第3章 电力系统的短路..

合集下载

第三章短路电流及其计算

第三章短路电流及其计算

例题 3—2,P60
6、计算示例
例题:已知供电系统如图所示,系统出口断路器的断路容量为 500MVA。 求:1)工厂配电所10kV母线上k1点和车间变电所低压380V母线上 * * k2点短路回路的总电抗标幺值 X k 1 X k 2 ,值; , ( (3 ( 2)k1 ,k2两点的 I k 3) ish ) 及 S k 3 ) 值。 ,
根据
Id * X
I
( 3) 可以分别计算出 k
( (3 (3 I k( 2) , I ''(3) , I 3) , ish ) , I sh ) , S k(3) 。
4、三相短路容量
S
( 3) k
3I dU c S d 3I U C * * X X
( 3) k
5、计算步骤
(1)确定各基准值; (2)分别计算各元件电抗标幺值; (3)根据计算电路绘出等效电路,并将各元件电抗标幺值和短路 计算点一一标出在等效电路上; (4)分别求出各短路计算点的总电抗标幺值; (5)分别计算各短路计算点的各短路参数值; (6)将各计算结果列表。
2、短路电流非周期分量
(波形按指数函数衰减 )
t t
inp inp( 0)e

2 I ' 'e

3、短路瞬时电流
ik i p inp I k .m sin( t k ) inp( 0) e
Rt t L
4、短路冲击电流
ish K sh 2I ''
第三章
短路电流及其计算
本章主要内容:无限大容量电力系统三相短路时的物理过 程及物理量 三相短路及两相和单相短路的计算 短路电流的效应及短路校验条件 第一节 短路的原因、后果、形式及几率

第3章电力系统的短路

第3章电力系统的短路

第3章电⼒系统的短路第3章电⼒系统的短路3.1 短路的类型及计算假设3.1.1短路的原因、类型及后果短路是电⼒系统的严重故障。

短路:指⼀切不正常的相与相或相与地(对于中性点接地的系统)之间发⽣通路的情况。

1.短路的原因元件损坏;⽓象条件恶化;⼈为事故;其他,如⼯程建设时挖沟损伤电缆等;2.短路的类型三相短路、两相短路、两相接地短路、单相接地短路等。

三相短路也称对称短路;其他类型的短路是不对称短路;3.短路的后果1)短路故障使短路点附近⽀路出现⽐正常电流⼤许多倍的短路电流,产⽣较⼤的电动效应和热效应,破坏设备;2)短路时系统电压⼤幅度下降,对⽤户影响很⼤;3)短路会使并列运⾏的发电机失去同步,破坏系统的稳定,造成系统的解列,出现⼤⾯积停电;4)不对称短路对附近通信线路和⽆线电波会产⽣电磁⼲扰。

3.1.2短路电流计算的⽬的与计算假设1.短路电流计算的⽬的选择有⾜够机械稳定和热稳定的电器设备;合理配置各种继电保护和⾃动装置并正确整定其参数;设计和选择发电⼚和电⼒系统主接线;进⾏电⼒系统的暂态稳定计算,分析短路对⽤户的影响;确定输电线路对通信的影响;2.短路电流计算的基本假设短路过程中各发电机之间不发⽣摇摆,并认为所有发电机的电势都同相位;负荷只作近似估计,或当作恒定电抗,或当做某种临时附加电源,要视具体情况⽽定;不计磁路饱和;对称三相系统;忽略⾼压输电线的电阻和电容,忽略变压器的电阻和励磁电流,即发电、输电、变电和⽤电均⽤纯电抗表⽰;⾦属性短路:不计过渡电阻的影响,即认为过渡电阻等于零的短路情况;3.1.3实⽤短路电流计算的基本流程根据基本假设,采⽤标⼳值⽅法计算已知待计算系统所有设备的电抗标⼳值;⽤设备电抗标⼳值替换设备元件并重新绘制成图,形成短路计算电路图;等值简化⽹络,简化⽬标是所有电源到短路点都只有⼀个等值电抗的最简单等值电路图;采⽤⽆限⼤容量系统的概念计算现实中电⼒系统对短路点提供的短路电流;采⽤⽆限⼤容量系统的概念计算现实中电⼒系统的短路电流;叠加不同元件相同时刻的短路电流。

第三章 短路电流计算《供电技术》(第4版)

第三章  短路电流计算《供电技术》(第4版)

