模态分析算法原理与实例
ANSYS模态分析教程及实例讲解解析

模态分析的定义
模态分析可以确定一个结 构的固有频率和振型,固 有频率和振型是承受动态 载荷结构设计中的重要参 数。 如果要进行模态叠加法谐 响应分析或瞬态动力学分 析,固有频率和振型也是 必要的。 所有动力学分析的基础。
模态分析的优点
模态分析的用途:
使结构设计避免共振或以特定频率进行振动(例如桥梁 设计); 使工程师可以认识到结构对于不同类型的动力载荷是如 何响应的; 有助于在其它动力分析中估算求解控制参数(如时间步 长)。
要点:振动外力的周期和结构固有周期一致或接近则要发生共振。 共振因为会使振动变得越来越强,一般应该避免。
频率分析的相关知识
设计就来时,停止前发出突突的响声并晃动起 来。 这是洗衣机的固有频率和马达的转速一致时产生的共振现象。 要把脱水时马达的转速设计成洗衣机的1阶固有频率以上。从而,在脱水过 程中不会产生共振现象。 洗衣机的马达的转速直到停止前与它的固有频率相一致,产生共振,发出 突突声音。此后,因为很短时间即停止,洗衣机不会损坏。
模态分析的用途
有预应力的结构进行模态分析。例如旋转的涡轮 叶片。 循环对称结构模态分析。允许对循环对称结构的 一部分进行建模,而分析产生整个结构的振型。 ANSYS的模态分析都是线性分析。 ANSYS中的模态提取方法:
Block Lanzos(默认)、子空间、PowerDynamics、缩 减法、非对称法、阻尼法和QR 阻尼法。后两种允许结 构中包含阻尼。
应力
应变
内容简介 模态分析的背景简介 ANSYS模态分析功能介绍 模态分析实例操作演示
学习要点
频率分析的相关知识
什么是振动 固有频率 固有振动模态 共振
频率分析的相关知识
模态分析算法原理与实例

5.模态计算中接触设置
Training Manual
Advanced Contact & Fasteners
模态计算中可以定义不同结构之间的接触,但是因为模态计 算是一个纯线性分析,因此模态计算中接触定义与其他非线性 问题中定义中的接触不同,模态计算中接触的具体设置如下:
6.预应力模态分析
• 具有预应力结构的模态分析; • 同样的结构在不同的应力状态下表现出不同的动力特性。
Advanced Contact & Fasteners
i 2
其中: fi的单位为Hz,即转/秒。 如果模型的约束不足导致产生刚体运动,则总体刚度矩阵[K]为半正 定型,则会出现固有频率为0的情况。
3.模态计算的方法
在大多数情况下,建议用户选用 Program Controlled选项,程序会自 动优化进行选择算法。
Training Manual
Advanced Contact & Fasteners
用户也可以设置输出应力和应变;
注意:模态计算中的应力和应变只是一个相对值,不是真实的应 力值;应力值并没有实际意义,但如果振型是相对于单位矩阵归 一的,则可以在给定的振型中比较不同点的应力,从而发现可能 存在的应力集中。
Training Manual
Advanced Contact & Fasteners
(1)Direct-Block Lanczos
-能够处理对称矩阵; -是一种功能强大的方法,当提取中型到大型模型(50000 ~ 100000 个 自由度)的大量振型时(40+),这种方法很有效; -经常应用在具有实体单元或壳单元的模型中; -可以很好地处理刚体振型; -需要较高的内存。
模态分析算法原理与实例

Advanced Contact & Fasteners
-能够处理对称矩阵,但是不用于求解屈曲模态;
-适合求解大规模的模态计算问题,提取的模态阶数高于100000阶; -主要应用于二维平面,壳体/梁结构(提取模态阶数高于100)和三维实体 结构(提取模态阶数高于250);
如果结构中存在阻尼,则将阻尼选项 设置为yes,然后选择相应的方法进 行求解。 (5) Full Damped
4.模态计算设置
4.1 模态提取阶数
Training Manual
-用户需要指定模态计算过程中提取的模态阶数,程序默认是计算 前6阶结构固有频率和模态振型; -设置提取模态计算中的固有频率方法有: --设置模态提取阶数; --定义感兴趣的结构固有频率范围。
