(完整)2017清华大学自主招生暨领军计划数学试题[精校版,带解析]_历年自主招生考试数学试题大全,推荐文档
江苏省淮阴中学2017高三清华北大自主招生数学训练题4Word版含答
江苏省淮阴中学2017高三清华北大自主招生数学训练题4Word版含答数学自主招生训练题(4)1。
图中显示了一个几何图形的三个视图。
那么几何图形的表面积是()a . 54b . 60c . 66d . 725 234侧视图前视图顶视图2年,当三个歌舞节目、两个小品节目和一个相声节目被安排在一起时,个类似节目的不相邻安排的数量是()a.72bABC的内角a,b,c满足sin2A?原罪(一?b?c)?罪恶?a。
b)?1,表面2产品s符合1?s?2.如果a,b和c分别是a,b和c的对边,那么下面的不等式成立。
c)?8B.ab(a?b)?162C.6?abc?公元12年?abc?244。
图中显示了一个几何图形的三个视图,则该几何图形的体积为A.5。
在平面直角坐标系xOy中,矢量A,B,|a|?|b|?1,a b?0,点q满足1212??b??c?2?d。
2?3333OQ?2(a?b),曲线c?{P|OP?acos??bsin?,0???2?},地区??{P|0?r。
PQ?r,r?R},如果c??如果是两段分离曲线,那么(A)1?r。
r?3 (B)1?r。
3?R (C) r?1?r?3 (D)1?r。
3?ryqroxc6。
如果在r上定义的函数f(x)满足f(0)=﹣1,它的导数函数f(x)满足f(x )> k > 1。
如果a和b是函数f (x) = x-px+q (p > 0,q > 0)和a,b,65123的两个不同的零,那么这三个数字可以正确地分为算术级数或几何级数。
那么p+q的值等于()a.6b.7c.8d.98。
如果已知,则a.1362r。
如果p点是△ABC平面上的一个点,并且的最大值等于()c.19d.21b.1511??2x9。
进去?x?在的展开式中,的系数是。
?4x??10.进去?在A,B,C中,内角A,B和C的边分别是A,B和C,这是已知的?中航的面积是1315,b?c?2、cosA??在等腰梯形中,AB//DC,AB?公元前2年?1,?美国广播公司?移动点e和f分别在线段BC和DC上,BE??不列颠哥伦比亚省?因为。
江苏省淮阴中学2017高三清华北大自主招生数学训练题4
数学自主招生训练题(4)1. 某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.722. 某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.3 3. 已知ABC ∆的内角A 、B 、C 满足1sin 2sin()sin()2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式成立的是( ) A.()8bc b c +>B.()ab a b +>C.612abc ≤≤D.1224abc ≤≤4.某几何体的三视图如图所示,则该几何体的体积为A.π+31 B.π+32 C.π231+ D.π232+5.在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |1=,a ·b 0=,点Q 满足(2=a +b ),曲线==P C |{a +θcos b }20,sin πθθ≤≤,区域=Ω正视图 侧视图 俯视图},0|{R r R r P <≤≤<,若Ω C 为两段分离的曲线,则(A )31<<<R r (B )R r ≤<<31(C ) 31<<≤R r (D )R r <<<316.若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下.8.已知,若P 点是△ABC 所在平面内一点,且,则的最大值等于( )9.在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .10.在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为,12,cos ,4b c A -==- 则a 的值为 .11.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上, 且1,9BE BC DF DC λλ==,则A E A F 的最小值为 .12.平面直角坐标系xOy 中,双曲线C 1:﹣=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为 .13.如图,在三棱台DEF ﹣ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD∥平面FGH ; (Ⅱ)若CF⊥平面ABC ,AB⊥BC,CF=DE ,∠BAC=45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.14.设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.15.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.16.平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.17.设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.18.已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥.(I)讨论()f x 的单调性;(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21|-|21ax x n<+-.数学自主招生训练题(4)答案1-8.BBAAACDA 9.1516 10.8 11. 2918 12.为平面,则:,则:;=|cos;14.===+++﹣=﹣(Ⅱ)由题意知,全部“三位递增数”的个数为个进行组合,即进行组合,即进行组合,即=,=,=0 ﹣1 1EX=0×)×+1×.=的方程为+y的方程为+=1,由于+y,即(|=2﹣,所以,|m|•|x|=|m|•,设在(,6.时,△≤0,时,1+x2=,0≤a时,函数)当<a≤1>>18 (I )解:由()f x =n nx x -,可得'()f x =1n n nx --=()11n n x --,其中n N *∈,且2n ≥. 下面分两种情况讨论: (1)当n 为奇数时.令'()f x =0,解得1x =,或1x =-.当x 变化时,'()f x ,()f x 的变化情况如下表:所以,()f x 在(),1-∞-,()1,+∞上单调递减,在()1,1-内单调递增。
清华等17所高校自主招生笔试真题
清华等17所高校自主招生笔试真题清华等17所高校2017年自主招生笔试真题2017年全国各大高校自主招生工作开始了,以下店铺搜索整理的关于清华等17所高校2017年自主招生笔试真题,供参考借鉴,希望对大家有所帮助!想了解更多相关信息请持续关注我们店铺!南开大学6月10日、11日,南开大学2017年自主招生考试顺利举行,533名考生参加了现场测试。
笔试题量很大,涵盖了语文、数学知识的学科能力测试,更多地考查学生的思辨能力和平时知识的积累。
1、“祝考生考得都会,蒙得都对”是一个什么命题并证明清华大学2017年6月10日,清华大学率先开始了自主选拔测试,2017年有近6000多人参加清华初试,2017年清华自主招生、领军计划、自强计划笔试采用同一套试卷进行测试。
清华大学初试采用笔试形式,考试科目为:数学与逻辑、理科综合(物化)、文科综合(文史),学生依据填报的专业类参加其中两个科目的考试。
初试结果将在报名系统内公布。
据悉,2017年清华笔试在全国44个城市设有61考点,相比去年增加25个考点,其中,每个城市还设有多个考点。
考试安排:初试时间:2017年6月10日上午9:00-12:00复试时间:2017年6月16日-18日,(具体测试时间以报名系统内公布为准)。
笔试题型:理科:数学30题,物理20题,化学18题,一共68题,180分钟合在一起考的。
文科:数学35题,语文12题,历史20题。
众多考生表示,本次数学试题较易,物理难度较大,化学正常。
刘震介绍,今年,清华自主选拔的初试依旧采取机考形式,全部为客观选择题,直接在计算机上做答。
根据去年的探索经验,机考不仅能保证阅卷及时准确,而且也大大降低了纸质试卷作弊的可能性,分发和回收考卷更为安全高效。
笔试试题文科综合(文史)类笔试试题:考题有明清时的自然经济瓦解、抗日战争、诗词等内容,不是考知识点记忆,主要考查阅读面、逻辑思维深度等,数学与逻辑难度较大。
今年的语文试题对语文基础知识与运用能力提出了更高要求,材料多出自社会热点或经典著作,注重对知识联系实际、学以致用能力的考查;注重考查对经典或常识的精准理解,注重对独立思考与批判思维的考查。
清华大学2017年领军计划试题