第3章 短路电流计算
(3-11)
故系统发生三相短路时各相的短路电流表达式:
(3) ikA I zm sin t kl [ I m sin( ) I zm sin( kl )]e Tt
fi
(3) ikB I zm sin t 1200 kl [ I m sin( 1200 ) I zm sin( 1200 kl )]e
习惯上把这一短路电流周期分量有效值写作 I K ,即:
(3) I z Ik Ik
第3章 短路电流计算

(3-20)
有限容量电源供电系统:
当电源容量较小,或短路点距电源较近时,对于电源 来说,相当于在发电机端头处短路,由于短路回路阻抗突 然减小(此时短路回路的阻抗几乎是纯感性) ,使发电机 定子电流突然剧增,产生很强的电枢反电势,短路电流周 期分量滞后发电机电势近900,故其方向与转子绕组产生的 磁通相反,产生强去磁作用,使发电机气隙中的合成磁场 削弱,端电压下降(电源电压变化)。其短路电流的非周 期分量与周期分量均发生衰减。 计算方法:根据电源至短路电的转移阻抗——查相应 的发电机运算曲线求取短路参数。
第3章 短路电流计算
(3-3)
图3-1 短路类型及其表示符号
第3章 短路电流计算
(3-4)
二、无限容量电源供电系统短路过程分析
1、无限大容量电源供电系统的概念 所谓无限大容量电 源是指内阻抗为零的电 源。当电源内阻抗为零 时,不管输出的电流如 何变动,电源内部均不 产生压降,电源母线上 的输出电压维持不变。
T fi X kl Rkl , T fi X kl Rkl 0,
1 k sh 2
在工程设计计算中: 高压系统

第3章-短路电流计算

第3章-短路电流计算


确定合理的主接线方案和运行方式
第三章
短路电流计算
无限大容量供电 系统三相短路分析
第二节
第三章
短路电流计算
一、无限大容量电源概念

无限大容量供电系统定义


内阻为零
端电压恒定不变 短路电流周期分量恒定不变
通常将电源内阻抗小于短路回路总阻抗10%的电源看作无限大
容量供电系统;一般的工矿企业供电系统的短路点离电源的距
产生最大短路电流的条件
最大三相短路电流是指最大短路电 流瞬时值。由ik的公式可以知道,短 路电流瞬时值最大的条件就是短路电 流非周期分量初始值最大的条件。 短路电流非周期初始值既与短路
前的负载情况有关,又与短路发生时
刻、短路后回路性质有关。 因此,当供电回路为空载Im=0或者cosψ=1时,Im与横轴重合。电源 电压过零(电源电压与横坐标重合)时短路,而且短路回路为纯感性, 则短路电流非周期初始值最大。
短路电流计算
无限大电源容量的暂态过程
设电源电压为: 正常运行电流为:
u ph = U phm sin(wt + q) i = I phm sin(wt + q - f )
I phm = U phm / ( R + Rlo )2 + (wl + wLlo )2
式中:I
-短路前电流的幅值
phm


-短路前回路的阻抗角
对于纯感性电路ksh =2;
第三章
有效值,
短路电流计算
短路冲击电流的有效值Ish是指短路后第一个周期的短路电流全电流的
I sh =
I
2 pe (0.01)
+I

第三章:电力系统三相短路实用计算

第三章:电力系统三相短路实用计算

对于故障分量网络,一般用节点方程来描述,也就 是节点阻抗矩阵和节点导纳矩阵. 二:短路发生在节点处的计算方法 1:节点阻抗矩阵计算法 节点电压方程为
U1 z11 U i zi1 U z j1 j U z n n1 z1i z1 j z1n I1 zin I i z jn I j z nn I n
障前电压除以故障点向网络看进去的戴维南等值阻抗。
二:复杂系统的短路电流初始值计算
复杂系统计算的原则和简单系统相同,一般应用叠加原理。 (1)从已知的正常运行情况下求得短路点的开路电压。 (2)形成故障分量网络,将所有电源短路接地,化简合并 后求得网络对短路点的等值电抗x,则可得短路点电流为
I f U f / jx
发电机的次暂态电动势为:
d EG 0 U f 0 jI 0 x 0.97 j (0.69 j 0.52) 0.3 1.126 j 0.207
电动机的次暂态电动势为:
d EM 0 U f 0 jI 0 x 0.97 j (0.69 j 0.52) 0.2 0.866 j 0.138
若短路前为额定运行方式,x”取0.2,则E”约等于 0.9,短路电流初始值约为额定的4.5倍。 若近似取E”=1,则电动机端点发生短路时,其反馈的短 路电流初始值就等于启动电流标幺值,即:
I 1 / x I st
例 2 一台发电机向一台同步电动机供电。发电机和电动 机的额定功率均为30MVA,额定电压均为10.5KV,次 暂态电抗均为0.20。 线路电抗,以电机的额定值为基 准值的标么值为0.1。设正常情况下电动机消耗的功率 为20MW,功率因数为0.8滞后,端电压为10.2KV。若 在电动机端点f发生三相短路,试求短路后瞬时故障点 的短路电流以及发电机和电动机支路电流的交流分量。

