清华大学历年自主招生试题汇总
清华大学、北京大学自主招生面试真题汇总

清华大学、北京大学2011-2015年自主招生面试真题汇总2016年自主招生即将来临,考生和家长需要着手准备了。
除了报名申请材料之外,自主招生最重要的环节就是笔试和面试部分。
下面中国自主招生网小编汇总了清华大学、北京大学2011-2015年部分面试题,供报考2016自主招生的考生们参考。
清华大学清华大学2015年自主招生面试部分真题1.假设给你一次穿越的机会,你最希望穿越到什么时候?做什么人?干什么?2.清华大学的校训是什么?你是如何理解的?如果你被清华大学录取,你如何去践行这一校训?3.如果你是班长,如何组织一次关于雷锋精神的班级活动?活动内容,请向班里同学发表一段两分钟的“学雷锋”活动动员演讲。
4.“是休学创业,还是毕业后创业。
”5.要不要休学当老板?清华大学2014年自主招生面试部分真题一、领军计划:1、怎么看待单独二孩政策?2、谈谈对节假日安排的看法,有什么建议?3、怎么看待社会公平?二、自强计划:1、请讲一个你的经历中体现你“自强”的故事。
2、你对自己的大学生活有何规划?将来想从事何种职业?3、你认为自己的家乡至今仍然贫困的原因有哪些?应该如何解决?4、你曾经遇到过的最大困难是什么?你是如何面对和解决的?5、谈谈“如何看待春运一票难求的现象,怎么解决这个问题?6、如何看待社会公平?7、结合考生的申请材料,提出一些与考生自身经历有关的问题,如问考生家乡的特产是什么。
清华大学2013年自主招生面试部分真题【综合面试】分上午与下午两场进行:每场考生都有三道相同的必答题目,面试时间为10分钟左右,三位考官对一位考生。
另根据面试时间的剩余情况,考官也会根据考生的特点增加其他题目。
据考生回忆,必答题有:1.“人类一思考,上帝就发笑。
请在90秒内作答?基于你的评价,你打算在当下、在未来做些什么?”2.请以“我和诺贝尔奖的距离”为题发表一段 2 分钟的演讲,可准备1 分钟。
3.近期上海、南京、杭州等地接连出现H7N9型禽流感的感染病例,并且造成数名感染者死亡,世界卫生组织和中国政府都高度关注这一病情,并且采取了积极的救治措施,但是公众依然非常想要知道和这个事件相关的各种信息。
清华大学历年自主招生试题汇总

清华大学历年自主招生试题汇总以下是2014年清华“领军计划”部分面试题:1、怎么看待单独二孩政策?2、谈谈对节假日安排的看法,有什么建议?3、怎么看待社会公平?以下是2014年清华“自强计划”部分面试题:结构性参考题目:提问:在你的同龄人中,当有些同学在为上学、吃饭、治病乃至整个家庭的生计发愁时,另外一些同学则在享受美味的食品、穿着流行的服装、接受各种优质的教育培训。
你如何看待这一现象?你是否认为这是一种社会不公?追问:你心目中的社会公平是怎样的?是否能够实现?若能实现,简要阐述实现的方法;若不能实现,请说说为什么?自由提问参考题目:请讲一个你的经历中体现你“自强”的故事。
你对自己的大学生活有何规划?将来想从事何种职业?你认为自己的家乡至今仍然贫困的原因是有哪些?应该如何解决?你曾经遇到过的最大困难是什么?你是如何面对和解决的?考察点:主要考察学生的个人理想与社会理想,是否能够独立思考并勇于创新,是否能够采取积极的方式克服困难与挫折;是否能够保持积极向上的心态等。
以下是清华大学2013年自主招生复试考题:1.近期上海、南京、杭州等地连续出现“H7N9禽流感”感染病例引起关注,公众非常想知道这方面的相关信息。
假如你是一位新闻发言人,你认为公众需要什么样的信息?追问:假如你发布信息后,社会出现恐慌,那该怎么办?2.“人类一思考,上帝就发笑”。
请就人类社会发展与大自然的关系发表评论。
追问:基于你的评价,你打算在当下和未来做些什么?3.请以“我和诺贝尔奖的距离”为题发表一段2分钟的演讲,可准备1分钟。
4.除了当选的10位人物外,举出你认为应该入围“2013‘感动中国’的一位人物”,并阐述理由。
2008年清华大学自主招生考试题目选语文(此文与原考试选用的文章稍有出入)(语文试题应该算是完整版了):关于文学和它的寄主的故事朱大可关于文学死亡的话题,已经成为众人激烈争论的焦点。
这场遍及全球的争论,映射了文学所面临的生存危机。
清华大学高考自主招生领军计划历年面试真题(2015年—2018年)

清华大学高考自主招生领军计划历年面试真题(2015年—2018年)同样,小北也为大家准备了清华近4年的综合评价招生面试真题。
清华也是从2015年才开始在全国范围开展综合评价招生!清华大学2018年领军计划面试题学科面试:1.建筑系:7位考官面试一个学生,不仅考查学生的综合素质,还考查他们对于各省市建筑的理解和表达。
2.数学系:给出4道题目让考生现场在黑板上作答,考官根据考生的解答思路或提问或追问。
清华大学2017年领军计划面试题1.材料阅读:影响你选择大学以及专业志愿的有哪些因素?请列举出来并说明理由。
可以借鉴但不局限于所给三则材料:第一则选择大学更重要还是选择专业更重要,第二则选择专业有哪些影响因素,第三则大学排名,包括US NEWS、泰晤士、QS、软科世界大学排名、毕业生就业力排名等等。
2.对人才培养的看法3.对清华理念的理解清华大学2016年领军计划面试题1.时政题是南京一个母亲盗窃超市为给自己的女儿过儿童节,警察赶到后宽大处理并帮助筹集善款,你怎么看?反映了什么社会问题?2.如果你在清华创立社团,你会创建什么社团?怎样让它发展得更好?3.大学应该无微不至地照顾学生,宽容对待他们的小错误还是应该训练学生适应社会?4.关于考生个人,被问到为什么选择这个专业清华大学2015年领军计划面试题1.你对“中国式过马路”怎么看?2.你对“中国梦”怎么理解?3.2012年度的五大新闻是什么,如果你是新闻评论员,请对这些新闻事件作出评论。
4.你对“钓鱼岛事件”怎么看?清华大学与北大相似,题目涉及范围较广,与经济、社会的各个方面相关。
童鞋们在做好充分准备的同时也要大方主动的展示自己的想法,不要太过于谨慎,甚至羞于表达。
清华大学自主招生考试精彩试题(语文+数学+化学+物理)

2010清华大学自主招生考试试题(语文+数学+化学+物理)分两天1月1日上午9:00-12:00 中英文综合 200分下午2:00-3:30 数学 100分下午4:00-5:30 物理 100分1月2日上午9:00-12:00 理科综合 300分,数学物理化学各100分中英文综合题型分值第一部分英语基础(40分)单选词汇(1分×10)单元语法与词汇(1分×10)完形填空(1分×20)第二部分英语阅读(2分×20=40分)共8篇左右,每篇后2至3个单选题。
内容基本为美国文化政治第三部分中文(94分)4篇文章,后面分5大题:每篇的阅读理解题,第五大题为新词解释与作文第四部分中英文综合应用(26分)给一段文言文,翻译成中文(6分),用英文概括大意并评论(20分)第一部分英语基础(略)第二部分英语阅读(略)第三部分中文(全)白居易的粉丝李国文中国文学,一直有大众化和小众化的分野。
唐代的白居易,则是最能代表中国文学大众化的典型诗人。
白居易,生于公元772年(唐代宗大历七年),终于公元846年(唐武宗会昌六年),活了74岁。
经历顺宗、宪宗、穆宗、敬宗、文宗、武宗六朝。
无论当时,无论后世,谈及这位诗人,离不开以下三点:一,他在诗坛领袖群伦,推动潮流的地位;二,他在朝野引起轰动,遐迩知名的程度;三,作为诗人,他在当时中国人之大多数心目中的无与伦比的尊崇,非同凡响的声望,他的粉丝,可以说是举国上下,遍地皆是,大江南北,无处不在,这也许是最值得大书而特书的中国文学的“白居易现象”。
他的朋友元稹为他的诗集《白氏长庆集》序中,这样写道:“二十年间,禁省、观寺、邮候、墙壁之上无不书,王公、妾妇、马走之口无不道。
缮写模勒,炫卖于市井中,或持之以交酒茗者,处处皆是。
”明人胡震享的《唐音癸签》一书中引《丰年录》:“开成中,物价至贱,村路卖鱼肉者,俗人买以胡绡半尺,士大夫买以乐天诗。
”白居易的一首诗,竟可以换来一条胖头鱼,一方五花肉,我估计当代诗人的作品,怕难以卖出这样的高价来。
清华大学自主招生考试面试试题集锦