清华大学2017年自主招生与领军计划数学试题(1)设函数2()xx f x ee ax =+-,若对0,()2xf x ∀≥≥,则实数a 的取值范围是()(,3]A -∞ ()[3,)B +∞ ()(,2]C -∞ ()[2,)D +∞解答:问题等价于22x x e e ax +≥+在[0,)+∞上恒成立;记2()xx g x e e =+,()2h x ax =+,两函数均过(0,2),且(0)3g '=,可知(,3]a ∈-∞.答案A.(2)设,A B 为两个随机事件,且,0()1A B P A ⊂<<,则()()1()A P AB P B =- ()()1()B P AB P B =-()(|)()C P B A P B = ()(|)()D P B A P B =解答:(A )()1()1()P AB P AB P A =-=-,所以A 错;(B )()()1()1()P AB P A B P A B P B ==-=-,所以B 对;(C )()()(|)1()()P AB P A P B A P A P A ===,所以C 错; (D )()()()(|)1()1()P B A P B P A P B A P A P A --==--,所以D 错;答案B.(3)从0,1,2,,9中选出三个不同数字组成四位数(其中的一个数字用两次),如5242,这样的四位数共有()1692A 个 (B)3672个 (C)3708个 (D)3888个解答:十个数中先选出3个数,再从中选出一个作为用两次的,再选出两个位置放这个数,剩下两个数再排列一下,共有32104324320C C ⨯⨯⨯=个.下面考虑0被排在了首位的情况:1°0在后三位还出现了一次:则在剩下9个数中再选两个,于是有293!216C ⨯=个.2°0只出现在首位:则在剩下9个数中再选两个,其中一个重复两次,于是有2923216C ⨯⨯=个.于是符合题目要求的四位数共有43202162163888--=个. 答案D.(4)已知集合{1,0,1}M =-,{2,3,4,5,6}N =,设映射:f M N →满足:对任意的,()()x M x f x xf x ∈++是奇函数,这样的映射f 的个数()25A (B)45 (C)50 (D)100解答:设()()()g x x f x xf x =++则(1)1g -=-,(0)(0)g f =,(1)12(1)g f =+,(1),(1)g g -均为奇数,所以只需令(0)f 为奇数,所以共有52550⨯⨯=种选择. 答案C.(5)若关于x 的方程12cos(1)0x a x -+-=只有一个实数解,则实数a 的值()1A -等于 (B)1等于 (C)2等于 (D)不唯一解答:显然12x -与cos(1)a x -均关于1x =对称,若有1x =之外的解,则均成对出现,所以要只有一个解,则只能在1x =处,此时1a =- 当1a =-时,1x ≠时121x ->,1cos(1)1a x -≤-≤,确实只有1x =一个解.答案A.(6)设,a b 为非零向量,且2b a =,则b 与b a -夹角的最大值为(B )()12A π(B)6π(C)4π(D)3π 解答:因为2b a =,取OD b =,则平移向量a 的起点到点O ,则向量a 的终点在以O 为圆心,以2b 为半径的圆上,则b 与b a -夹角为COD ∠,根据几何意义可知,当CD 与圆O相切时,夹角最大,此时,OC CD ⊥,则1sin 2OC COD OD ∠==,则6COD π∠=. 所以0,6πα⎡⎤∈⎢⎥⎣⎦. 答案B.(7)已知三棱锥P ABC -的底面为边长为3的正三角形,且3,4,5,PA PB PC ===则P ABC -的体积为(C )()3A解答:因为3AB AC AP ===,过点A 向面PBC 作垂线PH ,因为斜边长相等,则射影相等,可知H 到顶点,,P B C 距离相等,因此H 为PBC 的外心,因为PBC 为直角三角形,所以H 为PC 的中点.AH ⊥平面PBC,则2AH ==,所以113432P ABC A PBC V V --==⋅⋅⋅=答案C.(8)设函数432()2(2)2(12)41f x x x m x m x m =-++-+++,若对任意的实数,()0,x f x ≥则实数m 的取值范围是(A )()[0,)A +∞ 1()[,)2B +∞ ()[0,1]C 1()[,1]2D解答::()4322()02221440f x x x x x m x x ≥⇔-+-++-+≥即()()()()()2224322442221211m x x x x x x m x x x-+≥--+-+⇔-≥--+则,题目等价于对任意的实数,x ()()()222211m x x x-≥--+恒成立,当2x =时,不等式显然成立,当2x ≠时,题目等价于对任意的实数,x ()()()222112x x m x -+≥--恒成立, 因为()()()2221102x x x -+-≤-,而且0能取到,所以()()()222112x x x -+--的最大值为0, 因此0m ≥. 答案A.(9)设正实数,,,x y z w 满足22020x y z w yz wx z y --+=⎧⎪-=⎨⎪≥⎩,则z y 的最小值为 D()62A + ()622B + ()632C + ()642D +解答:设z t z yt y =⇒=,则22(2)21x w y t y t wx t +=+⎧⎪=⎨⎪≥⎩,由均值不等式可得,22(2)22(2)8y t xw y t xw +≥⇔+≥, 又因为22y t wx =,所以222(2)16y t y t +≥,则2(2)16642,642t t t t +≥⇔≥+≤-,又因为1t ≥,所以642t ≥+, 答案D.(10)给定圆O 及圆内一点P ,设,A B 是圆O 的两个动点,满足90APB ︒∠=,则AB 的中点的轨迹为 (A)()A 一个圆 ()B 一个椭圆 ()C 一段双曲线 ()D 一段抛物线解答:如图,建立平面直角坐标系,不妨假设圆O 的方程为222,x y R +=()(),00P m m R ≤<,则OM AB ⊥,所以222AM OA OM =-,因为AM PM =,所以222PM OA OM =-, 设(),M x y ,则22222()x m y R x y -+=--化简得:2222m x y mx 22R +-+=,即2222x y 224m R m ⎛⎫-+=-⎪⎝⎭, 所以轨迹为一个圆. 答案A.(11)方程23100x y z ++=的非负整数解的个数是()883A ()884B ()885C ()886D 解答:令2x y t +=,先研究3100t z +=的解的个数,然后对于t 的每一个可能的取值0t ,分别研究02x y t +=的解的个数.将未知问题(三元)转化为已知问题(二元)去解决。
2017年北大自主招生数学试题及答案
5
13
)
A. 锐角三角形
B. 钝角三角形
C. 无法确定
D. 前三个答案都不对
答案 A.
5
B.
20 5,
Å3 ã
3
C.
20 , 20
D. 前三个答案都不对
3
解析 C.
13. 正方形 ABCD 与点 P 在同一平面内,已知该正方形的边长为 1 ,且 |P A|2 + |P B|2 = |P C|2 ,则 |P D|
的最大值为( ) √
A. 2 + 22 2 D. 前三个答案都不对
答案 A.
) B. −1.5 D. 前三个答案都不对
19. 动圆与两圆 x2 + y2 = 1 和 x2 + y2 − 6x + 7 = 0 都外切,则动圆的圆心轨迹是( )
A. 双曲线
B. 双曲线的一支
C. 抛物线
D. 前三个答案都不对
答案 B.
4
20.
在
△ABC
中, sin A = 4 , cos B = 4 ,则该三角形是(
√ B. 2 6 D. 前三个答案都不对
答案 D.
6. 已知三角形三条中线长度分别为 9, 12, 15 ,则该三角形面积为( )
A. 64
B. 72
C. 90
D. 前三个答案都不对
答案 B.
7. 已知 x 为实数,使得 2, x, x2 互不相同,且其中有一个数恰为另一个数的 2 倍,则这样的实数 x 的个
3π
ã
的值为(
)
5
5
A.
1 1+ √
5
C.
1+
1 √
清华大学自主招生数学试题解析
• 1・2017年清华大学自主招生暨领军计划试题解析已知-•根绳子放在数轴的[0・斗」区阳丄二线密度二皿-护.求绳子的质屋- 解答加解答 件先冇cos 単十 i iin 4?5二(cos 警cos 夸一 sin 警sin 弩: 二 cos + isin再I ] i 归纳法,可得3 警+ Tn 警,1 E.世到 ttJ -' = 1,则 cw 1 — w -' TW " - C4J _':7W + ru _l —2 COS 〒 T tv ' + ⑴ 二 2cCrS 号.战/(tw )/(a/ )f( OJ ? )/(oi 1)/(w)/(w _1 )/(w 2 )/(«"*)(4?十 W 十 2)(^~2十 J 十 2)(^ 十 y + 2)(W _1 + 胪 + 2) (1 十洞十2^ + w -] + 1 + 2M + 2w a 十 2w l + 4)(1 十 4 2^ + OJ -2 + 1 + 2^ + 2^ + 2M _r + 4)(6 + Gcos^ + 4cos 警)(6 + g 警 + Seos 警)(6 + ficos y - 4tos yj(6 + 4cOH 弩- E 阮、(6 - 6孕y + isin ^,/(x) = x z 十龙+若则f (川)几』〉的值为+ i^cos ^sin 警 + sin 警cos 弩 5-75-l)(6 + ?5- 1、4• 1・《高校自主招生一数学》 贾广素工作室• 2 •=11.若 0「门 +flCOS (A :-l )= 0 有唯--解,则(A.厲的值唯• B. 口的值不唯一C 门的值不存在D.以上都不对解答选A.因为f (兀)=217 +acos (A :-l )关于x = l 对称,所以若f (x )^唯一零点,则零点只 能为1.将兀=1彳弋入,得到a = T,此时f (x ) =2|x_11 -cos (x-l ),^检验« = -1符合 题意"04已知皿1 *2 ,衍皿&€ {1、Z ,3,4:} ,口3皿4》为口I ■吐.心皿4中不同数字的种类哀如N (1J23) =3,N (122,1}二2,求所有的256个(血心gg )的排列所得 7V ("l 山2 ,如■心)的平均值为().解答选D-N 5\心、a 3心)为1的个数为4;N (心•如,為虫J 为2的个数为CS (CS+2Q ) = 84; N (尙0 心皿Q 为3的个数为二144*N (Q i *2 *麻3皿4 )为球的个数为A] — 24.117^从而 iijfR^^6(4xi + 84X2+114X3 + 24X1) = ^.在△/WC 中 *sinZ/l + sinz^/?sinz^C 的最大值为(解答选E市积化和差公式得sin^A + sin^Bsm^C=sin^A + y (cost^B - ZC) - cos(^B + 乙CM-sin^A - -^COB ^A + ~|~cos(Z 百—乙 C) 冬 sin^A - -^-cosZ^/4 + 令Y I s + (_ 4)- Z 卩)+ YA - 32175 64A- iB.1 +75D.无报大值4《高校自主招生一数学》贾广素工作室在= = + j时取等号*四人做一道选项为A.B,C.D的选择题•四牛同学的对话知厂赵:我选A.钱:我选B,GD当屮的-个一孙古我选C李古我选6四个人毎人只选了…个选项川1' R倂不相同'我中貝有一个人说谥•则说谎的人町能是诽1 解答孙或李.用列衣法•只中O代表选该选项.X代表没有选该选项一如赵说谎•则无人选A(见表1八弟盾一表1A B C D赵XX孙0O如钱说谎,则赵、钱均选A(见表2)-矛曲.表2A H C赵O践O如孙说谎.则可得如表3所示的情况:成7..O _______X• 3 *《高校自主招生一数学》贾广素工作室如李说谎.则川'得in* 4所示的悄况•成立.表4A B C D赵O钱X OO0X已知2・ lvC?C, I 2 + IV I = 1 H, I z2 + H'2 I 二4?