第三章电力系统三相短路的实用计算

第三章电力系统三相短路的实用计算

计算的条件和近似:电源
E|0| U|0| jI|0| xd
发电机的等值电动势为次暂态电动势; 等值电抗为直轴次暂态电抗; 若忽略负荷,则短路前为空载状态,所有电源的等值电动 势标幺值均为1,且同相位。 当短路点远离电源时,发电机端电压母线看作恒定电压源。
计算的条件和近似:电网 • 忽略线路对地电容和变压器的励磁回路 • 计算高压网时忽略电阻,低压网和电缆 线路用阻抗模值计算 • 标幺值计算中取变压器变比为平均额定 电压之比
计算的条件和近似:负荷 • 不计负荷(均断开)。 • 短路前按空载情况决定次暂态电动势, 短路后电网上依旧不接负荷。 • 近似的可行性是由于短路后电网电压下 降,负荷电流<<短路电流。
计算的条件和近似:电动机
• 短路后瞬间电动机倒送短路电流现象:图3-1 异步电动机在失去电源后能提供短路电流: 机械惯性和电磁惯性。 异步电动机短路电流中有交流分量和直流分量。
• 电力系统短路电流的工程计算只要求计 算短路电流基频交流分量的初始值,即 次暂态电流 I 。
WHY? 由于使用快速保护和高速断路器以后, 断路器开断时间小于0.1S
Q:各种电机的时间常数的大致范围为多少?
P32 表2-2
第三章 电力系统三相短路电流的实用计算
第一节 短路电流交流分量初始值计算
线形 网络
I f
f
只有第i个电势源 单独作用时的电 流分布
Iii
表示第i个电势源单独作用时从节点i流入网络的电流 表示第j个电势源单独作用时从节点i流出网络的电流
Iij
第i个电源节点的电流可以表示为:
I i I ii I ij
j 1 j i
n

供配电第3章短路电流计算

供配电第3章短路电流计算
3. 短路使系统电压降低,电流升高,电器设备正常 工作受到破坏。
4. 短路造成停电,给国民经济带来损失,给人民生 活带来不便。
5. 严重的短路将电力系统运行的稳定性,使同步发 电机失步。
6. 单相短路产生的不平衡磁场,对通信线路和弱电 设备产生严重的电磁干扰。
四、防止短路对策
预防性试验 正确安装和维护防雷设备 文明施工 严格遵守操作规程
式中,Ksh·M为电动机的短路电流冲击系数,低压电动机 取1.0,高压电机取1.4~1.6 ;IN·M为电动机额定电流;
为电动机的次暂态电势标幺值;
为电动机的次暂态电抗标幺值;
该两参数可查表(见书P60 表3-2)。 实际计算中,只有当高压电动机单机或总容量大于 1000kW,低压电动机单机或总容量大于100kW; 在靠近 电动机引出端附近发生三相短路时,才考虑电动机对冲 击短路电流的影响.
电源到变电站母线间的阻抗情况未知, 但是已知:
(1)变电站母线出线侧短路容量 或(2)供电线路电源端上的断路器的断流容量
各主要元件的阻抗标幺值
2)电力变压器的电抗标幺值 3)电力线路的阻抗标幺值
4)电抗器的电抗标幺值
标幺制短路阻抗计算
• 按电路结构计算短路总阻抗
• 考虑短路总电阻值与短路总电抗值之间 的大小关系
第1节 概述
短路的概念:
运行中的电力系统或工厂供配电系统的相与相或者相 与地之间发生的金属性非正常连接。
原因:
(1)电力系统中电器设备载流导体的绝缘损坏。 造成绝缘损坏的原因主要有设备绝缘自然老化,绝缘
受到机械损伤,设备本身的质量问题;操作过电压或大气过 电压引起的过电压击穿等。 (2)人为故障,包括:设计、安装和维护不良,及误操作。

