睛, 条腿 ,扑通 声 跳下水。
案例2
1只青蛙, 1 张嘴 , 2 只眼睛, 4 条腿 ,扑通 1 声 跳下水。
2只青蛙, 2 张嘴 , 4 只眼睛, 8 条腿 ,扑通 2 声 跳下水。
n只青蛙, n 张嘴 ,2n 只眼睛,4n 条腿 ,扑通 n 声 跳下水。
•
15、最具挑战性的挑战莫过于提升自 我。。2 021年8 月下午 7时28 分21.8.7 19:28A ugust 7, 2021
•
16、业余生活要有意义,不要越轨。2 021年8 月7日 星期六7 时28分 32秒19 :28:327 August 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。下 午7时28 分32秒 下午7 时28分1 9:28:32 21.8.7
多项式
例4
如图,某长方形的四角都有一块半径相同的四分之一
圆形的草地,若圆形的半径为r米,长方形的长为a
米,宽为b米。则空地的面积为
平方米。
多项式
例4
如图,某长方形的四角都有一块半径相同的四分之一 圆形的草地,若圆形的半径为r米,长方形的长为a 米,宽为b米。则空地的面积为 (ab-πr2) 平方米。
七年级上册数学精品课件:第二章第二节 整式的加减
(2)做大纸盒比做小纸盒多用料 (6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca- 2ab-2bc-2ca =4ab+6bc+4ca(2cm )
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5
求
1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5
求
1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项
七年级上册数学第二章整式全章课件
2.1 整式 (第2课时)
课件说明
本节课学习是在学习了用字母表示数、用含有字母的式子表示实际问 题中的数量关系的基础上,进一步学习单项式、单项式的系数和次数的概 念,以及用单项式表示简单的数量关系,为后续学习多项式、整式的概念 以及整式的运算打基础.
课件说明
学习目标: (1)理解单项式、单项式的系数和次数的概念. (2)会用单项式表示简单的数量关系. (3)经历单项式概念的形成过程,从中体会抽象的
②理清语句层次明确运算顺序; ③牢记一些概念和公式.
归纳:
列式时: ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号.
例3
(1)观察下列各式:x,2x,2 3x,3 4x4,… ,
项 x2,这个多项式的次数是2.
【问题2】
(2)v 2.5 ,3x 5 y 2z,1 ab πr 2
2
的项分别是什么?次数分别是多少?
定义:单项式与多项式统称整式.
【问题3】
(1)你能举出一个多项式的例子,并说出
它的项和次数吗? (2)请你写出一个二次三项式,并使它的二次
项系数是-2,一次项系数是3,常数项是
按此规律,第个n 式子是 nx n ;
例3(2)测得一种树苗的高度与树苗生长的年数的
有关数据如下表(树苗原高100cm),根据表格思 考下面问题:
年数 1 2 3
高度/cm 100+5 100+10 100+15
100+5×1 100+5×2 100+5×3
4 ……
100+20 ……
课件说明
本节课学习是在学习了用字母表示数、用含有字母的式子表示实际问 题中的数量关系的基础上,进一步学习单项式、单项式的系数和次数的概 念,以及用单项式表示简单的数量关系,为后续学习多项式、整式的概念 以及整式的运算打基础.
课件说明
学习目标: (1)理解单项式、单项式的系数和次数的概念. (2)会用单项式表示简单的数量关系. (3)经历单项式概念的形成过程,从中体会抽象的
②理清语句层次明确运算顺序; ③牢记一些概念和公式.
归纳:
列式时: ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号.
例3
(1)观察下列各式:x,2x,2 3x,3 4x4,… ,
项 x2,这个多项式的次数是2.
【问题2】
(2)v 2.5 ,3x 5 y 2z,1 ab πr 2
2
的项分别是什么?次数分别是多少?
定义:单项式与多项式统称整式.