则I ZW I (解答选注意到1 - | z + w | - - | (z w)21 = \ z2w2+ 2zw | , 从【对冇1 | z2 + | - 21 ziv | 与I $ 21 砂| 一]护+ \沪从而(最小值可以取测例如辽二捋7.⑷二上尹,最大值亦可以取到’例如辽二今+寺人⑷二-3 +丄)2 21往四面体PABC ABC为等边三角形,边长为乳“二乳珂?二4./V二乳贝W四而体P/W0的体积为().A. 3B. 2屈C. /1TD. /10解答选C件先PC2= PB Z+ BC\故PB±反\设P到底而的高足PH.则BC± UH ZABH =30°设PH = h.AH =a^H^b,CH = c”山余弦定理得+ A2= 32・护+护二学,+ h2 -5\07A.有最大值普B有最大值号C有最小值另 D.有最小值号* 5 *如图[所示,已知曲线+ / = l 以及直线i lt y =弄仏;y = _yx,曲线E 与八交于A,B 两点“与h 交于C-D 两点.在E 上任找一点P (不与A^.C-D 重合几直线AP.M 分 别与仏交于M,N两点,则(A,B. C, D. 解答选BC•设P 的坐标为(利小八则乎+冗二I •此吋PA 的方程为v 42ya - -7—匕-找)・Xo - V2円?的方程为+ ©)•分别与方程尸-专工联立,可得_ 72 y a + ~2X ^尤 M 二-; -------_号-列+屈09二 yri .对于函数=e i (jt-l)a (x-2),H 下选项正确的是( A.冇2个极大值 B冇2个扱小值 U 1是极大值点 解答BC, 求导数:/"(x) = e^ECx - l)2(x -2) -- I)C A -2) +=c T (x + /3)(x -^/3)(JT - 1).则f 〔C 右2个极小值门是极大值点.D. 1是极小值点(x - I}2]10在椭圆上存在2个不同的点Q,使得丨021,二丨OM I 丨(釈 在椭圆上存在4个不同的点Q,使得丨%]—|OM| |QV| 在椭圆上存在2亍不同的点0使得住椭圆上存在4个不同的点0使得△NfAsAQMO rfl 对称性,不奶设A RC D 的塑标分别为-罟- - 72图!0M\ \ 0N\ - 0M - ON -\OM\\ON\ = \ 0A\\可^\OQ\2= \o^\ \o^\’可选Wt A/.C2四点.若△MXIsAQTfO.则只能选耽刈•觸足A + 2y + 3z- 100的非负整数解的组数为(A 883B 884 C. 885).D 886Zy种数00—5C5110—484920-474830—4546h・・h・・33u1表5解的组数为51 + 49 + 4W + 46 + 45 + - + 4 + 3 + 1 + 0 =百甘 4.{(x t y,z) | x +2y + 3z^l,JC,y T z>0} ■求V的体积+这是-个玄角呗休•三条玄角边丘是1以寺.故休积为春一已知f(x)=c2x +e -ax.^ X^).均右只站孑厶求a的取值范围一解答rtl f (X) = c21 + c1- m符/CO) = 2,又f (JC ) =2c^J + c J- ◎该导歯数在[th +«■)上递増‘故贾求 f (0)=3-^>0,即a<3.州图2所小』为闘山II屈心• f E在岡.11运动JL满出/AM-艸+则-W)* 6 ** 7・的中点E 的轨迹为()-A.圆B.稱圆 U 双曲线的一支 D.线段解答选入 由E 为中点'得PE Z + QE& 二 BE 2 十 OE 2 BO-=厝.做动点到两疋点距离的平方和为足f (因此动点E 的轨迹为慎1 一15L_已知椭圜方程为为苴右准线上一点,过P 向椭圆作切蜒,切点分别为恻的左恆点対几则( 人解答选AU汁先汴.意到结论:在椭圆准线上作取一点•过该点作椭•圆的两条切线*那么两切点的连 线必过该准线村应的倩点(虚明略)-应用结论•可知/XF/W 的周氏九定值•且越AH 乖胃于横轴吋它的值忌小.此时JT] Xi 码,骷"百€ (1,2,3,4,5,6? T 且 JC],x z T x 3T x 4,嘉■站各不相同,则禰足心一5忌+ 10x a - 10氐+ 5x s -x a = 0的解的组数为參少?解答6.首先心-应是5的倍数点x 产1皿之或机=6t x fi = L 考虑方程-+ 10的—10盟」5心 一 5 或-5x-i + 10氏 一 W 鹤 + 5嘉二一 5* 即-x 2 - 2X 3 - 2x x + A :5 = I或—X2 + 2^3 — 2也 + Jts - — 1注意到肌-乱不足2的倍数•战由上面的方服有也-耳厂乳軌-心一 -1或若砧-应一 -1心-占二]・或者X 5 _ X? = -3、心-心=1或若也-也二】* -工4二-1故这个方程有M+3二6纽解.已知 A e { - KOJ ZV e (2,3,4,5,映射 f : A^B. li^ 足 x 十 f(x) +球J )为壷数.求f 的个数. 解答50.A. \AB\的扯小值为1 C. AFA13的周艮为定值B. \AB\的毘小值师 D. A MB 的面积为定值' 8 -注意到 X + /(JC ) +xf(x) = <x + l)(f(x) +1)-1. + 十 1)为偶数. 故若x 为偶数,则f (巧为奇数•即f(0)二3或和N - “的取值任意,由乘法原 理可得,答案为2x5a ^50.解答选匚一注总到公式fm 二故dH 错误.另一方血M ©/? *从而川门币二0-故F (丽}=- 最后•如 A 二 0•则 P(AB)>0.U 知实数厲』满足a 2+ a =3b 2 +2乩且 H 则C 解答a ACD若 a<b,则 / + a<h~ + b<2( b 2+ b)<3b~ + = 矛盾.另一方面■若3b 2 + 2b= a 2 + a^(2h)2 + 2b>3b 2 +2乩矛盾.最U 若 b^2a 侧 a 2a ~ 3b~ + 2b^3(2a¥ +4a^>a - + a * 矛盾. 故得选项为ACD1 + A :| 4 1 + A2 +I + X t0]7 ~卿( hA.显窍有】个乩小于1 B 虽务有2个在小于2 C. mHx {, --■, x 2 di?} ^2 (J17D. max { x } T , JC 2 AU \ ^2 016解答ABD.如有2个绪小于】・则上式左边大于占 + j ])•矛盾一 如有3个摘小于厶则匕式左边大于占+出+占■不质. 再注意到x t =^=-= ^01T = 2O16是一组解点匚不陇立. 如 max{jt! ,Xi»***tX aM7 }<2 Olfii 则―-—+ ―1— + ■■■ + -------- ! ----- > --------- 1 --- + -------- - ---- + ■■■ + ------ ! -----1 + 利 h1 + X 2O I 7 1 +2 0161 +2 0161 +2 016矛质.已知事件月—n<P<l?)<lt!WiJ(A . /n = i -re/?)C, H 丽=0B . p(^|A)= i-r(B)D. P(J\B)=QA. b<aB a<bC a<2b D. b<2a已知严■,总期均为大于o 的实数.a故答案选AB6 ' 8 -《高校自主招生一数学》 贾广素工作室入{和 + 几 + zd 是等比数列B.若存在 m .>1— y… - z m ,则 JCi = yi = Zi1 q 1U 若心二-才忌二才则= ( - 1)"亠尹D 以上均不正确解答选BC首先*当首项^i = ^i-zi= 0时・皿+几十為}不是等比数列.其次,若存在啣>l,s = % =昭,解方程组可得x…L -i = y^-i = z^-t =2x Mt 从而递推 可得Xi 二力=巧,一 1 弓 ’ 1出次*由Xi = 一忑心二亍得}■] + Zi - 2x2 + X] =2,则幷“*斗爲二3 •不,根据递推式用為=(-1)”十右.故答棗选BCA 3 n r., =0. 5 B. 3 H * r h =0,6 C. 3 M r fl = () 7 [>, 3 » < =0,8 解答选2假设不存在航’便得 仏=0 5.则山H =O^ioo =0. 85,必存亦「使得hVU •硏5.若k 是偶数•不妨设血二三⑴汀汕笆筈於3<*・不符令题意;若血是奇数"设氐二加T-l.f炭厂+,只能f 矛氐所以选项A 正确 4= 08同理可得选项D 正确. 如果此人第2、86次全部投中•排除B,C.一同学打球■记g 为投起次后的命中率,已知心—AsFL 版则一足有().。
()2017清华大学自主招生暨领军计划数学试题[精校版,带解析]历年自主招生考试数学试题大全,文档
. WORD格式.资料.2021年清华大学自主招生暨领军方案试题1.函数f(x)(x2a)e x有最小值,那么函数g(x)x22xa的零点个数为〔〕A.0B.1C.2D.取决于a的值【答案】C【解析】注意f/(x)e x g(x),答案C.2.ABC的三个内角A,B,C所对的边为a,b,c.以下条件中,能使得ABC的形状唯一确定的有〔〕A.a1,b2,cZB.A1500,asinA csinC2asinC bsinB C.cosAsinBcosC cos(B C)cosBsinC0,C600 D.a3,b1,A600【答案】AD.3.函数f(x) x21,g(x) lnx,以下说法中正确的有〔〕A.f(x),g(x)在点(1,0)处有公切线B.存在f(x)的某条切线与g(x)的某条切线平行C.f(x),g(x)有且只有一个交点D.f(x),g(x)有且只有两个交点专业.整理.WORD 格式.资料 .【答案】BD【解析】注意到y x1为函数g(x)在 (1,0)处的切线,如图,因此答案BD .4.过抛物线y 2 4x 的焦点F 作直线交抛物线于A,B 两点,M 为线段AB 的中点.以下说法中正确的有〔〕3一定相离A .以线段AB 为直径的圆与直线x2B .|AB|的最小值为 4C .|AB|的最小值为2D .以线段BM 为直径的圆与y 轴一定相切【答案】AB【解析】对于选项A ,点M 到准线x1的距离为1(|AF||BF|)1|AB|,于是以线段AB 为直径3 2212, 1的圆与直线x1一定相切,进而与直线x一定相离;对于选项B ,C ,设A(4a 2,4a),那么B( ),124aa于是 |AB| 4a22,最小值为4AB中点到准线的距离的 2倍去得到最小值;.也可将|AB|转化为4a 2对于选项D ,显然BD 中点的横坐标与1|BM|不一定相等,因此命题错误.2225.F 1,F 2是椭圆C:x 2y21(ab0)的左、右焦点,P 是椭圆C 上一点.