第三章 电力系统三项短路电流的使用计算

第三章 电力系统三项短路电流的使用计算
(3)短路电流使用计算步骤
近似计算2:
假设条件:
所有发电机的电势为1,相角为 0,即 E 10 不计电阻、电纳、变压器非标准变比。 不计负荷(空载状态)或负荷用等值电抗表示。 短路电路连接到内阻抗为零的恒定电势源上
起始次暂态电流和冲击电流的 实用计算
没有给出系统信息
X S*
IB IS
有阻尼绕组 jxd
jxd 无阻尼绕组
E
E
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
•起始次暂态电流:短路电流周期分量(基频分量) 的初值。
•静止元件的次暂态参数与稳态参数相同。
•发电机:用次暂态电势 E 和次暂态电抗 X d
表示。
E G 0 U G 0 jX dIG 0
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
(3)短路电流使用计算步骤
较精确计算步骤
绘制电力系统等值电路图 进行潮流计算 计算发电机电势 给定短路点,对短路点进行网络简化 计算短路点电流 由短路点电流推算非短路点电流、电压。
例题
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
电力系统三相短路的实用计算
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
(1)同步发电机的模型
ia
Eq xd
cos(t
0 )
Ed xq
sin(t
0 )
I cos(t 0-)
ia
Eq|0| xd
当cos(xtd
0
)xq(时Exqd|0|
Exqd|0I| )cos(x1td0E)qe|0|Ttd E(qE|0x|qd|0| ExE|dx0q|d|0|

第三章 电力系统的短路电流计算

第三章 电力系统的短路电流计算

直流电流的初值越大,暂态过程中短路冲击电流也就越大。
直流分量的起始值大小与电源电压的初始角 α 及短路前回路 中电流值 Im 0 及 ϕ 角等有关。
出现最大的短路冲击电流的条件:
图3-3为t=0时刻A相相量图 U& mA:电源电压; I&mA 0 :短路前的电流; I& pmA :短路电流交流分量; 相量在时间轴t上的投影
短路前瞬间电流
短路后瞬间电流
( ) 从而 c = Im 0 sin α −ϕ 0 − I pm sin(α −ϕ )
[ ( ) ] iA = I pm sin(ωt + α −ϕ )+ Im 0 sin α −ϕ 0 − I pm sin(α −ϕ ) e−t Ta
( ) iB = I pm sin ωt + α − 1200 −ϕ
后的T/2时刻出现。
在f=50Hz的情况下,大约 为0.01s时出现冲击电流最 大值。
iM = I pm + I pme−0.01 Ta
( ) = 1 + e−0.01 Ta I pm
= K M I pm
KM:冲击系数,表示冲击电流为短路电流交流分量幅值的倍数。
冲击系数的变化范围 1 ≤ KM ≤ 2
3.3.1 同步发电机在空载情况下突然三相短路的物理过程
同步发电机稳态对称运行时,电枢反应磁动势的大 小固定,在空间以同步速度旋转,由于它与转子没有相 对运动,因而不会在转子绕组中感应出电流。
当发电机端部突然三相短路时,定子电流在数值上将 急剧变化,由于电感回路的电流不能突变,定子绕组中必 然有其他电流自由分量产生,从而引起电枢反应磁通变化。 此变化又会影响到转子,在转子绕组中感应出电流,进一 步影响定子电流的变化。

第3章 短路电流

第3章 短路电流
① 形成极大的电动力,使元器件、设备永久变形或严重损 坏;
② 电流热效应,使设备急剧发热,若持续发热过久,绝缘 会老化或损坏;
③ 大幅降低电压,将影响用户正常工作,如异步电动机 电磁转矩下降,致使转速减慢,甚至停转;
④ 导致停电,严重短路可使并列运行的发电机组失去同 步,造成系统解列,短路保护装置动作,最终造成停电。越 靠近电源的保护装置动作,造成的停电范围越大。
kV、容量为MV·A,阻抗为Ω(个别情况用毫欧姆mΩ)。
3.说明
1)短路计算电压Uc按最严重短路情况选取,即取短路 点所在线段的首端电压(最高电压)值。
Uc 1.05UN
(3-7)
2)阻抗换算。短路电路内含有变压元件(变压器),
则电路元件的阻抗应统一换算到短路点。换算原则为元件功
率损耗不变,按△P=U2/R及△Q=U2/X,知元件阻抗与电压平
无限大容量电力系统是指供电容量相对用电容量大得多 (50倍以上),或者电源总阻抗相对短路总阻抗小得多 (5%~10%)的系统。当用电电流变化,此系统供电电压可 视为恒定。实际电力系统虽总是有限容量,但为便于分析短 路过程,一般将其理想化为无限大容量。
1.数学表达 图3-1a为此系统发生三相短路的简化典型电路。由于三
PT PCuT PK 3 IN 2RT 3 (
SN 3U N
)2 RT
( SN UN
)2 RT