理科: 1、你最崇拜的一个科学家?为什么? 2、班级里你最崇拜的一个同学?为什么? 3、你最喜欢的一个数学公式?为什么? 4、父亲和母亲哪一个对你的影响比较大?为什么? 5、公理和定理有什么不同? 6、“神六”发射的过程中,哪些现象能用物理原理解释? 7、火箭喷射过程中有什么化学反应? 8、台风过境哪些地区受到的影响最大?为什么? 9、杭州到上海的距离,光速需要多少时间? 10、如果你家里连续几天没人,怎么样才能让花盆里的花不被干死? 11、为什么三角形的面积是底乘以高除以2? 12、(面对一浙江考生)从北京到达浙江,光要行驶多长时间? 13、在电视上,新闻节目主持人和远方记者通话,为何有时会出现远方记者“反应迟钝”、“慢一拍”的情形? 文科: 1、你怎样理解鲁迅精神的? 2、鲁迅笔名是怎么来的? 3、你怎样理解巴金精神的? 4、巴金的笔名是怎么来的?(部分笔试试题) 【数学】 1、对定义域为R的f(x),有f(a,b)=a·f(b)+b·f(a),且|f(x)|≤1,求证:f(x)恒为零。
2、对于空间四边形ABCD,求AC+BD的最大值。
【物理】 1、德布罗意波是由著名物理学家德布罗意提出的,它告诉了一个物体质量、速度及其德布罗意波长的关系。
已知:电子ME=9.1×10-31kg,h =6.63×10-34,e=1.6×10-16,现一个点子经过150V加速后,求:(1)求其德布罗意波长,(2)此电子发出的波在何波段? 【英语】 作文:以“你理想中的父母与孩子关系”写一篇150字左右的作文。
注:所有题目均为受访学生回忆文字,可能表述有差异。
■自主招生申请材料有哪些? 随着自主招生工作的推进,各校对学生申请材料的重视程度增加。
一般,自主招生申请材料除了申请表以外,需附上获奖证书复印件,由学生所在中学提供的申报大学保送生和自主招生中学推荐表(请校长或主管校长签名并盖章),学生高中三年历次期中和期末考试的原始成绩单,高三阶段提供每一次年级统一考试等的学生各种获奖证明。
自主招生清华大学历届面试题

2006-2010年清华大学自主招生面试题【2010年面试题】2010年清华大学在沪自主招生暨保送生冬令营面试在华东师范大学第二附属中学举行,共有180多位沪上高三生参加。
上午9时30分左右,第一批面试学生走出考场。
来自七宝中学的高三学生朱易说,感到有些意外的是个人面试题:老子和孔子有一天打架,你会帮助谁?一根火柴在不能折断的前提下,如何摆成一个三角形?“这些题都非常有意思,我当时灵机一动,说将火柴放在墙角,不就构成了一个三角形吗?”小朱说,但是他感觉面试官明显不满足一个答案,继续追问还有别的方法吗,小朱并没有想出好的办法,“我想,这样的题目主要是考查学生思维的广度和宽度。
1,如何看待高考加分政策?2,《阿凡达》很火,欧美大片、日本动漫也很受欢迎。
如何在这种环境下发展中国文化?3,用一个成语形容你眼中的哥本哈根气候会议。
4,用关键词概括2009年中国现状。
5,中国是否已步入高房价时代,你的观点是?6,一根火柴在不能折断的前提下,如何摆成一个三角形?7,就张磊向耶鲁大学捐款8888888美元发表观点。
8,第一次和第二次世界大战期间,有什么重大的化学发明?9,为什么要把清华大学作为第一志愿填报?10.老子和孔子有一天打架,你会帮助谁?远程面试题目:1,谈古论今:任选中国古代和当代人物各一位作对比阐释。
2,为什么要上大学,是否每个人都应该上大学?3,假设你是清华校长,说说明年怎么举办清华百年校庆?【2009年面试题】部分面试题:●你如何看待我国四万亿救市计划?●如果你采访温总理,你将如何提问?要求:所提问题不能太大众化。
●如何看待情怀的含义。
●怎样做一名精英。
●你认为当大法官应具备怎样的素质?●谈谈对陈水扁家族弊案的看法。
●如何看待中学生早恋问题。
●神七发射最关键的两项技术是什么?●改革开放三十年所带来的启示和对后三十年的畅想●根据给出的数学概率中“标准分”的概念和计算公式解题。
●将区间(0,1)三等分,将中间段去掉,剩下的首尾两段重新拼接。
清华北大自主招生试题

清华北大自主招生试题清华北大是中国两所著名的大学,其中拥有自主招生的选拔方式,试题内容也备受关注。
下面是一份清华北大自主招生试题及其解析。
数学部分:1、已知函数f(x)=x^3+ax^2+bx+c,当x=1时,f(x)的值最小。
求a、b、c的值。
解析:首先,f(x)在x=1处的值最小,即f'(1)=0,且f''(1)>0;其次,根据函数值的大小可得c<f(1)。
根据题意解方程组f(1)=1+a+b+c,f'(1)=3+2a+b=0,得a=-2,b=-7/2,c=5/2。
2、图中正方形ABCDEF的对角线AC的中点为点M,点P和点Q分别在边EF和边CD上,使得BP和AQ平行。
证明:BP=2AQ。
解析:连接PM和QM,设BP=k,AQ=1,则PM^2=PC^2+CM^2=k^2+1,QM^2=QC^2+CM^2=4+k^2-2k,故PM^2=2QM^2,即k=2。
语文部分:1、读下面一段话,回答后文提出的问题。
我小时候家里非常穷,每天晚上我都要在家里自学功课。
有一次,我的教师给我布置了画一幅山水画,我画得非常认真,可是画的并不好。
我为此很沮丧,所以我们来另想一个办法吧。
我最初的计划是成为一个演员,我将前往汉城发展,并已经经过了第一轮入学考试,但是我还是不能放弃我的学习,以此来打破这个恶性循环。
问题:作者的小时候遇到什么样的困境,他最初的梦想是成为什么?他如何应对这种困境?答案:作者小时候家庭贫困,无法接受优越的教育;他最初的梦想是成为一个演员;他通过自学和努力学习打破困境。
2、阅读下面一篇文章,回答问题。
《荔枝赞》是一首家喻户晓的诗歌,它形象地描绘了夏天荔枝的美味与丰盈,这使得荔枝在中国的文化传统中具有独特的地位。
它种植的地区在中国非常广泛,有许多的品种和不同的名称,如广西的“白蒙皮”、“桂味”,海南的“红心”,广东的“春蜜”等。
由于其可口可心的味道和独特的诱人香气,许多人前来尝鲜、品鉴,荔枝从而成为夏季的必选水果之一。
清华自主招生试题整理(舒展)