【问题3】
(1)你能举出一个多项式的例子,并说出
它的项和次数吗? (2)请你写出一个二次三项式,并使它的二次
项系数是-2,一次项系数是3,常数项是
按此规律,第个n 式子是 nx n ;
例3(2)测得一种树苗的高度与树苗生长的年数的
有关数据如下表(树苗原高100cm),根据表格思 考下面问题:
年数 1 2 3
高度/cm 100+5 100+10 100+15
100+5×1 100+5×2 100+5×3
4 ……
100+20 ……
整式ppt课件-人教版数学七年级上第二章2.1第一课时
解:它2小时行驶的路程是 100×2=200(千米) 3小时行驶的路程是 100×3=300(千米) t小时行驶的路程是 100×t=100t(千米)
注意:在含有字母的式子中若出现乘号,通常将
乘号写作“•”或省略不写。
如:100×a可以写100•a或100a。
>>问题2
• (1)苹果原价是每千克p元,按8折优惠出 售,用式子表示现价; • (2)某产品前年的产量是n件,去年的产 量是前年产量的m倍,用式子表示去年的量; • (3)一个长方体包装盒的长和宽都是a cm, 高是h cm ,用式子表示它的体积; • (4)用式子表示数n的相反数。
第二章 整式的加减
2.1整式 第一课时
用字母表示数和单项式
学习有目标
• 理解字母表示数的意义,会用含有字母的式子表示实 际问题中的数量关系。 • 经历用含有字母的式子表示实际问题的数量关系的过 程,体会从具体到抽象的认识过程,发展符号意识。 • 理解单项式、单项式的系数和次数的概念.
• 会准确迅速地确定一个单项式的系数和次数。
解:(1)现价是每千克0.8p元; (2)去年的产量是mn件;
(3)由长方形的体积=长×宽×高,得这个 长方体包装盒的体积是a·a·h cm3 ,即a2h cm3 ; (4)数n的相反数是-n。
从上面的例子可以看出,用字母表示数, 字母和数一样可以参与运算,可以用式子把数量 关系简明地表示出来.
动笔练一练
2
答:①不是,因为原代数式中出现了加法运算; ②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2; 3 ④是,它的系数是- ,次数是3。
2
巩固练习
2 选择题
①下列各式中单项式的个数是( B ) b 3 ,x+1, -2,- ,0.72xy, 3 a A.2个 B.3个 C.4个 D.5个
人教版七年级上数学教学课件第二章整式全章
n 声扑通跳下水.
注意:在含有字母的式子中若出现乘号,通常将乘 号写作“•”或省略不写.如:100×a可以写成100•a或 100a.
用含有字母的式子填空: 1.边长为a的正方体的表面积为__6_a_2,体积为__a_3__. 2.铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍, 圆珠笔的单价是_2__.5_x__元. 3.全校学生总数是m,其中女生占总数的48%,则男生人 数是 _5_2_%__m____. 4. 一辆汽车的速度是v千米/时,它t小时行驶的 路程为____v_t_____千米. 5.数n的相反数是 __-_n___.
像3ab2与-4ab2 这样,所含字母相同,并且相同字母的指 数也相同的项叫做同类项.几个常数项也是同类项.
1.判断下列各组中的两项是否是同类项: (1) -5ab3与3a3b ( 否 ) (2)3xy与3x( 否 ) (3) -5m2n3与2n3m2( 是 ) (4)53与35 ( 是 ) (5) x3与53 ( 否 )
5 (3) 4a2 3b2 2ab 4a2 4b2.
解:1 xy2 1 xy2
5
(1 1)xy2 5
4 xy2. 5
请你自己做做第(2)、(3)小 题
(1) 运用有理数的运算律计算: 100×2+252×2=____7_0_4___, 100×(-2)+252×(-2)=___-_7_0_4___;
(2) 根据(1)中的方法完成下面的运算, 100t+252t=___3_5__2_t__.
填空: (1) 100t-252t=( -152 )t; (2) 3x2+2x2=( 5 )x2; (3) 3ab2-4ab2=( -1 )ab2. 上述运算有什么共同特点,你能从中得出什么规律? 100t和-252t 都含有相同的字母 t,并且t 的指数都是 1,我们就把100t与-252t 叫做同类项.
注意:在含有字母的式子中若出现乘号,通常将乘 号写作“•”或省略不写.如:100×a可以写成100•a或 100a.
用含有字母的式子填空: 1.边长为a的正方体的表面积为__6_a_2,体积为__a_3__. 2.铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍, 圆珠笔的单价是_2__.5_x__元. 3.全校学生总数是m,其中女生占总数的48%,则男生人 数是 _5_2_%__m____. 4. 一辆汽车的速度是v千米/时,它t小时行驶的 路程为____v_t_____千米. 5.数n的相反数是 __-_n___.
像3ab2与-4ab2 这样,所含字母相同,并且相同字母的指 数也相同的项叫做同类项.几个常数项也是同类项.
1.判断下列各组中的两项是否是同类项: (1) -5ab3与3a3b ( 否 ) (2)3xy与3x( 否 ) (3) -5m2n3与2n3m2( 是 ) (4)53与35 ( 是 ) (5) x3与53 ( 否 )
5 (3) 4a2 3b2 2ab 4a2 4b2.