Advanced Contact & Fasteners
模态分析
1.模态分析简介
Training Manual
Advanced Contact & Fasteners
模态分析用于确定机械部件的振动特性,即结构的固有频率 和振型,它们是结构承受动态载荷设计中的重要参数。模态分 析已成功应用十航空、航天、核工业、兵器等各个工程部门。 同时,也可以作为其它动力学分析问题的起点,例如瞬态动力 学分析、谐响应分析和谱分析,其中模态分析也是进行谱期分析 过程。ANSYS的模态分析可以对有预应力的结构进行模态分析 。
2.模态分析理论
无阻尼线性结构自由振动的控制方程:
Training Manual
Advanced Contact & Fasteners
假设结构的运动简谐运动:
将结构运动的位移和速度,代入到控制方程中,可得
2.模态分析理论
机械系统动力学特性的模态分析

机械系统动力学特性的模态分析机械系统动力学是研究物体在受到外力作用下的运动规律和机械系统动态特性的学科。
其中,模态分析是一种重要的方法,用于研究机械系统的固有振动特性。
本文将介绍机械系统动力学特性的模态分析方法及其应用。
一、模态分析的基本概念模态分析是研究机械系统振动模态的一种方法。
模态是指机械系统在自由振动状态下的振动形式和频率。
模态分析通过分析机械系统的初始条件、约束条件和外力等因素,确定机械系统的固有频率和振型,并进一步得到机械系统的振荡特性。
二、模态分析的基本步骤模态分析一般包括以下几个步骤:1. 系统建模:根据实际情况,将机械系统抽象为数学模型,包括质量、刚度、阻尼等参数。
2. 求解特征值问题:通过求解系统的特征值问题,得到系统的固有频率和振型。
3. 模态验算:将得到的固有频率和振型代入原始方程,验证其是否满足振动方程。
4. 模态分析:通过对系统的振动模态进行进一步分析,得到系统的动态响应和振动特性。
三、模态分析的应用模态分析在机械工程领域有广泛的应用。
主要包括以下几个方面:1. 结构优化设计:通过模态分析,可以评估机械系统的固有频率和振型,判断系统是否存在共振现象或其他异常振动情况,为结构设计提供依据。
2. 动力学特性分析:通过模态分析,可以了解机械系统的振动特性,包括固有频率、阻尼特性和模态质量等指标,为系统的动力学性能评估和优化提供依据。
3. 故障诊断与预测:模态分析可以用于机械系统的故障诊断和预测。
通过对机械系统振动模态的变化进行监测和分析,可以判断系统是否存在故障,并提前发现潜在的故障。
4. 振动控制技术:通过模态分析,可以了解机械系统振动的特征,并采取相应的振动控制措施。
比如调节系统的阻尼、改变系统的刚度等,来减小系统的振动幅度,提高系统的稳定性和工作性能。
四、模态分析存在的问题与挑战模态分析作为一种成熟的技术方法,仍然面临一些问题和挑战。
例如,模态分析需要对机械系统进行精确的建模,包括质量、刚度和阻尼等参数的准确度和全面性。
ANSYS模态分析实例和详细过程之欧阳引擎创编

均匀直杆的子空间法模态分析欧阳引擎(2021.01.01)1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。
同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。
ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。
前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。
ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR 阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。
ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。
2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。