清华自主招生试题整理(2006--2012)2012年清华等五校自主招生试题--通用基础测试一、选择题1.若P 为ABC ∆内部任一点(不包括边界),且()(2)0PB PA PB PA PC -+-=,则ABC ∆必为( )A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形 2.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若MA MP ⊥,则P 点形成的轨迹的长度为( ) A.7 B.72C.3D.323.若以体积为54的正四面体的四个面的中心为顶点做一个四面体,则所作四面体的体积为( ) A.1B.2C.3D.44.某种型号的计算器上有一个特殊的按键,在计算器上显示正整数n 时按下这个按键,会等可能的将其替换为0,1,2,,1n - 中的任意一个数.如果初始时显示2011,反复按这个按键使得最终显示0,那么这个过程中,9,99,999都出现的概率是( ) A.4110 B.5110 C.6110 D.71105.已知,R αβ∈,直线1sin sin sin cos x y αβαβ+=++与1cos sin cos cos x y αβαβ+=++的交点在直线y x =-上,则cos sin c in s s o ααββ+++=( )A.0B.1C.1-D.2 6.设lg lg lg 111()121418x x xf x =+++++,则1()()f x f x +=( ) A.1 B.2 C.3 D.47.已知1cos 45θ=,则44sin cos θθ+=( )A.45B.35C.1D.45-8.若正四棱柱ABCD A B C D ''''-内接于一球,且1,'2AB AA ==,则点,A C 间的球面距离为( ) A.π4B.π2C.24π D.22π 9.若将满足,||3,||3x y x y <<<,且使得关于t 的方程33421()(3)0x y t x y t x y-+++=-没有实数根的点(,)x y 所成的集合记为M ,则由点集M 所确定的区域的面积为( ) A.814 B.834 C.815D.83510.已知椭圆22143x y +=的左,右焦点分别为12,F F ,过椭圆的右焦点作一条直线交椭圆于点,P Q ,则1F PQ∆的内切圆面积的最大值是( ) A.2516π B.925π C.1625π D.916π 二、解答题11.设2()(,)f x x bx c b c =++∈R .若||2x ≥时,()0f x ≥,且()f x 在区间(2,3]上的最大值为1,求22b c +的最大值和最小值.12.已知椭圆C :22221x y a b+=(0a b >>),其离心率为45,两准线之间的距离为252.(1)求,a b 之值;(2)设点A 坐标为(6,0),B 为椭圆C 上的动点,以A 为直角顶点,作等腰直角ABP ∆(字母,,A B P 按顺时针方向排列),求P 点的轨迹方程.13.已知数列{}n a 中的相邻两项212,k k a a -是关于x 的方程2(32)320k x k x k -++⋅=的两个根. (1)求数列{}n a 的前2n 项和2n S .(2)记1|sin |()(3)2sin n f n n =+,(2)(3)(4)()123456212(1)(1)(1)(1)f f f f n n n nT a a a a a a a a -----=++++ ,求证:15624n T ≤≤. 14.已知椭圆22221x y a b +=过定点(1,0)A ,且焦点在x 轴上,椭圆与曲线y x =的交点为,B C .现有以A 为焦点,过,B C 且开口向左的抛物线,其顶点坐标为(,0)M m ,当椭圆离心率满足2213e <<时,求实数m 的取值范围.15.已知从“神八”飞船带回的某种植物种子每粒成功发芽的概率都为13,某植物研究所进行该种子的发芽实验,每次实验种一料种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值 (1)求随机变量ξ的数学期望E ξ;(2)记“关于x 的不等式210x x ξξ-+>的解集是实数集R ”为事件A ,求事件A 发生的概率()P A .2012年清华大学保送生考试试题一、填空题1.若复数z 为虚数,且||1z =,Re ((12))1z i ⋅-=,则z =____________.2.在数列{}n a 中,11a =,12n n a a +=+.若数列11{}n n a a +的前n 项和为1837,则n =____________.3.现有6人会英语,4人会日语,2人都会(共12人),从其中选出3人做翻译,要求两种语言都有人做翻译,则符合条件的选法种数为____________.4.有一人进行投篮训练,投篮5次,失误一次扣1分,进一次得1分,连进2次得3分,连进3次得5分.若投篮的命中率为25,则投篮3次恰好得2分的概率为____________. 5.不定方程1111x y z++=()x y z ≤≤的解(,,)x y z 的组数为____________. 6.某几何体的三视图如右图所示,用,,αβγ分别表示主视图、左视图、俯视图,设,,S S S αβγ是实际几何体中能看到的面积,则,,S S S αβγ从小到大的顺序为____________.二、解答题 7.抛物线212y x =与直线l :4y x =+所围成区域中有一个矩形ABCD ,且点,A B 在抛物线上,点D 在直线l 上,其中点B 在y 轴右侧,且||2AB t =(0)t >.(1)当AB 与x 轴平行时,求矩形ABCD 面积()S t 的函数关系式; (2)当边CD 在直线l 上时,求矩形ABCD 面积的最大值. 8.已知函数3()2cos (sin 2)sin 32f x x x x =⋅+-,且[0,2]x π∈. (1)求函数()f x 的最大值和最小值; (2)求方程()3f x =的解.9.已知函数1()ln x e f x x-=,且数列{}n a 满足:11a =,1()n n a f a +=.(1)求证:10xxx e e ⋅-+≥恒成立; (2)求函数()f x 的单调区间;(3)求证:数列{}n a 单调递减,且0n a >恒成立.10.在OAB ∆内(含边界),其中O 为坐标原点,点A ,B 分别在在x 轴,y 轴的正半轴上,且2OA OB ==. (1)用方程或不等式表示OAB ∆围成的区域;(2)求证:在OAB ∆内的任意11个点,总可以分成两组,一组中各点的横坐标之和不大于6,另一组中各点的纵坐标之和不大于6.443俯视图左视图主视图γβα2011年清华等五校自主招生试题1.设*n N ∈,15n ≥.集合A ,B 都是{1,2,,}I n =⋅⋅⋅的真子集,A B =∅ ,A B I = .证明:集合A 或B 中,必有两个不同的数,它们的和为完全平方数.2.设函数2()(0)f x ax bx x a =++>,且方程()f x x =的两实数根是1x 和2x ,且10x >,211x x a->,又10t x <<.试比较()f t 与1x 的大小.3.求函数2(){|1|,|5|}f x max x x =+-的最小值,并求出相应的x 的值.4.已知()f x 是定义在R 上的不恒为0的函数,且对于任意的,a b R ∈,有()()()f a b a f b b f a ⋅=⋅+⋅. (1)求(0),(1)f f 的值;(2)判定函数()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,(2)n n f u n-=,求数列{}n u 的前n 项和n S .5.已知关于x 的方程222(1)(1)ax a x +=-,1a >.证明方程的正跟比1小,负根比1-大.6.设a ,b 是两个正数,且a b <.当[,]x a b ∈时,246y x x =-+的最小值为a ,最大值为b ,求a ,b 值.7.某生产队想筑一面积为1442m 的长方形围栏,围栏一边靠墙.现有铁丝网50m ,筑成这样的围栏最少要多少铁丝网?已有的墙最多利用多长?最少利用多长?8.在正方形ABCD 中,过顶点D 作对角线CA 的平行线DE ,若CE CA =,且直线CE 交边DA 于点F .求证:AE AF =.9.设边长为,,a b c 的ABC ∆的重心为G ,外心为O ,外接圆半径为r ,||OG d =,求证:222229a b c r d ++=-. 10.设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段弧,其弧长比为3:1,在满足上述条件的圆中,求圆心到直线:20l x y -=的距离最小的圆的方程.11.以A 为圆心,以2cos (0)2πθθ<<为半径的圆外有一点B . 已知2sin AB θ=,设过B 且与圆A 外切于点C 的圆的圆心为M .(1)当θ取某个值时,说明点M 的轨迹P 是什么曲线?(2)点M 是轨迹P 上的动点,点N 是圆A 上的动点,记MN 的最小值为()f θ.求()f θ的取值范围. 12.设数列{}n a 的前n 项和为n S ,点*(,)()nS n n N n∈均在函数32y x =-的图像上. (1)求数列{}n a 的通项公式; (2)设13n n n b a a +=⋅,n T 数列{}n b 的前n 项和,求最小正整数m ,使得20n mT <对所有*n N ∈都成立.13.已知函数()24f x x =-+,12()()()n nS f f f n n n=++⋅⋅⋅+.若不等式11n n n n a a S S ++<恒成立,求实数a 的取值范围.2010年清华等五校自主招生试题--通用基础测试一、选择题 1.设复数2()1a i w i+=+,其中a 为实数,若w 的实部为2,则w 的虚部为( ) (A)32- (B)12- (C)12 (D)322.设向量,a b 满足||||1a b == ,a b m ⋅= ,则||a tb + ()t R ∈的最小值为( )(A)2 (B)21m + (C)1 (D)21m - 3.无试题 4.无试题5.在ABC ∆中,若三边长,,a b c 满足3a c b +=,则tantan 22A C=( ) (A)15 (B)14 (C)12 (D)236.如图,ABC ∆的两条高线,AD BE 交于H ,其外接圆圆心为O ,过O 作OF 垂直BC 于F ,OH 与AF 相交于点G ,则OFG ∆与GAH ∆面积之比为( )(A )1:4 (B)1:3 (C)2:5 (D)1:27.设()e (0)ax f x a =>.过点(,0)P a 且平行于y 轴的直线与曲线:()C y f x =的交点为Q ,曲线C 过点Q 的切线交x 轴于点R ,则PQR ∆的面积的最小值是( )(A)1 (B)2e2(C)e 2 (D)2e 48.设双曲线2212:(2,0)4x y C k a k a -=>>,椭圆2222:14x y C a+=.若2C 的短轴长与1C 的实轴长的比值等于2C 的离心率,则1C 在2C 的一条准线上截得线段的长为( )(A)22k + (B)2 (C)44k + (D)49.欲将正六边形的各边和各条对角线都染为n 种颜色之一,使得以正六边形的任何三个顶点作为顶点的三角形有三种不同颜色的边,并且不同的三角形使用不同的三色组合,则n 的最小值为( )(A)6 (B)7 (C)8 (D)910.设定点A B C D 、、、是以O 点为中心的正四面体的顶点,用σ表示空间以直线OA 为轴满足条件()B C σ=的旋转,用τ表示空间关于OCD 所在平面的镜面反射,设l 为过AB 中点与CD 中点的直线,用ω表示空间以l 为轴的180°旋转.设στ 表示变换的复合,先作τ,再作σ.则ω可以表示为( )(A)στστσ (B)στστστ (C)τστστ (D)στσστσ 二、解答题11.在ABC ∆中,已知22sin cos212A BC ++=,外接圆半径2R =. (1)求角C 的大小; (2)求ABC ∆面积的最大值.12.设A B C D 、、、为抛物线24x y =上不同的四点,,A D 关于该抛物线的对称轴对称,BC 平行于该抛物线在点D 处的切线l .设D 到直线AB ,直线AC 的距离分别为12,d d ,已知122d d AD +=.(1)判断ABC ∆是锐角三角形、直角三角形、钝角三角形中的哪一种三角形,并说明理由; (2)若ABC ∆的面积为240,求点A 的坐标及直线BC 的方程. 13.(1)正四棱锥的体积23V =,求正四棱锥的表面积的最小值; (2)一般地,设正n 棱锥的体积V 为定值,试给出不依赖于n 的一个充分必要条件,使得正n 棱锥的表面积取得最小值.14.假定亲本总体中三种基因型式:,,AA Aa aa 的比例为:2:u v w (0,0,0,21)u v w u v w >>>++=且数量充分多,参与交配的亲本是该总体中随机的两个. (1)求子一代中,三种基因型式的比例;(2)子二代的三种基因型式的比例与子一代的三种基因型式的比例相同吗?并说明理由. 15.设函数()1x m f x x +=+,且存在函数()s t at b ϕ==+1(,0)2t a >≠满足2121()t s f t s-+=. (1)证明:存在函数()(0),t s cs d s ψ==+>满足2121()s t f s t+-=; (2)设113,(),1,2,.n n x x f x n +=== 证明:1123n n x --≤. 2009年清华大学保送生暨自主招生北京冬令营1.有限条抛物线(线和线的内部)能够覆盖整个平面吗?证明你的结论.2.请找出一个含有323+的整系数多项式.3.求0.4 1.2|22|i i e e ++的模.4.现有一数字游戏:有1到100的数,两个人轮流写.设已经写下的数为123,,,,n a a a a .若一个数x 能表示 成112233n n x x a x a x a x a =++++ (123,,,,n x x x x 为非负整数),则这个数不能够再被写.(如若3,5已被写,则83151=⨯+⨯不能再写,133152=⨯+⨯,93350=⨯+⨯也不能再被写).现在甲和乙玩这个游戏,已知5,6已经被写,现在轮到甲写,问:谁有必胜策略?5.一条跑马比赛最多只能有八匹马参加,假设同一匹马参加每一场比赛的表现都是一样的.问:可以有不多 于50场比赛,完全将64匹马的实力顺序排序吗?6.现有100个集装箱,每个集装箱装2个物品.现在将集装箱的物品全部拆卸,并且所有物品被打乱顺序.问:最坏情况下,需要多少个集装箱再次把所有物品装好?7.现有一游戏:图上有若干个点和若干条线,甲提供若干个硬币,乙可以任意将这些硬币全部摆放在点上, 并且指定一个目标定点P .现定义操作:从一个至少有两个硬币的点取走2个硬币,在它一个相邻的点上放 回一个硬币.在指定的图下,甲最少提供多少个硬币,可以保证经过若干次操作,一定能使目标顶点P 至少 有一枚硬币?(1)图是一个包含5个点的线段;(2)图是一个包含7个点的圈.2009年清华大学自主招生数学试题(理科)1.设5151+-的整数部分为a ,小数部分为b .(1)求,a b ; (2)求222ab a b ++; (3)求2lim()n n b b b →∞+++ .2.(1)已知,x y 为实数,且1x y +=,求证:对于任意正整数n 都有222112n n n x y -+≥.(2)已知,,a b c 为正实数,求证:3a b cxy z++≥,其中,,x y z 为,,a b c 的一种排列. 3.请写出所有三个数均为质数,且公差为8的等差数列,并证明你的结论.4.已知椭圆22221x y a b+=,过椭圆左顶点(,0)A a -的直线L 与椭圆交于Q ,与y 轴交于R ,过原点与L 平行的直线与椭圆交于P ,求证:AQ ,2OP ,AR 成等比数列.5.已知sin cos 1t t +=,设cos sin s t i t =+,求2()1n f s s s s =+++ .6.随机挑选一个三位数m , (1)求m 含有因子5的概率; (2)求m 中恰有两个数码相等的概率.7.四面体ABCD 中,AB CD =,AC BD =,AD BC =, (1)求证:四面体每个面的三角形为锐角三角形;(2)设三个面与底面BCD 所成的角分别为,,αβγ,求证:cos cos cos 1αβγ++=. 8.证明:当,p q 均为奇数时,曲线222y x px q =-+与x 轴的交点横坐标为无理数.9.设1221,,,n a a a + 均为整数,性质P 为:对1221,,,n a a a + 中任意2n 个数,存在一种分法可将其分为两组,每组n 个数,使得两组所有元素的和相等,求证:1221,,,n a a a + 全部相等当且仅当1221,,,n a a a + 具有性质P .2009年清华大学自主招生数学试题(文科)1.已知数列{}n a 满足(1)n S na n n =+-, (1)求证:{}n a 是等差数列; (2)求(,)nn S a n所在的直线方程. 2.把12名职员(其中三名为男性)被平均分配到三个部门, (1)求此三名男性被分别分到不同部门的概率; (2)求此三名男性被分到同一部门的概率;(3)若有一男性被分到指定部门,求其他两人被分到其他不同部门的概率. 3.一元三次函数()f x 的三次项数为3a,()90f x x +<的解集为(1,2). (1)若()70f x a +=,求()f x 的解析式; (2)若()f x 在R 上单调增,求a 的范围. 4.已知22PM PN -=,(2,0)M -,(2,0)N ,(1)求点P 的轨迹W ; (2)直线(2)y k x =-与W 交于点A ,B ,求OAB S ∆. 5.设12nx x x a n++=, 12231()()()()()()n n n S x a x a x a x a x a x a -=--+--++-- .(1)求证:30S ≤. (2)求4S 的最值,并给出此时1x ,2x ,3x ,4x 满足的条件. (3)若50S <,求1x ,2x ,3x ,4x ,5x 不符合时的条件.2008年清华大学自主招生试题1.已知,,a b c 都是有理数,a b c ++也是有理数,证明:,,a b c 都是有理数.2.(1)一个四面体,证明:至少存在一个顶点,从其出发的三条棱组成一个三角形; (2)四面体一个顶点处的三个角分别是,,arctan 223ππ,求3π的面和arctan2的面所成的二面角.3.求正整数区间[],()m n m n <中,不能被3整除的整数之和.4.已知sin cos 1sin 2ααα+=+,求α的取值范围.5.若20lim ()(0)1,(2)()x f x f f x f x x →==-=,求()f x .6.证明:以原点为中心的面积大于4的矩形中,至少还有两个格点.2007年清华大学自主招生试题1.求函数()xe f x x=的单调区间及极值.2.设正三角形1T 的边长为a ,1n T +是n T 的中点三角形,n A 为n T 除去1n T +后剩下的三个三角形内切圆面积之和.求1lim nk n k A →∞=∑.3.已知某音响设备由五个部件组成,A 电视机,B 影碟机,C 线路,D 左声道和E 右声道,其中每个部件工作的概率如下图所示.能听到声音,当且仅当A 与B 中有一工作,C 工作,D 与E 中有一工作;且若D 和E 同时工作则有立体声效果.求:(1)能听到立体声效果的概率; (2)听不到声音的概率. 4.(1)求三直线60x y +=,12y x =,0y =所围成三角形内的整点个数; (2)求满足21260y x y x x y <⎧⎪⎪>⎨⎪+=⎪⎩的整数解个数.5.已知正三角形ABC ∆的顶点,B C 在双曲线1(0)xy x =>的一支上,且点A 的坐标为(1,1)A --. (1)求证:点,B C 关于直线y x =对称; (2)求ABC ∆的周长.6.对于集合2M R ⊆,称M 为开集,当且仅当0P M ∀∈,0r ∃>,使得20{}P R PP r M ∈<⊆.判断集合{(,)4250}x y x y +->与{(,)0,0}x y x y ≥>是否为开集,并证明你的结论. 2006年清华大学自主招生试题1.求最小正整数n ,使得11()223nI i =+为纯虚数,并求出I .2.已知a b 、为非负数,44,1M a b a b =++=,求M 的最值.3.已知sin sin cos θαθ、、为等差数列,sin sin cos θβθ、、为等比数列,求1cos2cos22αβ-的值. 4.求由正整数组成的集合S ,使S 中的元素之和等于元素之积.5.随机取多少个整数,才能有0.9以上的概率使得这些数中至少有一个偶数.6.抛物线2y x =上点P (非原点)的切线分别交,x y 轴于,Q R ,求PQ PR.7.已知函数()f x 满足:对任意的实数,a b 都有()()()f a b a f b b f a ⋅=⋅+⋅,且|()|1f x ≤,求证:()f x 恒为零.(可用以下结论:若lim ()0,()x g x f x M →∞=≤,M 为一常数,那么lim(()())0x f x g x →∞⋅=.)。
清华自主招生智力测试题(3篇)

