驱动桥设计
课程设计驱动桥设计
课程设计驱动桥设计一、教学目标本课程旨在让学生掌握驱动桥的设计原理和方法,理解其在工作过程中的作用和重要性。
知识目标包括:了解驱动桥的基本结构、工作原理和设计要求;掌握驱动桥的设计方法和步骤;了解驱动桥的设计标准和规范。
技能目标包括:能够运用所学知识进行驱动桥的设计;能够对驱动桥的设计方案进行评价和优化。
情感态度价值观目标包括:培养学生的创新意识和团队合作精神;增强学生对工程实践的兴趣和责任感。
二、教学内容本课程的教学内容主要包括驱动桥的基本原理、结构设计、传动设计、强度计算和实验等方面。
具体安排如下:1.驱动桥的基本原理:介绍驱动桥的工作原理、分类和性能要求。
2.结构设计:讲解驱动桥的主要组成部分,包括齿轮、轴承、轴等的结构设计和选材。
3.传动设计:介绍驱动桥的传动系统设计,包括齿轮传动、蜗轮传动等的设计方法和计算。
4.强度计算:讲解驱动桥的强度计算方法,包括接触强度、弯曲强度、齿面硬度等。
5.实验:进行驱动桥的设计实验,验证设计方案的可行性和性能。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式。
包括:1.讲授法:讲解驱动桥的基本原理、设计方法和步骤。
2.讨论法:学生进行驱动桥设计方案的讨论和评价。
3.案例分析法:分析典型的驱动桥设计案例,引导学生运用所学知识解决问题。
4.实验法:进行驱动桥的设计实验,培养学生的实践能力和创新精神。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选择合适的教材,提供学生系统学习的基础知识。
2.参考书:提供相关的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作课件、视频等多媒体资料,生动展示驱动桥的设计原理和实例。
4.实验设备:准备实验所需的设备,为学生提供实践操作的机会。
五、教学评估本课程的评估方式将包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。
具体安排如下:1.平时表现:通过课堂参与、提问、小组讨论等方式评估学生的学习态度和积极性。
毕业设计驱动桥设计计算说明书
1 绪论1.1 课题背景及目的随着汽车工业的发展和汽车技术的提高,驱动桥的设计和制造工艺都在日益完善。
驱动桥和其他汽车总成一样,除了广泛采用新技术外,在结构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产组织专业化目标前进。
应采用能以几种典型的零部件,以不同方案组合的设计方法和生产方式达到驱动桥产品的系列化或变形的目的,或力求做到将某一类型的驱动桥以更多或增减不多的零件,用到不同的性能、不同吨位、不同用途并由单桥驱动到多桥驱动的许多变形汽车上。
本设计要求根据CS1028皮卡车在一定的程度上既有轿车的舒适性又有货车的载货性能,使车辆既可载人又可载货,行驶范围广的特点,要求驱动桥在保证日常使用基本要求的同时极力强调其对恶劣路况的适应力。
驱动桥是汽车最重要的系统之一,是为汽车传输和分配动力所设计的。
通过本课题设计,使我们对所学过的基础理论和专业知识进行一次全面的,系统的回顾和总结,提高我们独立思考能力和团结协作的工作作风。
1.2 研究现状和发展趋势随着汽车向采用大功率发动机和轻量化方向发展以及路面条件的改善,近年来主减速比有减小的趋势,以满足高速行驶的要求。
[1]为减小驱动轮的外廓尺寸,目前主减速器中基本不用直齿圆锥齿轮。
实践和理论分析证明,螺旋锥齿轮不发生根切的最小齿数比直齿齿轮的最小齿数少。
显然采用螺旋锥齿轮在同样传动比下,主减速器的结构就比较紧凑。
此外,它还具有运转平稳、噪声较小等优点。
因而在汽车上曾获得广泛的应用。
近年来,准双曲面齿轮在广泛应用到轿车的基础上,愈来愈多的在中型、重型货车上得到采用。
[3]在现代汽车发展中,对主减速器的要求除了扭矩传输能力、机械效率和重量指标外,它的噪声性能已成为关键性的指标。
噪声源主要来自主、被动齿轮。
噪声的强弱基本上取决于齿轮的加工方法。
区别于常规的加工方法,采用磨齿工艺,采用适当的磨削方法可以消除在热处理中产生的变形。
因此,与常规加工方法相比,磨齿工艺可获得很高的精度和很好的重复性。
驱动桥设计知识点
驱动桥设计知识点一、引言驱动桥作为汽车动力系统中的重要组成部分,承担着将发动机的动力传递到汽车的驱动轮上的重要任务。
在驱动桥的设计中,需要考虑到各种因素,如驱动方式、扭矩分配、差速器的作用等。
本文将介绍驱动桥设计的几个关键知识点。
二、驱动方式1. 前驱动桥前驱动桥是指驱动力传递到车辆前轮的设计方式。
它具有结构简单、空间利用率高等优点,常用于小型、紧凑型汽车。
前驱动桥的设计需要考虑到动力输出的效率、车辆转向的稳定性等因素。
2. 后驱动桥后驱动桥是指驱动力传递到车辆后轮的设计方式。
相比于前驱动桥,后驱动桥具有更好的操控性能和牵引力,适用于大型、高性能汽车。
后驱动桥的设计需要注意驱动力和刹车力的分配,以保证车辆的平稳行驶。
3. 四驱动桥四驱动桥是指同时将动力传递到四个车轮的设计方式。
四驱动桥通常应用于越野车和SUV等需要在复杂路况下保持优良牵引力的车辆。
在四驱动桥的设计中,需要考虑到前后桥之间的扭矩分配以及前后轴之间的差速器的作用。
三、扭矩分配在驱动桥的设计中,扭矩分配是一个关键的问题。
合理的扭矩分配可以使车辆在加速、转向和刹车时保持稳定。
一般情况下,驱动桥会根据车辆的重心、车轮的抓地力以及车辆的操控需求来进行扭矩的分配。
四、差速器差速器是驱动桥中的重要组成部分,它起到了将扭矩分配到两个驱动轮上的作用。
差速器可以通过不同的齿轮传动来实现扭矩的分配,同时还可以允许车轮在行驶过程中的差速旋转,提高车辆的操控性能和通过性能。
五、总结驱动桥作为汽车动力系统中的重要组成部分,在车辆的性能和稳定性方面起着至关重要的作用。
驱动桥的设计需要考虑到驱动方式、扭矩分配以及差速器的作用等多个因素。
通过合理的设计和创新,可以为汽车提供更好的操控性能和驾驶体验。
本文介绍了驱动桥设计的几个关键知识点,希望能为读者对驱动桥设计提供一定的了解和参考。
汽车技术的不断发展和创新将进一步推动驱动桥设计的进步,提升汽车的性能和安全性。
驱动桥的设计开题报告
驱动桥的设计开题报告驱动桥的设计开题报告摘要:驱动桥是机械传动系统中的重要组成部分,它通过传递动力和扭矩,将发动机的动力转化为车轮的驱动力。
本文旨在探讨驱动桥的设计原理、结构以及优化方法,以提高车辆的性能和驾驶体验。
1. 引言驱动桥作为汽车传动系统的核心组件之一,在车辆的动力传递和操控性能方面起着至关重要的作用。