(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。
(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。
指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。
指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。
模态分析教程及实例讲解PPT学习教案

② 假定为自由振动(忽略阻尼):M u Ku 0
③ 假定为谐运动: K2M u 0
④
这相个应方的程向的量根 是是{u}Ii,,即即特特征征向值量,。i 的范围从1到自由度的数目,
注意:
•模态分析假定结构是线性的(如, [M]和[K]保持为常数) •简谐运动方程u = u0cos(t), 其中 为自振圆周频率(rad/s)
有预应力的结构进行模态分析。例如旋转的涡轮叶片。 循环对称结构模态分析。允许对循环对称结构的一部分进行建模,
而分析产生整个结构的振型。 ANSYS的模态分析都是线性分析。 ANSYS中的模态提取方法:
Block Lanzos(默认)、子空间、PowerDynamics、缩减法、非对称法、阻 尼法和QR 阻尼法。后两种允许结构中包含阻尼。
第18页/共74页
频率分析的相关知识
频率分析就是计算结构的共振频率及对应振动模态,不计 算位移和应力
固有频率:结构趋向于振荡的频率,固有的振动频率。 基本频率:最低的固有频率
固有振动模态:特定的固有频率对应唯一的振动形式。 每种模态对应着特定的固有频率
第19页/共74页
频率分析的相关知识
振幅:大 振幅:小
振动频率:是单位时间里摆动的次数。 1秒钟内的次数用Hz(赫兹)来表示。 周期:摆动1次所需要的时间。
钟摆的形状(长度)决定了其固有的数值。 钟摆越长周期越长,钟摆越短周期越短。
第11页/共74页
频率分析的相关知识
固有频率(以钟摆为例) 钟摆的振动所经过的时间越来越小,最后停了下来。 这是因为空气的阻碍、磨擦的阻碍等的阻力妨碍了钟摆的摆动(振动)。 因为这样的阻力作用使振动衰减的力而起作用,被称为衰减力。 钟摆在没有外部而来的强迫它摆动的力(重力除外)作用下的振动称为自由振动。 与此相对应,地震和汽车因为地基能、发动机等的强迫力作用下的振动称为强迫振动。
模态分析法

桥梁结构动态评估的模态分析法文献综述郑大青一、模态分析在桥梁健康监测中的意义;二、模态分析的基本原理及分类;三、模态参数识别研究现状分析;四、模态分析损伤识别现状分析;五、目前模态分析在桥梁监测中存在的问题和不足。
一、模态分析在桥梁健康监测中的意义:桥梁是国家基础设施的重要组成部分,关系到人们的生命和财产安全。
因此,对桥梁进行监测并确定其结构健康状况具有重要的经济和社会意义。
传统的桥梁结构健康监测主要依靠无损检测技术或人工经验对某个特定的结构部件进行检测、查找,判断是否有损伤及损伤的程度,或者测量与桥梁结构性能相关的参数,比如变形、挠度、应变、裂缝等等,通过对这些参数分析,进而判定桥梁结构健康状况。
在应用上面这些方法时存在一些缺陷,如测量之前需知道损伤的大体范围,或者被检测的结构部分是仪器可接近的;在对大跨度桥梁等体量大、构件多的结构监测时,存在不能测量桥梁内部等隐蔽部分、测量工作量大、工作效率相对较低、不能获取桥梁整体信息等不足。
为此,一些专家学者提出了基于模态分析的桥梁健康监测方法,如图1。
此方法将结构动力学领域中的模态分析技术应用到桥梁健康监测中来,以多学科交叉研究为基础的,通过测试桥梁整个结构在外载作用下的响应来分析结构的固有频率、阻尼和模态振型等动力特性,进而诊断结构损伤位置和程度。
因此,模态参数识别和之后的模态分析损伤识别是整个健康监测中2个重要的组成部分。
图1 模态分析健康监测流程图测量桥梁结构激励、响应等信息 进行桥梁模态参数识别(固有频率、阻尼和模态振型等) 用模态分析损伤识别法进行安全评估模态分析监测方法克服了传统监测法存在的一些缺点,它不受结构规模和隐蔽的限制;具有多学科交叉优势,能对结构全局进行检测,从而能够评价桥梁结构的整体健康状态。