第1篇一、选择题(每题2分,共20分)1. 下列哪一项不是爱因斯坦的相对论内容?A. 时间膨胀B. 空间弯曲C. 光速不变D. 热力学第二定律2. 下列哪位科学家提出了“基因”的概念?A. 孟德尔B. 达尔文C. 格雷戈尔·孟德尔D. 詹姆斯·克拉克·麦克斯韦3. 下列哪个国家在2019年诺贝尔生理学或医学奖中获奖?A. 德国B. 英国C. 美国D. 法国4. 下列哪项技术可以实现无人驾驶汽车?A. 超声波雷达B. 激光雷达C. 红外线探测D. 磁感应5. 下列哪项技术可以实现3D打印?A. 光刻技术B. 电子束技术C. 激光切割技术D. 激光烧结技术6. 下列哪个元素是生命体必需的微量元素?A. 钙B. 钾C. 铁D. 磷7. 下列哪项技术可以实现远程医疗?A. 5G技术B. 4G技术C. 3G技术D. 2G技术8. 下列哪个国家在2019年世界杯足球赛中夺冠?A. 法国B. 德国C. 巴西D. 阿根廷9. 下列哪个国家在2019年NBA总决赛中夺冠?A. 金州勇士队B. 费城76人队C. 波士顿凯尔特人队D. 多伦多猛龙队10. 下列哪个国家在2019年世界杯田径赛中夺冠?A. 美国B. 中国C. 英国D. 德国二、填空题(每题2分,共20分)1. 量子计算机的核心元件是______。
2. 智能家居系统的核心技术是______。
3. 人工智能领域的核心技术是______。
4. 光伏发电的核心元件是______。
5. 太阳能电池板的核心材料是______。
6. 纳米技术的研究领域包括______。
7. 5G通信技术的核心频段是______。
8. 量子通信技术的核心技术是______。
9. 量子计算机的运行速度比传统计算机快______倍。
10. 量子计算机的应用领域包括______。
三、判断题(每题2分,共20分)1. 量子计算机的运行速度比传统计算机慢。
()2. 人工智能技术可以完全取代人类。
清华自主招生面试题目(3篇)