以下说法中正确的有a b〔〕A .a 2b 时,满足 F 1PF 2 900的点P 有两个B .a2b 时,满足F 1PF 2900的点P 有四个C . PF 1F 2的周长小于4aa 2D . PF 1F 2的面积小于等于2专业.整理.WORD格式.资料.【答案】ABCD.【解析】对于选项A,B,椭圆中使得F1PF2最大的点P位于短轴的两个端点;对于选项C,F1PF2的周|PF1||PF2|sinF1PF21|PF1|2长为2a2c4a;选项D,F1PF2的面积为1|PF2|1a2.2222 6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测:甲:两名获奖者在乙、丙、丁中;乙:我没有获奖,丙获奖了;丙:甲、丁中有且只有一个获奖;丁:乙说得对.四个人中有且只有两个人的猜测是正确的,那么两个获奖者是〔〕A.甲B.乙C.丙D.丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD.7.AB为圆O的一条弦〔非直径〕,OC AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有〔〕A.O,M,B,P四点共圆B.A,M,B,N四点共圆C.A,O,P,N四点共圆D.以上三个说法均不对【答案】AC【解析】对于选项A,OBM OAM OPM即得;对于选项B,假设命题成立,那么MN为直径,必然有MAN为直角,不符合题意;对于选项C,MBN MOP MAN即得.答案:AC.8.sinA sinB sinC cosA cosB cosC是ABC为锐角三角形的〔〕A.充分非必要条件B.必要非充分条件C.充分必要条件D.既不充分也不必要条件【答案】B专业.整理.WORD格式.资料.【解析】必要性:由于sinB sinC sinB sin(B)sinB cosB1,2类似地,有sinC sinA1,sinB sinA1,于是sinA sinB sinC cosA cosBcosC.不充分性:当A,B C4时,不等式成立,但ABC不是锐角三角形.29.x,y,z为正整数,且x y z,那么方程1111的解的组数为〔〕x y z2A.8B.10C.11D.12【答案】B【解析】由于11113,故3x6.2x y z x假设x3,那么(y6)(z6)36,可得(y,z)(7,42),(8,24),(9,18),(10,15),(12,12);假设x4,那么(y4)(z4)16,可得(y,z)(5,20),(6,12),(8,8);假设x 5,那么3112,y20,y5,6,进而解得(x,y,z)(5,5,10);10y z y3假设x6,那么(y3)(z3)9,可得(y,z)(6,6)).答案:B.10.集合A{a1,a2, ,a n},任取1 i j k n,a i a j A,a j a k A,a k a i A这三个式子中至少有一个成立,那么n的最大值为〔〕A.6B.7C.8D.9【答案】B11.10,610,1210,那么以下各式中成立的有〔〕A.tan tan tan tan tan tan3B.tan tan tan tan tan tan3专业.整理.WORD格式.资料.C.tan tan tan3tan tan tanD.tan tan tan3tan tan tan【答案】BD【解析】令x tan,y tan,z tan,那么yx z y x z3,所以1xy1yz1zxyz3(1xy),z y3(1yz),x z3(1zx),以上三式相加,即有xyyzzx3.类似地,有113(11),113(11),113(11),以上三式相加,即有x y xy y z yz z x zx111x y z3.答案BD.xy yz zx xyz12.实数a,b,c满足a bc 1,那么4a14b14c1的最大值也最小值乘积属于区间〔〕A.(11,12)B.(12,13)C.(13,14)D.(14,15)【答案】B【解析】设函数f(x)4x1,那么其导函数f/(x)2,作出f(x)的图象,函数f(x)的图象在x14x13处的切线y221(x1)21,以及函数f(x)的图象过点(1,0)和(3,7)的割线73342y4x1,如图,于是可得4x14x1221(x1)21,左侧等号当x1或77777334x3右侧等号当x121,当a b1时取得;最小值为时取得;时取得.因此原式的最大值为c2337,当a b1,c3时取得,从而原式的最大值与最小值的乘积为73(144,169).答案B.42专业.整理. WORD 格式.资料 .13., ,z,yz1, x 2 y 221,那么以下结论正确的有〔 〕x y Rx zA .xyz 的最大值为B .xyz 的最大值为427C .z 的最大值为2D .z 的最小值为133【答案】ABD14.数列{a n }满足a 11,a 2 2,a n26a n1 a n (nN*),对任意正整数n ,以下说法中正确的有〔〕A .a n 2 1a n2a n 为定值B.a n1(mod9) 或a n 2(mod9)C .4a n1a n 7为完全平方数D.8a n1a n 7为完全平方数【答案】ACD【解析】因为a n22a n3a n1a n22(6an2a n 1)an1a n226a n2an1a n 2 1a n 2(an26a n 1)a n 2 1 a n 21a n2a n ,选项A 正确;由于a 311,故a n 2 1 a n2a n a n 2 1 (6a n1a n )a na n 2 16a n 1a n a n 27,又对任意正整数恒成立,所以4a n1a n 7(a n1a n )2,8a n1a n7(a n1a n )2,应选项C 、D 正确.计算前几个数可判断选项B 错误.说明:假设数列{a n }满足a n 2 pa n 1a n ,那么a n 21a n2a n 为定值.15.假设复数z 满足z11,那么z 可以取到的值有〔 〕zA .1B . 1C .51 D .512222【答案】CD专业.整理.WORD格式.资料.【解析】因为|z|1z11,故51|z|51,等号分别当z51i和z51i时|z|z2222取得.答案CD.16.从正2021边形的顶点中任取假设干个,顺次相连构成多边形,假设正多边形的个数为〔〕A.6552B.4536C.3528D.2021【答案】C【解析】从2021的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2021个顶点中选出k个构成正多边形,这样的正多边形有2021个,因此所求的正多边形的个数就是2021的所有约数之和减去2021 k和1008.考虑到202125327,因此所求正多边形的个数为(12481632)(139)(17)202110083528.答案C.17.椭圆x2y21(a b0)与直线l1:y1x,l2:y1x,过椭圆上一点P作l1,l2的平行线,a2b222a分别交l1,l2于M,N两点.假设|MN|为定值,那么〔〕bA.2B.3C.2D.5【答案】C【解析】设点P(x,y),可得111111,成心M(x0y0,x0y0),N(x0y0,x0y0)00224242|MN|1x024y02为定值,所以a2416,a2,答案:C.4b21b4说明:〔1〕假设将两条直线的方程改为ya1M,N,使得|MN| kx,那么;〔2〕两条相交直线上各取一点b k为定值,那么线段MN中点Q的轨迹为圆或椭圆.18.关于x,y的不定方程x21652y的正整数解的组数为〔〕A.0B.1C.2D.3【答案】B专业.整理.WORD格式.资料.19.因为实数的乘法满足交换律与结合律,所以假设干个实数相乘的时候,可以有不同的次序.例如,三个实数a,b,c相乘的时候,可以有(ab)c,(ba)c,c(ab),b(ca),等等不同的次序.记n个实数相乘时不同的次序有I n种,那么〔〕A.I22B.I312C.I496D.I5120【答案】B【解析】根据卡特兰数的定义,可得I n C n1A n n 1Cnn1n!n1.答案:AB.2n2(n1)!C2n1关于卡特兰数的相关知识见?卡特兰数——计数映射方法的伟大胜利?.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是,乙击败丁的概率是.那么甲刻冠军的概率是.【答案】【解析】根据概率的乘法公式,所示概率为0.3(0.5 0.3 0.5 0.8).21.在正三棱锥P ABC中,ABC的边长为1.设点P到平面ABC的距离为x,异面直线AB,CP的距离为y.那么limy.x3【答案】2【解析】当x时,CP趋于与平面ABC垂直,所求极限为ABC中AB边上的高,为3.2专业.整理. WORD 格式.资料 .22.如图,正方体 ABCDA 1B 1C 1D 1的棱长为1,中心为O,BF1BC,A 1E 1A 1A ,那么四面体OEBF2 4的体积为 .1【答案】96【解析】如图,V OEBF V OEBF1V GEBF1V EGBF11V EBCC 1B 1 1 .2 22 16 962sin 2nx)dx23.(x )2n1(1.【答案】02)2n 1(1 sin 2nx)dxx2n1(1 sin 2nx)dx 0.【解析】根据题意,有 (x24.实数x,y 满足(x 2 y 2)3 4x 2y 2,那么x 2 y 2的最大值为.【答案】1【解析】根据题意,有(x 2y 2)34x 2y 2(x 2 y 2)2,于是x 2y 2 1,等号当x 2y 21 时取得,2因此所求最大值为 1.25.x,y,z 均为非负实数,满足(x 1)2 (t 1)2 (z 3)227 ,那么xy z 的最大值与最小值分别22 4为.【答案】22 32【解析】由柯西不等式可知,当且仅当(x,y,z)(1,1,0)时,xy z 取到最大值3.根据题意,有22专业.整理. WORD 格式.资料 .x 2 y 2 z 2 x2y3z 13 ,于是 13 (x yz)23(x yz)y,解得xy z223 .于是4 42x y z 的最小值当(x,yz)(0,0,223)时取得,为22 3.2226.假设O 为ABC 内一点,满足S AOB :S BOC :S COA4:3:2 ,设AOABAC ,那么.【答案】23【解析】根据奔驰定理,有2 4 299 .327.复数zcos2isin2,那么z 3z 2z 2 2.33z1 3【答案】2i2【解析】根据题意,有z3z 2z 221 z 2zcos5isin51 3i .z3 32228.z 为非零复数,z ,40的实部与虚部均为不小于1的正数,那么在复平面中,z 所对应的向量OP 的10 z端点P 运动所形成的图形的面积为.