近年来,该方法发展迅速,日趋成熟。
事实上,它已经成为桥梁结构在线健康监测的核心技术之一。
因此,模态分析对桥梁健康监测具有重要意义。
二、模态分析的基本原理及分类:由振动理论知:一个线性振动系统,当它按自身某一阶固有频率作自由谐振时,整个系统将具有确定的振动形态(简称振型或模态)。
模态分析最新

1
目录
1.模态分析定义与概述 2.模态分析的方法 3.模态试验中注意事项
2
1.模态分析定义与概述
模态是机械结构的固有振动特性,每一个模态具有特定的 固有频率、阻尼比和模态振型。这些模态参数可以由计算或试 验分析取得,这样一个计算或试验分析过程称为模态分析。模 态参数有:模态频率、模态质量、模态向量、模态刚度和模态 阻尼等。 模态分析的经典定义:将线性定常系统振动微分方程组中
28
3.5.6.5 点击OMAS工作模态分析系统的左下方的模态识别 按钮。
a. 选择模态识别菜单栏中的峰值法,
b. 点击下一步,增加光标,有几个峰值,就添加几个光标。 c. 点击下一步,进入识别结果栏,点击保存按钮。
d. 点击完成,退出。
29
3.5.6.6 查看模态结果 a. 打开OMAS工作模态分析系统几何图形部分。
a. 点击建模菜单栏中的手动建模型。
b. 点击添加部件按钮,通常部件的坐标为默认值。 c. 点击下一步,开始添加节点,将每一个通道对应的传感
器的坐标输入。
d. 点击下一步,开始添加连线,将相应的点连接。 e. 点击保存,退出。 f. 点击文件菜单栏中的保存几何文件,格式为*.geo。 g. 打开文件菜单栏中的工程管理窗口,在选择导入文件的 下拉菜单中选择几何文件,将*.geo文件导入。
求,试验台上有60个螺栓孔与转接法兰盘相配合,前者垂直方 向最高孔定义为基准孔,其垂直轴线为0度,是试验坐标系Y轴。
叶片基准定义为气动基准弦线(36m处36000T52剖面)方向,后
缘向上,前缘向下,θ正值表示从叶根向叶尖看逆时针旋转,θ负 值表示从叶根向叶尖看顺时针旋转。叶片安装到试验台后,叶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.模态计算的方法
Training Manual
Advanced Contact & Fasteners
(2)Iterative-PCG Lanczos -能够处理对称矩阵,但是不用于求解屈曲模态; -适合求解中等到大规模的模态计算问题,提取的模态阶数高于100阶; -适合于网格划分形状较好的三维实体单元; (3)Unsymmetric -能够处理非对称矩阵; -模态计算中使用完整的刚度和质量矩阵; -适合求解K和M为非对称矩阵的问题,如流-固耦合的振动,声学振动; -计算以复数表示的特征值和特征向量: --实数部分就是自然频率; --虚数部分表示稳定性,负值表示稳定,正值表示不确定。
Advanced Contact & Fasteners
2.模态分析理论
无阻尼线性结构自由振动的控制方程:
假设结构的运动简谐运动:
Training Manual
将结构运动的位移和速度,代入到控制方程中,可得
2.模态分析理论
Training Manual
Advanced Contact & Fasteners
4.模态计算设置
Training Manual
Advanced Contact & Fasteners
4.2 求解控制 程序提供了两种求解控制方法:考虑阻尼和不考虑阻尼
-程序默认不考虑阻尼,如果需要考虑则进行激活;
-然后选择对应的模态计算方法,建议使用程序控制即可。
4.模态计算设置
Training Manual
模态分析
1.模态分析简介
Training Manual
Advanced Contact & Fasteners
模态分析用于确定机械部件的振动特性,即结构的固有频率
和振型,它们是结构承受动态载荷设计中的重要参数。模态分 析已成功应用十航空、航天、核工业、兵器等各个工程部门。