解:1 xy2 1 xy2
5
(1 1)xy2 5
4 xy2. 5
请你自己做做第(2)、(3)小 题
(1) 运用有理数的运算律计算: 100×2+252×2=____7_0_4___, 100×(-2)+252×(-2)=___-_7_0_4___;
(2) 根据(1)中的方法完成下面的运算, 100t+252t=___3_5__2_t__.
填空: (1) 100t-252t=( -152 )t; (2) 3x2+2x2=( 5 )x2; (3) 3ab2-4ab2=( -1 )ab2. 上述运算有什么共同特点,你能从中得出什么规律? 100t和-252t 都含有相同的字母 t,并且t 的指数都是 1,我们就把100t与-252t 叫做同类项.
2.4 整式的加减 课件(共57张PPT)华东师大版(2024)数学七年级上册
2.4 整式的加减
第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
人教版七年级数学上册第二章 2.2 第3课时 整式的加减课件(共24张PPT)
图2-2-5
8.(1)求单项式5x2y,-2x2y,2xy2,-4x2y的和; (2)求3x2-6x+5与4x2+7x-6的和; (3)求2x2+xy+3y2与x2-xy+2y2的差. 解:(1)5x2y+(-2x2y)+2xy2+(-4x2y) =5x2y-2x2y+2xy2-4x2y =-x2y+2xy2;
第二章 整式的加减 2.2 整式的加减
第3课时 整式的加减
1.整式3x2-2x+1与-2x2-x+3的和是( ) C
A.5x2-x-2
B.2x2-4x+4
C.x2-3x+4
D.x2+3x-4
2.[2019·乐清]计算6a2-5a+3与5a2+2a-1的差,结果正确的是( ) D
A.a2-3a+4
14.(1)化简:2(x2y+xy)-3(x2y-xy)-4x2y; (2)若2a10xb与-a2by是同类项,求(1)中式子的值. 解:(1)原式=2x2y+2xy-3x2y+3xy-4x2y =-5x2y+5xy; (2)由2a10xb与-a2by是同类项,得到x=15,y=1, 则原式=-15+1=45.
D.4m-2n+4
【解析】 (3m-n)-(m+n-4)=3m-n-m-n+4=2m-2n+4.
4.[2019·广元一模]一个代数式减去-2x得-2x2-2x+1,则这个代数式为( B )
A.-x2+1
B.-2x2-4x+1
C.-2x2+1
D.-2x2-4x
【解析】 这个代数式为-2x2-2x+1+(-2x)=-2x2-2x+1-2x=-2x2-4x+
13.[2019秋·德江期末]小明在计算一个多项式与2x2+3x-7的差时,因误以为是 加上2x2+3x-7而得到答案5x2-2x+4,求这个多项式及这个问题的正确答案. 解:被减式=5x2-2x+4-(2x2+3x-7) =5x2-2x+4-2x2-3x+7 =3x2-5x+11, 正确答案为3x2-5x+11-(2x2+3x-7) =3x2-5x+11-2x2-3x+7 =x2-8x+18.
8.(1)求单项式5x2y,-2x2y,2xy2,-4x2y的和; (2)求3x2-6x+5与4x2+7x-6的和; (3)求2x2+xy+3y2与x2-xy+2y2的差. 解:(1)5x2y+(-2x2y)+2xy2+(-4x2y) =5x2y-2x2y+2xy2-4x2y =-x2y+2xy2;
第二章 整式的加减 2.2 整式的加减
第3课时 整式的加减
1.整式3x2-2x+1与-2x2-x+3的和是( ) C
A.5x2-x-2
B.2x2-4x+4
C.x2-3x+4
D.x2+3x-4
2.[2019·乐清]计算6a2-5a+3与5a2+2a-1的差,结果正确的是( ) D
A.a2-3a+4
14.(1)化简:2(x2y+xy)-3(x2y-xy)-4x2y; (2)若2a10xb与-a2by是同类项,求(1)中式子的值. 解:(1)原式=2x2y+2xy-3x2y+3xy-4x2y =-5x2y+5xy; (2)由2a10xb与-a2by是同类项,得到x=15,y=1, 则原式=-15+1=45.
D.4m-2n+4
【解析】 (3m-n)-(m+n-4)=3m-n-m-n+4=2m-2n+4.