第1篇一、引言随着全球化的深入发展,世界正经历着前所未有的变革。
在这个充满机遇与挑战的时代,中国作为世界第二大经济体,正面临着前所未有的发展机遇。
清华大学作为中国顶尖的高等学府,始终关注着国家的发展大局,致力于培养具有国际视野和创新精神的人才。
本次自主招生面试题目以“创新与挑战:未来世界中的中国角色”为主题,旨在考察考生对当前国际形势的理解、对国家发展战略的思考以及对个人未来发展的规划。
二、面试题目1. 题目一:请结合当前国际形势,谈谈你对未来世界发展趋势的看法,以及中国在这一趋势中的角色定位。
2. 题目二:在全球化进程中,中国如何应对来自其他国家的竞争和挑战?请举例说明。
3. 题目三:你认为我国在科技创新方面有哪些优势?同时,在哪些领域还存在短板?请结合实际案例进行分析。
4. 题目四:面对气候变化、资源短缺等全球性问题,中国应如何发挥自身优势,为全球治理贡献力量?5. 题目五:请谈谈你对“一带一路”倡议的理解,以及该倡议对中国和世界带来的影响。
6. 题目六:在当前国际环境下,中国如何加强与其他国家的文化交流与合作?7. 题目七:请你结合自身专业背景,谈谈你对未来职业发展的规划,以及如何为实现国家战略目标贡献力量。
8. 题目八:请以“创新与挑战:未来世界中的中国角色”为主题,撰写一篇短文,字数不超过1000字。
三、面试流程1. 考生自我介绍:考生在面试开始前进行自我介绍,包括姓名、年龄、籍贯、兴趣爱好等。
2. 面试官提问:面试官根据题目要求,对考生进行提问。
考生需在规定时间内完成回答。
3. 考官点评:面试官对考生的回答进行点评,包括优点和不足。
4. 考生提问:考生可以向面试官提问,了解清华大学的相关情况。
5. 结束语:面试官对考生表示感谢,面试结束。
四、评分标准1. 知识储备:考生对国际形势、国家发展战略、专业领域的了解程度。
2. 思维能力:考生对问题的分析、判断和推理能力。
3. 语言表达能力:考生在面试过程中的语言表达流畅、准确、有逻辑性。
清华大学自主招生面试题及答案

清华⼤学⾃主招⽣⾯试题及答案清华⼤学⾃主招⽣⾯试题及答案1.如何看待⾼考加分政策:答:我觉得⾼考加分是可⾏的,⾼考加分是⿎励考⽣向多⽅⾯发展的⼀种激励机制,⽐如说⼀些省级奖项、科技创新奖项以及为社会贡献的⼀些先进事迹等,尤其是贫困地区、少数民族的加分,还可以促进教育的公平和少数民族的发展。
但是这种激励机制反倒成为权势加分的武器的话,那这种机制需要相关部门有更规范更系统的加分准则,⽽且在⼀定时间内要具有相对稳定性,严格加分的审核制度。
这样才能使⾼考加分政策更有利于良性竞争!2、《阿凡达》很⽕,如何在这种情况下发展中国⽂化答:《阿凡达》很⽕跟雄厚的科技实⼒分不开。
欧美⼤⽚、⽇本动漫也很受欢迎的深层原因在于他们能够将科技、⽂化结合起来,成功地通过⼀部电影挖掘⽂化内涵,引起观众共鸣。
因此,在这种情况要发展中国⽂化,需要⼤⼒发展科技、培育⼈才,通过科技、⼈⽂和⽂化相结合,使丰厚的中华⽂化在世界⽂化林⾥⼤发异彩。
3、⽤⼀个成语形容你眼中的哥本哈⽓候会议答:在各国与⼈类利益中寻求平衡点,各谋其政。
海岛国家极⼒主张减排为的就是⾃⼰能够获得可能的地球变暖灾难来临时,⾃⼰国家能够有⽣存下去的权利。
发达国家(尤其是以欧洲国家)希望通过不公平的强制减排是希望通过⾃⼰的技术优势占据未来经济发展的制⾼点,并挤压其他国家的发展空间,最终主导未来世界的发展。
以中国、印度、南⾮、巴西为⾸的77个发展中国家极⼒反对发达国家的⽅案,并主张新帐旧账⼀起算,是为了维护⾃⼰的发展权利不被发达国家剥夺。
从结果⾓度概括:悬⽽未决。
是从形势上来说,迫在眉睫。
4、⽤关键词概括2009年中国现状答:危机,机遇,改⾰,⾃信,重⼤,盛⼤,成功,团结,克服,稳定,发展。
5、中国是否已步⼊⾼房价时代,你的观点是?答:中国尚未步⼊⾼房价时代。
中国⽬前正处快速城镇化阶段,住房的供需关系达到新的平衡点。
同时,我国经济持续稳定增长,⼈均GDP已超过3000美元。
因此,就全国范围内来看,我国尚未步⼊⾼房价时代。
北大清华自主招生面试考题(完整版)