同时,也可以作为其它动力学分析问题的起点,例如瞬态动力 学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析 或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析 过程。ANSYS的模态分析可以对有预应力的结构进行模态分析 。
如果结构中存在阻尼,则将阻尼选项 设置为yes,然后选择相应的方法进 行求解。
(5) Full Damped
3.模态计算的方法
Training Manual
Advanced Contact & Fasteners
(6) Reduced Damped
QR阻尼法能够很好地求解大阻尼系统模态解,阻尼可以是任意阻尼类型,即 无论是比例阻尼或非比例阻尼。由于该方法的计算精度取决于提取的模态数 目,所以建议提取足够多的基频模态,特别是阻尼较大的系统更应当如此, 这样才能保证得到好的计算结果。该方法不建议用于提取临界阻尼或过阻尼 系统的模态。该方法输出实部和虚部特征值(频率),但仅仅输出实特征向 量(模态振型)。
Advanced Contact & Fasteners
3.模态计算的方法
Training Manual
(4)Supernode
-能够处理对称矩阵,但是不用于求解屈曲模态;
-适合求解大规模的模态计算问题,提取的模态阶数高于100000阶;
-主要应用于二维平面,壳体/梁结构(提取模态阶数高于100)和三维实体 结构(提取模态阶数高于250);
Advanced Contact & Fasteners
• 什么是有预应力的模态分析? 为什么要做有预应力的模态分析?
• 具有预应力结构的模态分析;
• 同样的结构在不同的应力状态下表现出不同的动力特性。
– 例如,一根琴弦随着拉力的增加,它的振动频率也随之增大。 – 涡轮叶片旋转时,由于离心力引起的预应力的作用,它的自然频率逐渐具有增
Advanced Contact & Fasteners
4.3 输出控制 默认情况下,程序只输出模态振型和固有频率;
用户也可以设置输出应力和应变;
注意:模态计算中的应力和应变只是一个相对值,不是真实的应 力值;应力值并没有实际意义,但如果振型是相对于单位矩阵归 一的,则可以在给定的振型中比较不同点的应力,从而发现可能 存在的应力集中。
4.模态计算设置
Training Manual
Advanced Contact & Fasteners
4.1 模态提取阶数
-用户需要指定模态计算过程中提取的模态阶数,程序默认是计算 前6阶结构固有频率和模态振型;
-设置提取模态计算中的固有频率方法有:
--设置模态提取阶数;
--定义感兴趣的结构固有频率范围。
大的趋势。
5.模态计算中接触设置
Training Manual
Advanced Contact & Fasteners
模态计算中可以定义不同结构之间的接触,但是因为模态计 算是一个纯线性分析,因此模态计算中接触定义与其他非线性 问题中定义中的接触不同,模态计算中接触的具体设置如下:
6.预应力模态分析
Training Manual
Training Manual
(1)Direct-Block Lanczos -能够处理对称矩阵; -是一种功能强大的方法,当提取中型到大型模型(50000 ~ 100000 个 自由度)的大量振型时(40+),这种方法很有效; -经常应用在具有实体单元或壳单元的模型中; -可以很好地处理刚体振型; -需要较高的内存。
ANSYS采用下式输出计算的固有频率:
fi
i 2
其中: fi的单位为Hz,即转/秒。 如果模型的约束不足导致产生刚体运动,则总体刚度矩阵[K]为半正
定型,则会出现固有频率为0的情况。
Advanced Contact & Fasteners
3.模态计算的方法
在大多数情况下,建议用户选用 Program Controlled选项,程序会自 动优化进行选择算法。
以下两种情况可以满足上述方程 (1)i = 0 -表明结构没有振动,这个情况不考虑舍去 (2) 这个是一个特征值问题,可以求解出n个方程的根、 这些根是这个方程的特征值; 对于每一根(特征值),都对应着一个特征向量。
2.模态分析理论
Training Manual
Advanced Contact & Fasteners