随着汽车工业的发展,人们对驱动桥的要求也越来越高。
因此,设计一种高效可靠的驱动桥成为了研究的热点。
2. 驱动桥的基本原理驱动桥的基本原理是将发动机的动力通过传动轴传递给车轮,实现车辆的前进。
常见的驱动桥有前驱动桥、后驱动桥和全驱动桥。
前驱动桥主要用于前置发动机的前驱车辆,后驱动桥主要用于后置发动机的后驱车辆,而全驱动桥则将动力均匀地传递给四个车轮。
3. 驱动桥的结构驱动桥的结构包括驱动轴、差速器、齿轮传动系统等。
驱动轴负责传递动力和扭矩,差速器用于分配动力给左右车轮,并允许车轮在转弯时以不同速度旋转。
齿轮传动系统则通过齿轮的啮合传递动力。
4. 驱动桥的优化方法为了提高驱动桥的性能和驾驶体验,可以采取多种优化方法。
首先,可以通过优化齿轮传动系统的设计,减小传动损失,提高传动效率。
其次,可以采用轻量化的设计,降低车辆的整体重量,提高燃油经济性和操控性能。
此外,还可以通过改进差速器的设计,提高车辆的操控稳定性和抓地力。
5. 驱动桥的挑战与展望虽然驱动桥在汽车工业中起着重要作用,但也面临一些挑战。
例如,随着电动汽车的兴起,传统的驱动桥需要进行改进以适应电动汽车的特殊需求。
此外,环保和能源效率的要求也对驱动桥的设计提出了新的挑战。
未来,我们可以通过采用新材料、新技术和智能化控制系统等手段,进一步提升驱动桥的性能和可靠性。
结论:驱动桥作为汽车传动系统的重要组成部分,对车辆的性能和驾驶体验具有重要影响。
本文从驱动桥的设计原理、结构、优化方法以及挑战与展望等方面进行了探讨。
通过深入研究和不断创新,我们可以设计出更加高效可靠的驱动桥,推动汽车工业的发展。
汽车驱动桥的设计
汽车驱动桥的设计汽车驱动桥是将发动机的动力传递到车轮上的重要部件,它承载着扭矩的传递、转向力和悬挂的载荷,直接影响到汽车的动力性能、行驶稳定性和操控性能。
本文将从结构设计、功能和类型分类、工作原理和配套系统等方面进行阐述。
一、结构设计汽车驱动桥主要由差速器、后桥壳、半轴、主减速齿轮和齿轮箱等部件组成。
差速器通常位于驱动轴两半轴之间,起到分配扭矩和使驱动轮各自具有不同转速的作用。
后桥壳是驱动桥的承载结构,负责支撑和固定驱动桥的各个部件。
二、功能和类型分类汽车驱动桥的主要功能是将发动机的动力转化为车轮的动力,并且通过差速器的作用,使两个驱动轮以不同的转速旋转。
根据驱动轮的数量不同,可以将汽车驱动桥分为前驱动桥、后驱动桥和四驱动桥。
其中,前驱动桥一般布置在驾驶员座位后面,主要用于小型轿车和城市SUV;后驱动桥布置在车辆的后部,主要用于大型SUV和商用车;四驱动桥则将动力传递到四个车轮上,提供更强的通过性和驾驶稳定性。
三、工作原理汽车驱动桥的工作原理主要包括力的传递、扭矩的分配和转速的差异化。
当发动机输出扭矩传递到差速器时,差速器将扭矩通过齿轮传递到后桥壳,由主减速齿轮将扭矩分配到左右两个半轴上。
同时,差速器还可以使驱动轮各自具有不同的转速,以适应车辆转弯和路面状态的变化。
四、配套系统汽车驱动桥还有一些配套系统,用于提升驾驶性能。
其中,差速器锁定功能可以让两个驱动轮以相同的转速旋转,提供更强的通过性能;牵引力控制系统可以通过降低驱动轮的滑动,提供更好的牵引力,提高车辆的爬坡能力;加速差速器可以通过改变齿轮的传动比,提供更快的加速性能。
总之,汽车驱动桥作为汽车动力传递的核心部件,其设计要满足高强度、高刚度和轻量化的要求。
同时,根据不同的车型和用途,还要考虑到其功能需求和工作环境,以提供更好的驾驶性能和操控性能。
驱动桥课程设计
驱动桥课程设计一、课程目标知识目标:1. 理解驱动桥的基本结构及其工作原理;2. 掌握驱动桥在汽车传动系统中的作用;3. 学习驱动桥的类型及各类型的优缺点;4. 了解驱动桥的保养与维护知识。
技能目标:1. 能够描述驱动桥的组成部分及其相互关系;2. 能够运用相关知识,分析驱动桥在实际应用中的问题;3. 学会使用工具和设备进行驱动桥的拆装和检查;4. 能够设计简单的驱动桥保养计划。
情感态度价值观目标:1. 培养学生对汽车工程技术的兴趣,激发学习热情;2. 培养学生的团队协作意识,学会在小组中分享和交流;3. 增强学生的环保意识,了解汽车维护对环境保护的重要性;4. 培养学生的安全意识,遵守实验操作规程,确保人身和设备安全。
课程性质:本课程属于汽车运用与维修技术领域,旨在让学生了解驱动桥的结构、原理及应用。
学生特点:学生为高中二年级学生,具有一定的物理基础和汽车知识,对实际操作感兴趣。
教学要求:结合学生特点,注重理论与实践相结合,通过实物演示、实验操作等方法,提高学生的实践能力和解决问题的能力。
同时,注重培养学生的安全意识、环保意识和团队协作能力。
在教学过程中,将课程目标分解为具体的学习成果,以便于教学设计和评估。
二、教学内容1. 驱动桥的基本概念与结构- 理解驱动桥的定义及其在汽车传动系统中的作用;- 学习驱动桥的主要组成部分:主动齿轮、从动齿轮、差速器、半轴等;- 分析各部件的相互关系及协同工作原理。
2. 驱动桥的类型及特点- 介绍常见驱动桥类型:开放式、封闭式、半开放式驱动桥;- 阐述各类型驱动桥的优缺点及适用场景;- 分析驱动桥技术的发展趋势。
3. 驱动桥的工作原理与性能参数- 掌握驱动桥的工作原理,理解差速器的功能;- 学习驱动桥的性能参数,如传动比、效率等;- 了解驱动桥对汽车性能的影响。
4. 驱动桥的拆装与检查- 学习驱动桥拆装工具的使用方法;- 掌握驱动桥拆装步骤及注意事项;- 学会检查驱动桥各部件磨损、损坏情况。
第五章_驱动桥设计
一 主减速器结构方案分析
3.圆柱齿轮传动
一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿车驱动 桥和双级主减速器贯通式驱动桥。
4.蜗杆传动
蜗杆传动与锥齿轮传动相比有如下优点: 1)在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比
(可大于7)。 2)在任何转速下使用均能工作得非常平稳且无噪声。 3)便于汽车的总布置及贯通式多桥驱动的布置。 4)能传递大的载荷,使用寿命长。 5)结构简单,拆装方便,调整容易。
双曲面齿轮传动也存在如下缺点:
① 沿齿长的纵向滑动会使摩擦损失增加,降低传动效 率。双曲面齿轮副传动效率约为96%,螺旋锥齿轮 副的传动效率约为99%。
② 齿面间大的压力和摩擦功,可能导致油膜破坏和齿 面烧结咬死,即抗胶合能力较低。
③ 双曲面主动齿轮具有较大的轴向力,使其轴承负荷 增大。
④ 双曲面齿轮传动必须采用可改善油膜强度和防刮伤 添加剂的特种润滑油,螺旋锥齿轮传动用普通润滑 油即可。
103