北大清华自主招生面试考题(完整版)北大清华自主招生面试考题(完整版)梧桐夜雨1.马克思在《资本论》中论述机器夺走了工人的饭碗时写道:“蒸汽机一开始就是人力的对头”。
请谈谈你的看法。
2.近期房产税、车船税、“馒头税”等均引发社会热议,请谈谈你对纳税与公民权利关系的理解。
3.哈佛大学图书馆墙上写有这样一句话:“请享受无法回避的痛苦”,谈谈你的理解。
4.假如用一种植物比喻中国人的国民性,你会选择什么?为什么?5.有人说:“智慧比体力更重要,成功的关键在于如何使用智慧”,请谈谈你的看法。
6.现在很多家长在高中阶段就把孩子送到国外学习,谈谈你的看法。
7.国家最近规定,中央和省级机构录用公务员,一般情况下都须具有两年以上基层工作经历,不再招收应届毕业生,你对此有何评论。
8.“穷则独善其身,达则兼济天下”,在今天是否还适用?9.目前一些人富裕了但并没感到幸福,谈谈你的看法。
10.有人认为“三纲”(君臣、父子、夫妻)无益,“五常”(仁义礼智信)可取。
试述你的观点。
11.近来续写《红楼梦》又成为社会热点话题。
你认为后人可以续写、仿写、改写经典名著吗?12.古人云“诗画同源”,“诗是无形画,画是有形诗”。
请谈谈你的见解。
13.请从世界历史和国际政治的角度,分析“只有永远的利益,没有永远的朋友”这句话的含义。
14.今年是辛亥革命100周年,海峡两岸将共同举行隆重庆典。
你认为大陆和台湾看待辛亥革命的角度和意义会有什么不同?15.网络带来丰富的信息,但也存在着许多虚假报道和伪装成民意的倾向性意见,你认为政府如何才能从网络上获取真实的社情民意?16.日本政府最近称,由于中国的GDP已经超过日本,所以要大幅削减对华援助,你如何看待此事?17.在鲁迅的小说《祝福》中,“我”作为一个现代知识分子,为什么不告诉祥林嫂“人死后是没有灵魂的”?18.牛顿第一定律可以被实验验证吗?19.“火”被古人当成一种物质元素,今天我们如何认识“火”?20.诗曰:“我看青山多妩媚,料青山看我应如是”,说说你的理解。
清华大学自主招生试题含答案

、选择题2( )(A)充分不必要(B)必要不充分(C)充要(D)3.设A、B是抛物线y=x2上两点,0是坐标原点,若OAL 0B,则()(A)|OA| •|OB| > 2 (B)|OA|+|OB| (C)直线AB过抛物线y=x2的焦点(D)O至煩线AB的距离小于等于X yf (x) >0,x € (-1,0);② f (X) + f (y) = f ( ) , X、y €1 xy(-1,1),则f (x)为(A)奇函数(B)偶函数(C)减函数(D)有界函数5. 如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)= f (x) - kx有(/ C=—,且sinC+sin(B - A) -2sin2A=0,则有(3(A)b=2 a (B) △ ABC的周长为2+2-. 3 (C) △ ABC的面积为一空(D) △ ABC的外接圆半径为37.设函数f(x) (x23)e x,则( )(A) f (x)有极小值,但无最小值(B) f (x)有极大值,但无最大值(C)若方程f (x) =b恰有一个实根,则b>-6| (D)若方程f (x) =b恰有三个不同实根,则0<b<£e e1.设复数z=cos -3+isin (A)0 (B)1 (C) 2 冲13 ,则仁(D)3211 z22.设数列{aj为等差数列, p,q,k, l为正整数,则p+q>k+l ”是“ a p aqa k a l ”的()条件既不充分也不必要4.设函数f(x)的定义域为(-1,1),且满足:①个极小值点(D)3个极小值点8.已知 A={(x,y) 1 x 22 2y r },B={(x,y)1 (x2 2 2a) (y b) r ,已知 A n B={(x 1,yJ ,( X 2,y 2)},则()(A)0< a 2 b 2 <2r 2(B)aXX 2) b(y1 y 2) 0(C)X 1 X 2 = a , y 1y 2=b (D)2a b 2 = 2ax 1 2by 19.已知非负实数x,y,z满足4x 24y 22z +2z=3, 则5x+4y+3z 的最小值为()(A)1 (B)2 (C)3 (D)410.设数列{ a n }的前n 项和为S n ,若对任意正整数n ,总存在正整数 m,使得S n =a m ,则( )(A ){ a n }可能为等差数列(B ){ a n }可能为等比数列(c ){a n }的任意一项均可写成{a n }的两项之差(D)对任意正整数n ,总存在正整数 m 使得a n = S m 11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测: 3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名•比赛后发现没有并列名次,且甲、乙、丙、丁中只有 1人猜对比赛结果,此人是( )(A)甲(B)乙(C)丙(D) 丁1(A)若S=4,则k 的值唯一(B) 若S=^,贝U k 的值有2个22(C)若D 为三角形,则0<k <(D)若D 为五边形,则312.长方体 ABCDAEGD 中,AB=2, AD=A A 1=1,贝U A 到平面 A BD 的距离为((A) - (B)3(D)13.设不等式组|x| |y| 2 y 2 k(x 1)所表示的区域为 D,其面积为S,U(k>414. △ ABC 勺三边长是 2,3,4,其外心为 0,则 uuu uuu OA AB uuu uuu uuur uuu OB BC 0C CA =((A)0 (B)-15 (C) -21(D)229 215. 设随机事件 A 与B 互相独立,且 P(B)=0.5(A)P(A)=0.4 (B)P(B -A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916. 过厶ABC 的重心作直线将厶 3(A)最小值为一(B)最小值为417. 从正15边形的顶点中选出,P(A- B)=0.2,则(ABC 分成两部分,则这两部分的面积之比的(4 4(C)最大值为一533个构成钝角三角形,5(D 最大值为一4则不同的选法有((A)105 种(B)225 种(C)315 种(D)420 种18. 已知存在实数r,使得圆周x2y2 r2上恰好有n个整点,则n可以等于(22.在极坐标系中,下列方程表示的图形是椭圆的有(4 2 1 V2(A)最小值为一(B)最小值为一 (C)最大值为1 (D)最大值为--------------------5 5 3(A)4 (B)6 (C)8 (D)1219. 设复数z 满足2|z| w |z-1|,则(1(A)|z|的最大值为1 (B)|z| 的最小值为—(C)z321的虚部的最大值为2(D)z 的实部的最大值为13320.设 m,n 是大于零的实数, a =(mcos a ,msin a ),b =(ncos 3 ,nsin 3 ),其中 a , B€ [0,2 n ) a , B€r 1, _[0,2 n ) •定义向量 a 2 =( 、、. m cos — ,、. m sin 一 ), b 2=(、. n 2cos — 2 ,、齐 sin —),记 9 = a - 3,贝U2r [ r 1 r r 1 r 1 ___ (A) a 2 • a 2 = a (B) a 2 b 2=、.mn cos — (C) 2r] r] … |a 2 b 2|4、一 mn sin 2 —4r 1 r] 2 _ 2 (D) |a 2 b 2 |24, mncos 2 —421.设数列{ a n }满足:a 1=6, an 1,则((A) ? n € N?, a n <(n 1)3 (B) ? n € N?, a n 丰 2015 (C) ? n € N?, a n 为完全平方数(D)? n € N?, a n 为完全立方数1 (A )p=cos sin23. 设函数 f(x)s in x,则( x x 14(A ) f(x) w (B)| f (x) | w 5|x| (C)曲线 y= f (x)存在对称轴324. △ ABC 的三边分别为a ,b,c ,若△ ABC 为锐角三角形,则((B )p=—1(C ) 2 sin1p= —2 cos(D )(D) 1 1 2si n曲线y= f (x)存在对称中心(A)si nA>cosB (B)ta nA>cotB (C) a 2 b 2 c 2 (D) a 3 b 3 c 325.设函数f (x)的定义域是(-1,1), 若f(0) = f (0) =1,则存在实数 s€ (0,1),使得()(A) f (x) >0, x € (- S , S) (B)f (x)在(-S , S )上单调递增 (C) f (x) >1, x € (0, S) (D)f (x)>1 , x € (- S ,0)26.在直角坐标系中,已知A(-1,0),B(1,0) •若对于y 轴上的任意n 个不同的点 P k (k=1,2,…,n),总存在两个不同的点R ,P j ,1使得 |sin / A P j B-sin / A P j B| w —,贝V n 的最小值为( 3(A)3 (B)4(C)5 (D)627.设非负实数x,y 满足2x+y=1,则 x+ x 2 y 2 的()128.对于50个黑球和49个白球的任意排列(从左到右排成一行),则((A)存在一个黑球,它右侧的白球和黑球一样多(B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个 29.从1,2,3,4,5 中挑出三个不同数字组成五位数, 同的五位数有( (A)300 个(B)450其中有两个数字各用两次,例如 12231,则能得到的不 30.设曲线L 的方程为 (A)L 是轴对称图形 (C)L ? {(x,y) I ##A nswer##1.【解析】 丄1-z) 个(C)900 y 4 (2x 2(B)L 个(D)1800 个 2 4 2 2)y (x 2x ) =0,则(是中心对称图形 1 (D)L ? {(x,y)zz 1 zz_______ 1 - 2. 21-cos i sin332 cos 3..2 i sin ___ 3 2 2i sin32sin 2 i 2sin cos —3 3 3 cos0 isinO 2sin — [cos( —) i sin(-)i sin(3、、3(cos —2-洽 2os(cos( i sin ) 27) i sin(67)]丄(cos — isi n —.3 6 6△ )=1,选 B22.【简解】 a p (a k Q )=[(p+q)-(k+l)]d ,与公差 d 的符号有关,选 3.【解析】设A( 2X 1,X 1 ),B( 2 uuu uuu X 2,X 2 ), OA OB =X 1X 2(1 X 1X 2) =0 X 2 X1 答案(A), |0A| l OBI ^x^(1 好)4(1 —1^) = j1 X2 1 2 X 11 > /2 2|X 1 | 丄=2,正确; |X 1 | 答案(B),|OA|+|OB| > 2..|OA 「|OB| > 2 .2,正确;答案(C),直线 AB 的斜率为 2 22^=X 2 x 2 x 1X1程为 y- xj =( x 1 1)(x-x 1),焦点(0, 1)不满足方程,错误;答案(D),原点到直线AB :(4X11)x-y+ 仁X 1的距离d=w 1,正确。
清华自主招生试题