4.[2019·广元一模]一个代数式减去-2x得-2x2-2x+1,则这个代数式为( B )
A.-x2+1
B.-2x2-4x+1
C.-2x2+1
D.-2x2-4x
【解析】 这个代数式为-2x2-2x+1+(-2x)=-2x2-2x+1-2x=-2x2-4x+
13.[2019秋·德江期末]小明在计算一个多项式与2x2+3x-7的差时,因误以为是 加上2x2+3x-7而得到答案5x2-2x+4,求这个多项式及这个问题的正确答案. 解:被减式=5x2-2x+4-(2x2+3x-7) =5x2-2x+4-2x2-3x+7 =3x2-5x+11, 正确答案为3x2-5x+11-(2x2+3x-7) =3x2-5x+11-2x2-3x+7 =x2-8x+18.
新人教版初中数学七年级上册第二章第二节《整式的加减课件》
中等难度练习题2
化简:$(3x^{2}y - xy) (2x^{2}y - xy)$。
中等难度练习题3
合并同类项:$- 4x^{2}y + 5xy - 6x^{2}y + 7xy + 2x^{2}y$。
高难度练习题
高难度练习题1
已知$a = - frac{1}{2}$,$b = frac{1}{3}$,求多项式$5a^{3}b a^{2}b + 3a^{3}b + a^{2}b$的值。
高难度练习题2
高难度练习题3
合并同类项:$- 7x^{3}y + 6xy 9x^{3}y + 4xy + 5x^{3}y$。
化简:$(5x^{3}y - 4xy) - (4x^{3}y xy)$。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05
整式的加减易错点与注 意事项
易错点总结
例题3:已知整式$5x^{3} 4x^{2} + x - 3$,求当$x = frac{1}{5}$时,整式的值。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
整式的加减练习题与答 案基础练习题01 Nhomakorabea02
03
基础练习题1
已知$a = 3$,$b = -2$ ,求多项式$3a^{2}b a^{2}b$的值。
例题2:已知$x = -1$,求整式 $(x + 2)^{2} - (x - 1)(x + 1)$的 值。
总结词:中等难度题型在考察整 式加减基本概念的同时,增加了 对整式变形和复杂计算的考察。
人教版七年级数学上册第二章整式的加减整式的加减——合并同类项课件(共19张)
示提升
探究1.运用有理数的运算律计算. (1) 100×2 +252×2 ; =(100+252)×2 (2)100×(-2)+252×(-2);
=(100+252)×(-2)
分组合作,展示提升
(3)根据上题的方法完成下面的运算,并说 明其中的道理。
100t+252t =(100+252)t =352t
列)
分组合作,展示提升
6.归纳:
(1)把多项式中的同类项合并成 一项,叫做合并同类项.
(2)合并同类项后,所得项的系 数是合并前各同类项的系数的 和,且字母部分不变.
分组合作,展示提升
归纳步骤: (1)找出同类项并做标记; (2)运用交换律、结合律将多项式的 同类项结合; (3)合并同类项; (4)按同一个字母的降幂.
小结归纳,自我完善
(1)本节课学了哪些主要内容? (2)你能举例说明同类项的概念吗? (3)举例说明合并同类项的方法. (4)本节课主要运用了什么思想方法
研究问题?
也相同的项,叫同类项。
注:所有常数项都是同类项。
分组合作,展示提升
4.练习与 :下列各组单项式是不是同类项
(1)4abc与4ab; (2)5 x2 y 与 1.8xy 2 ;
3
(3)23 与 32; (4)53 与 a 3 ;
(5) 5m2n3 与 2n3m 2
(6) 与 -3
分组合作,展示提升
分组合作,展示提升
(1)上述各多项式的项有什么共同特点?
①各多项式的每一项含有相同的字母; ②并且相同字母的指数也相同.
(2)上述多项式的运算有什么共同特点?
①根据分配律把多项式各项的系数相加; ②字母部分保持不变.
探究1.运用有理数的运算律计算. (1) 100×2 +252×2 ; =(100+252)×2 (2)100×(-2)+252×(-2);
=(100+252)×(-2)
分组合作,展示提升
(3)根据上题的方法完成下面的运算,并说 明其中的道理。
100t+252t =(100+252)t =352t
列)
分组合作,展示提升
6.归纳:
(1)把多项式中的同类项合并成 一项,叫做合并同类项.
(2)合并同类项后,所得项的系 数是合并前各同类项的系数的 和,且字母部分不变.