2)轮齿弯曲强度
锥齿轮轮齿的齿根弯曲应力为
W
2T
k
v
m s
k0 D
ks b
km JW
103
ko --为过载系数,一般取1;
ks --为尺寸系数,它反映了材料性质的不均匀性,
与齿轮尺寸及热处理等因素有关,当m.>=1.6mm
时,
,当m<1.6mm时,ks==0.5;
2)轮齿弯曲强度
km --为齿面载荷分配系数, 跨置式结构:km=1.0~1.1, 悬臂式结构:km=1.10~1.25;
kv --为质量系数,当轮齿接触良好,齿距 及径向跳动精度高时,kv =1.0
b--为所计算的齿轮齿面宽(mm); D--为所讨论齿轮大端分度圆直径(mm); Jw --为所计算齿轮的轮齿弯曲应力综合系数, 取法见参考文献[10]。
第五章汽车驱动桥设计
样。
2.按驱动轮打滑转矩确定从动锥齿轮计算转矩Tcs
后桥动力传递 1 5 2
TCS
G 2 m rr
' 2
i m m
(5-5)
3
4
6
7
将此式与P126表4-1的式比较,
Tss1
G 2 m 2 rr i0 im m
8 9 前桥动力传递
在分母上少了一个i0,是因为从驱动轮传来的扭矩没有经过主减速器, 而直接施加于从动锥齿轮上。
O′
A′ A′
r2 r1
(4)双曲面齿轮传动比 令:r1 ,r2:主、从动齿轮的平均分度圆半径 F1、F2分别为主、从动锥齿轮的圆周 力 在A点(图5-5)啮合的法向力相等:
O′
A′ A′
F2 COS 2
有
F1 F2
F1 COS 1
(5-1)
COS 1 CO没有公约数,否则总是固 定的齿啮合,不利 于磨损。
(2)为得理想的齿面重合度和高的轮齿 弯曲强度,主、从动齿轮齿数和不少于40
为了使齿轮传动连续,必须保证 前一对轮齿尚未脱离啮合时,后一对 轮齿就应进入啮合。为了满足连续传 动要求,前一对轮齿齿廓到达啮合终 点B1时,尚未脱离啮合,后一对轮 齿至少必须开始在B2点啮合,此时线段B1B2恰好等于基圆齿距Pb 。 所以,连续传动的条件: B1B2 ≥Pb 用重合度ε表示,连续传动条件为: ε=B1B2/Pb≥1 ε表示了同时参与 啮合齿轮的对数, ε越大,同时参与啮合齿轮的对数越多,传动越平稳。 而齿轮齿和数大,则ε大。同时参与啮合的齿数多,则降低单齿的啮合 力。
第五章、驱动桥设计 本章主要学习 1.驱动桥结构方案分析 2.主减速器设计 3.车轮传动装置设计 4.驱动桥壳设计
轻型汽车驱动桥设计及计算
轻型汽车驱动桥设计驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。
它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。
当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须搭配一个高效、可靠的驱动桥,所以采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。
驱动桥设计应主要保证汽车在给定的条件下具有最佳的动力性和燃油经济性。
本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。
驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。
1、主要内容(1)根据给定的设计参数,参照传统设计方法和现有车型,确定汽车总体设计参数,具体包括主要结构尺寸参数、质量参数和性能参数,并选择发动机和轮胎的结构形式;(2) 汽车驱动桥方案的确定:根据总体参数选择主减速器、差速器、半轴和桥壳的选型;(3)设计主减速器、差速器和半轴的主要结构尺寸,并对其进行强度校核。
(4)根据设计结果绘制两张零号图纸。
2、设计参数汽车最高时速 115km/h装载质量 2.5t最小转弯半径12.5m最大爬坡度 0.3同步附着系数 0.42.2 汽车形式的确定2.2.1 汽车轴数和驱动形式的选择汽车可以有二轴、三轴、四轴甚至更多的轴数。
影响轴数的因素主要有汽车的总质量、道路法规对于轴载的限制和轮胎的负荷能力以及汽车的结构等。
包括乘用车以及汽车总质量小于19t的公路运输车辆和轴荷不受道路、桥梁限制的不在公路上行驶的车辆,如矿用自卸车等,均采用结构简单、制造成本低廉的两轴方案。
总质量在19~26t的公路运输车采用三轴形式,总质量更大的汽车宜采用四轴和四轴以上的形式。
轻型客车驱动桥设计说明书
摘要驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,对于轻型客车也很重要。
驱动桥位于传动系的末端,它的基本功用是将传动轴或变速器传来的转矩增大并适当减低转速后分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力,纵向力和横向力。
通过提高驱动桥的设计质量和设计水平,以保证汽车良好的动力性、安全性和通过性。
此次轻型客车驱动桥设计主要包括:主减速器、差速器、车轮传动装置和驱动桥壳进行设计。
主减速器采用单级主减速器;差速器设计采用普通对称圆锥行星差速器;车轮传动装置采用全浮式半轴;驱动桥壳采用整体型式;并对驱动桥的相关零件进行了校核。
本文驱动桥设计中,利用了CAXA绘图软件表达整体装配关系和部分零件图。
关键词:驱动桥;主减速器;差速器;半轴;桥壳AbstractDrive axle is the one of automobile four important assemblies.It’s performance directly influences on the entire automobile,especially for the Sports Utility V ehicles . Driving axle set at the end of the transmission system. The basic function of driving axle is to increase the torque transported from the transmission shaft or transmission and decrease the speed ,then distribute it to the right、left driving wheel, another function is to bear the vertical force、lengthways force and transversals force between the road surface and