RT

PKUN 2 SN 2

PK
(U N SN
)2
(3-16)
式中,UN、IN依次为变压器二次绕组的额定电压、额定 电流。
再类式(3-15),推得阻抗
X T ZT2 RT2
3.2.3 标幺值法

第三章电力系统三相短路电流的实用计算

第三章电力系统三相短路电流的实用计算

第三章 电力系统三相短路电流的实用计算上一章讨论了一台发电机的三相短路电流,其阐发过程已经相当复杂,并且还不是完全严格的。

那么,对于包含有许多台发电机的实际电力系统,在进行短路电流的工程实际计算时,不成能也没有必要作如此复杂的阐发。

实际上工程计算时,只要求计算短路电流基频交流分量的初始值I ''即可。

1、I ''假设取 1.8M K =2.551.52M ch M ch i i I I I I ''==''==2、求I ''的方法:〔1〕手算 〔2〕计算机计算〔3〕运算曲线法:不单可以求0t =时刻的I ',还可以求任意时刻t 的t I 值。

§3-1I ''的计算〔I ''-周期分量起始有效值〕一、计算I ''的条件和近似1、电源参数的取用〔1〕发电机: 以101E ''和d X ''等值〔且认为d q X X ''''=,即都是隐极机〕 101101101d E U jI X ''''=+ 〔3-1〕101E ''在0t =时刻不突变。

〔2〕调相机: 与发电机一样,以101E ''和d X ''等值 但应注意:当调相机短路前为欠激运行时,∵101101E U ''< ∴不提供§3-2应用运算曲线法求任意时刻周期分量有效值tI由上章的阐发可知,即使是一台发电机,要计算其任意时刻的短路电流,也是较繁的。

首先必需知道各时间常数、电抗、电势参数,然后进行指数计算。

这对工程上的实用计算显然不适合的。

50年代以来,我国电力部分持久采用畴前苏联引进的一种运算曲线法来计算的。

此刻试行据我国的机组参数绘制的运算曲线,下面介绍这种曲线的制定和应用。

第三章电力系统三相短路电流的实用计算

第三章电力系统三相短路电流的实用计算

为短路电流周期分量是不衰减的,而求得的短路电流周 期分量的有效值即为起始次暂态电流 I 。
例3-1 (P66)
条件与近似
第三章 电力系统三相短路电流的实用计算 a)直接法(如图(3-1)所示)
假设条件: 1.所接负荷为综荷
2. E 1 0
短路电流为:
1 1 I f x1 x2
第三章 电力系统三相短路电流的实用计算
(a)
(b)
(a)等值网络 (b)分解后正常、故障运行网络 图3-4 计及负荷时计算短路电流等值网络
第三章 电力系统三相短路电流的实用计算
(c)
(d) 图3-5 不计及负荷短路电流计算等值网络
正常运行方式为空载运行,网络各点电压为1;
故障分量网络中, U f 0 1
U1 Z11 Z U 2 21 U i Z i1 Z f 1 U f U n Z n1 Z12 Z 22 Zi 2 Zf2 Zn2 Z1i Z1 f Z 2i Z 2 f Z ii Z fi Z ni Z if Z ff Z nf Z1n 0 Z1 f Z2 n 0 Z2 f Z in Z if (3-16) Z fn I f Z ff Z nn 0 Z nf
同步发电机计算方法与调相机类似;
异步电动机短路失去电源后能提供短路电流。
突然短路瞬间,异步电动机在机械和电磁惯性作用下,
定转子绕组中均感应有直流分量电流,当端电压低于 次暂态电动势时,就向外供应短路电流。

第3章 短路电流计算(1、2)

第3章  短路电流计算(1、2)