分组合作,展示提升
归纳步骤: (1)找出同类项并做标记; (2)运用交换律、结合律将多项式的 同类项结合; (3)合并同类项; (4)按同一个字母的降幂.
小结归纳,自我完善
(1)本节课学了哪些主要内容? (2)你能举例说明同类项的概念吗? (3)举例说明合并同类项的方法. (4)本节课主要运用了什么思想方法
研究问题?
也相同的项,叫同类项。
注:所有常数项都是同类项。
分组合作,展示提升
4.练习与 :下列各组单项式是不是同类项
(1)4abc与4ab; (2)5 x2 y 与 1.8xy 2 ;
3
(3)23 与 32; (4)53 与 a 3 ;
(5) 5m2n3 与 2n3m 2
(6) 与 -3
分组合作,展示提升
分组合作,展示提升
(1)上述各多项式的项有什么共同特点?
①各多项式的每一项含有相同的字母; ②并且相同字母的指数也相同.
(2)上述多项式的运算有什么共同特点?
①根据分配律把多项式各项的系数相加; ②字母部分保持不变.
人教版数学七年级上册第二章整式的加减全章总复习课件
, =
, =
, =
×
×
×
×
=
, =
, 所以第7个数为: =
;
×
×
×
(2)由(1)可得:第n个数是
(3)根据题意可得:
=
(+)
×
,∴
;
(4)解:原式 = − + − + − +
=−
解:ab2−3a2b−3(ab2−a2b)
=ab2−3a2b−(3ab2−3a2b)
=ab2−3a2b−3ab2+3a2b
Байду номын сангаас
直接化简求值法
=−2a2b
当a=2,b=−1时,原式=−2╳22 ╳(−1)=4.
典型例题
(2).若多项式x2+2x−8=0,求2x2+4x−17的值.
分析:没有直接求出的x值,如果把x2+2x看成一个整体,
+
=
+
.
,
是第12个数;
−
+ − + ⋯+ −
+
,
典型例题
②.图形的规律.
一张长方形桌子可坐6人,按图3将桌子拼在一起.
(1)2张桌子拼在一起可坐________人,4张桌子拼在一起可坐
________人,n张桌子拼在一起可坐________人;
, =
, =
×
×
×
×
=
, =
, 所以第7个数为: =
;
×
×
×
(2)由(1)可得:第n个数是
(3)根据题意可得:
=
(+)
×
,∴
;
(4)解:原式 = − + − + − +
=−
解:ab2−3a2b−3(ab2−a2b)
=ab2−3a2b−(3ab2−3a2b)
=ab2−3a2b−3ab2+3a2b
Байду номын сангаас
直接化简求值法
=−2a2b
当a=2,b=−1时,原式=−2╳22 ╳(−1)=4.
典型例题
(2).若多项式x2+2x−8=0,求2x2+4x−17的值.
分析:没有直接求出的x值,如果把x2+2x看成一个整体,
+
=
+
.
,
是第12个数;
−
+ − + ⋯+ −
+
,
典型例题
②.图形的规律.
一张长方形桌子可坐6人,按图3将桌子拼在一起.
(1)2张桌子拼在一起可坐________人,4张桌子拼在一起可坐
________人,n张桌子拼在一起可坐________人;
七年级上册数学第二章整式全章课件
减法运算规则
相同单项式相减,系数相减,字母和字母 的指数不变。
03
整式的乘法与除法
整式的乘法规则
乘法结合律
改变整式的乘法顺 序,乘积不变。
单项式乘多项式
将单项式与多项式 中的每一项相乘。
乘法交换律
交换两个整式的位 置,乘积不变。
单项式乘单项式
将系数相乘,字母 部分分别相乘。
多项式乘多项式
将两个多项式的各 项分别相乘,合并 同类项。
因式分解的唯一性
一个多项式经过因式分解 后,其结果具有唯一性。
因式分解的方法与技巧
提公因式法
从多项式的每一项中提取公 因式,再对剩余部分进行因
式分解。
1
公式法
利用整式的公式进行因式分 解,如平方差公式、完全平
方公式等。
分组法
将多项式的项进行分组,分 别进行因式分解,再合并结 果。
十字相乘法
通过尝试不同的整数相乘, 找到能够使多项式等于0的 两个数,进而进行因式分解 。
06
整式在实际生活中的应用
整式在数学问题中的应用
代数方程
整式在代数方程中有着广泛的应 用,如一元一次方程、一元二次 方程等,通过整式可以表示未知 数,并求解方程。
几何图形
在几何图形中,整式可以用来表 示图形的性质和特征,如圆的周 长、面积等公式中都含有整式。
整式在物理问题中的应用
力学
在力学中,整式可以用来表示物体的 质量和重力等物理量,以及计算物体 的加速度和速度等。
七年级上册数学第二章整式 全章课件
目录
• 整式的概念 • 单项式与多项式 • 整式的乘法与除法 • 整式的混合运算 • 整式的简化与因式分解 • 整式在实际生活中的应用
人教版七年级数学上册第二章《整式的加减》复习课课件
【解析】可以发现每个图形的五角星个数都比前面一 个图形的五角星个数多3个.由于第1个图形的五角星个数是 3×1+1,所以第n个图形的五角星个数是3n+1,故第202X个 图形五角星个数是3×202X+1=6052.