the body or the frame. In order to obtain a good power performance, safety and trafficability characteristic, engineers must promote quality and level of designDriving axle design of the Zotye2008 Sports Utility V ehicles mainly contains: main gear box, differential, transmitted apparatus of wheel and the housing of driving axle. The main gear box adopted single reduction gear and the differential adopted a common, symmetry, taper, planet gear. Transmission apparatus of wheel adopted full floating axle shaft, and the housing of driving axle adopted the whole pattern,and proofread interrelated parts.During the design process, CAXAdrafting software is used to expresses the wholes to assemble relationship and part drawing by drafting.Key words:driving axle; main gear box; differential; half shaft; housing目录第1章绪论 (1)1.1 驱动桥简介 (1)1.2 驱动桥设计的要求 (1)第2章驱动桥的结构方案分析 (3)第3章驱动桥主减速器设计 (5)3.1 主减速器简介 (5)3.2 主减速器的结构形式 (5)3.3 主减速器的齿轮类型 (5)3.4 主减速器主动齿轮的支承型式 (6)3.5 主减速器的减速型式 (7)3.6 主减速器的基本参数选择与设计计算 (7)3.6.1 主减速比的确定 (7)3.6.2 主减速器齿轮计算载荷的确定 (8)3.6.3 主减速器齿轮基本参数选择 (9)3.6.4 主减速器双曲面锥齿轮设计计算 (11)3.6.5 主减速器双曲面齿轮的强度计算 (18)3.7 主减速器齿轮的材料及热处理 (22)第4章差速器设计 (24)4.1 差速器简介 (24)4.2 差速器的结构形式的选择 (24)4.2.1 对称式圆锥行星齿轮差速器的差速原理 (25)4.2.2 对称式圆锥行星齿轮差速器的结构 (26)4.3 差速器齿轮主要参数的选择 (26)4.4 差速器齿轮的几何尺寸计算与强度校核 (28)第5章驱动车轮的传动装置 (31)5.1 车轮传动装置简介 (31)5.2 半轴的型式和选择 (31)5.3 半轴的设计计算与校核 (31)5.4 半轴的结构设计及材料与热处理 (33)第6章驱动桥壳设计 (34)6.1 驱动桥壳简介 (34)6.2 驱动桥壳的结构型式及选择 (34)6.3 驱动桥壳强度分析计算 (35)6.3.1 当牵引力或制动力最大时 (35)6.3.2 通过不平路面垂直力最大时 (36)第7章结论 (37)参考文献 (38)致谢 (39)附录A (40)第1章绪论1.1驱动桥简介在科学技术快速发展的今天,随着汽车工业的不断进步以及客车应用的普及,汽车的各项性能指标也在不断提高,作为传动系末端的驱动桥的设计,更要有进一步的改进,以适应市场的需要,促进汽车行业的发展。
驱动桥的设计课程设计
驱动桥的设计课程设计一、课程目标知识目标:1. 学生能理解驱动桥的基本结构、工作原理及其在车辆中的作用;2. 学生能够掌握驱动桥设计的基本参数和计算方法;3. 学生能够了解并描述驱动桥设计中涉及的材料选择、强度计算和动力学分析。
技能目标:1. 学生能够运用图纸识别驱动桥的各个部件,并解释其功能;2. 学生能够利用相关公式和工程手册,完成驱动桥主要参数的计算;3. 学生通过小组合作,设计简单的驱动桥模型,并能够使用适当的技术语言进行展示和解释。
情感态度价值观目标:1. 学生能够培养对汽车工程设计和机械原理的兴趣,激发创新意识和探索精神;2. 学生在团队协作中学会相互尊重、倾听和沟通,增强集体荣誉感和责任感;3. 学生通过工程案例分析,认识到工程技术对社会发展和环境保护的重要性,培养工程伦理意识。
课程性质分析:本课程为工程技术类课程,旨在通过驱动桥设计的教学,让学生理论与实践相结合,提高解决实际问题的能力。
学生特点分析:考虑到学生为高中生,已具备一定的物理和数学基础,具有较强的逻辑思维能力和动手操作能力,但对工程实践尚缺乏经验。
教学要求:课程需结合学生特点,通过案例导入、理论讲解、实践操作和反思评价等环节,使学生在掌握基础知识的同时,提高综合运用能力。
目标分解为具体学习成果,以便通过课程项目、报告和展示等方式进行教学设计和评估。
二、教学内容1. 驱动桥的结构与功能- 介绍驱动桥的组成部分,包括齿轮、差速器、半轴等;- 阐述各部件在车辆行驶过程中的作用和相互关系。
2. 驱动桥设计的基本参数- 讲解驱动桥设计的主要参数,如齿数、模数、压力角等;- 学会运用相关公式进行参数计算。
3. 材料选择与强度计算- 介绍常用的驱动桥材料及其性能;- 掌握强度计算的基本原理和方法。
4. 动力学分析- 阐述驱动桥在车辆动力学中的作用;- 学习动力学分析的基本原理和计算方法。
5. 驱动桥设计实例分析- 分析典型驱动桥设计案例,了解设计过程和方法;- 学生分组进行驱动桥设计实践,培养动手能力和团队协作精神。
装载机驱动桥毕业设计精选全文完整版
摘要本次毕业设计题目为ZL40装载机驱动桥及主传动器设计,大致上分为主传动器设计、差速器设计、半轴设计、终传动设计和桥壳设计五大部分。
本说明书将以“驱动桥设计”为内容,对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。
本次设计中,ZL40装载机传动采用液力机械传动方案,选用双涡轮液力变矩器和行星动力换挡变速箱,并按以下原则分配传动比:在终传动能安装的前提下,将传动比尽可能地分配给终传动,使整机结构尺寸减小,结构紧凑。
主传动器采用单级锥齿轮传动式,锥齿轮采用35º螺旋锥齿轮并选用悬臂式支承。
将齿轮的基本参数确定以后,算得齿轮所有的几何尺寸,然后进行齿轮的受力分析和强度校核。