′ I ′ = I z = I∞
广东工业大学自动化学院电力工程系
3. 短路电流冲击值Fra bibliotekish
短路电流冲击值:即在发生最大短路电流的条件下, 短路电流冲击值:即在发生最大短路电流的条件下, 短路发生后约半个周期出现短路电流最大可能的瞬时值。 短路发生后约半个周期出现短路电流最大可能的瞬时值。
ish =ik(t=0.01s) = Izm(1+e
第3章 短路电流的计算
广东工业大学自动化学院电力工程系
第一节 概述
广东工业大学自动化学院电力工程系
第一节 概述
一、短路及其原因、后果 短路及其原因、 短路: 短路:供电系统中一相或多相载流导体接地或相互接触并 产生超出规定值的大电流。 产生超出规定值的大电流。 主要原因:电气设备载流部分的绝缘损坏, 其次是人员误操作、雷击或过电压击穿等。 其次是人员误操作、雷击或过电压击穿等。 短路后果: 短路后果: 短路电流产生的热量,使导体温度急剧上升,会使绝缘损坏; 短路电流产生的热量,使导体温度急剧上升,会使绝缘损坏; 短路电流产生的电动力,会使设备载流部分变形或损坏; 短路电流产生的电动力,会使设备载流部分变形或损坏; 短路会使系统电压骤降,影响系统其他设备的正常运行; 短路会使系统电压骤降,影响系统其他设备的正常运行; 严重的短路会影响系统的稳定性; 严重的短路会影响系统的稳定性; 短路还会造成停电; 短路还会造成停电; 不对称短路的短路电流会对通信和电子设备等产生电磁干扰等。 不对称短路的短路电流会对通信和电子设备等产生电磁干扰等 。
广东工业大学自动化学院电力工程系
二、短路的类型
对称短路:三相短路 对称短路: 不对称短路:两相短路、单相短路和两相接地短路。 不对称短路:两相短路、单相短路和两相接地短路。

供配电技术第3章-短路电流计算

供配电技术第3章-短路电流计算

图3-3无限大功率电源供电系统三相短路时的短路电流波形图
图3-4 三相短路时的相量图
产生最严重短路电流的条件: (1)短路瞬时电压过零 α=0或1800 (2)短路前空载或 cosΦ1 (3)短路回路纯电感 ΦK=900
将I=0,a=0,øk=90o代入上式,得
图3-5 最严重三相短路时的电流波形图
I
* K
2
1
X
* KL
1 7.516
0.133
IK2
Id
I
* K
144.3 0.133 19.192kA
ish.k 2 1.84I K 2 1.84 19.192 35.313kA
SK2
Sd
X
* K
2
100 0.133 13.3MVA
5.计算K2点三相短路流经变压器3T一次绕组的短路电流 I'K2
电动机对冲击短路电流的影响,如图3-9所示。
图3-9 电动机对冲击短路电流的影响示意图
电动机提供的冲击短路电流可按下式计算
式中,Ksh·M为电动机的短路电流冲击系数,低压电动机取1.0,高压 电机取 1.4~1.6; 为电动机的次暂态电势标幺值; 为电动机的次暂态电抗标幺值 IN·M为电动机额定电流。
稳态短路电流有效值是短路电流非周期分量衰减完后的短路电流有效值,用I∞ 表示。 在无限大容量系统中,I∞=Ip。 6.短路容量 SK 三相短路容量是选择断路器时,校验其断路能力的依据,它根据计算电压即平均
额定电压进行计算,即
3.3无限大功率电源供电系统三相短路电流的计算
3.3.1 标幺制
用相对值表示元件的物理量,称为标幺制。标幺值没有单位。
图3-7 例3-1供电系统图

电力系统三相短路的实用计算(1-起始值)

电力系统三相短路的实用计算(1-起始值)
2 UD ZD p D jQD
信电XYJ-623
4)令故障点直接接地,按常规计算方法求解故 障后的网络。
二.异步电动机对短路电流的影响
接线图及等值电路: U |0|
M
I|0|
U |0|
jx I |0|
E|| U |0| jI |0| x 0

I|0|
第三章 电力系统三相短路的实用计算
本章讨论实际系统三相短路时周期电流的实用计 算方法,由于实际的短路周期电流是衰减的,所以 计算分为两个方面: 1)短路电流起始值的计算 2)短路过程中任意时刻电流的计算。 §3-1 短路电流周期分量起始值的计算
信电XYJ-623
一.计算条件及步骤 1)发电机模型:所有发电机均用次暂态模型,略 去交直轴的不对称性。
E|| 0
信电XYJ-623
xrs xad x x s xrs xad
电机启动电抗:
x
x
xr
r s
xad
1 x x st I st
三.叠加原理在短路计算中的应用 基本要点:在故障点,将短路等效为两个反向电压 源的串接(计及短路前负荷影响时,该方法优势明 显)。
E|0| U|0| jI|0| xd
注:若不计短路前的负荷电流(指短路前空载), 电势近似取1,且相位相同。 2)电网参数:采用近似法进行网络参数计算,忽 略线路对地电容和变压器的励磁回路。 注:高压网计算中,可忽略线路电阻;对低压网或 电缆线路,可近似用阻抗模值计算。 3)负荷支路影响:若计及短路后负荷支路的影响, 则用恒定阻抗模型,按下式计算;否则,将其开路。
信电XYJ-623
四.复杂系统的网络化简法 1)网络的等效变换(串并联,Y-△变换)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章电力系统的短路3.1 短路的类型及计算假设3.1.1短路的原因、类型及后果短路是电力系统的严重故障。