知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.
知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②理清语句层次明确运算顺序; ③牢记一些概念和公式.
归纳:
列式时: ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号.
例3
(1)观察下列各式:x,2x,2 3x,3 4x4,… ,
形的边长是a mm,小正方形的边长是b mm,用式子表示剩余部
分的面积.
a2-b2 (mm2 )
练习2 用式子表示:
m
(1)5箱苹果重m kg,每箱重 5 kg ;
(2)一个数比a的2倍小5,则这个数为 2a 5 ;
(3)全校学生总数是x,其中女生占总数52%,则女生
人数是 0.52x ,男生人数是 0.48x ;
(4)用式子表示数n的相反数.
答案:(1)0.8 p;(2)mn ;(3)a 2 h ;(4) n .
例2
(1)一条河的水流速度是2.5 km/h,船在静水中 的速度是 v km/h,用式子表示船在这条河中顺水行 驶和逆水行驶时的速度;
(2)买一个篮球需要x元,买一个排球需要y元, 买一个足球需要 z 元,用式子表示买 3个篮球、5个 排球、2个足球共需要的钱数;
ห้องสมุดไป่ตู้
(4)某校前年购买计算机 x 台,去年购买数量是前年的 2倍,今年购买数量又是去年的2倍,则学校三年共购买计算
机 ( x 2x 4x) 台;
(5)某班有a名学生,现把一批图书分给全班学生阅读,
如果每人分4本,还缺25本,则这批图书共 (4a 本2;5)
(6)一个两位数,十位上的数字为a,个位上的数字为b,
义务教育教科书 数学 七年级 上册
2.1 整式 (第1课时)
课件说明
本节课学习是在学习了用字母表示数、简单的列 式表示实际问题中的数量关系和简易方程的基础上, 进一步研究用含有字母的式子(整式)表示实际问题中 的数量关系.理解字母表示数的意义,正确分析实际 问题中的数量关系,并用整式表示出来,是后续学习 一元一次方程的直接基础.
【问题3】上面的问题中,既有已知数,又有
用字母表示的未知数,字母表示数有什么意义? 用含有字母的式子表示数量关系有什么意义?
用字母表示数,字母和数一样可以 参与运算,可以用式子把数量关系简明 地表示出来.
练习1(教科书第56页练习)
(1)某种商品每袋4.8元,在一个月内的销售量是m 袋,用
式子表示在这个月内销售这种商品的收入. 4.8m元
按此规律,第个n 式子是 nx n ;
例3(2)测得一种树苗的高度与树苗生长的年数的
有关数据如下表(树苗原高100cm),根据表格思 考下面问题:
年数 1 2 3
高度/cm 100+5 100+10 100+15
100+5×1 100+5×2 100+5×3
4 ……
100+20 ……
100+5×4 10…0+…5×n
(3)回顾以前所学的知识,你还能举出用字母表示 数或数量关系的例子吗?
【问题2】
怎样分析数量关系并用含有字母的式子表示数 量关系呢?
例1 (1)苹果原价是每千克p元,按8折优惠出售,用
式子表示现价;
(2)某产品前年的产量是n件,去年的产量是前 年产量的m倍,用式子表示去年的产量;
(3)一个长方体包装盒的长和宽都是a cm,高是 h cm,用式子表示它的体积;
(3x 5y 2z) 元.
(3)三角尺的面积(单位:cm2 )是
1 ab πr 2 2
.
(4)这所住宅的建筑面积(单位:m2)是
x2 2x 18.
归纳:
列式就是把实际问题中与数量有关的语句, 用含有数、字母和运算符号的式子表示出来,也 就是把文字语言转化为符号语言.