齿轮的基本参数和几何尺寸的计算是此部分设计的重点。
在掌握了差速器、半轴、终传动和桥壳的工作原理以后,结合设计要求,合理选择其类型及结构形式,然后进行零部件的参数设计与强度校核。
差速器设计采用普通对称式圆锥行星齿轮差速器,齿轮选用直齿锥齿轮。
半轴设计采用全浮式支承方式。
终传动设计采用单行星排减速形式。
关键词:装载机;驱动桥;主传动器AbstractThe content of my graduation design is The Design of ZL30Loader Axles(Main Transm ission),largely at five parts,included of the main transmission design,differential design,half -shaft design,the design of the final drive and design of axle case.The design specifications will introduce the structure type and design of the drive axle and the main components in the driving axle design one by one.In this design,ZL30loader is adopts hydromechanical transmission,select and uses doub le turbine hydraulic torque converter and planetary power shift transmission,and distribution of the transmission ratio according to the following principles:in the premise of final drive ca n be installed in the hub,assign the transmission ratio to final drive as much as possible to makes the whole structure size decreases and structure terse.Main drive is adopts a single-stage bevel gear with35o and spiral bevel gears use cantile ver support.After considered of the basic parameters of gear,calculate all the geometric para meters of the gear,and then analysis gear stress and check its strength.The calculation of gear s basic parameters and geometry parameters is the key point of this part.After mastered theworking principle of differential,axle,final drive and axle case,have a reasonable choice and the structure of its type by combining with the design requirements,and then design parts and check strength.The differential design adopts ordinary symmetric tapered planetary gear diffe rential,and the gear is straight bevel gears.The half-shaft design uses the full floating axle s-upporting.The final drive design uses a single planetary row.Keywords:loader,drive axle main transmission1.引言装载机是一种广泛用于公路、铁路、矿山、建筑、水电、港口等工程的土石方工程施工机械,它的作业对象是各种土壤,砂石料、灰料及其他建筑路用散装物料等。
轿车驱动桥毕业设计
研究目的
通过对轿车驱动桥的设计和研究,提高驱动桥的性能,满足现代汽车的高性能要求。
研究意义
本课题的研究不仅可以提高轿车驱动桥的性能,还可以推动汽车传动系统技术的发展,为汽车工业的发展做出贡献。同时,本课题的研究还可以培养学生的创新能力和实践能力,提高学生的综合素质。
02
CHAPTER
轿车驱动桥概述
动力传递
桥壳作为驱动桥的支撑和保护部件,承受和传递路面作用于车轮的各种力和力矩,保证驱动桥的稳定性和安全性。同时,半轴也承受着车轮的反作用力,并将这些力传递给车身。
承载与传力
03
CHAPTER
轿车驱动桥设计
确保驱动桥能够提供足够的驱动力和制动力,保证轿车在不同路况下的行驶稳定性和安全性。
满足轿车行驶性能要求
轿车驱动桥是连接车轮与车身的重要部件,负责将发动机的动力传递给车轮,同时承受和传递路面作用于车轮的各种力和力矩。
定义
驱动桥在轿车行驶过程中发挥着至关重要的作用,它直接影响轿车的动力性、经济性、行驶稳定性和安全性。
作用
桥壳
支撑和保护主减速器、差速器等部件,承受和传递各种力和力矩。
半轴
将差速器的动力传递给车轮,同时承受车轮的反作用力。
机械加工
对铸造出的毛坯进行机械加工,包括车削、铣削、钻孔等,以达到设计要求的尺寸精度和表面质量。
热处理工艺
对机械加工后的零件进行热处理,如淬火、回火等,以提高材料的力学性能和耐磨性。
质量管理体系
建立完善的质量管理体系,包括原材料检验、过程控制、成品检验等环节,确保产品质量符合设计要求。
检测手段
采用先进的检测设备和手段,如三坐标测量机、硬度计、金相显微镜等,对零件的尺寸精度、表面质量、材料性能等进行全面检测。
驱动桥课程设计个人总结
驱动桥课程设计个人总结一、教学目标本课程的教学目标是使学生掌握驱动桥的基本原理、结构及工作流程,能够对驱动桥进行正常的维护和故障排除。
具体目标如下:1.知识目标:学生能够描述驱动桥的组成部分,理解各部分的作用和相互关系;了解驱动桥的工作原理,掌握其工作流程。
2.技能目标:学生能够使用专业工具对驱动桥进行拆装和检修,能够判断并排除常见的驱动桥故障。