清华自主招生试题一、数学题1. 某校有3000名学生,其中男生占总人数的60%,女生占总人数的40%。
男女生中,有20%的人精通数学。
问:该校男女生中,精通数学的人数分别是多少?解析:根据题意得知男生占总人数的60%,女生占总人数的40%。
所以男生总数为3000 * 60% = 1800,女生总数为3000 * 40% = 1200。
由于精通数学的人占男女生总数的20%,所以男生中精通数学的人数为1800 * 20% = 360,女生中精通数学的人数为1200 * 20% = 240。
答案:男生中精通数学的人数为360人,女生中精通数学的人数为240人。
2. 已知正方形ABCD的边长为2,点E是AD的中点,F是BC的中点。
连接AE、BF,交于点G。
问:三角形AEG的面积为多少?解析:根据题意,AE的长度为1,EG的长度为√2(正方形相邻两边长的一半),所以三角形AEG的面积为1/2 * 1 * √2 = √2/2。
答案:三角形AEG的面积为√2/2。
二、物理题1. 一辆汽车在匀速行驶时,刹车后停下需要的时间是20秒。
若汽车的质量为1000kg,刹车时产生的加速度为5m/s²,求:汽车刹车时作用在车体上的力大小为多少?解析:根据牛顿第二定律,力的大小等于质量乘以产生的加速度。
所以汽车刹车时作用在车体上的力大小为1000kg * 5m/s² = 5000N(牛顿)。
答案:汽车刹车时作用在车体上的力大小为5000N。
2. 物体A和物体B质量相同,在水平面上相互作用力F = 20N。
已知物体A的重力为30N,物体B的摩擦力为8N。
问:物体A和物体B 的加速度分别是多少?解析:根据牛顿第二定律,力的大小等于质量乘以产生的加速度。
所以物体A的加速度为(20N - 8N)/30kg = 12/30 = 0.4m/s²,物体B的加速度同样为0.4m/s²。
答案:物体A和物体B的加速度分别是0.4m/s²。
清华自主招生数学创新试题汇编