①要抓住关键词语,明确它们的意义以及它们 之间的关系,如和、差、积、商及大、小、 多、少、倍、分、倒数、相反数等;
前四年树苗高度的变化与年数有什么关系?
假设以后各年树苗高度的变化与年数保持上述关 系,用式子表示生长了n年的树苗的高度.
例3
(3)礼堂第1排有20个座位,后面每排
都比前一排多一个座位.用式子表示第 n
排的座位数. 20 (n 1)
用整式表示实际问题中的数量关系和 变化规律,可以从特殊值入手,借助表格 等分析,由特殊到一般,由个体到整体地 观察、分析问题,发现规律,并用含有字 母的式子表示一般的结论,这体现了抽象 的数学思想.
则这个两位数为 10a .b
【课堂小结】 (1)本节课学了哪些主要内容? (2)用字母表示数有什么意义?用含有字母 的式子表示数量关系有什么意义? (3)用含有字母的式子表示数量关系时要注 意什么?
19
【布置作业】 教科书习题2.1的第1题,第2题,第7题.
课件说明
学习目标: (1)理解字母表示数的意义,会用含有字母的式子
表示实际问题中的数量关系. (2)经历用含有字母的式子表示实际问题的数量关
系的过程,体会从具体到抽象的认识过程,发展符号 意识.
学习重点: 理解字母表示数的意义,正确分析实际问题中的
数量关系并用含有字母的式子表示数量关系,感受其 中“抽象”的数学思想.
展示图片
【问题1】
青藏铁路线上,在格尔木到拉萨之间有一段 很长的冻土地段.列车在冻土地段的行驶速度是 100 km/h.列车在冻土地段行驶时,根据已知数 据求出列车行驶的路程. (1)2 h行驶多少千米?3 h呢?8 h呢?t h呢? (2)字母t表示时间有什么意义?
如果用v表示速度,列车行驶的路程是多少?
(2)圆柱体的底面半径、高分别是 r,h,用式子表示圆柱
体的体积.
πr 2h
(3)有两片棉田,一片有m hm2 (公顷,1 hm2 =104 m2 ),平 均每公顷产棉花a kg;另一片有n hm2 ,平均每公顷产棉花b kg,
用式子表示两片棉田上棉花的总产量. am bn (kg)
(4)在一个大正方形铁片中挖去一个小正方形铁片,大正方
例2.
(3)如左下图(图中长度单位:cm),用式子 表示三角尺的面积;
(4)右 下图是一所住宅的建筑平面图(图中长 度单位:m),用式子表示这所住宅的建筑面积.
解:
(1)船在这条河中顺水行驶的速度是 (v 2.5)
km/h,逆水行驶的速度是 (v 2.5) km/h.
(2)买3个篮球、5个排球、2个足球共需要
归纳:
列式时: ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号.
例3
(1)观察下列各式:x,2x,2 3x,3 4x4,… ,
形的边长是a mm,小正方形的边长是b mm,用式子表示剩余部
分的面积.
a2-b2 (mm2 )
练习2 用式子表示:
m
(1)5箱苹果重m kg,每箱重 5 kg ;
(2)一个数比a的2倍小5,则这个数为 2a 5 ;
(3)全校学生总数是x,其中女生占总数52%,则女生
人数是 0.52x ,男生人数是 0.48x ;
(4)用式子表示数n的相反数.
答案:(1)0.8 p;(2)mn ;(3)a 2 h ;(4) n .
例2
(1)一条河的水流速度是2.5 km/h,船在静水中 的速度是 v km/h,用式子表示船在这条河中顺水行 驶和逆水行驶时的速度;
(2)买一个篮球需要x元,买一个排球需要y元, 买一个足球需要 z 元,用式子表示买 3个篮球、5个 排球、2个足球共需要的钱数;
ห้องสมุดไป่ตู้
(4)某校前年购买计算机 x 台,去年购买数量是前年的 2倍,今年购买数量又是去年的2倍,则学校三年共购买计算
机 ( x 2x 4x) 台;
(5)某班有a名学生,现把一批图书分给全班学生阅读,
如果每人分4本,还缺25本,则这批图书共 (4a 本2;5)
(6)一个两位数,十位上的数字为a,个位上的数字为b,
义务教育教科书 数学 七年级 上册
2.1 整式 (第1课时)
课件说明
本节课学习是在学习了用字母表示数、简单的列 式表示实际问题中的数量关系和简易方程的基础上, 进一步研究用含有字母的式子(整式)表示实际问题中 的数量关系.理解字母表示数的意义,正确分析实际 问题中的数量关系,并用整式表示出来,是后续学习 一元一次方程的直接基础.