3.情感态度价值观目标:培养学生对汽车维修行业的热爱和敬业精神,提高学生对驾驶安全和汽车保养的意识。
二、教学内容根据课程目标,教学内容主要包括以下几个部分:1.驱动桥的基本原理:介绍驱动桥的作用、分类和基本工作原理。
2.驱动桥的结构:详细讲解驱动桥各组成部分的名称、作用和相互关系。
3.驱动桥的工作流程:阐述驱动桥的工作流程,以及各部分在其中的作用。
4.驱动桥的检修与维护:介绍驱动桥的检修方法、注意事项以及维护措施。
5.驱动桥故障排除:分析常见驱动桥故障的原因,讲解故障排除的方法。
三、教学方法为了提高教学效果,将采用以下几种教学方法:1.讲授法:讲解驱动桥的基本原理、结构和检修方法。
2.讨论法:学生讨论驱动桥工作流程及故障排除心得。
3.案例分析法:分析实际案例,让学生了解驱动桥在实际工作中的应用。
4.实验法:安排实验室实践,让学生动手操作,提高实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,将准备以下教学资源:1.教材:《汽车驱动桥检修与维护》。
2.参考书:相关汽车维修手册、论文等。
3.多媒体资料:驱动桥工作原理动画、故障案例视频等。
4.实验设备:驱动桥实物、专业工具、实验室设施等。
五、教学评估为了全面、客观地评估学生的学习成果,将采用以下评估方式:1.平时表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习态度和兴趣。
2.作业:布置相关作业,检查学生对驱动桥知识的理解和掌握程度。
3.实验报告:评估学生在实验室实践中的操作技能和问题解决能力。
驱动桥设计说明书
汽车设计课程设计轻型货车驱动桥设计姓名:黄华明学号: 12431173专业班级:机英123指导教师:王淑芬题目:1.整车性能参数:驱动形式 6x2后轮;轴距 3800mm;轮距前/后 1750/1586mm;整备质量 4310kg;额定载质量 5000kg;空载时前轴分配负荷45%,满载时前轴分配负荷26%;前悬/后悬 1270/1915mm;最高车速 110km/h;最大爬坡度 35%;长、宽、高 6985、2330、2350;发动机型号 YC4E140—20;最大功率 99。
36KW/3000rpm;最大转矩380N·m/1200~1400rpm;变速器传动比 7。
7 4。
1 2。
34 1.51 0.81;倒挡 8。
72;轮胎规格 9.00—20;离地间隙 >280mm。
2。
具体设计任务:1)查阅相关资料,根据其发动机和变速箱的参数、汽车动力性的要求,确定驱动桥上主减速器的减速形式,对驱动桥总体进行方案设计和结构设计.2)校核满载时的驱动力,对汽车的动力性进行验算.3)根据设计参数对主要零部件进行设计与强度计算。
4)绘制所有零件图和装配图。
5)完成6千字的设计说明书。
第1章驱动桥的总体方案确定1。
1 驱动桥的结构和种类和设计要求1。
1。
1 汽车车桥的种类汽车的驱动桥与从动桥统称为车桥,车桥通过悬架与车架(或承载式车身)相连,它的两端安装车轮,其功用是传递车架(或承载式车身)于车轮之间各方向的作用力及其力矩。
根据悬架结构的不同,车桥分为整体式和断开式两种.当采用非独立悬架时,车桥中部是刚性的实心或空心梁,这种车桥即为整体式车桥;断开式车桥为活动关节式结构,与独立悬架配用.在绝大多数的载货汽车和少数轿车上,采用的是整体式非断开式。
断开式驱动桥两侧车轮可独立相对于车厢上下摆动。
根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。
其中,转向桥和支持桥都属于从动桥,一般货车多以前桥为转向桥,而后桥或中后两桥为驱动桥。
驱动桥设计知识点归纳总结
驱动桥设计知识点归纳总结驱动桥是指用于传递扭矩和驱动轮的动力的机械装置,广泛应用于汽车、机械工程和工业自动化等领域。
本文将对驱动桥设计的关键知识点进行归纳总结,以帮助读者更好地理解和应用该领域的相关知识。
一、驱动桥的基本原理驱动桥主要由驱动轴、差速器、轮芯和传动装置等组成。
其基本原理是通过驱动轴将动力从发动机传递给驱动轮,通过差速器实现不同驱动轮的差速运动,同时通过传动装置将扭矩传递到驱动轮。
二、驱动桥的结构类型1. 后桥驱动:主要用于后驱动汽车,包括简单后桥驱动和复杂后桥驱动两种类型。
简单后桥驱动通过差速器和传动装置将动力传递给两个后驱动轮,而复杂后桥驱动可以实现对每个驱动轮的独立控制。
2. 前桥驱动:主要用于前驱动汽车,将动力传递给前驱动轮。
与后桥驱动相比,前桥驱动常常结合转向系统,以实现驱动和转向的一体化设计。
3. 全桥驱动:将动力传递给所有驱动轮,主要用于越野车辆或需要更好牵引力的应用场景。
三、驱动桥的重要设计参数1. 轴距:指驱动轴之间的距离,对车辆的稳定性和操控性有重要影响。
较大的轴距有助于提高车辆的稳定性和平衡性。
2. 驱动桥比:表示驱动轮转速与主动轮转速之比,决定着车辆的加速性能和行驶性能。
较大的驱动桥比意味着更高的扭矩输出和更好的爬坡能力。
3. 驱动桥扭矩容量:表示驱动桥能够承受的最大扭矩,对车辆的承载能力和使用寿命有重要影响。
4. 差速器类型:包括开式差速器和闭式差速器两种类型。
开式差速器适用于平稳行驶,闭式差速器适用于转弯和差速要求较高的场景。
四、驱动桥的常见问题及解决方法1. 差速器失效:当车辆转弯时,差速器可能会损坏或发生异常,造成驱动轮之间的转速差异过大。
解决方法可以是使用电子差速器或限滑差速器,以提供更好的差速控制和行驶稳定性。
2. 驱动桥过热:长时间高负荷工作会引起驱动桥的过热,可能导致传动装置的损坏。
解决方法可以是增加散热装置,如风扇或冷却液循环系统,以提高散热效果。
驱动桥设计说明书
驱动桥设计说明书设计题⽬:桑塔纳志俊驱动桥设计姓名付晶学院交通学院专业机械设计制造及其⾃动化班级11级5班学号20112814601指导教师孙宏图王昕彦4. 驱动桥设计 (1)4.1 确定驱动桥的结构形式 (1)4.2 主减速器和差速器齿轮主要参数的选择与计算 (5)4.2.1 主减速器齿轮主要参数的选择 (5)4.2.2 直齿锥齿轮差速器齿轮基本参数 (5)4.3 齿轮的结构设计、图样及技术要求 (7)4.3.1 齿轮的结构设计 (7)4.3.2 齿轮的图样及技术要求 (13)4. 驱动桥设计4.1 确定驱动桥的结构形式4.1.1驱动桥的功能驱动桥处于动⼒传动系的末端,其基本功能是增⼤由传动轴或变速器传来的转矩,并将动⼒合理的分配给左、右驱动轮,另外还承受作⽤于路⾯和车架或车⾝之间的垂直⽴、纵向⼒和横向⼒。