【答案】2001003 3003x y1,R),由于401,【解析】设zxyi(x,y 40z ,于是 10 1040y如图,弓形面积为z|z|2 40x1, 1,x 2y 2 x 2 y 21202(sin 6)100 100,四边形ABCD 的面积为21(10 3 10)101003100.2632专业.整理.WORD 格式.资料 .于是所示求面积为2(100100)(1003100)200 1003300.333,那么sin4xsin2xsinxsinx 29.假设tan4xcos4xcos2xcos2xcosx.3cos8xcos4x cosx【答案】3【解析】根据题意,有sin4x sin2xsinx sinxcos8xcos4xcos4xcos2x cos2xcosx cosx(tan8x tan4x) (tan4x tan2x) (tan2xtanx)tanxtan8x3.30.将16个数:4个1,4个2,4个3,4个4填入一个 4 4的数表中,要求每行、每列都恰好有两个偶数,共有种填法.【答案】44100031.设A 是集合{1,2,3, ,14}的子集,从A 中任取 3个元素,由小到大排列之后都不能构成等差数列,那么A中元素个数的最大值为 .【答案】8【解析】一方面,设A {a 1,a 2, ,a k },其中kN *,1 k 14.不妨假设a 1 a 2a k .假设k 9,由题意,a 3 a 1 3,a 5 a 37,且a 5a 3 a 3 a 1,故a 5a 17.同理a 9a 5 7.又因为a 9 a 5 a 5 a 1,所以a 9a 1 15,矛盾!故k8.另一方面,取 A {1,2,4,5,10,11,13,14},满足题意.综上所述, A 中元素个数的最大值为8.专业.整理。
XXX2017年自主招生考试数学试题 Word版含答案
XXX2017年自主招生考试数学试题 Word版含答案1.XXX2017年面向全省自主招生考试《科学素养》测试数学试卷一、选择题(本大题共8小题,每小题5分,共40分)1.已知$a=\frac{5+35-3}{5-35+3}$,$b=$,则二次根式$a^3b+ab^3+19$的值是()A、6.B、7.C、8.D、92.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()begin{cases}4x\geq3(x+1)\\2x-<a\end{cases}$A、$\frac{3}{452}$B、$\frac{1}{993}$C、$\frac{1}{452}$ D、$\frac{1}{165}$3.已知一次函数$y=kx+b$的图像经过点(3,0),且与坐标轴围成的三角形的面积为6,满足条件的函数有()A、2个B、3个C、4个D、5个4.若实数$a\neq b$,且a、b满足$a^2-8a+5=0$,$b^2-8b+5=.$则A、-20.B、2.C、2或20.D、2或205.对于每个非零自然数n,抛物线$y=x-\frac{b-1}{a-1}$的值为$\frac{2n+1}{n(n+1)}$,其中$x+$与x轴交于A$_n$、B$_n$以及A$_{2017}$、B$_{2017}$的值是()表示这两点间的距离,则A、$\frac{2017}{2016}+\frac{2018}{2017}$B、$\frac{2016}{2017}+\frac{2018}{2017}$ C、$\frac{2016}{2017}+\frac{2017}{2016}$ D、$\frac{2017}{2016}+\frac{2017}{2016}$6.已知$a,b,c$是$\triangle ABC$的三边,则下列式子一定正确的是()A、$a^2+b^2+c^2>ab+bc+ac$B、$\frac{a+bc}{a+b+1c+1}c$ D、$a^3+b^3>c^3$7.如图,从$\triangle ABC$各顶点作平行线$AD\parallel EB\parallel FC$,各与其对边或其延长线相交于D,E,F.若$\triangle ABC$的面积为1,则$\triangle DEF$的面积为()A、3.B、3C、D、28.半径为2.5的圆$\odot O$中,直径AB的不同侧有定点C和动点P,已知$A、$\frac{169}{25}$B、$\frac{32}{43}$C、$\frac{3}{4}$ D、$\frac{5}{6}$二、填空题(本大题共7小题,每小题5分,共35分)9.若分式方程$\frac{x-a}{x+1}=a$无解,则$a$的值为_________满足$a<1$,则方程$\frac{x-a}{x+1}=a$的解为$x=\frac{a}{1-a}$,当$a\geq1$时,分母$x+1$始终大于分子$x-a$,方程无解。
江苏省淮阴中学2017高三清华北大自主招生数学训练题3
数学自主招生训练题(3)1.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )52、已知双曲线C :2222-1(00)x y a b a b=>>,的离心率为5e 4=,且其右焦点为F 2(5,0),则双曲线的方程为A 、22-143x y = B 、22-1169x y = C 、22-1916x y = D 、22-134x y = 3、若空间中n 个不同的点两两距离都相等,则正整数n 的取值A 、大于5B 、等于5C 、至多等于4D 、至多等于34.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 5.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C. 120D.130 6.一个四面体的三视图如图所示,则该四面体的表面积是( )+2(A)321+(B )318+(C )21(D )18正(主)视图侧(左)视图8.若函数a x x x f +++=21)(的最小值为3,则实数a 的值为(A )5或8 (B )1-或5 (C )1-或4- (D )4-或89.若46b ax x ⎛⎫+ ⎪⎝⎭的展开式中3x 项的系数为20,则22a b +的最小值为 。
10.在ABC D 中,内角,,A B C 所对的边分别是,,a b c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_______.11.在以O 为极点的极坐标系中,圆4sin r q =和直线sin a r q =相交于,A B 两点.若AOB D 是等边三角形,则a 的值为___________.12.已知函数()23f x x x =+,x R Î.若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为__________.13.如图,在四棱锥P ABCD -中,PA ^底面ABCD ,AD AB ^,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(Ⅰ)证明 BE DC ^;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值; (Ⅲ)若F 为棱PC 上一点,满足BF AC ^, 求二面角F AB P --的余弦值.14.设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知12AB F =. (Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点的直线l 与该圆相切. 求直线的斜率.15.已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,1,q M =-,集合{}112,,1,2,,n n i A x x x x q x q x M in -+?==++.(Ⅰ)当2q =,3n =时,用列举法表示集合A ; (Ⅱ)设,s t A Î,112n n s a a q a q -=+++,112n n t b b q b q -=+++,其中,i i a b M Î,1,2,,i n =. 证明:若n n a b <,则s t <.16.已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c ,|FM|=3.(I)求直线FM 的斜率; (II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP OP (O 为原点)的斜率的取值范围.17.已知函数()xf x x ae=-()a R Î,x R Î.已知函数()y f x =有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围; (Ⅱ)证明21x x 随着a 的减小而增大; (Ⅲ)证明 12x x +随着a 的减小而增大.18.已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >, (I )设()g x 是()f x 的导函数,讨论函数()g x 的单调性(II )证明:存在(0,1)a ∈使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解数学自主招生训练题(3)答案1-8.BBCDDBAD 9. 2 10.14-11.3 12. 01a <<或9a > 13. 解:依题意,以点A 为原点建立空间直角坐标系(如图),可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()0,0,2P .由E 为棱PC 的中点,得()1,1,1E .(Ⅰ)证明:向量()0,1,1BE =,()2,0,0DC =,故0BE DC ?. 所以,BE DC ^.(Ⅱ)解:向量()1,2,0BD =-,()1,0,2PB =-.设(),,n x y z =为平面PBD 的法向量,则0,0,n BD n PBìï?ïíï?ïî即20,20.x y x z ì-+=ïïíï-=ïî不妨令1y =,可得()2,1,1n =为平面PBD 的一个法向量.于是有Ccos ,36n BE n BE n BE×===× 所以,直线BE 与平面PBD 所成角的正弦值为3. (Ⅲ)解:向量()1,2,0BC =,()2,2,2CP =--,()2,2,0AC =,()1,0,0AB =. 