短路:指一切不正常的相与相或相与地(对于中性点接地的系统)之间发生通路的情况。

1.短路的原因元件损坏;气象条件恶化;人为事故;其他,如工程建设时挖沟损伤电缆等;2.短路的类型三相短路、两相短路、两相接地短路、单相接地短路等。

三相短路也称对称短路;其他类型的短路是不对称短路;3.短路的后果1)短路故障使短路点附近支路出现比正常电流大许多倍的短路电流,产生较大的电动效应和热效应,破坏设备;2)短路时系统电压大幅度下降,对用户影响很大;3)短路会使并列运行的发电机失去同步,破坏系统的稳定,造成系统的解列,出现大面积停电;4)不对称短路对附近通信线路和无线电波会产生电磁干扰。

3.1.2短路电流计算的目的与计算假设1.短路电流计算的目的选择有足够机械稳定和热稳定的电器设备;合理配置各种继电保护和自动装置并正确整定其参数;设计和选择发电厂和电力系统主接线;进行电力系统的暂态稳定计算,分析短路对用户的影响;确定输电线路对通信的影响;2.短路电流计算的基本假设短路过程中各发电机之间不发生摇摆,并认为所有发电机的电势都同相位;负荷只作近似估计,或当作恒定电抗,或当做某种临时附加电源,要视具体情况而定;不计磁路饱和;对称三相系统;忽略高压输电线的电阻和电容,忽略变压器的电阻和励磁电流,即发电、输电、变电和用电均用纯电抗表示;金属性短路:不计过渡电阻的影响,即认为过渡电阻等于零的短路情况;3.1.3实用短路电流计算的基本流程根据基本假设,采用标幺值方法计算已知待计算系统所有设备的电抗标幺值;用设备电抗标幺值替换设备元件并重新绘制成图,形成短路计算电路图;等值简化网络,简化目标是所有电源到短路点都只有一个等值电抗的最简单等值电路图;采用无限大容量系统的概念计算现实中电力系统对短路点提供的短路电流;采用无限大容量系统的概念计算现实中电力系统的短路电流;叠加不同元件相同时刻的短路电流。