驱动桥⼀般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。
4.1.2驱动桥的分类:驱动桥分⾮断开式(整体式)---⽤于⾮独⽴悬架断开式---⽤于独⽴悬架⾮断开式(整体式)驱动桥定义:⾮断开式驱动桥也称为整体式驱动桥,其半轴套管与主减速器壳均与轴壳刚性地相连⼀个整体梁,因⽽两侧的半轴和驱动轮相关地摆动,通过弹性元件与车架相连。
它由驱动桥壳1,主减速器,差速器和半轴组成。
优点:结构简单,成本低,制造⼯艺性好,维修和调整易⾏,⼯作可靠。
⽤途:⼴泛载货汽车、客车、多数越野车、部分轿车⽤于上。
断开式驱动桥定义:驱动桥采⽤独⽴悬架,即主减速器壳固定在车架上,两侧的半轴和驱动轮能在横向平⾯相对于车体有相对运动的则称为断开式驱动桥。
为了与独⽴悬架相配合,将主减速器壳固定在车架(或车⾝)上,驱动桥壳分段并通过铰链连接,或除主减速器壳外不再有驱动桥壳的其它部分。
为了适应驱动轮独⽴上下跳动的需要,差速器与车轮之间的半轴各段之间⽤万向节连接。
优点:可以增加最⼩离地间隙,减少部分簧下质量,减少车轮和车桥上的动载两半轴相互独⽴,抗侧滑能⼒强可使独⽴悬架导向机构设计合理,提⾼操纵稳定性缺点:结构复杂,成本⾼⽤途:多⽤于轻、⼩型越野车和轿车4.1.3驱动桥的组成驱动桥由主减速器、差速器、半轴及桥壳组成。
驱动桥设计ppt课件.ppt
(二)主减速器的形式
优点: 结构最简单、质量小、制造容易、拆装简便 缺点: 只能用于传递小扭矩的发动机 只能用于主传动比较小的车上,i0 < 7
1.单级主减速器
2.双级主减速器
特点: 尺寸大,质量大,成本高 与单级相比,同样传动比,可以增大离地间隙 用于中重型货车、越野车、大型客车
(一)减速传动方案 3.圆柱齿轮传动 4.蜗轮蜗杆传动
1.一对螺旋圆锥齿轮
优点: 同时啮合齿数多,寿命长,制造简单,质量小 缺点: 有轴向力、且方向不定;
缺点: 对啮合精度敏感,若锥顶不重合,使接触应力↑,弯曲应力↑,噪声↑,寿命↓; 要求制造、装配精度高。
2.双曲面齿轮啮合
5.在各种转速和载荷下的传动效率高 6.桥壳有足够的强度和刚度 7.结构简单,加工工艺性好,制造容易,调整、拆装方便 8.与悬架导向机构、转向运动机构协调
§5-2 驱动桥的结构方案分析
分类: 非断开式(整体式)—用于非独立悬架 断开式—用于独立悬架
一、断开式驱动桥特点:
当采用独立悬架时,为保证运动协调,驱动桥应为断开式。如图
二、主减速器基本参数选择与计算载荷的确定
(一)主减速器齿轮计算载荷的确定
2.按驱动轮打滑扭矩确定Tcs
3.按日常行驶平均转矩确定Tcf
1.齿数Z1、Z2 首选Z1: (1) Z1尽可能取小,货车Z1min≥6;轿车Z1min≥9; (2) Z1 、Z2不能有大于1的公约数,实现自动磨合,提高寿命; (3)希望Z1+Z2 ≥40,有足够的弯曲强度,提高重合系数;
(四)牙嵌式自由轮差速器 半轴转矩比kb可变,工作可靠,寿命长,锁紧性能稳定,制造加工也不复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要驱动桥作为汽车的重要组成部分,它的性能的好坏直接影响整车性能。
其一般由主减速器、差速器、半轴及桥壳四部分组成,基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。
此次设计先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用圆锥行星齿轮差速器,半轴采用全浮式型式,桥壳采用铸造整体式桥壳。
此次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、全浮式半轴的设计和桥壳的校核及材料选取等工作。
关键字:驱动桥、双级主减速器、弧齿锥齿轮、ABSTRACTDriving axle assembly is one of the important vehicle carrying pieces and can directly impact on the whole vehicle's performance and its effective life. Driving Axle is consisted of Main Decelerator, Differential Mechanism, Half Shaft and Axle Housing. The basic function of Driving Axle is to increase the torque transmitted by Drive Shaft or directly transmitted by Gearbox, then distributes it to left and right wheel, and make these two wheels have the differential function which is required in Automobile Driving Kinematics; besides, the Driving Axle must also stand the lead hangs down strength, the longitudinal force and the transverse force acted on the road surface, the frame or the compartment lead.The configuration of the Driving Axle is introduced in the thesis at first. On the basis of the analysis of the structure and the developing process of Driving Axle, the design adopted the Integral Driving Axle, Double Reduction Gear for Main Decelerator’s deceleration form, Spiral Bevel Gear for Main Decelerator’s gear, Full Floating for Axle and Casting Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Double Reduction Gear, tapered Planetary Gear Differential Mechanism, Full Floating Axle, the checking of Axle Housing and the election of the material and so on.Key words: Driving Axle;Double Main Decelerator;Single Reduction Final Drive目录摘要 (I)ABSTRACT (II)目录 (III)第1章绪论 (1)1.1选题的目的和意义 (1)1.2研究现状 (1)1.2.1国内现状 (1)1.2.2国外现状 (2)第2章驱动桥结构方案分析 (4)第3章主减速器设计 (5)3.1 主减速器的结构形式 (5)3.1.1 主减速器的齿轮类型 (5)3.1.2 主减速器的减速形式 (5)3.1.3 主减速器主,从动锥齿轮的支承形式 (5)3.2主减速器的基本参数选择与设计计算 (6)3.2.1 主减速器计算载荷的确定................ 错误!未定义书签。