由点F 在棱PC 上,设CF CP l =,01l#.故()12,22,2BF BC CF BC CP l l l l =+=+=--. 由BF AC ^,得0BF AC?,因此,()()2122220l l -+-=,解得34l =.即113,,222BF 骣÷ç=-÷ç÷ç桫. 设()1,,n x y z =为平面FAB 的法向量,则110,0,n AB n BFìï?ïíï?ïî即0,1130.222x x y z ì=ïïïíï-++=ïïî 不妨令1z =,可得()10,3,1n =-为平面FAB 的一个法向量. 取平面ABP 的法向量()20,1,0n=,则121211cos ,1010nn n n n n ×===-×. 易知,二面角F AB P --是锐角,所以其余弦值为10. (方法二)(Ⅰ)证明:如图,取PD 中点M ,连接EM ,AM . 由于,E M 分别为,PC PD 的中点, 故//EM DC ,且12EM DC =,又由已知,可得//EM AB 且EM AB =,故四边形ABEM 为平行四边形,所以//BE AM .因为PA ^底面ABCD ,故PA CD ^,而CD DA ^,从而CD ^平面PAD ,因为AM Ì平面PAD ,于是CD AM ^,又//BE AM ,所以BE CD ^.(Ⅱ)解:连接BM ,由(Ⅰ)有CD ^平面PAD ,得CD PD ^,而//EM CD ,故PD EM ^.又因为AD AP =,M 为PD 的中点,故PD AM ^,可得PD BE ^,所以PD ^平面BEM ,故平面BEM ^平面PBD .所以直线BE 在平面PBD 内的射影为直线BM ,而BE EM ^,可得EBM Ð为锐角,故EBM Ð为直线BE 与平面PBD 所成的角.依题意,有PD =,而M 为PD 中点,可得AM =BE =故在直角三角形BEM 中,tanEM AB EBMBE BE ?==,因此in s EMB ?.所以,直线BE 与平面PBD(Ⅲ)解:如图,在PAC D 中,过点F 作//FH PA 交AC 于点H .因为PA ^底面ABCD ,故FH ^底面ABCD ,从而FH AC ^.又BF AC ^,得AC ^平面FHB ,因此AC BH ^.在底面ABCD 内,可得3CH HA =,从而3CF FP =.在平面PDC 内,作//FG DC 交PD 于点G ,于是3DG GP =.由于//DC AB ,故//GF AB ,所以,,,A B F G 四点共面. 由AB PA ^,AB AD ^,得AB ^平面PAD ,故AB AG ^. 所以PAG Ð为二面角F AB P --的平面角.在PAG D 中,2PA =,142PG PD ==,45APG ?,由余弦定理可得AG =,os c PAG ?.所以,二面角F AB P --.14. (Ⅰ)解:设椭圆的右焦点2F 的坐标为(),0c .由12AB F =,可得2223a b c +=,又222b ac =-,则2212c a =.所以,椭圆的离心率2e =. ,所以22223a c c -=,解得a =,2e =. (Ⅱ)解:由(Ⅰ)知222a c =,22b c =.故椭圆方程为222212x y c c+=.设()00,P x y .由()1,0F c -,()0,B c ,有()100,F P x c y =+,()1,F B c c =. 由已知,有110FP FB ?,即()000x c c y c ++=.又0c ¹,故有000x y c ++=. ①又因为点P 在椭圆上,故22002212x y c c+=. ② 由①和②可得200340x cx +=.而点P 不是椭圆的顶点,故043c x =-,代入①得03cy =,即点P 的坐标为4,33c c 骣÷ç-÷ç÷ç桫. 设圆的圆心为()11,T x y ,则1402323c x c -+==-,12323ccy c +==,进而圆的半径r =. 设直线l 的斜率为k ,依题意,直线l 的方程为y kx =.由l r ==, 整理得2810kk -+=,解得4k =?所以,直线l的斜率为4+或4-15. (Ⅰ)解:当2q =,3n =时,{}0,1M =,{}12324,,1,2,3i A x x x x x M x i==+?+.可得,{}0,1,2,3,4,5,6,7A =.(Ⅱ)证明:由,s t A Î,112n n s a a q a q -=+++,112n n t b b q b q -=+++,,i i a b M Î,1,2,,i n =及n n a b <,可得()()()()11222111n n n n n n a b q a b q s t a b a b q -----=-+-++-+-()()()21111n n qq q q q q --?+-++--()()11111n n q q q q----=--10=-<. 所以,s t <.16.(I )解:由已知有2213c a =,又由222+a b c =,可得22223,2a c b c ==.设直线FM 的斜率为(0)k k,则直线FM 的方程为()y k x c =+.由已知,有2⎛⎫+2222c b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,解得k =. (II )解:由(I )得椭圆方程为2222132x y c c +=,直线FM的方程为)y x c =+,两个方程联立,消去y ,整理得223250x cx c +-=,解得53x c =-,或x c =.因为点M 在第一象限,可得M的坐标为,3c c ⎛⎫ ⎪ ⎪⎝⎭.有FM ==,解得1c =,所以椭圆的方程为22132x y +=.(III )解:设点P 的坐标为(),x y ,直线FP 的斜率为t ,得1yt x =+,即()1y t x =+()1x ≠-,与椭圆方程联立22(1),1,32y t x x y =+⎧⎪⎨+=⎪⎩消去y ,整理得22223(1)6x t x ++=.又由已知,得2t =,解得312x --,或10x -.设直线OP 的斜率为m ,得ym x=,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-. ①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+,因此0m ,于是m =,得3m ⎛∈ ⎝⎭.②当()1,0x ∈-时,有(1)0y t x =+,因此0m ,于是m=,得,m ⎛∈-∞ ⎝⎭. 综上,直线OP 的斜率的取值范围是,3⎛-∞-⎝⎭,33⎛ ⎝⎭. 17(Ⅰ)解:由()xf x x ae =-,可得()1x f x ae ¢=-.下面分两种情况讨论: (1)0a £时()0f x ¢>在R 上恒成立,可得()f x 在R 上单调递增,不合题意. (2)0a >时,由()0f x ¢=,得ln x a =-.当x 变化时,()f x ¢,()f x 的变化情况如下表:这时,()f x 的单调递增区间是(),ln a -?;单调递减区间是()ln ,a -+¥.于是,“函数()y f x =有两个零点”等价于如下条件同时成立: 1°()ln 0f a ->;2°存在()1,ln a s ??,满足()10f s <;3°存在()2ln ,a s ?+?,满足()20f s <.由()ln 0f a ->,即ln 10a -->,解得10a e -<<,而此时,取10s =,满足()1,ln a s ??,且()10f s a =-<;取222ln s a a=+,满足()2ln ,a s ?+?,且()22222ln 0a a f s e e a a骣骣鼢珑鼢=-+-<珑鼢珑鼢珑桫桫. 所以,a 的取值范围是()10,e-.(Ⅱ)证明:由()0xf x x ae =-=,有x x a e=. 设()x x g x e =,由()1xxg x e -¢=,知()g x 在(),1-¥上单调递增,在()1,+¥上单调递减.并且,当(],0x ??时,()0g x £;当()0,x ??时,()0g x >.由已知,12,x x 满足()1a g x =,()2a g x =. 由()10,a e -Î,及()g x 的单调性,可得()10,1x Î,()21,x ??.对于任意的()1120,,a a e -Î,设12a a >,()()121g g a x x ==,其中1201x x <<<;()()122g g a h h ==,其中1201h h <<<.因为()g x 在()0,1上单调递增,故由12a a >,即()()11g g x h >,可得11x h >;类似可得22x h <.又由11,0x h >,得222111x h h x x h <<. 所以,21x x 随着a 的减小而增大. (Ⅲ)证明:由11x x ae =,22x x ae =,可得11ln ln x a x =+,22ln ln x a x =+.故221211ln ln lnx x x x x x -=-=. 设21x t x =,则1t >,且2121,ln ,x tx x x t ì=ïïíï-=ïî解得1ln 1t x t =-,2ln 1t t x t =-.所以, ()121ln 1t tx x t ++=-. ①令()()1ln 1x xh x x +=-,()1,x ??,则()()212ln 1x x x h x x -+-¢=-.令()12ln u x x x x=-+-,得()21x u x x 骣-÷ç¢=÷ç÷ç桫. 当()1,x ??时,()0u x ¢>.因此,()u x 在()1,+¥上单调递增,故对于任意的()1,x ??,()()10u x u >=,由此可得()0h x ¢>,故()h x 在()1,+¥上单调递增.因此,由①可得12x x +随着t 的增大而增大.而由(Ⅱ),t 随着a 的减小而增大,所以12x x +随着a 的减小而增大. 18解:(1)()()222ln 22=-++--+f x x a x x ax a a()()()2'2ln 2220,0∴==---+->>ag x f x x x a a x x()()()222222'20,0-+-∴=++=>>x x a ag x a x x x x令()'0≥g x ,即()200-+≥>x x a x ,讨论此不等式的解,可得:① 当140∆=-≤a 时,即14≥a 时,不等式恒成立。
清华大学自主招生试题含答案