短路电流,电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流。

在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。

三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。

主要分类三相系统中发生的短路有 4 种基本类型:三相短路,两相短路,单相对地短路和两相对地短路。

其中,除三相短路时,三相回路依旧对称,因而又称对称短路外,其余三类均属不对称短路。

在中性点接地的电力网络中,以一相对地的短路故障最多,约占全部故障的90%。

在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。

发生短路时,电力系统从正常的稳定状态过渡到短路的稳定状态,一般需3~5秒。

在这一暂态过程中,短路电流的变化很复杂。

它有多种分量,其计算需采用电子计算机。

在短路后约半个周波(0.01秒)时将出现短路电流的最大瞬时值,称为冲击电流。

它会产生很大的电动力,其大小可用来校验电工设备在发生短路时机械应力的动稳定性。

短路电流的分析、计算是电力系统分析的重要内容之一。

它为电力系统的规划设计和运行中选择电工设备、整定继电保护、分析事故提供了有效手段。

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。

为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。

计算目的计算短路电流的目的是为了限制短路的危害和缩小故障的影响范围。

在变电所和供电系统的设计和运行中,基于如下用途必须进行短路电流的计算:(1)选择电气设备和载流导体,必须用短路电流校验其热稳定性和动稳定性。

(2)选择和整定继电保护装置,使之能正确的切除短路故障。

(3)确定合理的主接线方案、运行方式及限流措施。

(4)保护电力系统的电气设备在最严重的短路状态下不损坏,尽量减少因短路故障产生的危害。

计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多.具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗.2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流.计算方法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.在介绍简化计算法之前必须先了解一些基本概念.1.主要参数Sd三相短路容量 (MVA)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(Ω)其中系统短路容量Sd和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量 Sjz =100 MVA基准电压 UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4因为 S=1.73*U*I 所以 IJZ (KA)1.565.59.16144(2)标么值计算容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.电压标么值 U*= U/UJZ ; 电流标么值 I* =I/IJZ3无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1+2 (KC-1)2 (KA)其中KC冲击系数,取1.8所以 IC =1.52Id冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取1.3这时:冲击电流有效值IC =1.09*Id(KA)冲击电流峰值: ic =1.84 Id(KA)掌握了以上知识,就能进行短路电流计算了.公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等.一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求得总电抗后,再用以上公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流.下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.口诀算法1.系统电抗的计算系统电抗,百兆为一。

容量增减,电抗反比。

100除系统容量例:基准容量 100MVA。

当系统容量为100MVA时,系统的电抗为XS*=100/100=1当系统容量为200MVA时,系统的电抗为XS*=100/200=0.5当系统容量为无穷大时,系统的电抗为XS*=100/∞=0系统容量单位:MVA系统容量应由当地供电部门提供。

当不能得到时,可将供电电源出线开关的开断容量作为系统容量。

如已知供电部门出线开关为W-VAC 12KV 2000A 额定分断电流为40KA。

则可认为系统容量S=1.73*40*10000V=692MVA, 系统的电抗为XS*=100/692=0.144。

2.变压器电抗的计算110KV:10.5除变压器容量35KV:7除变压器容量6~10KV: 4.5除变压器容量。

例:一台35KV 3200KVA变压器的电抗X*=7/3.2=2.1875一台10KV 1600KVA变压器的电抗X*=4.5/1.6=2.813变压器容量单位:MVA这里的系数10.5,7,4.5 实际上就是变压器短路电抗的%数。

不同电压等级有不同的值。

3.电抗器电抗的计算电抗器的额定电抗除额定容量再打九折。

例:有一电抗器 U=6KV I=0.3KA 额定电抗 X=4% 。

额定容量 S=1.73*6*0.3=3.12 MVA. 电抗器电抗X*={4/3.12}*0.9=1.15电抗器容量单位:MVA4.架空线电抗的计算架空线:6KV,等于公里数;10KV,取1/3;35KV,取 3%0例:10KV 6KM架空线。

架空线路电抗X*=6/3=25.电缆电抗的计算按架空线再乘0.2。

例:10KV 0.2KM电缆。

电缆电抗X*={0.2/3}*0.2=0.013。

这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小。

6.短路容量的计算电抗加定,去除100。

例:已知短路点前各元件电抗标么值之和为 X*∑=2, 则短路点的短路容量Sd=100/2=50 MVA。

短路容量单位:MVA7.短路电流的计算0.4KV,150除电抗6KV:9.2除电抗10KV:5.5除电抗35KV:1.6除电抗110KV,0.5除电抗例:已知一短路点前各元件电抗标么值之和为 X*∑=2, 短路点电压等级为6KV,则短路点的短路电流 Id=9.2/2=4.6KA。

短路电流单位:KA8.短路冲击电流的计算1000KVA及以下变压器二次侧短路时:冲击电流有效值Ic=Id, 冲击电流峰值ic=1.8Id1000KVA以上变压器二次侧短路时:冲击电流有效值Ic=1.5Id, 冲击电流峰值ic=2.5Id例:已知短路点{1600KVA变压器二次侧}的短路电流 Id=4.6KA,则该点冲击电流有效值Ic=1.5Id,=1.5*4.6=7.36KA,冲击电流峰值ic=2.5Id=2.5*406=11.5KA。

可见短路电流计算的关键是算出短路点前的总电抗{标么值}.但一定要包括系统电抗ANSI/IEEE 标准短路电流计算相关标准:以ANSI/IEEE 和UL标准为依据进行短路电流计算大致有如下标准:标准名称IEEE C37.04IEEE C37.04fIEEE C37.04g对称电流的交流高压回路断路器恒定结构标准和附录IEEE C37.04hIEEE C37.04iIEEE C37.04IEEE C37.010IEEE C37.010b交流高压回路断路器在对称电流基础上的应用指南和附录IEEE C37.010eIEEE C37.010IEEE C37.013 交流高压发电机回路断路器在对称电流基础上的额定值标准展开其他资料短路电流的危害电力系统中出现短路故障时,系统功率分布的忽然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。

相关文档
最新文档