【问题3】上面的问题中,既有已知数,又有
用字母表示的未知数,字母表示数有什么意义? 用含有字母的式子表示数量关系有什么意义?
用字母表示数,字母和数一样可以 参与运算,可以用式子把数量关系简明 地表示出来.
练习1(教科书第56页练习)
(1)某种商品每袋4.8元,在一个月内的销售量是m 袋,用
式子表示在这个月内销售这种商品的收入. 4.8m元
按此规律,第个n 式子是 nx n ;
例3(2)测得一种树苗的高度与树苗生长的年数的
有关数据如下表(树苗原高100cm),根据表格思 考下面问题:
年数 1 2 3
高度/cm 100+5 100+10 100+15
100+5×1 100+5×2 100+5×3
4 ……
100+20 ……
100+5×4 10…0+…5×n
(3)回顾以前所学的知识,你还能举出用字母表示 数或数量关系的例子吗?
【问题2】
怎样分析数量关系并用含有字母的式子表示数 量关系呢?
例1 (1)苹果原价是每千克p元,按8折优惠出售,用
式子表示现价;
(2)某产品前年的产量是n件,去年的产量是前 年产量的m倍,用式子表示去年的产量;
(3)一个长方体包装盒的长和宽都是a cm,高是 h cm,用式子表示它的体积;
(3x 5y 2z) 元.
(3)三角尺的面积(单位:cm2 )是
1 ab πr 2 2
.
(4)这所住宅的建筑面积(单位:m2)是
x2 2x 18.
归纳:
列式就是把实际问题中与数量有关的语句, 用含有数、字母和运算符号的式子表示出来,也 就是把文字语言转化为符号语言.
①要抓住关键词语,明确它们的意义以及它们 之间的关系,如和、差、积、商及大、小、 多、少、倍、分、倒数、相反数等;
前四年树苗高度的变化与年数有什么关系?
假设以后各年树苗高度的变化与年数保持上述关 系,用式子表示生长了n年的树苗的高度.
例3
(3)礼堂第1排有20个座位,后面每排
都比前一排多一个座位.用式子表示第 n
排的座位数. 20 (n 1)
用整式表示实际问题中的数量关系和 变化规律,可以从特殊值入手,借助表格 等分析,由特殊到一般,由个体到整体地 观察、分析问题,发现规律,并用含有字 母的式子表示一般的结论,这体现了抽象 的数学思想.
则这个两位数为 10a .b
【课堂小结】 (1)本节课学了哪些主要内容? (2)用字母表示数有什么意义?用含有字母 的式子表示数量关系有什么意义? (3)用含有字母的式子表示数量关系时要注 意什么?
19
【布置作业】 教科书习题2.1的第1题,第2题,第7题.
课件说明
学习目标: (1)理解字母表示数的意义,会用含有字母的式子
表示实际问题中的数量关系. (2)经历用含有字母的式子表示实际问题的数量关
系的过程,体会从具体到抽象的认识过程,发展符号 意识.
学习重点: 理解字母表示数的意义,正确分析实际问题中的
数量关系并用含有字母的式子表示数量关系,感受其 中“抽象”的数学思想.
展示图片
【问题1】
青藏铁路线上,在格尔木到拉萨之间有一段 很长的冻土地段.列车在冻土地段的行驶速度是 100 km/h.列车在冻土地段行驶时,根据已知数 据求出列车行驶的路程. (1)2 h行驶多少千米?3 h呢?8 h呢?t h呢? (2)字母t表示时间有什么意义?
如果用v表示速度,列车行驶的路程是多少?
(2)圆柱体的底面半径、高分别是 r,h,用式子表示圆柱
体的体积.
πr 2h
(3)有两片棉田,一片有m hm2 (公顷,1 hm2 =104 m2 ),平 均每公顷产棉花a kg;另一片有n hm2 ,平均每公顷产棉花b kg,
用式子表示两片棉田上棉花的总产量. am bn (kg)
(4)在一个大正方形铁片中挖去一个小正方形铁片,大正方
例2.
(3)如左下图(图中长度单位:cm),用式子 表示三角尺的面积;
(4)右 下图是一所住宅的建筑平面图(图中长 度单位:m),用式子表示这所住宅的建筑面积.
解:
(1)船在这条河中顺水行驶的速度是 (v 2.5)
km/h,逆水行驶的速度是 (v 2.5) km/h.
(2)买3个篮球、5个排球、2个足球共需要