、选择题2( )(A)充分不必要(B)必要不充分(C)充要(D)3.设A、B是抛物线y=x2上两点,0是坐标原点,若OAL 0B,则()(A)|OA| •|OB| > 2 (B)|OA|+|OB| (C)直线AB过抛物线y=x2的焦点(D)O至煩线AB的距离小于等于X yf (x) >0,x € (-1,0);② f (X) + f (y) = f ( ) , X、y €1 xy(-1,1),则f (x)为(A)奇函数(B)偶函数(C)减函数(D)有界函数5. 如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)= f (x) - kx有(/ C=—,且sinC+sin(B - A) -2sin2A=0,则有(3(A)b=2 a (B) △ ABC的周长为2+2-. 3 (C) △ ABC的面积为一空(D) △ ABC的外接圆半径为37.设函数f(x) (x23)e x,则( )(A) f (x)有极小值,但无最小值(B) f (x)有极大值,但无最大值(C)若方程f (x) =b恰有一个实根,则b>-6| (D)若方程f (x) =b恰有三个不同实根,则0<b<£e e1.设复数z=cos -3+isin (A)0 (B)1 (C) 2 冲13 ,则仁(D)3211 z22.设数列{aj为等差数列, p,q,k, l为正整数,则p+q>k+l ”是“ a p aqa k a l ”的()条件既不充分也不必要4.设函数f(x)的定义域为(-1,1),且满足:①个极小值点(D)3个极小值点8.已知 A={(x,y) 1 x 22 2y r },B={(x,y)1 (x2 2 2a) (y b) r ,已知 A n B={(x 1,yJ ,( X 2,y 2)},则()(A)0< a 2 b 2 <2r 2(B)aXX 2) b(y1 y 2) 0(C)X 1 X 2 = a , y 1y 2=b (D)2a b 2 = 2ax 1 2by 19.已知非负实数x,y,z满足4x 24y 22z +2z=3, 则5x+4y+3z 的最小值为()(A)1 (B)2 (C)3 (D)410.设数列{ a n }的前n 项和为S n ,若对任意正整数n ,总存在正整数 m,使得S n =a m ,则( )(A ){ a n }可能为等差数列(B ){ a n }可能为等比数列(c ){a n }的任意一项均可写成{a n }的两项之差(D)对任意正整数n ,总存在正整数 m 使得a n = S m 11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测: 3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名•比赛后发现没有并列名次,且甲、乙、丙、丁中只有 1人猜对比赛结果,此人是( )(A)甲(B)乙(C)丙(D) 丁1(A)若S=4,则k 的值唯一(B) 若S=^,贝U k 的值有2个22(C)若D 为三角形,则0<k <(D)若D 为五边形,则312.长方体 ABCDAEGD 中,AB=2, AD=A A 1=1,贝U A 到平面 A BD 的距离为((A) - (B)3(D)13.设不等式组|x| |y| 2 y 2 k(x 1)所表示的区域为 D,其面积为S,U(k>414. △ ABC 勺三边长是 2,3,4,其外心为 0,则 uuu uuu OA AB uuu uuu uuur uuu OB BC 0C CA =((A)0 (B)-15 (C) -21(D)229 215. 设随机事件 A 与B 互相独立,且 P(B)=0.5(A)P(A)=0.4 (B)P(B -A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916. 过厶ABC 的重心作直线将厶 3(A)最小值为一(B)最小值为417. 从正15边形的顶点中选出,P(A- B)=0.2,则(ABC 分成两部分,则这两部分的面积之比的(4 4(C)最大值为一533个构成钝角三角形,5(D 最大值为一4则不同的选法有((A)105 种(B)225 种(C)315 种(D)420 种18. 已知存在实数r,使得圆周x2y2 r2上恰好有n个整点,则n可以等于(22.在极坐标系中,下列方程表示的图形是椭圆的有(4 2 1 V2(A)最小值为一(B)最小值为一 (C)最大值为1 (D)最大值为--------------------5 5 3(A)4 (B)6 (C)8 (D)1219. 设复数z 满足2|z| w |z-1|,则(1(A)|z|的最大值为1 (B)|z| 的最小值为—(C)z321的虚部的最大值为2(D)z 的实部的最大值为13320.设 m,n 是大于零的实数, a =(mcos a ,msin a ),b =(ncos 3 ,nsin 3 ),其中 a , B€ [0,2 n ) a , B€r 1, _[0,2 n ) •定义向量 a 2 =( 、、. m cos — ,、. m sin 一 ), b 2=(、. n 2cos — 2 ,、齐 sin —),记 9 = a - 3,贝U2r [ r 1 r r 1 r 1 ___ (A) a 2 • a 2 = a (B) a 2 b 2=、.mn cos — (C) 2r] r] … |a 2 b 2|4、一 mn sin 2 —4r 1 r] 2 _ 2 (D) |a 2 b 2 |24, mncos 2 —421.设数列{ a n }满足:a 1=6, an 1,则((A) ? n € N?, a n <(n 1)3 (B) ? n € N?, a n 丰 2015 (C) ? n € N?, a n 为完全平方数(D)? n € N?, a n 为完全立方数1 (A )p=cos sin23. 设函数 f(x)s in x,则( x x 14(A ) f(x) w (B)| f (x) | w 5|x| (C)曲线 y= f (x)存在对称轴324. △ ABC 的三边分别为a ,b,c ,若△ ABC 为锐角三角形,则((B )p=—1(C ) 2 sin1p= —2 cos(D )(D) 1 1 2si n曲线y= f (x)存在对称中心(A)si nA>cosB (B)ta nA>cotB (C) a 2 b 2 c 2 (D) a 3 b 3 c 325.设函数f (x)的定义域是(-1,1), 若f(0) = f (0) =1,则存在实数 s€ (0,1),使得()(A) f (x) >0, x € (- S , S) (B)f (x)在(-S , S )上单调递增 (C) f (x) >1, x € (0, S) (D)f (x)>1 , x € (- S ,0)26.在直角坐标系中,已知A(-1,0),B(1,0) •若对于y 轴上的任意n 个不同的点 P k (k=1,2,…,n),总存在两个不同的点R ,P j ,1使得 |sin / A P j B-sin / A P j B| w —,贝V n 的最小值为( 3(A)3 (B)4(C)5 (D)627.设非负实数x,y 满足2x+y=1,则 x+ x 2 y 2 的()128.对于50个黑球和49个白球的任意排列(从左到右排成一行),则((A)存在一个黑球,它右侧的白球和黑球一样多(B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个 29.从1,2,3,4,5 中挑出三个不同数字组成五位数, 同的五位数有( (A)300 个(B)450其中有两个数字各用两次,例如 12231,则能得到的不 30.设曲线L 的方程为 (A)L 是轴对称图形 (C)L ? {(x,y) I ##A nswer##1.【解析】 丄1-z) 个(C)900 y 4 (2x 2(B)L 个(D)1800 个 2 4 2 2)y (x 2x ) =0,则(是中心对称图形 1 (D)L ? {(x,y)zz 1 zz_______ 1 - 2. 21-cos i sin332 cos 3..2 i sin ___ 3 2 2i sin32sin 2 i 2sin cos —3 3 3 cos0 isinO 2sin — [cos( —) i sin(-)i sin(3、、3(cos —2-洽 2os(cos( i sin ) 27) i sin(67)]丄(cos — isi n —.3 6 6△ )=1,选 B22.【简解】 a p (a k Q )=[(p+q)-(k+l)]d ,与公差 d 的符号有关,选 3.【解析】设A( 2X 1,X 1 ),B( 2 uuu uuu X 2,X 2 ), OA OB =X 1X 2(1 X 1X 2) =0 X 2 X1 答案(A), |0A| l OBI ^x^(1 好)4(1 —1^) = j1 X2 1 2 X 11 > /2 2|X 1 | 丄=2,正确; |X 1 | 答案(B),|OA|+|OB| > 2..|OA 「|OB| > 2 .2,正确;答案(C),直线 AB 的斜率为 2 22^=X 2 x 2 x 1X1程为 y- xj =( x 1 1)(x-x 1),焦点(0, 1)不满足方程,错误;答案(D),原点到直线AB :(4X11)x-y+ 仁X 1的距离d=w 1,正确。
清华大学自主招生暨领军计划试题
手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有 1 人猜对比赛结果,此人是
()
A. 甲
B. 乙
C. 丙
D. 丁
解析 D.
由于甲的判断正确或者丙的判断正确都会导致乙的判断正确,因此甲、丙的判断均错误,此时乙的判断必
然错误,故丁的判断正确.
12. 长方体 ABCD − A1B1C1D1 中, AB = 2 , AD = AA1 =√1 ,则点 A 到平面 A1BD√的距离为 ( )
)
A. b = 2a
√
√ B. △ABC 的周长为 2 + 2 3 √
C. △ABC 的面积为 2 3
D. △ABC 的外接圆半径为 2 3
3
3
解析 BCD.
将
2π B = −A
代入题中等式,可得
( sin 2A
−
π)
=
1
,于是
π
π
A = ,B =
或
A
=
π ,B
=
π
.进
3
62
6
2
2
6
而可以计算 △ABC 的周长,面积以及外接圆半径.
y
y = kx + m
O
x
y = f (x)
A. 2 个极大值点 解析 BC.
B. 3 个极大值点
C. 2 个极小值点
D. 3 个极小值点
相当于以直线 y = kx + m 为 x 轴观察函数 y = f (x) 的图象的极值点.