3.2.2 主减速器基本参数的选择................ 错误!未定义书签。
3.2.3主减速器圆弧锥齿轮的几何尺寸计算....... 错误!未定义书签。
3.2.4 主减速器圆弧锥齿轮的强度计算.......... 错误!未定义书签。
3.2.5 主减速器齿轮的材料及热处理............ 错误!未定义书签。
3.2.6 主减速器轴承的计算.................... 错误!未定义书签。
第4章差速器设计 (11)4.1对称式圆锥行星齿轮差速器的差速原理 (11)4.2对称式圆锥行星齿轮差速器的结构 (12)4.3对称式圆锥行星齿轮差速器的设计 (13)4.3.1 差速器齿轮的基本参数的选择 (13)4.3.2 差速器齿轮的几何计算 (15)4.3.3 差速器齿轮的强度计算 (15)第5章驱动半轴的设计 (17)5.1 全浮式半轴计算载荷的确定 (17)5.2全浮式半轴的杆部直径的初选 (18)5.3全浮式半轴的强度计算 (18)5.4半轴花键的强度计算 (19)第6章驱动桥壳的设计 (20)6.1铸造整体式桥壳的结构 (20)6.2桥壳的受力分析与强度计算 (21)6.2.1 桥壳的静弯曲应力计算 (21)6.2.2 在不平路面冲击载荷作用下的桥壳强度计算 (23)6.2.3 汽车以最大牵引力行驶时的桥壳强度计算 (24)结论 (27)致谢 (28)参考文献 (29)附录 (30)第1章绪论1.1选题的目的和意义驱动桥作为汽车传动系统中的主要部件,实现着减速增扭,改变传动方向,实现差速的作用;驱动桥设计的知识比较广,有利于锻炼学生的能力。
随着汽车工业的迅猛发展,车型的多样化、个性化已经成为发展趋势。
驱动桥性能直接影响整车的性能和有效使用寿命。
一般由桥壳、主减速器、差速器和半壳等元件组成,结构更复杂,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。
汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。
通过重型货车驱动桥的设计,锻炼学生独立的思考问题和解决问题的能力,同时锻炼学生掌握驱动桥设计的步骤和过程,锻炼学生查阅工具书的能力和自学能力.培养学生严谨的工作态度和工作能力.随着汽车工业的发展及汽车技术的提高,驱动桥的设计,制造工艺都在日益完善。
驱动桥也和其他汽车总成一样,除了广泛采用新技术外,在结构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产方式达到驱动桥产品的系列化或变型的目的,通过对驱动桥的设计可以更好的学习并掌握现代汽车与机械设计的全面知识和技能。
因此,此题目的设计尤为重要。
1.2研究现状1.2.1国内现状我国驱动桥制造企业的开发模式主要由测绘、引进、自主开发三种组成。
主要存在技术含量低,开发模式落后,技术创新力不够,计算机辅助设计应用少等问题。
国内的大多数中小企业中,测绘市场销路较好的产品是它们的主要开发模式。
特别是一些小型企业或民营企业由于自身的技术含量低,开word文档可自由复制I编辑发资金的不足,专门测绘、仿制市场上销售较旺的汽车的车桥售往我国不健全的配件市场。
这种开发模式是无法从根本上提高我国驱动桥产品开发水平的。
中国驱动桥产业发展过程中存在许多问题,许多情况不容乐观,如产业结构不合理、产业集中于劳动力密集型产品;技术密集型产品明显落后于发达工业国家;生产要素决定性作用正在削弱;产业能源消耗大、产出率低、环境污染严重、对自然资源破坏力大;企业总体规模偏小、技术创新能力薄弱、管理水平落后等。
我国汽车驱动桥的研究设计与世界先进驱动桥设计技术还有一定的差距,我国车桥制造业虽然有一些成果,但都是在引进国外技术、仿制、再加上自己改进的基础上了取得的。
个别比较有实力的企业,虽有自己独立的研发机构但都处于发展的初期。
我国驱动桥产业正处在发展阶段,在科技迅速发展的推动下,高新技术在汽车领域的应用和推广,各种国外汽车新技术的引进,研究团队自身研发能力的提高,我国的驱动桥设计和制造会逐渐发展起来,并跟上世界先进的汽车零部件设计制造技术水平。
1.2.2国外现状国外驱动桥主要采用模块化技术和模态分析进行驱动桥的设计分析,模块化设计是对在一定范围内的不同功能或相同功能不同性能、不同规格的机械产品进行功能分析的基础上,划分并设计出一系列功能模块,然后通过模块的选择和组合构成不同产品的一种设计方法. 以DANA为代表的意大利企业多已采用了该类设计方法, 模态分析是对工程结构进行振动分析研究的最先进的现代方法与手段之一。
它可以定义为对结构动态特性的解析分析(有限元分析)和实验分析(实验模态分析),其结构动态特性用模态参数来表征。
模态分析技术的特点与优点是在对系统做动力学分析时,用模态坐标代替物理学坐标,从而可大大压缩系统分析的自由度数目,分析精度较高。
优点是减少设计及工装制造的投入, 减少了零件种类, 提高规模生产程度, 降低制造费用, 提高市场响应速度等。
国外企业位减少驱动桥的振动特性,对驱动桥进行模态分析,调整驱动桥的强度,改善整车的舒适性和平顺性。
20世纪60年代以来,由于电子计算机的迅速发展,有限元法在工程上获得了广泛应用。
有限元法不需要对所分析的结构进行严格的简化,既可以考虑各种计算要求和条件,也可以计算各种工况,而且计算精度高。
有限元法将具word文档可自由复制I编辑有无限个自由度的连续体离散为有限个自由度的单元集合体,使问题简化为适合于数值解法的问题。
只要确定了单元的力学特性,就可以按照结构分析的方法求解,使分析过程大为简化,配以计算机就可以解决许多解析法无法解决的复杂工程问题。