清华自主招生数学创新试题汇编(共33页)-本页仅作为预览文档封面,使用时请删除本页-1、(Ⅰ)已知函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;(Ⅱ)证明:()(0,0,)22n n na b a b a b n N *++≥>>∈; (Ⅲ)定理:若123,,k a a a a 均为正数,则有123123()n n nnn k ka a a a a a a a kk++++++++≥ 成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a +均为正数时,12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.解:(Ⅰ)令111'()2()0n n n f x nx n a x ---=-+=得11(2)()2n n x a x x a x x a --=+∴=+∴=…2分当0x a ≤≤时,2x x a <+ '()0f x ∴≤ 故()f x 在[0,]a 上递减.当,'()0x a f x >>故()f x 在(,)a +∞上递增.所以,当x a =时,()f x 的最小值为()0f a =.….4分(Ⅱ)由0b >,有()()0f b f a ≥= 即1()2()()0n n n n f b a b a b -=+-+≥故()(0,0,)22n n na b a b a b n N *++≥>>∈.………………………………………5分(Ⅲ)证明:要证:12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++只要证:112311231(1)()()n n n nnn k k k a a a a a a a a -+++++++≥++++设()g x =1123123(1)()()n n n nn n k a a a x a a a x -+++++-++++…………………7分则11112'()(1)()n n n k g x k nx n a a a x ---=+⋅-++++令'()0g x =得12ka a a x k+++= (8)分 当0x ≤≤12ka a a k+++时,1112'()[(]()n n k g x n kx x n a a a x --=+-++++≤111212()()0n n k k n a a a x n a a a x --++++-++++=故12()[0,]ka a a g x k+++在上递减,类似地可证12()(,)ka a a g x k++++∞在递增 所以12()ka a a x g x k+++=当时,的最小值为12()ka a a g k+++………………10分而11212121212()(1)[()]()n n n n n nk k k k k a a a a a a a a a g k a a a a a a k k k-+++++++++=+++++-++++ =1121212(1)[()()(1)()]n n n nnn n k k k nk k a a a a a a k a a a k -++++++++-++++=11212(1)[()()]n n n nn nkk nk k a a a k a a a k -++++-+++=1112121(1)[()()]n n n nn n k k n k k a a a a a a k---++++-+++由定理知: 11212()()0n n nnn k k k a a a a a a -+++-+++≥ 故12()0ka a a g k+++≥1211[0,)()()0kk k a a a a g a g k+++++∈+∞∴≥≥故112311231(1)()()n n n nnn k k k a a a a a a a a -+++++++≥++++即:12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.…………………………..14分答案:5354321b b b b b b =••••3、10.定义一种运算“*”:对于自然数n 满足以下运算性质:(i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于A .nB .n +1C .n -1D .2n 答案:D4、若)(n f 为*)(12N n n ∈+的各位数字之和,如:1971142=+,17791=++,则17)14(=f ;记=∈===+)8(*,)),(()(,)),(()(),()(20081121f N k n f f n f n f f n f n f n f k k 则 ____答案:55、下面的一组图形为某一四棱锥S-ABCD 的侧面与底面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清华大学历年自主招生试题汇总
以下是2014年清华“领军计划”部分面试题:
1、怎么看待单独二孩政策?
2、谈谈对节假日安排的看法,有什么建议?
3、怎么看待社会公平?
以下是2014年清华“自强计划”部分面试题:
结构性参考题目:
提问:在你的同龄人中,当有些同学在为上学、吃饭、治病乃至整个家庭的生计发愁时,另外一些同
学则在享受美味的食品、穿着流行的服装、接受各种优质的教育培训。
你如何看待这一现象?你是否认为这是一种社会不公?
追问:你心目中的社会公平是怎样的?是否能够实现?若能实现,简要阐述实现的方法;若不能实现,请说说为什么?
自由提问参考题目:
请讲一个你的经历中体现你“自强”的故事。
你对自己的大学生活有何规划?将来想从事何种职业?
你认为自己的家乡至今仍然贫困的原因是有哪些?应该如何解决?
你曾经遇到过的最大困难是什么?你是如何面对和解决的?
考察点:
主要考察学生的个人理想与社会理想,是否能够独立思考并勇于创新,是否能够采取积极的方式克服
困难与挫折;是否能够保持积极向上的心态等。
以下是清华大学2013年自主招生复试考题:
1.近期上海、南京、杭州等地连续出现“H7N9禽流感”感染病例引起关注,公众非常想知道这方面的
相关信息。
假如你是一位新闻发言人,你认为公众需要什么样的信息?
追问:假如你发布信息后,社会出现恐慌,那该怎么办?
2.“人类一思考,上帝就发笑”。
请就人类社会发展与大自然的关系发表评论。
追问:基于你的评价,你打算在当下和未来做些什么?
3.请以“我和诺贝尔奖的距离”为题发表一段2分钟的演讲,可准备1分钟。
4.除了当选的10位人物外,举出你认为应该入围“2013‘感动中国’的一位人物”,并阐述理由。
2008年清华大学自主招生考试题目选
语文(此文与原考试选用的文章稍有出入)(语文试题应该算是完整版了):
关于文学和它的寄主的故事
朱大可
关于文学死亡的话题,已经成为众人激烈争论的焦点。
这场遍及全球的争论,映射了文学所面临的生
存危机。
但文学终结并非危言耸听的预言,而是一种严酷的现实。
本届诺贝尔文学奖,颁发给了多丽丝·莱辛,这位88岁高龄的英国女作家,代表了20世纪最后的文学精神。
她是一枚被瑞典皇家委员会发现的化
石,她曾在20世纪中叶成为女权主义文学的激进代表,但其近15年来的作品,却遭到美国评论家哈罗德·布鲁姆的激烈抨击,认为它们只具有四流水准,完全不具备原创的能力。
耐人寻味的是,在所有诺贝尔奖项
中,只有文学奖面临着二流化的指责,而造成这种状况的唯一原因,就是文学自身的全球性衰退。
这种现
状,验证了20世纪60年代美国批评家关于“文学衰竭”的预言。
返观中国文学的狼藉现场,我们发现,汉语文学的衰退,主要基于以下三个方面的原因:第一,80年代以来活跃的前线作家,大多进入了衰退周期,而新生代作家还没有成熟,断裂变得不可避免。
第二,重
商主义对文学的影响,市场占有率成为衡量作家成功与否的主要标准,这种普遍的金钱焦虑,严重腐蚀了
文学的灵魂和原创力,导致整个文坛垃圾丛生。
第三,电影、电视、互联网、游戏等媒体的兴起,压缩了
传统文学的生长空间,迫使它走向死亡。
这是我关于文学衰败的基本看法。
但我最近才意识到,这种看法其实是错误的。
文学的衰败只有一个
主因,那就是文学自身的蜕变。
建立在平面印刷和二维阅读上的传统文学,在经历了数千年的兴盛期之后,注定要在21世纪走向衰败。
它是新媒体时代所要摧毁的主要对象。
新媒体首先摧毁了文学的阅读者,把他们从文学那里推开,进而摧毁了作家的信念,把文学变成一堆无人问津的“废物”。
然而,尽管中国文坛充满了垃圾,但文学本身并不是垃圾,恰恰相反,文学是一个伟大的幽灵,飘荡
于人类的精神空间,寻找着安身立命的躯壳(寄主和媒体)。
在可以追溯的历史框架里,文学幽灵至少两
度选择了人的身体作为自己的寄主。
第一次,文学利用了人的舌头及其语音,由此诞生了所谓“口头文学”
(听觉的文学);而在第二次,文学握住了人手,由此展开平面书写、印刷及其阅读,并催生了所谓“书
面文学”(文字的文学)的问世。
这两种文学都向我们提供了大量杰出的文本。
在刻写术、纺织术、造纸
术和雕版印刷术的支持下,经历两千年左右的打磨,书面文学早已光华四射,支撑着人类的题写梦想。
文学还有两个值得关注的寄主,那就是歌曲和戏剧,它们跟传统文学并存,俨然是它的兄弟,照亮了
古代乡村社会的质朴生活。
但就叙事和抒情的线性本质而言,它们都是口头和书面文学的变种而已。
文学
的寄生形态,从来就是复杂多样的。
它们制造了艺术多样性的幻觉。
然而,基于个人作坊式的书面文学,正在迅速老去。
越过古典乡村时代的繁华,它的容颜和生命都面
临凋谢的结局。
千禧年就是一座巨大的界碑,向我们描述了临界点的存在。
我们置身于第二代文学的最后
时刻。
文学已经动身离开这种二维书写的寄主,进入全新的多媒体空间。
这是文学幽灵的第三次迁居,它
要从新寄主那里重获年轻的生命。
但我们却对此视而不见,包括我本人在内。
我们完全沉浸在对书本、文
字和个人书写的习惯性迷恋之中。
我们对文学的剧烈变革置若罔闻。
这场寄主的变迁,无非就是文学对媒体的重新选择。
它起源于电影,也就是起源于视觉和图像的叙事。
爱森斯坦从一开始就向我们指出电影与文学的本质关联,他的杂耍蒙太奇语法,企图重现自然语法的叙事
功能。
但很少有人相信他的实验及其信念。
但经过一百多年的修炼,在那些包括影视在内的新媒体的躯壳
中,新媒体文学已经卓成大树。
《魔戒》无疑是新媒体文学的杰作,它超越文学原著的水准,成为惊心动魄的影像史诗,它不仅再现
了荷马史诗和圣经时代的集体创作特征,而且在宏大叙事时空里,构筑了复杂的精神符号体系,追问人类
的核心价值,不仅如此,它比荷马史诗具有更强烈的体验性力量。
越过超宽银幕和多声道音响系统,我们
惊讶地看到,濒临死亡的传统文学幽灵,在这种多维媒体的躯壳里获得了重生。
进入新媒体寄主的文学,维系着旧文学的灵巧的叙事特征,却拥有更优良的视听品质。
它直接触摸身
体,以构筑精细的感官王国。
还有一个例子,是当下流行的网络游戏,小说在那里演进成一种可以密切互
动的数码艺术,结果它成了历史上最具吸引力的符号活动。
新媒体文学还化身为手机短信,以简洁幽默的
字词,抨击严酷的社会现实,显示了话语反讽的意识形态力量。
新媒体文学甚至借用商业资源,把那个最
强大的敌人,转变成养育自身的摇篮。
文学正在像蝴蝶一样蜕变,它丢弃了古老的躯壳,却利用新媒体,
以影视、游戏和短信的方式重返文化现场。
诗歌的命运也是如此。
书面诗歌也许会消亡,但歌曲却正在各种时尚风格的名义下大肆流行,成为大
众文化的主体。
它们是诗歌的古老变种。
更重要的是,即便各种诗歌形态都已消亡,但支撑诗歌的灵魂—
—诗意,却是长存不朽的。
宫崎骏的卡通片系列,向我们提供了这方面的有力证据。
在那些梦幻图像里,
诗意在蓬勃生长,完全超越了传统诗歌的狭隘框架。
让我们回过来谈论诺贝尔文学奖的前景。
这类奖项的道路正在越走越窄。
20世纪文学老人正在相继谢世,新一代作家软弱无力,根本无法因应新媒体的挑战。
文学授奖对象变得日益稀少。
这是书面文学的原
创性危机,也是各种文学奖的权力危机。
在我看来,唯一的解决方案,就是重新评估文学的自我转型,并
把那些生气勃勃的新媒体文学,纳入文学奖项的搜索范围,并在保留书面文学“遗产”的前提下,加入文
学的新媒体类型,如“影像文学”、“游戏文学”和“手机文学”等等。
文学,应当是上述各种样式的总
和。
文学已经“蝶化”,进化为更加瑰丽的“物种”,而我们却在继续悲悼它的“旧茧”,为它的“死亡”
而感伤地哭泣。
文学理论家应当修正所有的美学偏见,为进入新媒体的文学做出全新的定义。
否则,我们
就只能跟旧文学一起死掉。
1.请用简洁的语言给“文学的寄主”下个定义。
2.对于文本,有以下五个观点,请选择其中一个做精当的评说。
A.她是一枚被瑞典皇家委员会发现的化石。