6. △ABC 的三边分别为 a, b, c .若 c = 2 , ∠C = π ,且满足 sin C + sin(B − A) − 2 sin 2A = 0 ,则 ( 3
2016清华大学自主招生暨领军计划数学试题(精校word版,带解析)-历年自主招生考试数学试题大全
2016年清华大学自主招生暨领军计划试题1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( ) A .0 B .1 C .2 D .取决于a 的值 【答案】C【解析】注意)()(/x g e x f x=,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( )A .Z c b a ∈==,2,1B .B bC a C c A a A sin sin 2sin sin ,1500=+=C .060,0sin cos )cos(cos sin cos ==++C C B C B C B A D .060,1,3===A b a【答案】AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A .)(),(x g x f 在点)0,1(处有公切线B .存在)(x f 的某条切线与)(x g 的某条切线平行C .)(),(x g x f 有且只有一个交点D .)(),(x g x f 有且只有两个交点【答案】BD【解析】注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4.过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A .以线段AB 为直径的圆与直线23-=x 一定相离 B .||AB 的最小值为4 C .||AB 的最小值为2D .以线段BM 为直径的圆与y 轴一定相切 【答案】AB【解析】对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B ,C ,设)4,4(2a a A ,则)1,41(2a a B -,于是2414||22++=aa AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值;对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误.5.已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( ) A .b a 2=时,满足02190=∠PF F 的点P 有两个 B .b a 2>时,满足02190=∠PF F 的点P 有四个C .21F PF ∆的周长小于a 4D .21F PF ∆的面积小于等于22a【答案】ABCD .【解析】对于选项A ,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点;对于选项C ,21PF F ∆的周长为ac a 422<+;选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅. 6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测: 甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A .甲B .乙C .丙D .丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD .7.已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( ) A .P B M O ,,,四点共圆 B .N B M A ,,,四点共圆 C .N P O A ,,,四点共圆D .以上三个说法均不对【答案】AC【解析】对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意;对于选项C ,MAN MOP MBN ∠=∠=∠即得.答案:AC . 8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π,类似地,有1sin sin ,1sin sin >+>+A B A C ,于是C B A C B A cos cos cos sin sin sin ++>++. 不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( ) A .8B .10C .11D .12【答案】B 【解析】由于xz y x 311121≤++=,故63≤≤x . 若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ; 若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ; 若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ; 若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B .10.集合},,,{21n a a a A =,任取A a a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( ) A .6B .7C .8D .9【答案】B11.已知000121,61,1===γβα,则下列各式中成立的有( ) A .3tan tan tan tan tan tan =++αγγββαB .3tan tan tan tan tan tan -=++αγγββαC .3tan tan tan tan tan tan =++γβαγβαD .3tan tan tan tan tan tan -=++γβαγβα【答案】BD 【解析】令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zxzx yz y z xy x y ,所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-,以上三式相加,即有3-=++zx yz xy .类似地,有)11(311),11(311),11(311+=-+=-+=-zxx z yz z y xy y x ,以上三式相加,即有3111-=++=++xyzzy x zx yz xy .答案BD . 12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A .)12,11(B .)13,12(C .)14,13(D .)15,14(【答案】B【解析】设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图,于是可得321)31(7212147174+-≤+≤+x x x ,左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( ) A .xyz 的最大值为0 B .xyz 的最大值为274- C .z 的最大值为32D .z 的最小值为31-【答案】ABD14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( )A .n n n a a a 221++-为定值 B .)9(mod 1≡n a 或)9(mod 2≡n aC .741-+n n a a 为完全平方数D .781-+n n a a 为完全平方数 【答案】ACD 【解析】因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a a nn n n n n n a a a a a a a 22121122)6(++++++-=+-=,选项A 正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a ,又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++,故选项C 、D 正确.计算前几个数可判断选项B 错误.说明:若数列}{n a 满足n n n a pa a -=++12,则n n n a a a 221++-为定值.15.若复数z 满足11=+zz ,则z 可以取到的值有( ) A .21B .21-C .215-D .215+ 【答案】CD 【解析】因为11||1||=+≤-zz z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD .16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( ) A .6552 B .4536 C .3528 D .2016 【答案】C【解析】从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008.考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a b y a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P 作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=ba( ) A .2B .3C .2D .5【答案】C【解析】设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++,故意2020441||y x MN +=为定值,所以2,1641422===b a b a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则kb a 1=;(2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程y x 21652=+的正整数解的组数为( ) A .0B .1C .2D .3【答案】B19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有 ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有n I 种,则( )A .22=IB .123=IC .964=ID .1205=I 【答案】B【解析】根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n nn n n C n n C nA C I .答案:AB . 关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 . 【答案】0.165【解析】根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯.21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .【答案】23 【解析】当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23. 22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A E A BC BF O 1141,21,==,则四面体OEBF 的体积为 .【答案】196【解析】如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V .23.=+-⎰-dx x x n n )sin 1()(22012ππ .【答案】0【解析】根据题意,有0)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n n n ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 . 【答案】1【解析】根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1.25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 . 【答案】2322- 【解析】由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23.根据题意,有41332222=+++++z y x z y x ,于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x .于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-. 26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设AC AB AO μλ+=,则=+μλ .【答案】23【解析】根据奔驰定理,有329492=+=+μλ. 27.已知复数32sin32cos ππi z +=,则=+++2223z z z z . 【答案】1322i - 【解析】根据题意,有i i z z z z z z 232135sin 35cos 122223-=+=-=+=+++ππ. 28.已知z 为非零复数,zz 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 . 【答案】20010033003π+-【解析】设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y y x x y x 如图,弓形面积为1003100)6sin 6(20212-=-⋅⋅πππ,四边形ABCD 的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ. 29.若334tan =x ,则=+++xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin . 【答案】3【解析】根据题意,有xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++ 38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.【答案】44100031.设A 是集合}14,,3,2,1{ 的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .【答案】8【解析】一方面,设},,,{21k a a a A =,其中141,*≤≤∈k N k .不妨假设k a a a <<< 21.若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{ A ,满足题意. 综上所述,A 中元素个数的最大值为8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.过抛物线 y2 4x 的焦点 F 作直线交抛物线于 A, B 两点, M 为线段 AB 的中点 . 下列说法中正确的有
()
A.以线段 AB 为直径的圆与直线 x B. | AB |的最小值为 4
3
一定相离
2
C. | AB |的最小值为 2
D.以线段 BM 为直径的圆与 y 轴一定相切
【答案】 AB
答案: B.
10.集合 A { a1, a 2 , , an} ,任取 1 i j k n, ai a j A, a j ak A, ak ai A 这三个式子中至
少有一个成立,则 n 的最大值为(
A. 6
.
WORD 格式 .资料
.
2016 年清华大学自主招生暨领军计划试题
1.已知函数 f ( x) ( x2 a)ex 有最小值,则函数 g( x) x2 2 x a 的零点个数为(
)
A. 0
B
.1
C
.2
D
【答案】 C
【解析】 注意 f / (x) ex g ( x) ,答案 C.
.取决于 a 的值
2. 已知 ABC 的三个内角 A, B,C 所对的边为 a, b, c . 下列条件中,能使得 ABC 的形状唯一确定的有
2 ,最小值为 4.也可将 | AB | 转化为 AB 中点到准线的距离的
2 倍去得到最小值;
对于选项 D,显然 BD 中点的横坐标与 1 | BM | 不一定相等,因此命题错误 . 2
x2 5.已知 F1 , F2 是椭圆 C : a 2
y2 b2 1(a b 0) 的左、右焦点, P 是椭圆 C 上一点 .下列说法中正确的有
,B C
时,不等式成立,但 ABC 不是锐角三角形 .
2
4
9.已知 x, y, z 为正整数,且 x
y
z ,那么方程 1
1
1
1
的解的组数为(
)
xyz2
A. 8
【答案】 B
B. 10
C. 11
D. 12
1 111 3
【解析】 由于
,故 3 x 6.
2xyzx
若 x 3,则 ( y 6)( z 6) 36 ,可得 ( y, z) (7,42), (8,24), (9,18), (10,15), (12,12) ;
交于点 M ,直线 PB 与直线 OC 相交于点 N . 以下说法正确的有(
)
A. O, M , B, P 四点共圆
B. A, M , B, N 四点共圆
C. A, O, P, N 四点共圆
D.以上三个说法均不对
【答案】 AC
【解析】 对于选项 A, OBM OAM OPM 即得;对于选项 B,若命题成立,则 MN 为直径,必然
【解析】 对于选项 A,点 M 到准线 x
1 的距离为
1 (| AF |
| BF |)
1 | AB | ,于是以线段 AB 为直径
2
2
的圆与直线 x 1 一定相切, 进而与直线 x
3
一定相离; 对于选项
2
B,C,设
A( 4a 2 , 4a )
,则
B(
1 4a2
,
1 ),
a
于是 | AB | 4a2
1 4a2
丙:甲、丁中有且只有一个获奖;
丁:乙说得对 .
已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是(
)
A.甲
B.乙
C.丙
D.丁
【答案】 BD
【解析】 乙和丁同时正确或者同时错误,分类即可,答案:
BD.
7.已知 AB 为圆 O 的一条弦(非直径) , OC AB 于 C , P 为圆 O 上任意一点,直线 PA 与直线 OC 相
若 x 4 ,则 ( y 4)( z 4) 16 ,可得 ( y, z) (5,20), (6,12),(8,8) ;
若 x 5 ,则 3
1
1
2 ,y
20 , y 5,6 ,进而解得 ( x, y, z)
(5,5,10) ;
10 y z y
3
若 x 6 ,则 ( y 3)( z 3) 9 ,可得 ( y, z) (6,6)) .
()
A. a 2b 时,满足 F1PF2 900 的点 P 有两个
B. a 2b 时,满足 F1PF2 900 的点 P 有四个
C. PF1F2的周长小于 4a
a2 D. PF1F2的面积小于等于
2
专业 .整理
.
WORD 格式 .资料
.
【答案】 ABCD.
【解析】 对于选项 A,B,椭圆中使得 F1PF2 最大的点 P 位于短轴的两个端点;对于选项 C, F1PF2的周
.
WORD 格式 sin B sin C sin B sin( B ) sin B cosB 1 , 2
类似地,有 sin C sin A 1, sin B sin A 1,于是 sin A sin B sin C cos A cosB cosC .
不充分性:当 A
1 长为 2a 2c 4a ;选项 D, F1PF2 的面积为 | PF1 | | PF2 | sin F1PF2
2
2
1 | PF1 | | PF2 |
2
2
1 a2 . 2
6.甲、乙、丙、丁四个人参加比赛,有两花获奖
. 比赛结果揭晓之前,四个人作了如下猜测:
甲:两名获奖者在乙、丙、丁中;
乙:我没有获奖,丙获奖了;
()
A. a 1,b 2,c Z
B. A 1500 , a sin A c sin C 2a sin C b sin B C. cos A sin B cosC cos(B C ) cos B sin C 0, C 60 0 D. a 3,b 1, A 600
【答案】 AD.
3.已知函数 f ( x) x2 1, g (x) ln x ,下列说法中正确的有(
)
A. f ( x), g ( x) 在点 (1,0) 处有公切线
B.存在 f ( x) 的某条切线与 g( x) 的某条切线平行
C. f ( x), g ( x) 有且只有一个交点
D. f ( x), g ( x) 有且只有两个交点
专业 .整理
.
WORD 格式 .资料
.
【答案】 BD
【解析】 注意到 y x 1为函数 g( x) 在 (1,0) 处的切线,如图,因此答案 BD.
有 MAN 为直角,不符合题意;对于选项 C, MBN MOP MAN 即得 . 答案: AC.
8. sin A sin B sin C cos A cosB cosC 是 ABC 为锐角三角形的(
)
A.充分非必要条件
B.必要非充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】 B
专业 .整理